forked from OSchip/llvm-project
1174 lines
36 KiB
C++
1174 lines
36 KiB
C++
//===--- HexagonBitTracker.cpp --------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include "Hexagon.h"
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "HexagonBitTracker.h"
|
|
|
|
using namespace llvm;
|
|
|
|
typedef BitTracker BT;
|
|
|
|
HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
|
|
MachineRegisterInfo &mri,
|
|
const HexagonInstrInfo &tii,
|
|
MachineFunction &mf)
|
|
: MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) {
|
|
// Populate the VRX map (VR to extension-type).
|
|
// Go over all the formal parameters of the function. If a given parameter
|
|
// P is sign- or zero-extended, locate the virtual register holding that
|
|
// parameter and create an entry in the VRX map indicating the type of ex-
|
|
// tension (and the source type).
|
|
// This is a bit complicated to do accurately, since the memory layout in-
|
|
// formation is necessary to precisely determine whether an aggregate para-
|
|
// meter will be passed in a register or in memory. What is given in MRI
|
|
// is the association between the physical register that is live-in (i.e.
|
|
// holds an argument), and the virtual register that this value will be
|
|
// copied into. This, by itself, is not sufficient to map back the virtual
|
|
// register to a formal parameter from Function (since consecutive live-ins
|
|
// from MRI may not correspond to consecutive formal parameters from Func-
|
|
// tion). To avoid the complications with in-memory arguments, only consi-
|
|
// der the initial sequence of formal parameters that are known to be
|
|
// passed via registers.
|
|
unsigned AttrIdx = 0;
|
|
unsigned InVirtReg, InPhysReg = 0;
|
|
const Function &F = *MF.getFunction();
|
|
typedef Function::const_arg_iterator arg_iterator;
|
|
for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
|
|
AttrIdx++;
|
|
const Argument &Arg = *I;
|
|
Type *ATy = Arg.getType();
|
|
unsigned Width = 0;
|
|
if (ATy->isIntegerTy())
|
|
Width = ATy->getIntegerBitWidth();
|
|
else if (ATy->isPointerTy())
|
|
Width = 32;
|
|
// If pointer size is not set through target data, it will default to
|
|
// Module::AnyPointerSize.
|
|
if (Width == 0 || Width > 64)
|
|
break;
|
|
InPhysReg = getNextPhysReg(InPhysReg, Width);
|
|
if (!InPhysReg)
|
|
break;
|
|
InVirtReg = getVirtRegFor(InPhysReg);
|
|
if (!InVirtReg)
|
|
continue;
|
|
AttributeSet Attrs = F.getAttributes();
|
|
if (Attrs.hasAttribute(AttrIdx, Attribute::SExt))
|
|
VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
|
|
else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt))
|
|
VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
|
|
}
|
|
}
|
|
|
|
|
|
BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
|
|
if (Sub == 0)
|
|
return MachineEvaluator::mask(Reg, 0);
|
|
using namespace Hexagon;
|
|
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
|
|
unsigned ID = RC->getID();
|
|
uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
|
|
switch (ID) {
|
|
case DoubleRegsRegClassID:
|
|
return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1)
|
|
: BT::BitMask(RW, 2*RW-1);
|
|
default:
|
|
break;
|
|
}
|
|
#ifndef NDEBUG
|
|
dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
|
|
#endif
|
|
llvm_unreachable("Unexpected register/subregister");
|
|
}
|
|
|
|
namespace {
|
|
class RegisterRefs {
|
|
std::vector<BT::RegisterRef> Vector;
|
|
|
|
public:
|
|
RegisterRefs(const MachineInstr *MI) : Vector(MI->getNumOperands()) {
|
|
for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg())
|
|
Vector[i] = BT::RegisterRef(MO);
|
|
// For indices that don't correspond to registers, the entry will
|
|
// remain constructed via the default constructor.
|
|
}
|
|
}
|
|
|
|
size_t size() const { return Vector.size(); }
|
|
const BT::RegisterRef &operator[](unsigned n) const {
|
|
// The main purpose of this operator is to assert with bad argument.
|
|
assert(n < Vector.size());
|
|
return Vector[n];
|
|
}
|
|
};
|
|
}
|
|
|
|
bool HexagonEvaluator::evaluate(const MachineInstr *MI,
|
|
const CellMapType &Inputs, CellMapType &Outputs) const {
|
|
unsigned NumDefs = 0;
|
|
|
|
// Sanity verification: there should not be any defs with subregisters.
