llvm-project/libcxxabi/test/guard_threaded_test.pass.cpp

382 lines
9.6 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03
// UNSUPPORTED: libcxxabi-no-threads
// UNSUPPORTED: no-exceptions
#define TESTING_CXA_GUARD
#include "../src/cxa_guard_impl.h"
#include <unordered_map>
#include <thread>
#include <atomic>
#include <array>
#include <cassert>
#include <memory>
#include <vector>
using namespace __cxxabiv1;
// Misc test configuration. It's used to tune the flakyness of the test.
// ThreadsPerTest - The number of threads used
constexpr int ThreadsPerTest = 10;
// The number of instances of a test to run concurrently.
constexpr int ConcurrentRunsPerTest = 10;
// The number of times to rerun each test.
constexpr int TestSamples = 50;
void BusyWait() {
std::this_thread::yield();
}
void YieldAfterBarrier() {
std::this_thread::sleep_for(std::chrono::nanoseconds(10));
std::this_thread::yield();
}
struct Barrier {
explicit Barrier(int n) : m_threads(n), m_remaining(n) { }
Barrier(Barrier const&) = delete;
Barrier& operator=(Barrier const&) = delete;
void arrive_and_wait() const {
--m_remaining;
while (m_remaining.load()) {
BusyWait();
}
}
void arrive_and_drop() const {
--m_remaining;
}
void wait_for_threads(int n) const {
while ((m_threads - m_remaining.load()) < n) {
std::this_thread::yield();
}
}
private:
const int m_threads;
mutable std::atomic<int> m_remaining;
};
enum class InitResult {
COMPLETE,
PERFORMED,
WAITED,
ABORTED
};
constexpr InitResult COMPLETE = InitResult::COMPLETE;
constexpr InitResult PERFORMED = InitResult::PERFORMED;
constexpr InitResult WAITED = InitResult::WAITED;
constexpr InitResult ABORTED = InitResult::ABORTED;
template <class Impl, class GuardType, class Init>
InitResult check_guard(GuardType *g, Init init) {
uint8_t *first_byte = reinterpret_cast<uint8_t*>(g);
if (std::__libcpp_atomic_load(first_byte, std::_AO_Acquire) == 0) {
Impl impl(g);
if (impl.cxa_guard_acquire() == INIT_IS_PENDING) {
#ifndef LIBCXXABI_HAS_NO_EXCEPTIONS
try {
#endif
init();
impl.cxa_guard_release();
return PERFORMED;
#ifndef LIBCXXABI_HAS_NO_EXCEPTIONS
} catch (...) {
impl.cxa_guard_abort();
return ABORTED;
}
#endif
}
return WAITED;
}
return COMPLETE;
}
template <class GuardType, class Impl>
struct FunctionLocalStatic {
FunctionLocalStatic() {}
FunctionLocalStatic(FunctionLocalStatic const&) = delete;
template <class InitFunc>
InitResult access(InitFunc&& init) {
auto res = check_guard<Impl>(&guard_object, init);
++result_counts[static_cast<int>(res)];
return res;
}
template <class InitFn>
struct AccessCallback {
void operator()() const { this_obj->access(init); }
FunctionLocalStatic *this_obj;
InitFn init;
};
template <class InitFn, class Callback = AccessCallback< InitFn > >
Callback access_callback(InitFn init) {
return Callback{this, init};
}
int get_count(InitResult I) const {
return result_counts[static_cast<int>(I)].load();
}
int num_completed() const {
return get_count(COMPLETE) + get_count(PERFORMED) + get_count(WAITED);
}
int num_waiting() const {
return waiting_threads.load();
}
private:
GuardType guard_object = {};
std::atomic<int> waiting_threads{0};
std::array<std::atomic<int>, 4> result_counts{};
static_assert(static_cast<int>(ABORTED) == 3, "only 4 result kinds expected");
};
struct ThreadGroup {
ThreadGroup() = default;
ThreadGroup(ThreadGroup const&) = delete;
template <class ...Args>
void Create(Args&& ...args) {
threads.emplace_back(std::forward<Args>(args)...);
}
template <class Callback>
void CreateThreadsWithBarrier(int N, Callback cb) {
auto start = std::make_shared<Barrier>(N + 1);
for (int I=0; I < N; ++I) {
Create([start, cb]() {
start->arrive_and_wait();
cb();
});
}
start->arrive_and_wait();
}
void JoinAll() {
for (auto& t : threads) {
t.join();
}
}
private:
std::vector<std::thread> threads;
};
template <class GuardType, class Impl>
void test_free_for_all(int num_waiters) {
FunctionLocalStatic<GuardType, Impl> test_obj;
ThreadGroup threads;
bool already_init = false;
threads.CreateThreadsWithBarrier(num_waiters,
test_obj.access_callback([&]() {
assert(!already_init);
already_init = true;
})
);
// wait for the other threads to finish initialization.
threads.JoinAll();
assert(test_obj.get_count(PERFORMED) == 1);
assert(test_obj.get_count(COMPLETE) + test_obj.get_count(WAITED) == num_waiters - 1);
}
template <class GuardType, class Impl>
void test_waiting_for_init(int num_waiters) {
FunctionLocalStatic<GuardType, Impl> test_obj;
ThreadGroup threads;
Barrier start_init(2);
threads.Create(test_obj.access_callback(
[&]() {
start_init.arrive_and_wait();
// Take our sweet time completing the initialization...
