forked from OSchip/llvm-project
1821 lines
69 KiB
C++
1821 lines
69 KiB
C++
//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A intra-procedural analysis for thread safety (e.g. deadlocks and race
|
|
// conditions), based off of an annotation system.
|
|
//
|
|
// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
|
|
// information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Analyses/ThreadSafety.h"
|
|
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
using namespace thread_safety;
|
|
|
|
// Key method definition
|
|
ThreadSafetyHandler::~ThreadSafetyHandler() {}
|
|
|
|
namespace {
|
|
|
|
/// \brief A MutexID object uniquely identifies a particular mutex, and
|
|
/// is built from an Expr* (i.e. calling a lock function).
|
|
///
|
|
/// Thread-safety analysis works by comparing lock expressions. Within the
|
|
/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
|
|
/// a particular mutex object at run-time. Subsequent occurrences of the same
|
|
/// expression (where "same" means syntactic equality) will refer to the same
|
|
/// run-time object if three conditions hold:
|
|
/// (1) Local variables in the expression, such as "x" have not changed.
|
|
/// (2) Values on the heap that affect the expression have not changed.
|
|
/// (3) The expression involves only pure function calls.
|
|
///
|
|
/// The current implementation assumes, but does not verify, that multiple uses
|
|
/// of the same lock expression satisfies these criteria.
|
|
///
|
|
/// Clang introduces an additional wrinkle, which is that it is difficult to
|
|
/// derive canonical expressions, or compare expressions directly for equality.
|
|
/// Thus, we identify a mutex not by an Expr, but by the list of named
|
|
/// declarations that are referenced by the Expr. In other words,
|
|
/// x->foo->bar.mu will be a four element vector with the Decls for
|
|
/// mu, bar, and foo, and x. The vector will uniquely identify the expression
|
|
/// for all practical purposes. Null is used to denote 'this'.
|
|
///
|
|
/// Note we will need to perform substitution on "this" and function parameter
|
|
/// names when constructing a lock expression.
|
|
///
|
|
/// For example:
|
|
/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
|
|
/// void myFunc(C *X) { ... X->lock() ... }
|
|
/// The original expression for the mutex acquired by myFunc is "this->Mu", but
|
|
/// "X" is substituted for "this" so we get X->Mu();
|
|
///
|
|
/// For another example:
|
|
/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
|
|
/// MyList *MyL;
|
|
/// foo(MyL); // requires lock MyL->Mu to be held
|
|
class MutexID {
|
|
SmallVector<NamedDecl*, 2> DeclSeq;
|
|
|
|
/// \brief Encapsulates the lexical context of a function call. The lexical
|
|
/// context includes the arguments to the call, including the implicit object
|
|
/// argument. When an attribute containing a mutex expression is attached to
|
|
/// a method, the expression may refer to formal parameters of the method.
|
|
/// Actual arguments must be substituted for formal parameters to derive
|
|
/// the appropriate mutex expression in the lexical context where the function
|
|
/// is called. PrevCtx holds the context in which the arguments themselves
|
|
/// should be evaluated; multiple calling contexts can be chained together
|
|
/// by the lock_returned attribute.
|
|
struct CallingContext {
|
|
const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
|
|
Expr* SelfArg; // Implicit object argument -- e.g. 'this'
|
|
unsigned NumArgs; // Number of funArgs
|
|
Expr** FunArgs; // Function arguments
|
|
CallingContext* PrevCtx; // The previous context; or 0 if none.
|
|
|
|
CallingContext(const NamedDecl* D = 0, Expr* S = 0,
|
|
unsigned N = 0, Expr** A = 0, CallingContext* P = 0)
|
|
: AttrDecl(D), SelfArg(S), NumArgs(N), FunArgs(A), PrevCtx(P)
|
|
{ }
|
|
};
|
|
|
|
/// Build a Decl sequence representing the lock from the given expression.
|
|
/// Recursive function that terminates on DeclRefExpr.
|
|
/// Note: this function merely creates a MutexID; it does not check to
|
|
/// ensure that the original expression is a valid mutex expression.
|
|
void buildMutexID(Expr *Exp, CallingContext* CallCtx) {
|
|
if (!Exp) {
|
|
DeclSeq.clear();
|
|
return;
|
|
}
|
|
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
|
|
NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
|
|
ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
|
|
if (PV) {
|
|
FunctionDecl *FD =
|
|
cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
|
|
unsigned i = PV->getFunctionScopeIndex();
|
|
|
|
if (CallCtx && CallCtx->FunArgs &&
|
|
FD == CallCtx->AttrDecl->getCanonicalDecl()) {
|
|
// Substitute call arguments for references to function parameters
|
|
assert(i < CallCtx->NumArgs);
|
|
buildMutexID(CallCtx->FunArgs[i], CallCtx->PrevCtx);
|
|
return;
|
|
}
|
|
// Map the param back to the param of the original function declaration.
|
|
DeclSeq.push_back(FD->getParamDecl(i));
|
|
return;
|
|
}
|
|
// Not a function parameter -- just store the reference.
|
|
DeclSeq.push_back(ND);
|
|
} else if (isa<CXXThisExpr>(Exp)) {
|
|
// Substitute parent for 'this'
|
|
if (CallCtx && CallCtx->SelfArg)
|
|
buildMutexID(CallCtx->SelfArg, CallCtx->PrevCtx);
|
|
else {
|
|
DeclSeq.push_back(0); // Use 0 to represent 'this'.
|
|
return; // mutexID is still valid in this case
|
|
}
|
|
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
|
|
NamedDecl *ND = ME->getMemberDecl();
|
|
DeclSeq.push_back(ND);
|
|
buildMutexID(ME->getBase(), CallCtx);
|
|
} else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
|
|
// When calling a function with a lock_returned attribute, replace
|
|
// the function call with the expression in lock_returned.
|
|
if (LockReturnedAttr* At =
|
|
CMCE->getMethodDecl()->getAttr<LockReturnedAttr>()) {
|
|
CallingContext LRCallCtx(CMCE->getMethodDecl());
|
|
LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
|
|
LRCallCtx.NumArgs = CMCE->getNumArgs();
|
|
LRCallCtx.FunArgs = CMCE->getArgs();
|
|
LRCallCtx.PrevCtx = CallCtx;
|
|
buildMutexID(At->getArg(), &LRCallCtx);
|
|
return;
|
|
}
|
|
DeclSeq.push_back(CMCE->getMethodDecl()->getCanonicalDecl());
|
|
buildMutexID(CMCE->getImplicitObjectArgument(), CallCtx);
|
|
unsigned NumCallArgs = CMCE->getNumArgs();
|
|
Expr** CallArgs = CMCE->getArgs();
|
|
for (unsigned i = 0; i < NumCallArgs; ++i) {
|
|
buildMutexID(CallArgs[i], CallCtx);
|
|
}
|
|
} else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
|
|
if (LockReturnedAttr* At =
|
|
CE->getDirectCallee()->getAttr<LockReturnedAttr>()) {
|
|
CallingContext LRCallCtx(CE->getDirectCallee());
|
|
LRCallCtx.NumArgs = CE->getNumArgs();
|
|
LRCallCtx.FunArgs = CE->getArgs();
|
|
LRCallCtx.PrevCtx = CallCtx;
|
|
buildMutexID(At->getArg(), &LRCallCtx);
|
|
return;
|
|
}
|
|
buildMutexID(CE->getCallee(), CallCtx);
|
|
unsigned NumCallArgs = CE->getNumArgs();
|
|
Expr** CallArgs = CE->getArgs();
|
|
for (unsigned i = 0; i < NumCallArgs; ++i) {
|
|
buildMutexID(CallArgs[i], CallCtx);
|
|
}
|
|
} else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
|
|
buildMutexID(BOE->getLHS(), CallCtx);
|
|
buildMutexID(BOE->getRHS(), CallCtx);
|
|
} else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
|
|
buildMutexID(UOE->getSubExpr(), CallCtx);
|
|
} else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
|
|
buildMutexID(ASE->getBase(), CallCtx);
|
|
buildMutexID(ASE->getIdx(), CallCtx);
|
|
} else if (AbstractConditionalOperator *CE =
|
|
dyn_cast<AbstractConditionalOperator>(Exp)) {
|
|
buildMutexID(CE->getCond(), CallCtx);
|
|
buildMutexID(CE->getTrueExpr(), CallCtx);
|
|
buildMutexID(CE->getFalseExpr(), CallCtx);
|
|
} else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
|
|
buildMutexID(CE->getCond(), CallCtx);
|
|
buildMutexID(CE->getLHS(), CallCtx);
|
|
buildMutexID(CE->getRHS(), CallCtx);
|
|
} else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
|
|
buildMutexID(CE->getSubExpr(), CallCtx);
|
|
} else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
|
|
buildMutexID(PE->getSubExpr(), CallCtx);
|
|
} else if (isa<CharacterLiteral>(Exp) ||
|
|
isa<CXXNullPtrLiteralExpr>(Exp) ||
|
|
isa<GNUNullExpr>(Exp) ||
|
|
isa<CXXBoolLiteralExpr>(Exp) ||
|
|
isa<FloatingLiteral>(Exp) ||
|
|
isa<ImaginaryLiteral>(Exp) ||
|
|
isa<IntegerLiteral>(Exp) ||
|
|
isa<StringLiteral>(Exp) ||
|
|
isa<ObjCStringLiteral>(Exp)) {
|
|
return; // FIXME: Ignore literals for now
|
|
} else {
|
|
// Ignore. FIXME: mark as invalid expression?