|
|
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
NumDefs++;
|
|
assert(MO.getSubReg() == 0);
|
|
}
|
|
|
|
if (NumDefs == 0)
|
|
return false;
|
|
|
|
if (MI->mayLoad())
|
|
return evaluateLoad(MI, Inputs, Outputs);
|
|
|
|
// Check COPY instructions that copy formal parameters into virtual
|
|
// registers. Such parameters can be sign- or zero-extended at the
|
|
// call site, and we should take advantage of this knowledge. The MRI
|
|
// keeps a list of pairs of live-in physical and virtual registers,
|
|
// which provides information about which virtual registers will hold
|
|
// the argument values. The function will still contain instructions
|
|
// defining those virtual registers, and in practice those are COPY
|
|
// instructions from a physical to a virtual register. In such cases,
|
|
// applying the argument extension to the virtual register can be seen
|
|
// as simply mirroring the extension that had already been applied to
|
|
// the physical register at the call site. If the defining instruction
|
|
// was not a COPY, it would not be clear how to mirror that extension
|
|
// on the callee's side. For that reason, only check COPY instructions
|
|
// for potential extensions.
|
|
if (MI->isCopy()) {
|
|
if (evaluateFormalCopy(MI, Inputs, Outputs))
|
|
return true;
|
|
}
|
|
|
|
// Beyond this point, if any operand is a global, skip that instruction.
|
|
// The reason is that certain instructions that can take an immediate
|
|
// operand can also have a global symbol in that operand. To avoid
|
|
// checking what kind of operand a given instruction has individually
|
|
// for each instruction, do it here. Global symbols as operands gene-
|
|
// rally do not provide any useful information.
|
|
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
|
|
MO.isCPI())
|
|
return false;
|
|
}
|
|
|
|
RegisterRefs Reg(MI);
|
|
unsigned Opc = MI->getOpcode();
|
|
using namespace Hexagon;
|
|
#define op(i) MI->getOperand(i)
|
|
#define rc(i) RegisterCell::ref(getCell(Reg[i],Inputs))
|
|
#define im(i) MI->getOperand(i).getImm()
|
|
|
|
// If the instruction has no register operands, skip it.
|
|
if (Reg.size() == 0)
|
|
return false;
|
|
|
|
// Record result for register in operand 0.
|
|
auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
|
|
-> bool {
|
|
putCell(Reg[0], Val, Outputs);
|
|
return true;
|
|
};
|
|
// Get the cell corresponding to the N-th operand.
|
|
auto cop = [this,Reg,MI,Inputs] (unsigned N, uint16_t W)
|
|
-> BT::RegisterCell {
|
|
const MachineOperand &Op = MI->getOperand(N);
|
|
if (Op.isImm())
|
|
return eIMM(Op.getImm(), W);
|
|
if (!Op.isReg())
|
|
return RegisterCell::self(0, W);
|
|
assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
|
|
return rc(N);
|
|
};
|
|
// Extract RW low bits of the cell.
|
|
auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
|
|
-> BT::RegisterCell {
|
|
assert(RW <= RC.width());
|
|
return eXTR(RC, 0, RW);
|
|
};
|
|
// Extract RW high bits of the cell.
|
|
auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
|
|
-> BT::RegisterCell {
|
|
uint16_t W = RC.width();
|
|
assert(RW <= W);
|
|
return eXTR(RC, W-RW, W);
|
|
};
|
|
// Extract N-th halfword (counting from the least significant position).
|
|
auto half = [this] (const BT::RegisterCell &RC, unsigned N)
|
|
-> BT::RegisterCell {
|
|
assert(N*16+16 <= RC.width());
|
|
return eXTR(RC, N*16, N*16+16);
|
|
};
|
|
// Shuffle bits (pick even/odd from cells and merge into result).
|
|
auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
|
|
uint16_t BW, bool Odd) -> BT::RegisterCell {
|
|
uint16_t I = Odd, Ws = Rs.width();
|
|
assert(Ws == Rt.width());
|
|
RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
|
|
I += 2;
|
|
while (I*BW < Ws) {
|
|
RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
|
|
I += 2;
|
|
}
|
|
return RC;
|
|
};
|
|
|
|
// The bitwidth of the 0th operand. In most (if not all) of the
|
|
// instructions below, the 0th operand is the defined register.
|
|
// Pre-compute the bitwidth here, because it is needed in many cases
|
|
// cases below.