//
// There's a race condition between the other threads reaching the
// start_init barrier, and them actually hitting the cxa guard.
// But we're trying to test the waiting logic, we want as many
// threads to enter the waiting loop as possible.
YieldAfterBarrier();
}
));
start_init.wait_for_threads(1);
threads.CreateThreadsWithBarrier(num_waiters,
test_obj.access_callback([]() { assert(false); })
);
// unblock the initializing thread
start_init.arrive_and_drop();
// wait for the other threads to finish initialization.
threads.JoinAll();
assert(test_obj.get_count(PERFORMED) == 1);
assert(test_obj.get_count(ABORTED) == 0);
assert(test_obj.get_count(COMPLETE) + test_obj.get_count(WAITED) == num_waiters);
}
template <class GuardType, class Impl>
void test_aborted_init(int num_waiters) {
FunctionLocalStatic<GuardType, Impl> test_obj;
Barrier start_init(2);
ThreadGroup threads;
threads.Create(test_obj.access_callback(
[&]() {
start_init.arrive_and_wait();
YieldAfterBarrier();
throw 42;
})
);
start_init.wait_for_threads(1);
bool already_init = false;
threads.CreateThreadsWithBarrier(num_waiters,
test_obj.access_callback([&]() {
assert(!already_init);
already_init = true;
})
);
// unblock the initializing thread
start_init.arrive_and_drop();
// wait for the other threads to finish initialization.
threads.JoinAll();
assert(test_obj.get_count(ABORTED) == 1);
assert(test_obj.get_count(PERFORMED) == 1);
assert(test_obj.get_count(WAITED) + test_obj.get_count(COMPLETE) == num_waiters - 1);
}
template <class GuardType, class Impl>
void test_completed_init(int num_waiters) {
FunctionLocalStatic<GuardType, Impl> test_obj;
test_obj.access([]() {}); // initialize the object
assert(test_obj.num_waiting() == 0);
assert(test_obj.num_completed() == 1);
assert(test_obj.get_count(PERFORMED) == 1);
ThreadGroup threads;
threads.CreateThreadsWithBarrier(num_waiters,
test_obj.access_callback([]() { assert(false); })
);
// wait for the other threads to finish initialization.
threads.JoinAll();
assert(test_obj.get_count(ABORTED) == 0);
assert(test_obj.get_count(PERFORMED) == 1);
assert(test_obj.get_count(WAITED) == 0);
assert(test_obj.get_count(COMPLETE) == num_waiters);
}
template <class Impl>
void test_impl() {
using TestFn = void(*)(int);
TestFn TestList[] = {
test_free_for_all<uint32_t, Impl>,
test_free_for_all<uint32_t, Impl>,
test_waiting_for_init<uint32_t, Impl>,
test_waiting_for_init<uint64_t, Impl>,
test_aborted_init<uint32_t, Impl>,
test_aborted_init<uint64_t, Impl>,
test_completed_init<uint32_t, Impl>,
test_completed_init<uint64_t, Impl>
};
for (auto test_func : TestList) {
ThreadGroup test_threads;
test_threads.CreateThreadsWithBarrier(ConcurrentRunsPerTest, [=]() {
for (int I = 0; I < TestSamples; ++I) {
test_func(ThreadsPerTest);
}
});
test_threads.JoinAll();
}
}
void test_all_impls() {
using MutexImpl = SelectImplementation<Implementation::GlobalLock>::type;
// Attempt to test the Futex based implementation if it's supported on the
// target platform.
using RealFutexImpl = SelectImplementation<Implementation::Futex>::type;
using FutexImpl = typename std::conditional<
PlatformSupportsFutex(),
RealFutexImpl,
MutexImpl
>::type;
test_impl<MutexImpl>();
if (PlatformSupportsFutex())
test_impl<FutexImpl>();
}
// A dummy
template <bool Dummy = true>
void test_futex_syscall() {
if (!PlatformSupportsFutex())
return;
int lock1 = 0;
int lock2 = 0;
int lock3 = 0;
std::thread waiter1([&]() {
int expect = 0;
PlatformFutexWait(&lock1, expect);
assert(lock1 == 1);
});
std::thread waiter2([&]() {
int expect = 0;
PlatformFutexWait(&lock2, expect);
assert(lock2 == 2);
});
std::thread waiter3([&]() {
int expect = 42; // not the value
PlatformFutexWait(&lock3, expect); // doesn't block
});
std::thread waker([&]() {
lock1 = 1;
PlatformFutexWake(&lock1);
lock2 = 2;
PlatformFutexWake(&lock2);
});
waiter1.join();
waiter2.join();
waiter3.join();
waker.join();
}
int main() {
// Test each multi-threaded implementation with real threads.
test_all_impls();
// Test the basic sanity of the futex syscall wrappers.
test_futex_syscall();
}