|
|
}
|
|
}
|
|
|
|
/// \brief Construct a MutexID from an expression.
|
|
/// \param MutexExp The original mutex expression within an attribute
|
|
/// \param DeclExp An expression involving the Decl on which the attribute
|
|
/// occurs.
|
|
/// \param D The declaration to which the lock/unlock attribute is attached.
|
|
void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
|
|
CallingContext CallCtx(D);
|
|
|
|
// If we are processing a raw attribute expression, with no substitutions.
|
|
if (DeclExp == 0) {
|
|
buildMutexID(MutexExp, 0);
|
|
return;
|
|
}
|
|
|
|
// Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
|
|
// for formal parameters when we call buildMutexID later.
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
|
|
CallCtx.SelfArg = ME->getBase();
|
|
} else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
|
|
CallCtx.SelfArg = CE->getImplicitObjectArgument();
|
|
CallCtx.NumArgs = CE->getNumArgs();
|
|
CallCtx.FunArgs = CE->getArgs();
|
|
} else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
|
|
CallCtx.NumArgs = CE->getNumArgs();
|
|
CallCtx.FunArgs = CE->getArgs();
|
|
} else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
|
|
CallCtx.SelfArg = 0; // FIXME -- get the parent from DeclStmt
|
|
CallCtx.NumArgs = CE->getNumArgs();
|
|
CallCtx.FunArgs = CE->getArgs();
|
|
} else if (D && isa<CXXDestructorDecl>(D)) {
|
|
// There's no such thing as a "destructor call" in the AST.
|
|
CallCtx.SelfArg = DeclExp;
|
|
}
|
|
|
|
// If the attribute has no arguments, then assume the argument is "this".
|
|
if (MutexExp == 0) {
|
|
buildMutexID(CallCtx.SelfArg, 0);
|
|
return;
|
|
}
|
|
|
|
// For most attributes.
|
|
buildMutexID(MutexExp, &CallCtx);
|
|
}
|
|
|
|
public:
|
|
explicit MutexID(clang::Decl::EmptyShell e) {
|
|
DeclSeq.clear();
|
|
}
|
|
|
|
/// \param MutexExp The original mutex expression within an attribute
|
|
/// \param DeclExp An expression involving the Decl on which the attribute
|
|
/// occurs.
|
|
/// \param D The declaration to which the lock/unlock attribute is attached.
|
|
/// Caller must check isValid() after construction.
|
|
MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
|
|
buildMutexIDFromExp(MutexExp, DeclExp, D);
|
|
}
|
|
|
|
/// Return true if this is a valid decl sequence.
|
|
/// Caller must call this by hand after construction to handle errors.
|
|
bool isValid() const {
|
|
return !DeclSeq.empty();
|
|
}
|
|
|
|
/// Issue a warning about an invalid lock expression
|
|
static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
|
|
Expr *DeclExp, const NamedDecl* D) {
|
|
SourceLocation Loc;
|
|
if (DeclExp)
|
|
Loc = DeclExp->getExprLoc();
|
|
|
|
// FIXME: add a note about the attribute location in MutexExp or D
|
|
if (Loc.isValid())
|
|
Handler.handleInvalidLockExp(Loc);
|
|
}
|
|
|
|
bool operator==(const MutexID &other) const {
|
|
return DeclSeq == other.DeclSeq;
|
|
}
|
|
|
|
bool operator!=(const MutexID &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
// SmallVector overloads Operator< to do lexicographic ordering. Note that
|
|
// we use pointer equality (and <) to compare NamedDecls. This means the order
|
|
// of MutexIDs in a lockset is nondeterministic. In order to output
|
|
// diagnostics in a deterministic ordering, we must order all diagnostics to
|
|
// output by SourceLocation when iterating through this lockset.
|
|
bool operator<(const MutexID &other) const {
|
|
return DeclSeq < other.DeclSeq;
|
|
}
|
|
|
|
/// \brief Returns the name of the first Decl in the list for a given MutexID;
|
|
/// e.g. the lock expression foo.bar() has name "bar".
|
|
/// The caret will point unambiguously to the lock expression, so using this
|
|
/// name in diagnostics is a way to get simple, and consistent, mutex names.
|
|
/// We do not want to output the entire expression text for security reasons.
|
|
std::string getName() const {
|
|
assert(isValid());
|
|
if (!DeclSeq.front())
|
|
return "this"; // Use 0 to represent 'this'.
|
|
return DeclSeq.front()->getNameAsString();
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
|
|
E = DeclSeq.end(); I != E; ++I) {
|
|
ID.AddPointer(*I);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/// \brief This is a helper class that stores info about the most recent
|
|
/// accquire of a Lock.
|
|
///
|
|
/// The main body of the analysis maps MutexIDs to LockDatas.
|
|
struct LockData {
|
|
SourceLocation AcquireLoc;
|
|
|
|
/// \brief LKind stores whether a lock is held shared or exclusively.
|
|
/// Note that this analysis does not currently support either re-entrant
|
|
/// locking or lock "upgrading" and "downgrading" between exclusive and
|
|
/// shared.
|
|
///
|
|
/// FIXME: add support for re-entrant locking and lock up/downgrading
|
|
LockKind LKind;
|
|
MutexID UnderlyingMutex; // for ScopedLockable objects
|
|
|
|
LockData(SourceLocation AcquireLoc, LockKind LKind)
|
|
: AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
|
|
{}
|
|
|
|
LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
|
|
: AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
|
|
|
|
bool operator==(const LockData &other) const {
|
|
return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
|
|
}
|
|
|
|
bool operator!=(const LockData &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(AcquireLoc.getRawEncoding());
|
|
ID.AddInteger(LKind);
|
|
}
|
|
};
|
|
|
|
|
|
/// A Lockset maps each MutexID (defined above) to information about how it has
|
|
/// been locked.
|
|
typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
|
|
typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
|
|
|
|
class LocalVariableMap;
|
|
|
|
/// A side (entry or exit) of a CFG node.
|
|
enum CFGBlockSide { CBS_Entry, CBS_Exit };
|
|
|
|
/// CFGBlockInfo is a struct which contains all the information that is
|
|
/// maintained for each block in the CFG. See LocalVariableMap for more
|
|
/// information about the contexts.
|
|
struct CFGBlockInfo {
|
|
Lockset EntrySet; // Lockset held at entry to block
|
|
Lockset ExitSet; // Lockset held at exit from block
|
|
LocalVarContext EntryContext; // Context held at entry to block
|
|
LocalVarContext ExitContext; // Context held at exit from block
|
|
SourceLocation EntryLoc; // Location of first statement in block
|
|
SourceLocation ExitLoc; // Location of last statement in block.
|
|
unsigned EntryIndex; // Used to replay contexts later
|
|
|
|
const Lockset &getSet(CFGBlockSide Side) const {
|
|
return Side == CBS_Entry ? EntrySet : ExitSet;
|
|
}
|
|
SourceLocation getLocation(CFGBlockSide Side) const {
|
|
return Side == CBS_Entry ? EntryLoc : ExitLoc;
|
|
}
|
|
|
|
private:
|
|
CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
|
|
: EntrySet(EmptySet), ExitSet(EmptySet),
|
|
EntryContext(EmptyCtx), ExitContext(EmptyCtx)
|
|
{ }
|
|
|
|
public:
|
|
static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
|
|
LocalVariableMap &M);
|
|
};
|
|
|
|
|
|
|
|
// A LocalVariableMap maintains a map from local variables to their currently
|
|
// valid definitions. It provides SSA-like functionality when traversing the
|
|
// CFG. Like SSA, each definition or assignment to a variable is assigned a
|
|
// unique name (an integer), which acts as the SSA name for that definition.