|
|
uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
|
|
|
|
switch (Opc) {
|
|
// Transfer immediate:
|
|
|
|
case A2_tfrsi:
|
|
case A2_tfrpi:
|
|
case CONST32:
|
|
case CONST32_Float_Real:
|
|
case CONST32_Int_Real:
|
|
case CONST64_Float_Real:
|
|
case CONST64_Int_Real:
|
|
return rr0(eIMM(im(1), W0), Outputs);
|
|
case TFR_PdFalse:
|
|
return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
|
|
case TFR_PdTrue:
|
|
return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
|
|
case TFR_FI: {
|
|
int FI = op(1).getIndex();
|
|
int Off = op(2).getImm();
|
|
unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
|
|
unsigned L = Log2_32(A);
|
|
RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
|
|
RC.fill(0, L, BT::BitValue::Zero);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
|
|
// Transfer register:
|
|
|
|
case A2_tfr:
|
|
case A2_tfrp:
|
|
case C2_pxfer_map:
|
|
return rr0(rc(1), Outputs);
|
|
case C2_tfrpr: {
|
|
uint16_t RW = W0;
|
|
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
|
|
assert(PW <= RW);
|
|
RegisterCell PC = eXTR(rc(1), 0, PW);
|
|
RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
|
|
RC.fill(PW, RW, BT::BitValue::Zero);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case C2_tfrrp: {
|
|
RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
|
|
W0 = 8; // XXX Pred size
|
|
return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
|
|
}
|
|
|
|
// Arithmetic:
|
|
|
|
case A2_abs:
|
|
case A2_absp:
|
|
// TODO
|
|
break;
|
|
|
|
case A2_addsp: {
|
|
uint16_t W1 = getRegBitWidth(Reg[1]);
|
|
assert(W0 == 64 && W1 == 32);
|
|
RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
|
|
RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case A2_add:
|
|
case A2_addp:
|
|
return rr0(eADD(rc(1), rc(2)), Outputs);
|
|
case A2_addi:
|
|
return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
|
|
case S4_addi_asl_ri: {
|
|
RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_addi_lsr_ri: {
|
|
RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_addaddi: {
|
|
RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_mpyri_addi: {
|
|
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
|
|
RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_mpyrr_addi: {
|
|
RegisterCell M = eMLS(rc(2), rc(3));
|
|
RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_mpyri_addr_u2: {
|
|
RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
|
|
RegisterCell RC = eADD(rc(1), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_mpyri_addr: {
|
|
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
|
|
RegisterCell RC = eADD(rc(1), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_mpyrr_addr: {
|
|
RegisterCell M = eMLS(rc(2), rc(3));
|
|
RegisterCell RC = eADD(rc(1), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_subaddi: {
|
|
RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_accii: {
|
|
RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_acci: {
|
|
RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_subacc: {
|
|
RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_addasl_rrri: {
|
|
RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case C4_addipc: {
|
|
RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
|
|
RPC.fill(0, 2, BT::BitValue::Zero);
|
|
return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
|
|
}
|
|
case A2_sub:
|
|
case A2_subp:
|
|
return rr0(eSUB(rc(1), rc(2)), Outputs);
|
|
case A2_subri:
|
|
return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
|
|
case S4_subi_asl_ri: {
|
|
RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_subi_lsr_ri: {
|
|
RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_naccii: {
|
|
RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_nacci: {
|
|
RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
// 32-bit negation is done by "Rd = A2_subri 0, Rs"
|
|
case A2_negp:
|
|
return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
|
|
|
|
case M2_mpy_up: {
|
|
RegisterCell M = eMLS(rc(1), rc(2));
|
|
return rr0(hi(M, W0), Outputs);
|
|
}
|
|
case M2_dpmpyss_s0:
|
|
return rr0(eMLS(rc(1), rc(2)), Outputs);
|
|
case M2_dpmpyss_acc_s0:
|
|
return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
|
|
case M2_dpmpyss_nac_s0:
|
|
return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
|
|
case M2_mpyi: {
|
|
RegisterCell M = eMLS(rc(1), rc(2));
|
|
return rr0(lo(M, W0), Outputs);
|
|
}
|
|
case M2_macsip: {
|
|
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
|
|
RegisterCell RC = eADD(rc(1), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_macsin: {
|
|
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
|
|
RegisterCell RC = eSUB(rc(1), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_maci: {
|
|
RegisterCell M = eMLS(rc(2), rc(3));
|
|
RegisterCell RC = eADD(rc(1), lo(M, W0));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M2_mpysmi: {
|
|
RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
|
|
return rr0(lo(M, 32), Outputs);
|
|
}
|
|
case M2_mpysin: {
|
|
RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
|
|
return rr0(lo(M, 32), Outputs);
|
|
}
|
|
case M2_mpysip: {
|
|
RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
|
|
return rr0(lo(M, 32), Outputs);
|
|
}
|
|
case M2_mpyu_up: {
|
|
RegisterCell M = eMLU(rc(1), rc(2));
|
|
return rr0(hi(M, W0), Outputs);
|
|
}
|
|
case M2_dpmpyuu_s0:
|
|
return rr0(eMLU(rc(1), rc(2)), Outputs);
|
|
case M2_dpmpyuu_acc_s0:
|
|
return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
|
|
case M2_dpmpyuu_nac_s0:
|
|
return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
|
|
//case M2_mpysu_up:
|
|
|
|
// Logical/bitwise:
|
|
|
|
case A2_andir:
|
|
return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
|
|
case A2_and:
|
|
case A2_andp:
|
|
return rr0(eAND(rc(1), rc(2)), Outputs);
|
|
case A4_andn:
|
|
case A4_andnp:
|
|
return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
|
|
case S4_andi_asl_ri: {
|
|
RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_andi_lsr_ri: {
|
|
RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_and_and:
|
|
return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
|
|
case M4_and_andn:
|
|
return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
|
|
case M4_and_or:
|
|
return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
|
|
case M4_and_xor:
|
|
return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
|
|
case A2_orir:
|
|
return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
|
|
case A2_or:
|
|
case A2_orp:
|
|
return rr0(eORL(rc(1), rc(2)), Outputs);
|
|
case A4_orn:
|
|
case A4_ornp:
|
|
return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
|
|
case S4_ori_asl_ri: {
|
|
RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_ori_lsr_ri: {
|
|
RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_or_and:
|
|
return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
|
|
case M4_or_andn:
|
|
return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
|
|
case S4_or_andi:
|
|
case S4_or_andix: {
|
|
RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_or_ori: {
|
|
RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case M4_or_or:
|
|
return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
|
|
case M4_or_xor:
|
|
return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
|
|
case A2_xor:
|
|
case A2_xorp:
|
|
return rr0(eXOR(rc(1), rc(2)), Outputs);
|
|
case M4_xor_and:
|
|
return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
|
|
case M4_xor_andn:
|
|
return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
|
|
case M4_xor_or:
|
|
return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
|
|
case M4_xor_xacc:
|
|
return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
|
|
case A2_not:
|
|
case A2_notp:
|
|
return rr0(eNOT(rc(1)), Outputs);
|
|
|
|
case S2_asl_i_r:
|
|
case S2_asl_i_p:
|
|
return rr0(eASL(rc(1), im(2)), Outputs);
|
|
case A2_aslh:
|
|
return rr0(eASL(rc(1), 16), Outputs);
|
|
case S2_asl_i_r_acc:
|
|
case S2_asl_i_p_acc:
|
|
return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
|
|
case S2_asl_i_r_nac:
|
|
case S2_asl_i_p_nac:
|
|
return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
|
|
case S2_asl_i_r_and:
|
|
case S2_asl_i_p_and:
|
|
return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
|
|
case S2_asl_i_r_or:
|
|
case S2_asl_i_p_or:
|
|
return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
|
|
case S2_asl_i_r_xacc:
|
|
case S2_asl_i_p_xacc:
|
|
return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
|
|
case S2_asl_i_vh:
|
|
case S2_asl_i_vw:
|
|
// TODO
|
|
break;
|
|
|
|
case S2_asr_i_r:
|
|
case S2_asr_i_p:
|
|
return rr0(eASR(rc(1), im(2)), Outputs);
|
|
case A2_asrh:
|
|
return rr0(eASR(rc(1), 16), Outputs);
|
|
case S2_asr_i_r_acc:
|
|
case S2_asr_i_p_acc:
|
|
return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
|
|
case S2_asr_i_r_nac:
|
|
case S2_asr_i_p_nac:
|
|
return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
|
|
case S2_asr_i_r_and:
|
|
case S2_asr_i_p_and:
|
|
return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
|
|
case S2_asr_i_r_or:
|
|
case S2_asr_i_p_or:
|
|
return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
|
|
case S2_asr_i_r_rnd: {
|
|
// The input is first sign-extended to 64 bits, then the output
|
|
// is truncated back to 32 bits.
|
|
assert(W0 == 32);
|
|
RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
|
|
RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
|
|
return rr0(eXTR(RC, 0, W0), Outputs);
|
|
}
|
|
case S2_asr_i_r_rnd_goodsyntax: {
|
|
int64_t S = im(2);
|
|
if (S == 0)
|
|
return rr0(rc(1), Outputs);
|
|
// Result: S2_asr_i_r_rnd Rs, u5-1
|
|
RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
|
|
RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
|
|
return rr0(eXTR(RC, 0, W0), Outputs);
|
|
}
|
|
case S2_asr_r_vh:
|
|
case S2_asr_i_vw:
|
|
case S2_asr_i_svw_trun:
|
|
// TODO
|
|
break;
|
|
|
|
case S2_lsr_i_r:
|
|
case S2_lsr_i_p:
|
|
return rr0(eLSR(rc(1), im(2)), Outputs);
|
|
case S2_lsr_i_r_acc:
|
|
case S2_lsr_i_p_acc:
|
|
return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
|
|
case S2_lsr_i_r_nac:
|
|
case S2_lsr_i_p_nac:
|
|
return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
|
|
case S2_lsr_i_r_and:
|
|
case S2_lsr_i_p_and:
|
|
return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
|
|
case S2_lsr_i_r_or:
|
|
case S2_lsr_i_p_or:
|
|
return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
|
|
case S2_lsr_i_r_xacc:
|
|
case S2_lsr_i_p_xacc:
|
|
return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
|
|
|
|
case S2_clrbit_i: {
|
|
RegisterCell RC = rc(1);
|
|
RC[im(2)] = BT::BitValue::Zero;
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_setbit_i: {
|
|
RegisterCell RC = rc(1);
|
|
RC[im(2)] = BT::BitValue::One;
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_togglebit_i: {
|
|
RegisterCell RC = rc(1);
|
|
uint16_t BX = im(2);
|
|
RC[BX] = RC[BX].is(0) ? BT::BitValue::One
|
|
: RC[BX].is(1) ? BT::BitValue::Zero
|
|
: BT::BitValue::self();
|
|
return rr0(RC, Outputs);
|
|
}
|
|
|
|
case A4_bitspliti: {
|
|
uint16_t W1 = getRegBitWidth(Reg[1]);
|
|
uint16_t BX = im(2);
|
|
// Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
|
|
const BT::BitValue Zero = BT::BitValue::Zero;
|
|
RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
|
|
.fill(W1+(W1-BX), W0, Zero);
|
|
RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
|
|
RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S4_extract:
|
|
case S4_extractp:
|
|
case S2_extractu:
|
|
case S2_extractup: {
|
|
uint16_t Wd = im(2), Of = im(3);
|
|
assert(Wd <= W0);
|
|
if (Wd == 0)
|
|
return rr0(eIMM(0, W0), Outputs);
|
|
// If the width extends beyond the register size, pad the register
|
|
// with 0 bits.