|
|
// The total set of names is shared among all CFG basic blocks.
|
|
// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
|
|
// with their SSA-names. Instead, we compute a Context for each point in the
|
|
// code, which maps local variables to the appropriate SSA-name. This map
|
|
// changes with each assignment.
|
|
//
|
|
// The map is computed in a single pass over the CFG. Subsequent analyses can
|
|
// then query the map to find the appropriate Context for a statement, and use
|
|
// that Context to look up the definitions of variables.
|
|
class LocalVariableMap {
|
|
public:
|
|
typedef LocalVarContext Context;
|
|
|
|
/// A VarDefinition consists of an expression, representing the value of the
|
|
/// variable, along with the context in which that expression should be
|
|
/// interpreted. A reference VarDefinition does not itself contain this
|
|
/// information, but instead contains a pointer to a previous VarDefinition.
|
|
struct VarDefinition {
|
|
public:
|
|
friend class LocalVariableMap;
|
|
|
|
const NamedDecl *Dec; // The original declaration for this variable.
|
|
const Expr *Exp; // The expression for this variable, OR
|
|
unsigned Ref; // Reference to another VarDefinition
|
|
Context Ctx; // The map with which Exp should be interpreted.
|
|
|
|
bool isReference() { return !Exp; }
|
|
|
|
private:
|
|
// Create ordinary variable definition
|
|
VarDefinition(const NamedDecl *D, const Expr *E, Context C)
|
|
: Dec(D), Exp(E), Ref(0), Ctx(C)
|
|
{ }
|
|
|
|
// Create reference to previous definition
|
|
VarDefinition(const NamedDecl *D, unsigned R, Context C)
|
|
: Dec(D), Exp(0), Ref(R), Ctx(C)
|
|
{ }
|
|
};
|
|
|
|
private:
|
|
Context::Factory ContextFactory;
|
|
std::vector<VarDefinition> VarDefinitions;
|
|
std::vector<unsigned> CtxIndices;
|
|
std::vector<std::pair<Stmt*, Context> > SavedContexts;
|
|
|
|
public:
|
|
LocalVariableMap() {
|
|
// index 0 is a placeholder for undefined variables (aka phi-nodes).
|
|
VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
|
|
}
|
|
|
|
/// Look up a definition, within the given context.
|
|
const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
|
|
const unsigned *i = Ctx.lookup(D);
|
|
if (!i)
|
|
return 0;
|
|
assert(*i < VarDefinitions.size());
|
|
return &VarDefinitions[*i];
|
|
}
|
|
|
|
/// Look up the definition for D within the given context. Returns
|
|
/// NULL if the expression is not statically known. If successful, also
|
|
/// modifies Ctx to hold the context of the return Expr.
|
|
const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
|
|
const unsigned *P = Ctx.lookup(D);
|
|
if (!P)
|
|
return 0;
|
|
|
|
unsigned i = *P;
|
|
while (i > 0) {
|
|
if (VarDefinitions[i].Exp) {
|
|
Ctx = VarDefinitions[i].Ctx;
|
|
return VarDefinitions[i].Exp;
|
|
}
|
|
i = VarDefinitions[i].Ref;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
|
|
|
|
/// Return the next context after processing S. This function is used by
|
|
/// clients of the class to get the appropriate context when traversing the
|
|
/// CFG. It must be called for every assignment or DeclStmt.
|
|
Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
|
|
if (SavedContexts[CtxIndex+1].first == S) {
|
|
CtxIndex++;
|
|
Context Result = SavedContexts[CtxIndex].second;
|
|
return Result;
|
|
}
|
|
return C;
|
|
}
|
|
|
|
void dumpVarDefinitionName(unsigned i) {
|
|
if (i == 0) {
|
|
llvm::errs() << "Undefined";
|
|
return;
|
|
}
|
|
const NamedDecl *Dec = VarDefinitions[i].Dec;
|
|
if (!Dec) {
|
|
llvm::errs() << "<<NULL>>";
|
|
return;
|
|
}
|
|
Dec->printName(llvm::errs());
|
|
llvm::errs() << "." << i << " " << ((void*) Dec);
|
|
}
|
|
|
|
/// Dumps an ASCII representation of the variable map to llvm::errs()
|
|
void dump() {
|
|
for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
|
|
const Expr *Exp = VarDefinitions[i].Exp;
|
|
unsigned Ref = VarDefinitions[i].Ref;
|
|
|
|
dumpVarDefinitionName(i);
|
|
llvm::errs() << " = ";
|
|
if (Exp) Exp->dump();
|
|
else {
|
|
dumpVarDefinitionName(Ref);
|
|
llvm::errs() << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Dumps an ASCII representation of a Context to llvm::errs()
|
|
void dumpContext(Context C) {
|
|
for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
|
|
const NamedDecl *D = I.getKey();
|
|
D->printName(llvm::errs());
|
|
const unsigned *i = C.lookup(D);
|
|
llvm::errs() << " -> ";
|
|
dumpVarDefinitionName(*i);
|
|
llvm::errs() << "\n";
|
|
}
|
|
}
|
|
|
|
/// Builds the variable map.
|
|
void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
|
|
std::vector<CFGBlockInfo> &BlockInfo);
|
|
|
|
protected:
|
|
// Get the current context index
|
|
unsigned getContextIndex() { return SavedContexts.size()-1; }
|
|
|
|
// Save the current context for later replay
|
|
void saveContext(Stmt *S, Context C) {
|
|
SavedContexts.push_back(std::make_pair(S,C));
|
|
}
|
|
|
|
// Adds a new definition to the given context, and returns a new context.
|
|
// This method should be called when declaring a new variable.
|
|
Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
|
|
assert(!Ctx.contains(D));
|
|
unsigned newID = VarDefinitions.size();
|
|
Context NewCtx = ContextFactory.add(Ctx, D, newID);
|
|
VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
|
|
return NewCtx;
|
|
}
|
|
|
|
// Add a new reference to an existing definition.
|
|
Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
|
|
unsigned newID = VarDefinitions.size();
|
|
Context NewCtx = ContextFactory.add(Ctx, D, newID);
|
|
VarDefinitions.push_back(VarDefinition(D, i, Ctx));
|
|
return NewCtx;
|
|
}
|
|
|
|
// Updates a definition only if that definition is already in the map.
|
|
// This method should be called when assigning to an existing variable.
|
|
Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
|
|
if (Ctx.contains(D)) {
|
|
unsigned newID = VarDefinitions.size();
|
|
Context NewCtx = ContextFactory.remove(Ctx, D);
|
|
NewCtx = ContextFactory.add(NewCtx, D, newID);
|
|
VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
|
|
return NewCtx;
|
|
}
|
|
return Ctx;
|
|
}
|
|
|
|
// Removes a definition from the context, but keeps the variable name
|
|
// as a valid variable. The index 0 is a placeholder for cleared definitions.
|
|
Context clearDefinition(const NamedDecl *D, Context Ctx) {
|
|
Context NewCtx = Ctx;
|
|
if (NewCtx.contains(D)) {
|
|
NewCtx = ContextFactory.remove(NewCtx, D);
|
|
NewCtx = ContextFactory.add(NewCtx, D, 0);
|
|
}
|
|
return NewCtx;
|
|
}
|
|
|
|
// Remove a definition entirely frmo the context.
|
|
Context removeDefinition(const NamedDecl *D, Context Ctx) {
|
|
Context NewCtx = Ctx;
|
|
if (NewCtx.contains(D)) {
|
|
NewCtx = ContextFactory.remove(NewCtx, D);
|
|
}
|
|
return NewCtx;
|
|
}
|
|
|
|
Context intersectContexts(Context C1, Context C2);
|
|
Context createReferenceContext(Context C);
|
|
void intersectBackEdge(Context C1, Context C2);
|
|
|
|
friend class VarMapBuilder;
|
|
};
|
|
|
|
|
|
// This has to be defined after LocalVariableMap.
|
|
CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
|
|
LocalVariableMap &M) {
|
|
return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
|
|
}
|
|
|
|
|
|
/// Visitor which builds a LocalVariableMap
|
|
class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
|
|
public:
|
|
LocalVariableMap* VMap;
|
|
LocalVariableMap::Context Ctx;
|
|
|
|
VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
|
|
: VMap(VM), Ctx(C) {}
|
|
|
|
void VisitDeclStmt(DeclStmt *S);
|
|
void VisitBinaryOperator(BinaryOperator *BO);
|
|
};
|
|
|
|
|
|
// Add new local variables to the variable map
|
|
void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
|
|
bool modifiedCtx = false;
|
|
DeclGroupRef DGrp = S->getDeclGroup();
|
|
for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
|
|
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
|
|
Expr *E = VD->getInit();
|
|
|
|
// Add local variables with trivial type to the variable map
|
|
QualType T = VD->getType();
|
|
if (T.isTrivialType(VD->getASTContext())) {
|
|
Ctx = VMap->addDefinition(VD, E, Ctx);
|
|
modifiedCtx = true;
|
|
}
|
|
}
|
|
}
|
|
if (modifiedCtx)
|
|
VMap->saveContext(S, Ctx);
|
|
}
|
|
|
|
// Update local variable definitions in variable map
|
|
void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
|
|
if (!BO->isAssignmentOp())
|
|
return;
|
|
|
|
Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
|
|
|
|
// Update the variable map and current context.