|
|
RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
|
|
RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
|
|
// Ext is short, need to extend it with 0s or sign bit.
|
|
RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
|
|
if (Opc == S2_extractu || Opc == S2_extractup)
|
|
return rr0(eZXT(RC, Wd), Outputs);
|
|
return rr0(eSXT(RC, Wd), Outputs);
|
|
}
|
|
case S2_insert:
|
|
case S2_insertp: {
|
|
uint16_t Wd = im(3), Of = im(4);
|
|
assert(Wd < W0 && Of < W0);
|
|
// If Wd+Of exceeds W0, the inserted bits are truncated.
|
|
if (Wd+Of > W0)
|
|
Wd = W0-Of;
|
|
if (Wd == 0)
|
|
return rr0(rc(1), Outputs);
|
|
return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
|
|
}
|
|
|
|
// Bit permutations:
|
|
|
|
case A2_combineii:
|
|
case A4_combineii:
|
|
case A4_combineir:
|
|
case A4_combineri:
|
|
case A2_combinew:
|
|
assert(W0 % 2 == 0);
|
|
return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
|
|
case A2_combine_ll:
|
|
case A2_combine_lh:
|
|
case A2_combine_hl:
|
|
case A2_combine_hh: {
|
|
assert(W0 == 32);
|
|
assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
|
|
// Low half in the output is 0 for _ll and _hl, 1 otherwise:
|
|
unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
|
|
// High half in the output is 0 for _ll and _lh, 1 otherwise:
|
|
unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
|
|
RegisterCell R1 = rc(1);
|
|
RegisterCell R2 = rc(2);
|
|
RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_packhl: {
|
|
assert(W0 == 64);
|
|
assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
|
|
RegisterCell R1 = rc(1);
|
|
RegisterCell R2 = rc(2);
|
|
RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
|
|
.cat(half(R1, 1));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_shuffeb: {
|
|
RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_shuffeh: {
|
|
RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_shuffob: {
|
|
RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case S2_shuffoh: {
|
|
RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case C2_mask: {
|
|
uint16_t WR = W0;
|
|
uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
|
|
assert(WR == 64 && WP == 8);
|
|
RegisterCell R1 = rc(1);
|
|
RegisterCell RC(WR);
|
|
for (uint16_t i = 0; i < WP; ++i) {
|
|
const BT::BitValue &V = R1[i];
|
|
BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
|
|
RC.fill(i*8, i*8+8, F);
|
|
}
|
|
return rr0(RC, Outputs);
|
|
}
|
|
|
|
// Mux:
|
|
|
|
case C2_muxii:
|
|
case C2_muxir:
|
|
case C2_muxri:
|
|
case C2_mux: {
|
|
BT::BitValue PC0 = rc(1)[0];
|
|
RegisterCell R2 = cop(2, W0);
|
|
RegisterCell R3 = cop(3, W0);
|
|
if (PC0.is(0) || PC0.is(1))
|
|
return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
|
|
R2.meet(R3, Reg[0].Reg);
|
|
return rr0(R2, Outputs);
|
|
}
|
|
case C2_vmux:
|
|
// TODO
|
|
break;
|
|
|
|
// Sign- and zero-extension:
|
|
|
|
case A2_sxtb:
|
|
return rr0(eSXT(rc(1), 8), Outputs);
|
|
case A2_sxth:
|
|
return rr0(eSXT(rc(1), 16), Outputs);
|
|
case A2_sxtw: {
|
|
uint16_t W1 = getRegBitWidth(Reg[1]);
|
|
assert(W0 == 64 && W1 == 32);
|
|
RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case A2_zxtb:
|
|
return rr0(eZXT(rc(1), 8), Outputs);
|
|
case A2_zxth:
|
|
return rr0(eZXT(rc(1), 16), Outputs);
|
|
|
|
// Bit count:
|
|
|
|
case S2_cl0:
|
|
case S2_cl0p:
|
|
// Always produce a 32-bit result.
|
|
return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs);
|
|
case S2_cl1:
|
|
case S2_cl1p:
|
|
return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs);
|
|
case S2_clb:
|
|
case S2_clbp: {
|
|
uint16_t W1 = getRegBitWidth(Reg[1]);
|
|
RegisterCell R1 = rc(1);
|
|
BT::BitValue TV = R1[W1-1];
|
|
if (TV.is(0) || TV.is(1))
|
|
return rr0(eCLB(R1, TV, 32), Outputs);
|
|
break;
|
|
}
|
|
case S2_ct0:
|
|
case S2_ct0p:
|
|
return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs);
|
|
case S2_ct1:
|
|
case S2_ct1p:
|
|
return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs);
|
|
case S5_popcountp:
|
|
// TODO
|
|
break;
|
|
|
|
case C2_all8: {
|
|
RegisterCell P1 = rc(1);
|
|
bool Has0 = false, All1 = true;
|
|
for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
|
|
if (!P1[i].is(1))
|
|
All1 = false;
|
|
if (!P1[i].is(0))
|
|
continue;
|
|
Has0 = true;
|
|
break;
|
|
}
|
|
if (!Has0 && !All1)
|
|
break;
|
|
RegisterCell RC(W0);
|
|
RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case C2_any8: {
|
|
RegisterCell P1 = rc(1);
|
|
bool Has1 = false, All0 = true;
|
|
for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
|
|
if (!P1[i].is(0))
|
|
All0 = false;
|
|
if (!P1[i].is(1))
|
|
continue;
|
|
Has1 = true;
|
|
break;
|
|
}
|
|
if (!Has1 && !All0)
|
|
break;
|
|
RegisterCell RC(W0);
|
|
RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
|
|
return rr0(RC, Outputs);
|
|
}
|
|
case C2_and:
|
|
return rr0(eAND(rc(1), rc(2)), Outputs);
|
|
case C2_andn:
|
|
return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
|
|
case C2_not:
|
|
return rr0(eNOT(rc(1)), Outputs);
|
|
case C2_or:
|
|
return rr0(eORL(rc(1), rc(2)), Outputs);
|
|
case C2_orn:
|
|
return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
|
|
case C2_xor:
|
|
return rr0(eXOR(rc(1), rc(2)), Outputs);
|
|
case C4_and_and:
|
|
return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
|
|
case C4_and_andn:
|
|
return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
|
|
case C4_and_or:
|
|
return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
|
|
case C4_and_orn:
|
|
return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
|
|
case C4_or_and:
|
|
return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
|
|
case C4_or_andn:
|
|
return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
|
|
case C4_or_or:
|
|
return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
|
|
case C4_or_orn:
|
|
return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
|
|
case C2_bitsclr:
|
|
case C2_bitsclri:
|
|
case C2_bitsset:
|
|
case C4_nbitsclr:
|
|
case C4_nbitsclri:
|
|
case C4_nbitsset:
|
|
// TODO
|
|
break;
|
|
case S2_tstbit_i:
|
|
case S4_ntstbit_i: {
|
|
BT::BitValue V = rc(1)[im(2)];
|
|
if (V.is(0) || V.is(1)) {
|
|
// If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
|
|
bool TV = (Opc == S2_tstbit_i);
|
|
BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
|
|
return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return MachineEvaluator::evaluate(MI, Inputs, Outputs);
|
|
}
|
|
#undef im
|
|
#undef rc
|
|
#undef op
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonEvaluator::evaluate(const MachineInstr *BI,
|
|
const CellMapType &Inputs, BranchTargetList &Targets,
|
|
bool &FallsThru) const {
|
|
// We need to evaluate one branch at a time. TII::AnalyzeBranch checks
|
|
// all the branches in a basic block at once, so we cannot use it.
|
|
unsigned Opc = BI->getOpcode();
|
|
bool SimpleBranch = false;
|
|
bool Negated = false;
|
|
switch (Opc) {
|
|
case Hexagon::J2_jumpf:
|
|
case Hexagon::J2_jumpfnew:
|
|
case Hexagon::J2_jumpfnewpt:
|
|
Negated = true;
|
|
case Hexagon::J2_jumpt:
|
|
case Hexagon::J2_jumptnew:
|
|
case Hexagon::J2_jumptnewpt:
|
|
// Simple branch: if([!]Pn) jump ...
|
|
// i.e. Op0 = predicate, Op1 = branch target.