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
|
|
ValueDecl *VDec = DRE->getDecl();
|
|
if (Ctx.lookup(VDec)) {
|
|
if (BO->getOpcode() == BO_Assign)
|
|
Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
|
|
else
|
|
// FIXME -- handle compound assignment operators
|
|
Ctx = VMap->clearDefinition(VDec, Ctx);
|
|
VMap->saveContext(BO, Ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Computes the intersection of two contexts. The intersection is the
|
|
// set of variables which have the same definition in both contexts;
|
|
// variables with different definitions are discarded.
|
|
LocalVariableMap::Context
|
|
LocalVariableMap::intersectContexts(Context C1, Context C2) {
|
|
Context Result = C1;
|
|
for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
|
|
const NamedDecl *Dec = I.getKey();
|
|
unsigned i1 = I.getData();
|
|
const unsigned *i2 = C2.lookup(Dec);
|
|
if (!i2) // variable doesn't exist on second path
|
|
Result = removeDefinition(Dec, Result);
|
|
else if (*i2 != i1) // variable exists, but has different definition
|
|
Result = clearDefinition(Dec, Result);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// For every variable in C, create a new variable that refers to the
|
|
// definition in C. Return a new context that contains these new variables.
|
|
// (We use this for a naive implementation of SSA on loop back-edges.)
|
|
LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
|
|
Context Result = getEmptyContext();
|
|
for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
|
|
const NamedDecl *Dec = I.getKey();
|
|
unsigned i = I.getData();
|
|
Result = addReference(Dec, i, Result);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// This routine also takes the intersection of C1 and C2, but it does so by
|
|
// altering the VarDefinitions. C1 must be the result of an earlier call to
|
|
// createReferenceContext.
|
|
void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
|
|
for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
|
|
const NamedDecl *Dec = I.getKey();
|
|
unsigned i1 = I.getData();
|
|
VarDefinition *VDef = &VarDefinitions[i1];
|
|
assert(VDef->isReference());
|
|
|
|
const unsigned *i2 = C2.lookup(Dec);
|
|
if (!i2 || (*i2 != i1))
|
|
VDef->Ref = 0; // Mark this variable as undefined
|
|
}
|
|
}
|
|
|
|
|
|
// Traverse the CFG in topological order, so all predecessors of a block
|
|
// (excluding back-edges) are visited before the block itself. At
|
|
// each point in the code, we calculate a Context, which holds the set of
|
|
// variable definitions which are visible at that point in execution.
|
|
// Visible variables are mapped to their definitions using an array that
|
|
// contains all definitions.
|
|
//
|
|
// At join points in the CFG, the set is computed as the intersection of
|
|
// the incoming sets along each edge, E.g.
|
|
//
|
|
// { Context | VarDefinitions }
|
|
// int x = 0; { x -> x1 | x1 = 0 }
|
|
// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
|
|
// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
|
|
// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
|
|
// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
|
|
//
|
|
// This is essentially a simpler and more naive version of the standard SSA
|
|
// algorithm. Those definitions that remain in the intersection are from blocks
|
|
// that strictly dominate the current block. We do not bother to insert proper
|
|
// phi nodes, because they are not used in our analysis; instead, wherever
|
|
// a phi node would be required, we simply remove that definition from the
|
|
// context (E.g. x above).
|
|
//
|
|
// The initial traversal does not capture back-edges, so those need to be
|
|
// handled on a separate pass. Whenever the first pass encounters an
|
|
// incoming back edge, it duplicates the context, creating new definitions
|
|
// that refer back to the originals. (These correspond to places where SSA
|
|
// might have to insert a phi node.) On the second pass, these definitions are
|
|
// set to NULL if the the variable has changed on the back-edge (i.e. a phi
|
|
// node was actually required.) E.g.
|
|
//
|
|
// { Context | VarDefinitions }
|
|
// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
|
|
// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
|
|
// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
|
|
// ... { y -> y1 | x3 = 2, x2 = 1, ... }
|
|
//
|
|
void LocalVariableMap::traverseCFG(CFG *CFGraph,
|
|
PostOrderCFGView *SortedGraph,
|
|
std::vector<CFGBlockInfo> &BlockInfo) {
|
|
PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
|
|
|
|
CtxIndices.resize(CFGraph->getNumBlockIDs());
|
|
|
|
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
|
|
E = SortedGraph->end(); I!= E; ++I) {
|
|
const CFGBlock *CurrBlock = *I;
|
|
int CurrBlockID = CurrBlock->getBlockID();
|
|
CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
|
|
|
|
VisitedBlocks.insert(CurrBlock);
|
|
|
|
// Calculate the entry context for the current block
|
|
bool HasBackEdges = false;
|
|
bool CtxInit = true;
|
|
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
|
|
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
|
|
// if *PI -> CurrBlock is a back edge, so skip it
|
|
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
|
|
HasBackEdges = true;
|
|
continue;
|
|
}
|
|
|
|
int PrevBlockID = (*PI)->getBlockID();
|
|
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
|
|
|
|
if (CtxInit) {
|
|
CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
|
|
CtxInit = false;
|
|
}
|
|
else {
|
|
CurrBlockInfo->EntryContext =
|
|
intersectContexts(CurrBlockInfo->EntryContext,
|
|
PrevBlockInfo->ExitContext);
|
|
}
|
|
}
|
|
|
|
// Duplicate the context if we have back-edges, so we can call
|
|
// intersectBackEdges later.
|
|
if (HasBackEdges)
|
|
CurrBlockInfo->EntryContext =
|
|
createReferenceContext(CurrBlockInfo->EntryContext);
|
|
|
|
// Create a starting context index for the current block
|
|
saveContext(0, CurrBlockInfo->EntryContext);
|
|
CurrBlockInfo->EntryIndex = getContextIndex();
|
|
|
|
// Visit all the statements in the basic block.
|
|
VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
|
|
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
|
|
BE = CurrBlock->end(); BI != BE; ++BI) {
|
|
switch (BI->getKind()) {
|
|
case CFGElement::Statement: {
|
|
const CFGStmt *CS = cast<CFGStmt>(&*BI);
|
|
VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
|
|
|
|
// Mark variables on back edges as "unknown" if they've been changed.
|
|
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
|
|
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
|
|
// if CurrBlock -> *SI is *not* a back edge
|
|
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
|
|
continue;
|
|
|
|
CFGBlock *FirstLoopBlock = *SI;
|
|
Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
|
|
Context LoopEnd = CurrBlockInfo->ExitContext;
|
|
intersectBackEdge(LoopBegin, LoopEnd);
|
|
}
|
|
}
|
|
|
|
// Put an extra entry at the end of the indexed context array
|
|
unsigned exitID = CFGraph->getExit().getBlockID();
|
|
saveContext(0, BlockInfo[exitID].ExitContext);
|
|
}
|
|
|
|
/// Find the appropriate source locations to use when producing diagnostics for
|
|
/// each block in the CFG.
|
|
static void findBlockLocations(CFG *CFGraph,
|
|
PostOrderCFGView *SortedGraph,
|
|
std::vector<CFGBlockInfo> &BlockInfo) {
|
|
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
|
|
E = SortedGraph->end(); I!= E; ++I) {
|
|
const CFGBlock *CurrBlock = *I;
|
|
CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
|
|
|
|
// Find the source location of the last statement in the block, if the
|
|
// block is not empty.
|
|
if (const Stmt *S = CurrBlock->getTerminator()) {
|
|
CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
|
|
} else {
|
|
for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
|
|
BE = CurrBlock->rend(); BI != BE; ++BI) {
|
|
// FIXME: Handle other CFGElement kinds.
|
|
if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
|
|
CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!CurrBlockInfo->ExitLoc.isInvalid()) {
|
|
// This block contains at least one statement. Find the source location
|
|
// of the first statement in the block.