|
|
SimpleBranch = true;
|
|
break;
|
|
case Hexagon::J2_jump:
|
|
Targets.insert(BI->getOperand(0).getMBB());
|
|
FallsThru = false;
|
|
return true;
|
|
default:
|
|
// If the branch is of unknown type, assume that all successors are
|
|
// executable.
|
|
return false;
|
|
}
|
|
|
|
if (!SimpleBranch)
|
|
return false;
|
|
|
|
// BI is a conditional branch if we got here.
|
|
RegisterRef PR = BI->getOperand(0);
|
|
RegisterCell PC = getCell(PR, Inputs);
|
|
const BT::BitValue &Test = PC[0];
|
|
|
|
// If the condition is neither true nor false, then it's unknown.
|
|
if (!Test.is(0) && !Test.is(1))
|
|
return false;
|
|
|
|
// "Test.is(!Negated)" means "branch condition is true".
|
|
if (!Test.is(!Negated)) {
|
|
// Condition known to be false.
|
|
FallsThru = true;
|
|
return true;
|
|
}
|
|
|
|
Targets.insert(BI->getOperand(1).getMBB());
|
|
FallsThru = false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonEvaluator::evaluateLoad(const MachineInstr *MI,
|
|
const CellMapType &Inputs, CellMapType &Outputs) const {
|
|
if (TII.isPredicated(MI))
|
|
return false;
|
|
assert(MI->mayLoad() && "A load that mayn't?");
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
uint16_t BitNum;
|
|
bool SignEx;
|
|
using namespace Hexagon;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
|
|
#if 0
|
|
// memb_fifo
|
|
case L2_loadalignb_pbr:
|
|
case L2_loadalignb_pcr:
|
|
case L2_loadalignb_pi:
|
|
// memh_fifo
|
|
case L2_loadalignh_pbr:
|
|
case L2_loadalignh_pcr:
|
|
case L2_loadalignh_pi:
|
|
// membh
|
|
case L2_loadbsw2_pbr:
|
|
case L2_loadbsw2_pci:
|
|
case L2_loadbsw2_pcr:
|
|
case L2_loadbsw2_pi:
|
|
case L2_loadbsw4_pbr:
|
|
case L2_loadbsw4_pci:
|
|
case L2_loadbsw4_pcr:
|
|
case L2_loadbsw4_pi:
|
|
// memubh
|
|
case L2_loadbzw2_pbr:
|
|
case L2_loadbzw2_pci:
|
|
case L2_loadbzw2_pcr:
|
|
case L2_loadbzw2_pi:
|
|
case L2_loadbzw4_pbr:
|
|
case L2_loadbzw4_pci:
|
|
case L2_loadbzw4_pcr:
|
|
case L2_loadbzw4_pi:
|
|
#endif
|
|
|
|
case L2_loadrbgp:
|
|
case L2_loadrb_io:
|
|
case L2_loadrb_pbr:
|
|
case L2_loadrb_pci:
|
|
case L2_loadrb_pcr:
|
|
case L2_loadrb_pi:
|
|
case L4_loadrb_abs:
|
|
case L4_loadrb_ap:
|
|
case L4_loadrb_rr:
|
|
case L4_loadrb_ur:
|
|
BitNum = 8;
|
|
SignEx = true;
|
|
break;
|
|
|
|
case L2_loadrubgp:
|
|
case L2_loadrub_io:
|
|
case L2_loadrub_pbr:
|
|
case L2_loadrub_pci:
|
|
case L2_loadrub_pcr:
|
|
case L2_loadrub_pi:
|
|
case L4_loadrub_abs:
|
|
case L4_loadrub_ap:
|
|
case L4_loadrub_rr:
|
|
case L4_loadrub_ur:
|
|
BitNum = 8;
|
|
SignEx = false;
|
|
break;
|
|
|
|
case L2_loadrhgp:
|
|
case L2_loadrh_io:
|
|
case L2_loadrh_pbr:
|
|
case L2_loadrh_pci:
|
|
case L2_loadrh_pcr:
|
|
case L2_loadrh_pi:
|
|
case L4_loadrh_abs:
|
|
case L4_loadrh_ap:
|
|
case L4_loadrh_rr:
|
|
case L4_loadrh_ur:
|
|
BitNum = 16;
|
|
SignEx = true;
|
|
break;
|
|
|
|
case L2_loadruhgp:
|
|
case L2_loadruh_io:
|
|
case L2_loadruh_pbr:
|
|
case L2_loadruh_pci:
|
|
case L2_loadruh_pcr:
|
|
case L2_loadruh_pi:
|
|
case L4_loadruh_rr:
|
|
case L4_loadruh_abs:
|
|
case L4_loadruh_ap:
|
|
case L4_loadruh_ur:
|
|
BitNum = 16;
|
|
SignEx = false;
|
|
break;
|
|
|
|
case L2_loadrigp:
|
|
case L2_loadri_io:
|
|
case L2_loadri_pbr:
|
|
case L2_loadri_pci:
|
|
case L2_loadri_pcr:
|
|
case L2_loadri_pi:
|
|
case L2_loadw_locked:
|
|
case L4_loadri_abs:
|
|
case L4_loadri_ap:
|
|
case L4_loadri_rr:
|
|
case L4_loadri_ur:
|
|
case LDriw_pred:
|
|
BitNum = 32;
|
|
SignEx = true;
|
|
break;
|
|
|
|
case L2_loadrdgp:
|
|
case L2_loadrd_io:
|
|
case L2_loadrd_pbr:
|
|
case L2_loadrd_pci:
|
|
case L2_loadrd_pcr:
|
|
case L2_loadrd_pi:
|
|
case L4_loadd_locked:
|
|
case L4_loadrd_abs:
|
|
case L4_loadrd_ap:
|
|
case L4_loadrd_rr:
|
|
case L4_loadrd_ur:
|
|
BitNum = 64;
|
|
SignEx = true;
|
|
break;
|
|
}
|
|
|
|
const MachineOperand &MD = MI->getOperand(0);
|
|
assert(MD.isReg() && MD.isDef());
|
|
RegisterRef RD = MD;
|
|
|
|
uint16_t W = getRegBitWidth(RD);
|
|
assert(W >= BitNum && BitNum > 0);
|
|
RegisterCell Res(W);
|
|
|
|
for (uint16_t i = 0; i < BitNum; ++i)
|
|
Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
|
|
|
|
if (SignEx) {
|
|
const BT::BitValue &Sign = Res[BitNum-1];
|
|
for (uint16_t i = BitNum; i < W; ++i)
|
|
Res[i] = BT::BitValue::ref(Sign);
|
|
} else {
|
|
for (uint16_t i = BitNum; i < W; ++i)
|
|
Res[i] = BT::BitValue::Zero;
|
|
}
|
|
|
|
putCell(RD, Res, Outputs);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr *MI,
|
|
const CellMapType &Inputs, CellMapType &Outputs) const {
|
|
// If MI defines a formal parameter, but is not a copy (loads are handled
|
|
// in evaluateLoad), then it's not clear what to do.
|
|
assert(MI->isCopy());
|
|
|
|
RegisterRef RD = MI->getOperand(0);
|
|
RegisterRef RS = MI->getOperand(1);
|
|
assert(RD.Sub == 0);
|
|
if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
|
|
return false;
|
|
RegExtMap::const_iterator F = VRX.find(RD.Reg);
|
|
if (F == VRX.end())
|
|
return false;
|
|
|
|
uint16_t EW = F->second.Width;
|
|
// Store RD's cell into the map. This will associate the cell with a virtual
|
|
// register, and make zero-/sign-extends possible (otherwise we would be ex-
|
|
// tending "self" bit values, which will have no effect, since "self" values
|
|
// cannot be references to anything).
|
|
putCell(RD, getCell(RS, Inputs), Outputs);
|
|
|
|
RegisterCell Res;
|
|
// Read RD's cell from the outputs instead of RS's cell from the inputs:
|
|
if (F->second.Type == ExtType::SExt)
|
|
Res = eSXT(getCell(RD, Outputs), EW);
|
|
else if (F->second.Type == ExtType::ZExt)
|
|
Res = eZXT(getCell(RD, Outputs), EW);
|
|
|
|
putCell(RD, Res, Outputs);
|
|
return true;
|
|
}
|
|
|
|
|
|
unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
|
|
using namespace Hexagon;
|
|
bool Is64 = DoubleRegsRegClass.contains(PReg);
|
|
assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
|
|
|
|
static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
|
|
static const unsigned Phys64[] = { D0, D1, D2 };
|
|
const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
|
|
const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
|
|
|
|
// Return the first parameter register of the required width.
|
|
if (PReg == 0)
|
|
return (Width <= 32) ? Phys32[0] : Phys64[0];
|
|
|
|
// Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
|
|
// next register.
|
|
unsigned Idx32 = 0, Idx64 = 0;
|
|
if (!Is64) {
|
|
while (Idx32 < Num32) {
|
|
if (Phys32[Idx32] == PReg)
|
|
break;
|
|
Idx32++;
|
|
}
|
|
Idx64 = Idx32/2;
|
|
} else {
|
|
while (Idx64 < Num64) {
|
|
if (Phys64[Idx64] == PReg)
|
|
break;
|
|
Idx64++;
|
|
}
|
|
Idx32 = Idx64*2+1;
|
|
}
|
|
|
|
if (Width <= 32)
|
|
return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
|
|
return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
|
|
}
|
|
|
|
|
|
unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
|
|
typedef MachineRegisterInfo::livein_iterator iterator;
|
|
for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
|
|
if (I->first == PReg)
|
|
return I->second;
|
|
}
|
|
return 0;
|
|
}
|