|
|
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
|
|
BE = CurrBlock->end(); BI != BE; ++BI) {
|
|
// FIXME: Handle other CFGElement kinds.
|
|
if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
|
|
CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
|
|
break;
|
|
}
|
|
}
|
|
} else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
|
|
CurrBlock != &CFGraph->getExit()) {
|
|
// The block is empty, and has a single predecessor. Use its exit
|
|
// location.
|
|
CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
|
|
BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Class which implements the core thread safety analysis routines.
|
|
class ThreadSafetyAnalyzer {
|
|
friend class BuildLockset;
|
|
|
|
ThreadSafetyHandler &Handler;
|
|
Lockset::Factory LocksetFactory;
|
|
LocalVariableMap LocalVarMap;
|
|
std::vector<CFGBlockInfo> BlockInfo;
|
|
|
|
public:
|
|
ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
|
|
|
|
Lockset addLock(const Lockset &LSet, const MutexID &Mutex,
|
|
const LockData &LDat);
|
|
Lockset addLock(const Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
|
|
const LockData &LDat);
|
|
Lockset removeLock(const Lockset &LSet, const MutexID &Mutex,
|
|
SourceLocation UnlockLoc);
|
|
|
|
template <class AttrType>
|
|
Lockset addLocksToSet(const Lockset &LSet, LockKind LK, AttrType *Attr,
|
|
Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
|
|
Lockset removeLocksFromSet(const Lockset &LSet,
|
|
UnlockFunctionAttr *Attr,
|
|
Expr *Exp, NamedDecl* FunDecl);
|
|
|
|
template <class AttrType>
|
|
Lockset addTrylock(const Lockset &LSet,
|
|
LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
|
|
const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
|
|
Expr *BrE, bool Neg);
|
|
const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
|
|
bool &Negate);
|
|
|
|
Lockset getEdgeLockset(const Lockset &ExitSet,
|
|
const CFGBlock* PredBlock,
|
|
const CFGBlock *CurrBlock);
|
|
|
|
Lockset intersectAndWarn(const Lockset &LSet1, const Lockset &LSet2,
|
|
SourceLocation JoinLoc, LockErrorKind LEK);
|
|
|
|
void runAnalysis(AnalysisDeclContext &AC);
|
|
};
|
|
|
|
|
|
/// \brief Add a new lock to the lockset, warning if the lock is already there.
|
|
/// \param Mutex -- the Mutex expression for the lock
|
|
/// \param LDat -- the LockData for the lock
|
|
Lockset ThreadSafetyAnalyzer::addLock(const Lockset &LSet,
|
|
const MutexID &Mutex,
|
|
const LockData &LDat) {
|
|
// FIXME: deal with acquired before/after annotations.
|
|
// FIXME: Don't always warn when we have support for reentrant locks.
|
|
if (LSet.lookup(Mutex)) {
|
|
Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
|
|
return LSet;
|
|
} else {
|
|
return LocksetFactory.add(LSet, Mutex, LDat);
|
|
}
|
|
}
|
|
|
|
/// \brief Construct a new mutex and add it to the lockset.
|
|
Lockset ThreadSafetyAnalyzer::addLock(const Lockset &LSet,
|
|
Expr *MutexExp, const NamedDecl *D,
|
|
const LockData &LDat) {
|
|
MutexID Mutex(MutexExp, 0, D);
|
|
if (!Mutex.isValid()) {
|
|
MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
|
|
return LSet;
|
|
}
|
|
return addLock(LSet, Mutex, LDat);
|
|
}
|
|
|
|
|
|
/// \brief Remove a lock from the lockset, warning if the lock is not there.
|
|
/// \param LockExp The lock expression corresponding to the lock to be removed
|
|
/// \param UnlockLoc The source location of the unlock (only used in error msg)
|
|
Lockset ThreadSafetyAnalyzer::removeLock(const Lockset &LSet,
|
|
const MutexID &Mutex,
|
|
SourceLocation UnlockLoc) {
|
|
const LockData *LDat = LSet.lookup(Mutex);
|
|
if (!LDat) {
|
|
Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
|
|
return LSet;
|
|
}
|
|
else {
|
|
Lockset Result = LSet;
|
|
// For scoped-lockable vars, remove the mutex associated with this var.
|
|
if (LDat->UnderlyingMutex.isValid())
|
|
Result = removeLock(Result, LDat->UnderlyingMutex, UnlockLoc);
|
|
return LocksetFactory.remove(Result, Mutex);
|
|
}
|
|
}
|
|
|
|
/// \brief This function, parameterized by an attribute type, is used to add a
|
|
/// set of locks specified as attribute arguments to the lockset.
|
|
template <typename AttrType>
|
|
Lockset ThreadSafetyAnalyzer::addLocksToSet(const Lockset &LSet,
|
|
LockKind LK, AttrType *Attr,
|
|
Expr *Exp, NamedDecl* FunDecl,
|
|
VarDecl *VD) {
|
|
typedef typename AttrType::args_iterator iterator_type;
|
|
|
|
SourceLocation ExpLocation = Exp->getExprLoc();
|
|
|
|
// Figure out if we're calling the constructor of scoped lockable class
|
|
bool isScopedVar = false;
|
|
if (VD) {
|
|
if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
|
|
CXXRecordDecl* PD = CD->getParent();
|
|
if (PD && PD->getAttr<ScopedLockableAttr>())
|
|
isScopedVar = true;
|
|
}
|
|
}
|
|
|
|
if (Attr->args_size() == 0) {
|
|
// The mutex held is the "this" object.
|
|
MutexID Mutex(0, Exp, FunDecl);
|
|
if (!Mutex.isValid()) {
|
|
MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
|
|
return LSet;
|
|
}
|
|
else {
|
|
return addLock(LSet, Mutex, LockData(ExpLocation, LK));
|
|
}
|
|
}
|
|
|
|
Lockset Result = LSet;
|
|
for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
|
|
MutexID Mutex(*I, Exp, FunDecl);
|
|
if (!Mutex.isValid())
|
|
MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
|
|
else {
|
|
Result = addLock(Result, Mutex, LockData(ExpLocation, LK));
|
|
if (isScopedVar) {
|
|
// For scoped lockable vars, map this var to its underlying mutex.
|
|
DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
|
|
MutexID SMutex(&DRE, 0, 0);
|
|
Result = addLock(Result, SMutex,
|
|
LockData(VD->getLocation(), LK, Mutex));
|
|
}
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// \brief This function removes a set of locks specified as attribute
|
|
/// arguments from the lockset.
|
|
Lockset ThreadSafetyAnalyzer::removeLocksFromSet(const Lockset &LSet,
|
|
UnlockFunctionAttr *Attr,
|
|
Expr *Exp, NamedDecl* FunDecl) {
|
|
SourceLocation ExpLocation;
|
|
if (Exp) ExpLocation = Exp->getExprLoc();
|
|
|
|
if (Attr->args_size() == 0) {
|
|
// The mutex held is the "this" object.
|
|
MutexID Mu(0, Exp, FunDecl);
|
|
if (!Mu.isValid()) {
|
|
MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
|
|
return LSet;
|
|
} else {
|
|
return removeLock(LSet, Mu, ExpLocation);
|
|
}
|
|
}
|
|
|
|
Lockset Result = LSet;
|
|
for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
|
|
E = Attr->args_end(); I != E; ++I) {
|
|
MutexID Mutex(*I, Exp, FunDecl);
|
|
if (!Mutex.isValid())
|
|
MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
|
|
else
|
|
Result = removeLock(Result, Mutex, ExpLocation);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// \brief Add lock to set, if the current block is in the taken branch of a
|
|
/// trylock.
|
|
template <class AttrType>
|
|
Lockset ThreadSafetyAnalyzer::addTrylock(const Lockset &LSet,
|
|
LockKind LK, AttrType *Attr,
|
|
Expr *Exp, NamedDecl *FunDecl,
|
|
const CFGBlock *PredBlock,
|
|
const CFGBlock *CurrBlock,
|
|
Expr *BrE, bool Neg) {
|
|
// Find out which branch has the lock
|
|
bool branch = 0;
|
|
if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
|
|
branch = BLE->getValue();
|
|
}
|
|
else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
|
|
branch = ILE->getValue().getBoolValue();
|
|
}
|
|
int branchnum = branch ? 0 : 1;
|
|
if (Neg) branchnum = !branchnum;
|
|
|
|
Lockset Result = LSet;
|
|
// If we've taken the trylock branch, then add the lock
|
|
int i = 0;
|
|
for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
|
|
SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
|
|
if (*SI == CurrBlock && i == branchnum) {
|
|
Result = addLocksToSet(Result, LK, Attr, Exp, FunDecl, 0);
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
|
|
// If Cond can be traced back to a function call, return the call expression.
|
|
// The negate variable should be called with false, and will be set to true
|
|
// if the function call is negated, e.g. if (!mu.tryLock(...))
|
|
const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
|
|
LocalVarContext C,
|
|
bool &Negate) {
|
|
if (!Cond)
|
|
return 0;
|
|
|
|
if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
|
|
return CallExp;
|
|
}
|
|
else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
|
|
return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
|
|
}
|
|
else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
|
|
const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
|
|
return getTrylockCallExpr(E, C, Negate);
|
|
}
|
|
else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
|
|
if (UOP->getOpcode() == UO_LNot) {
|
|
Negate = !Negate;
|
|
return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
|
|
}
|
|
}
|
|
// FIXME -- handle && and || as well.
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/// \brief Find the lockset that holds on the edge between PredBlock
|
|
/// and CurrBlock. The edge set is the exit set of PredBlock (passed
|
|
/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
|
|
Lockset ThreadSafetyAnalyzer::getEdgeLockset(const Lockset &ExitSet,
|
|
const CFGBlock *PredBlock,
|
|
const CFGBlock *CurrBlock) {
|
|
if (!PredBlock->getTerminatorCondition())
|
|
return ExitSet;
|
|
|
|
bool Negate = false;
|
|
const Stmt *Cond = PredBlock->getTerminatorCondition();
|
|
const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
|
|
const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
|
|
|
|
CallExpr *Exp = const_cast<CallExpr*>(
|
|
getTrylockCallExpr(Cond, LVarCtx, Negate));
|
|
if (!Exp)
|
|
return ExitSet;
|
|
|
|
NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
|
|
if(!FunDecl || !FunDecl->hasAttrs())
|
|
return ExitSet;
|
|
|
|
Lockset Result = ExitSet;
|
|
|
|
// If the condition is a call to a Trylock function, then grab the attributes
|
|
AttrVec &ArgAttrs = FunDecl->getAttrs();
|
|
for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
|
|
Attr *Attr = ArgAttrs[i];
|
|
switch (Attr->getKind()) {
|
|
case attr::ExclusiveTrylockFunction: {
|
|
ExclusiveTrylockFunctionAttr *A =
|
|
cast<ExclusiveTrylockFunctionAttr>(Attr);
|
|
Result = addTrylock(Result, LK_Exclusive, A, Exp, FunDecl,
|
|
PredBlock, CurrBlock,
|
|
A->getSuccessValue(), Negate);
|
|
break;
|
|
}
|
|
case attr::SharedTrylockFunction: {
|
|
SharedTrylockFunctionAttr *A =
|
|
cast<SharedTrylockFunctionAttr>(Attr);
|
|
Result = addTrylock(Result, LK_Shared, A, Exp, FunDecl,
|
|
PredBlock, CurrBlock,
|
|
A->getSuccessValue(), Negate);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// \brief We use this class to visit different types of expressions in
|
|
/// CFGBlocks, and build up the lockset.
|
|
/// An expression may cause us to add or remove locks from the lockset, or else
|
|
/// output error messages related to missing locks.
|
|
/// FIXME: In future, we may be able to not inherit from a visitor.
|
|
class BuildLockset : public StmtVisitor<BuildLockset> {
|
|
friend class ThreadSafetyAnalyzer;
|
|
|
|
ThreadSafetyAnalyzer *Analyzer;
|
|
Lockset LSet;
|
|
LocalVariableMap::Context LVarCtx;
|
|
unsigned CtxIndex;
|
|
|
|
// Helper functions
|
|
const ValueDecl *getValueDecl(Expr *Exp);
|
|
|
|
void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
|
|
Expr *MutexExp, ProtectedOperationKind POK);
|
|
|
|
void checkAccess(Expr *Exp, AccessKind AK);
|
|
void checkDereference(Expr *Exp, AccessKind AK);
|
|
void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
|
|
|
|
/// \brief Returns true if the lockset contains a lock, regardless of whether
|
|
/// the lock is held exclusively or shared.
|
|
bool locksetContains(const MutexID &Lock) const {
|
|
return LSet.lookup(Lock);
|
|
}
|
|
|
|
/// \brief Returns true if the lockset contains a lock with the passed in
|
|
/// locktype.
|
|
bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
|
|
const LockData *LockHeld = LSet.lookup(Lock);
|
|
return (LockHeld && KindRequested == LockHeld->LKind);
|
|
}
|
|
|
|
/// \brief Returns true if the lockset contains a lock with at least the
|
|
/// passed in locktype. So for example, if we pass in LK_Shared, this function
|
|
/// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
|
|
/// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
|
|
bool locksetContainsAtLeast(const MutexID &Lock,
|
|
LockKind KindRequested) const {
|
|
switch (KindRequested) {
|
|
case LK_Shared:
|
|
return locksetContains(Lock);
|
|
case LK_Exclusive:
|
|
return locksetContains(Lock, KindRequested);
|
|
}
|
|
llvm_unreachable("Unknown LockKind");
|
|
}
|
|
|
|
public:
|
|
BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
|
|
: StmtVisitor<BuildLockset>(),
|
|
Analyzer(Anlzr),
|
|
LSet(Info.EntrySet),
|
|
LVarCtx(Info.EntryContext),
|
|
CtxIndex(Info.EntryIndex)
|
|
{}
|
|
|
|
void VisitUnaryOperator(UnaryOperator *UO);
|
|
void VisitBinaryOperator(BinaryOperator *BO);
|
|
void VisitCastExpr(CastExpr *CE);
|
|
void VisitCallExpr(CallExpr *Exp);
|
|
void VisitCXXConstructExpr(CXXConstructExpr *Exp);
|
|
void VisitDeclStmt(DeclStmt *S);
|
|
};
|
|
|
|
|
|
/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
|
|
const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
|
|
return DR->getDecl();
|
|
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
|
|
return ME->getMemberDecl();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Warn if the LSet does not contain a lock sufficient to protect access
|
|
/// of at least the passed in AccessKind.
|
|
void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
|
|
AccessKind AK, Expr *MutexExp,
|
|
ProtectedOperationKind POK) {
|
|
LockKind LK = getLockKindFromAccessKind(AK);
|
|
|
|
MutexID Mutex(MutexExp, Exp, D);
|
|
if (!Mutex.isValid())
|
|
MutexID::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
|
|
else if (!locksetContainsAtLeast(Mutex, LK))
|
|
Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK,
|
|
Exp->getExprLoc());
|
|
}
|
|
|
|
/// \brief This method identifies variable dereferences and checks pt_guarded_by
|
|
/// and pt_guarded_var annotations. Note that we only check these annotations
|
|
/// at the time a pointer is dereferenced.
|
|
/// FIXME: We need to check for other types of pointer dereferences
|
|
/// (e.g. [], ->) and deal with them here.
|
|
/// \param Exp An expression that has been read or written.
|
|
void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
|
|
UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
|
|
if (!UO || UO->getOpcode() != clang::UO_Deref)
|
|
return;
|
|
Exp = UO->getSubExpr()->IgnoreParenCasts();
|
|
|
|
const ValueDecl *D = getValueDecl(Exp);
|
|
if(!D || !D->hasAttrs())
|
|
return;
|
|
|
|
if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
|
|
Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
|
|
Exp->getExprLoc());
|
|
|
|
const AttrVec &ArgAttrs = D->getAttrs();
|
|
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
|
|
if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
|
|
warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
|
|
}
|
|
|
|
/// \brief Checks guarded_by and guarded_var attributes.
|
|
/// Whenever we identify an access (read or write) of a DeclRefExpr or
|
|
/// MemberExpr, we need to check whether there are any guarded_by or
|
|
/// guarded_var attributes, and make sure we hold the appropriate mutexes.
|
|
void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
|
|
const ValueDecl *D = getValueDecl(Exp);
|
|
if(!D || !D->hasAttrs())
|
|
return;
|
|
|
|
if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
|
|
Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
|
|
Exp->getExprLoc());
|
|
|
|
const AttrVec &ArgAttrs = D->getAttrs();
|
|
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
|
|
if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
|
|
warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
|
|
}
|
|
|
|
/// \brief Process a function call, method call, constructor call,
|
|
/// or destructor call. This involves looking at the attributes on the
|
|
/// corresponding function/method/constructor/destructor, issuing warnings,
|
|
/// and updating the locksets accordingly.
|
|
///
|
|
/// FIXME: For classes annotated with one of the guarded annotations, we need
|
|
/// to treat const method calls as reads and non-const method calls as writes,
|
|
/// and check that the appropriate locks are held. Non-const method calls with
|
|
/// the same signature as const method calls can be also treated as reads.
|
|
///
|
|
/// FIXME: We need to also visit CallExprs to catch/check global functions.
|
|
///
|
|
/// FIXME: Do not flag an error for member variables accessed in constructors/
|
|
/// destructors
|
|
void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
|
|
AttrVec &ArgAttrs = D->getAttrs();
|
|
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
|
|
Attr *Attr = ArgAttrs[i];
|
|
switch (Attr->getKind()) {
|
|
// When we encounter an exclusive lock function, we need to add the lock
|
|
// to our lockset with kind exclusive.
|
|
case attr::ExclusiveLockFunction: {
|
|
ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
|
|
LSet = Analyzer->addLocksToSet(LSet, LK_Exclusive, A, Exp, D, VD);
|
|
break;
|
|
}
|
|
|
|
// When we encounter a shared lock function, we need to add the lock
|
|
// to our lockset with kind shared.
|
|
case attr::SharedLockFunction: {
|
|
SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
|
|
LSet = Analyzer->addLocksToSet(LSet, LK_Shared, A, Exp, D, VD);
|
|
break;
|
|
}
|
|
|
|
// When we encounter an unlock function, we need to remove unlocked
|
|
// mutexes from the lockset, and flag a warning if they are not there.
|
|
case attr::UnlockFunction: {
|
|
UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
|
|
LSet = Analyzer->removeLocksFromSet(LSet, UFAttr, Exp, D);
|
|
break;
|
|
}
|
|
|
|
case attr::ExclusiveLocksRequired: {
|
|
ExclusiveLocksRequiredAttr *ELRAttr =
|
|
cast<ExclusiveLocksRequiredAttr>(Attr);
|
|
|
|
for (ExclusiveLocksRequiredAttr::args_iterator
|
|
I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
|
|
warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
|
|
break;
|
|
}
|
|
|
|
case attr::SharedLocksRequired: {
|
|
SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
|
|
|
|
for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
|
|
E = SLRAttr->args_end(); I != E; ++I)
|
|
warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
|
|
break;
|
|
}
|
|
|
|
case attr::LocksExcluded: {
|
|
LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
|
|
for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
|
|
E = LEAttr->args_end(); I != E; ++I) {
|
|
MutexID Mutex(*I, Exp, D);
|
|
if (!Mutex.isValid())
|
|
MutexID::warnInvalidLock(Analyzer->Handler, *I, Exp, D);
|
|
else if (locksetContains(Mutex))
|
|
Analyzer->Handler.handleFunExcludesLock(D->getName(),
|
|
Mutex.getName(),
|
|
Exp->getExprLoc());
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Ignore other (non thread-safety) attributes
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// \brief For unary operations which read and write a variable, we need to
|
|
/// check whether we hold any required mutexes. Reads are checked in
|
|
/// VisitCastExpr.
|
|
void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
|
|
switch (UO->getOpcode()) {
|
|
case clang::UO_PostDec:
|
|
case clang::UO_PostInc:
|
|
case clang::UO_PreDec:
|
|
case clang::UO_PreInc: {
|
|
Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
|
|
checkAccess(SubExp, AK_Written);
|
|
checkDereference(SubExp, AK_Written);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// For binary operations which assign to a variable (writes), we need to check
|
|
/// whether we hold any required mutexes.
|
|
/// FIXME: Deal with non-primitive types.
|
|
void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
|
|
if (!BO->isAssignmentOp())
|
|
return;
|
|
|
|
// adjust the context
|
|
LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
|
|
|
|
Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
|
|
checkAccess(LHSExp, AK_Written);
|
|
checkDereference(LHSExp, AK_Written);
|
|
}
|
|
|
|
/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
|
|
/// need to ensure we hold any required mutexes.
|
|
/// FIXME: Deal with non-primitive types.
|
|
void BuildLockset::VisitCastExpr(CastExpr *CE) {
|
|
if (CE->getCastKind() != CK_LValueToRValue)
|
|
return;
|
|
Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
|
|
checkAccess(SubExp, AK_Read);
|
|
checkDereference(SubExp, AK_Read);
|
|
}
|
|
|
|
|
|
void BuildLockset::VisitCallExpr(CallExpr *Exp) {
|
|
NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
|
|
if(!D || !D->hasAttrs())
|
|
return;
|
|
handleCall(Exp, D);
|
|
}
|
|
|
|
void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
|
|
// FIXME -- only handles constructors in DeclStmt below.
|
|
}
|
|
|
|
void BuildLockset::VisitDeclStmt(DeclStmt *S) {
|
|
// adjust the context
|
|
LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
|
|
|
|
DeclGroupRef DGrp = S->getDeclGroup();
|
|
for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
|
|
Decl *D = *I;
|
|
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
|
|
Expr *E = VD->getInit();
|
|
if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
|
|
NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
|
|
if (!CtorD || !CtorD->hasAttrs())
|
|
return;
|
|
handleCall(CE, CtorD, VD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// \brief Compute the intersection of two locksets and issue warnings for any
|
|
/// locks in the symmetric difference.
|
|
///
|
|
/// This function is used at a merge point in the CFG when comparing the lockset
|
|
/// of each branch being merged. For example, given the following sequence:
|
|
/// A; if () then B; else C; D; we need to check that the lockset after B and C
|
|
/// are the same. In the event of a difference, we use the intersection of these
|
|
/// two locksets at the start of D.
|
|
///
|
|
/// \param LSet1 The first lockset.
|
|
/// \param LSet2 The second lockset.
|
|
/// \param JoinLoc The location of the join point for error reporting
|
|
/// \param LEK The error message to report.
|
|
Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset &LSet1,
|
|
const Lockset &LSet2,
|
|
SourceLocation JoinLoc,
|
|
LockErrorKind LEK) {
|
|
Lockset Intersection = LSet1;
|
|
|
|
for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
|
|
const MutexID &LSet2Mutex = I.getKey();
|
|
const LockData &LSet2LockData = I.getData();
|
|
if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
|
|
if (LD->LKind != LSet2LockData.LKind) {
|
|
Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
|
|
LSet2LockData.AcquireLoc,
|
|
LD->AcquireLoc);
|
|
if (LD->LKind != LK_Exclusive)
|
|
Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
|
|
LSet2LockData);
|
|
}
|
|
} else {
|
|
Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
|
|
LSet2LockData.AcquireLoc,
|
|
JoinLoc, LEK);
|
|
}
|
|
}
|
|
|
|
for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
|
|
if (!LSet2.contains(I.getKey())) {
|
|
const MutexID &Mutex = I.getKey();
|
|
const LockData &MissingLock = I.getData();
|
|
Handler.handleMutexHeldEndOfScope(Mutex.getName(),
|
|
MissingLock.AcquireLoc,
|
|
JoinLoc, LEK);
|
|
Intersection = LocksetFactory.remove(Intersection, Mutex);
|
|
}
|
|
}
|
|
return Intersection;
|
|
}
|
|
|
|
|
|
/// \brief Check a function's CFG for thread-safety violations.
|
|
///
|
|
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
|
|
/// at the end of each block, and issue warnings for thread safety violations.
|
|
/// Each block in the CFG is traversed exactly once.
|
|
void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
|
|
CFG *CFGraph = AC.getCFG();
|
|
if (!CFGraph) return;
|
|
const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
|
|
|
|
// AC.dumpCFG(true);
|
|
|
|
if (!D)
|
|
return; // Ignore anonymous functions for now.
|
|
if (D->getAttr<NoThreadSafetyAnalysisAttr>())
|
|
return;
|
|
// FIXME: Do something a bit more intelligent inside constructor and
|
|
// destructor code. Constructors and destructors must assume unique access
|
|
// to 'this', so checks on member variable access is disabled, but we should
|
|
// still enable checks on other objects.
|
|
if (isa<CXXConstructorDecl>(D))
|
|
return; // Don't check inside constructors.
|
|
if (isa<CXXDestructorDecl>(D))
|
|
return; // Don't check inside destructors.
|
|
|
|
BlockInfo.resize(CFGraph->getNumBlockIDs(),
|
|
CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
|
|
|
|
// We need to explore the CFG via a "topological" ordering.
|
|
// That way, we will be guaranteed to have information about required
|
|
// predecessor locksets when exploring a new block.
|
|
PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
|
|
PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
|
|
|
|
// Compute SSA names for local variables
|
|
LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
|
|
|
|
// Fill in source locations for all CFGBlocks.
|
|
findBlockLocations(CFGraph, SortedGraph, BlockInfo);
|
|
|
|
// Add locks from exclusive_locks_required and shared_locks_required
|
|
// to initial lockset. Also turn off checking for lock and unlock functions.
|
|
// FIXME: is there a more intelligent way to check lock/unlock functions?
|
|
if (!SortedGraph->empty() && D->hasAttrs()) {
|
|
const CFGBlock *FirstBlock = *SortedGraph->begin();
|
|
Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
|
|
const AttrVec &ArgAttrs = D->getAttrs();
|
|
for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
|
|
Attr *Attr = ArgAttrs[i];
|
|
SourceLocation AttrLoc = Attr->getLocation();
|
|
if (SharedLocksRequiredAttr *SLRAttr
|
|
= dyn_cast<SharedLocksRequiredAttr>(Attr)) {
|
|
for (SharedLocksRequiredAttr::args_iterator
|
|
SLRIter = SLRAttr->args_begin(),
|
|
SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
|
|
InitialLockset = addLock(InitialLockset, *SLRIter, D,
|
|
LockData(AttrLoc, LK_Shared));
|
|
} else if (ExclusiveLocksRequiredAttr *ELRAttr
|
|
= dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
|
|
for (ExclusiveLocksRequiredAttr::args_iterator
|
|
ELRIter = ELRAttr->args_begin(),
|
|
ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
|
|
InitialLockset = addLock(InitialLockset, *ELRIter, D,
|
|
LockData(AttrLoc, LK_Exclusive));
|
|
} else if (isa<UnlockFunctionAttr>(Attr)) {
|
|
// Don't try to check unlock functions for now
|
|
return;
|
|
} else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
|
|
// Don't try to check lock functions for now
|
|
return;
|
|
} else if (isa<SharedLockFunctionAttr>(Attr)) {
|
|
// Don't try to check lock functions for now
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
|
|
E = SortedGraph->end(); I!= E; ++I) {
|
|
const CFGBlock *CurrBlock = *I;
|
|
int CurrBlockID = CurrBlock->getBlockID();
|
|
CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
|
|
|
|
// Use the default initial lockset in case there are no predecessors.
|
|
VisitedBlocks.insert(CurrBlock);
|
|
|
|
// Iterate through the predecessor blocks and warn if the lockset for all
|
|
// predecessors is not the same. We take the entry lockset of the current
|
|
// block to be the intersection of all previous locksets.
|
|
// FIXME: By keeping the intersection, we may output more errors in future
|
|
// for a lock which is not in the intersection, but was in the union. We
|
|
// may want to also keep the union in future. As an example, let's say
|
|
// the intersection contains Mutex L, and the union contains L and M.
|
|
// Later we unlock M. At this point, we would output an error because we
|
|
// never locked M; although the real error is probably that we forgot to
|
|
// lock M on all code paths. Conversely, let's say that later we lock M.
|
|
// In this case, we should compare against the intersection instead of the
|
|
// union because the real error is probably that we forgot to unlock M on
|
|
// all code paths.
|
|
bool LocksetInitialized = false;
|
|
llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
|
|
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
|
|
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
|
|
|
|
// if *PI -> CurrBlock is a back edge
|
|
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
|
|
continue;
|
|
|
|
// Ignore edges from blocks that can't return.
|
|
if ((*PI)->hasNoReturnElement())
|
|
continue;
|
|
|
|
// If the previous block ended in a 'continue' or 'break' statement, then
|
|
// a difference in locksets is probably due to a bug in that block, rather
|
|
// than in some other predecessor. In that case, keep the other
|
|
// predecessor's lockset.
|
|
if (const Stmt *Terminator = (*PI)->getTerminator()) {
|
|
if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
|
|
SpecialBlocks.push_back(*PI);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int PrevBlockID = (*PI)->getBlockID();
|
|
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
|
|
Lockset PrevLockset =
|
|
getEdgeLockset(PrevBlockInfo->ExitSet, *PI, CurrBlock);
|
|
|
|
if (!LocksetInitialized) {
|
|
CurrBlockInfo->EntrySet = PrevLockset;
|
|
LocksetInitialized = true;
|
|
} else {
|
|
CurrBlockInfo->EntrySet =
|
|
intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
|
|
CurrBlockInfo->EntryLoc,
|
|
LEK_LockedSomePredecessors);
|
|
}
|
|
}
|
|
|
|
// Process continue and break blocks. Assume that the lockset for the
|
|
// resulting block is unaffected by any discrepancies in them.
|
|
for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
|
|
SpecialI < SpecialN; ++SpecialI) {
|
|
CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
|
|
int PrevBlockID = PrevBlock->getBlockID();
|
|
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
|
|
|
|
if (!LocksetInitialized) {
|
|
CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
|
|
LocksetInitialized = true;
|
|
} else {
|
|
// Determine whether this edge is a loop terminator for diagnostic
|
|
// purposes. FIXME: A 'break' statement might be a loop terminator, but
|
|
// it might also be part of a switch. Also, a subsequent destructor
|
|
// might add to the lockset, in which case the real issue might be a
|
|
// double lock on the other path.
|
|
const Stmt *Terminator = PrevBlock->getTerminator();
|
|
bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
|
|
|
|
Lockset PrevLockset =
|
|
getEdgeLockset(PrevBlockInfo->ExitSet, PrevBlock, CurrBlock);
|
|
|
|
// Do not update EntrySet.
|
|
intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
|
|
PrevBlockInfo->ExitLoc,
|
|
IsLoop ? LEK_LockedSomeLoopIterations
|
|
: LEK_LockedSomePredecessors);
|
|
}
|
|
}
|
|
|
|
BuildLockset LocksetBuilder(this, *CurrBlockInfo);
|
|
|
|
// Visit all the statements in the basic block.
|
|
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
|
|
BE = CurrBlock->end(); BI != BE; ++BI) {
|
|
switch (BI->getKind()) {
|
|
case CFGElement::Statement: {
|
|
const CFGStmt *CS = cast<CFGStmt>(&*BI);
|
|
LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
|
|
break;
|
|
}
|
|
// Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
|
|
case CFGElement::AutomaticObjectDtor: {
|
|
const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
|
|
CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
|
|
AD->getDestructorDecl(AC.getASTContext()));
|
|
if (!DD->hasAttrs())
|
|
break;
|
|
|
|
// Create a dummy expression,
|
|
VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
|
|
DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
|
|
AD->getTriggerStmt()->getLocEnd());
|
|
LocksetBuilder.handleCall(&DRE, DD);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
|
|
|
|
// For every back edge from CurrBlock (the end of the loop) to another block
|
|
// (FirstLoopBlock) we need to check that the Lockset of Block is equal to
|
|
// the one held at the beginning of FirstLoopBlock. We can look up the
|
|
// Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
|
|
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
|
|
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
|
|
|
|
// if CurrBlock -> *SI is *not* a back edge
|
|
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
|
|
continue;
|
|
|
|
CFGBlock *FirstLoopBlock = *SI;
|
|
CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
|
|
CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
|
|
intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
|
|
PreLoop->EntryLoc,
|
|
LEK_LockedSomeLoopIterations);
|
|
}
|
|
}
|
|
|
|
CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
|
|
CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
|
|
|
|
// FIXME: Should we call this function for all blocks which exit the function?
|
|
intersectAndWarn(Initial->EntrySet, Final->ExitSet,
|
|
Final->ExitLoc,
|
|
LEK_LockedAtEndOfFunction);
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
namespace clang {
|
|
namespace thread_safety {
|
|
|
|
/// \brief Check a function's CFG for thread-safety violations.
|
|
///
|
|
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
|
|
/// at the end of each block, and issue warnings for thread safety violations.
|
|
/// Each block in the CFG is traversed exactly once.
|
|
void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
|
|
ThreadSafetyHandler &Handler) {
|
|
ThreadSafetyAnalyzer Analyzer(Handler);
|
|
Analyzer.runAnalysis(AC);
|
|
}
|
|
|
|
/// \brief Helper function that returns a LockKind required for the given level
|
|
/// of access.
|
|
LockKind getLockKindFromAccessKind(AccessKind AK) {
|
|
switch (AK) {
|
|
case AK_Read :
|
|
return LK_Shared;
|
|
case AK_Written :
|
|
return LK_Exclusive;
|
|
}
|
|
llvm_unreachable("Unknown AccessKind");
|
|
}
|
|
|
|
}} // end namespace clang::thread_safety
|