llvm-project/mlir/lib/Dialect/Tosa/Utils/QuantUtils.cpp

368 lines
12 KiB
C++

//===- QuantUtils.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains TOSA numerical support functions and quantization
// attribute builders.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
using namespace mlir;
using namespace mlir::tosa;
/// From a scale value, generates multiplier and shift values where
/// mantissa is in [-1.0,-0.5] or [0.5, 1.0] such that
/// multiplier = mantissa*2^shift for 16-bit scaling.
static void computeMultiplierAndShiftTosaScale16(double scale,
int32_t &multiplier,
int32_t &shift) {
const double mantissa = std::frexp(scale, &shift);
auto shiftedM = std::round(mantissa * (int64_t(1) << 15));
// Can't be greater than 1.0.
assert(shiftedM <= (int64_t(1) << 15) &&
"Shifted mantissa exceeds 16 signed bits");
if (shiftedM == (int64_t(1) << 15)) {
shiftedM /= 2;
shift++;
}
// TOSA expects right shift to be positive and embed (1 << 15) into right
// shift bits.
shift = (-shift) + 15;
assert(shiftedM <= std::numeric_limits<int32_t>::max() &&
"Shifted mantissa exceeds 32-bit signed output type");
multiplier = static_cast<int32_t>(shiftedM);
// Shifting tops out at 63 bits. Right shift to make 63 bits the max.
if (shift > 63) {
// Shifting the multiplier by more than 31-bits is unnecessary.
multiplier = multiplier >> std::min<int32_t>(31, shift - 63);
shift = 63;
}
}
/// From a scale value, generates multiplier and shift values where
/// mantissa is in [-1.0,-0.5] or [0.5, 1.0] such that
/// multiplier = mantissa*2^shift for 32-bit scaling.
static void computeMultiplierAndShiftTosaScale32(double scale,
int32_t &multiplier,
int32_t &shift) {
const double mantissa = std::frexp(scale, &shift);
auto shiftedM = std::round(mantissa * (int64_t(1) << 31));
// Can't be greater than 1.0.
assert(shiftedM <= (int64_t(1) << 31) &&
"Shifted mantissa exceeds 32 signed bits");
if (shiftedM == (int64_t(1) << 31)) {
shiftedM /= 2;
shift++;
}
// TOSA expects right shift to be positive, and embed (1 << 31) into right
// shift bits.
shift = (-shift) + 31;
assert(shiftedM <= std::numeric_limits<int32_t>::max() &&
"Shifted mantissa exceeds 32-bit signed output type");
multiplier = static_cast<int32_t>(shiftedM);
// Shifting tops out at 63 bits. Right shift to make 63 bits the max.
if (shift > 63) {
// Shifting the multiplier by more than 32-bits is unnecessary.
multiplier = multiplier >> std::min<int32_t>(31, shift - 63);
shift = 63;
}
}
/// Generates a quantized multiplier/shift from double.
void mlir::tosa::computeMultiplierAndShift(double scale, int32_t &multiplier,
int32_t &shift, int32_t scaleWidth) {
switch (scaleWidth) {
case 16:
computeMultiplierAndShiftTosaScale16(scale, multiplier, shift);
return;
case 32:
computeMultiplierAndShiftTosaScale32(scale, multiplier, shift);
return;
default:
assert(0 && "Unsupported Tosa quantized_scale regime specified!");
}
}
#define GET_UQTYPE(input_type) \
((input_type).getElementType().dyn_cast<quant::UniformQuantizedType>())
#define GET_QTYPE(input_type) \
((input_type).getElementType().dyn_cast<quant::QuantizedType>())
/// Method to build ConvOpQuantizationAttr, called from
/// ConvOpQuantInfoBuilder/TransConvOpQuantInfoBuilder:
/// input_zp: input zeropoint
/// weight_zp: weight zeropoint.
ConvOpQuantizationAttr
mlir::tosa::buildConvOpQuantizationAttr(OpBuilder &builder, Value input,
Value weight) {
auto inputType = input.getType().dyn_cast<ShapedType>();
auto weightType = weight.getType().dyn_cast<ShapedType>();
if (!inputType || !weightType)
return nullptr;
auto inputQType = GET_UQTYPE(inputType);
auto weightPerTensorQType = GET_UQTYPE(weightType);
auto weightPerAxisQType = weightType.getElementType()
.dyn_cast<quant::UniformQuantizedPerAxisType>();
// Weights must be either per-tensor quantized or per-axis quantized.
assert(!((bool)weightPerTensorQType && (bool)weightPerAxisQType) &&
"Weights must be either per-tensor or per-axis quantized");
// Either all quantized or all not quantized.
assert(!((bool)inputQType ^
((bool)weightPerTensorQType || (bool)weightPerAxisQType)) &&
"Inputs and weights must be all quantized or all not quantized");
if (inputQType) {
int64_t inputZp = inputQType.getZeroPoint();
int64_t weightZp = 0;
if (weightPerTensorQType) {
weightZp = weightPerTensorQType.getZeroPoint();
} else if (weightPerAxisQType) {
weightZp = weightPerAxisQType.getZeroPoints().front();
}
auto quantAttr = tosa::ConvOpQuantizationAttr::get(
builder.getI32IntegerAttr(inputZp), builder.getI32IntegerAttr(weightZp),
builder.getContext());
return quantAttr;
}
return nullptr;
}
/// Builds MatMulOpQuantizationAttr, called from
/// MatMulOpQuantInfoBuilder:
/// aZp: input a zeropoint
/// bZp: input b zeropoint.
MatMulOpQuantizationAttr
mlir::tosa::buildMatMulOpQuantizationAttr(OpBuilder &builder, Value a,
Value b) {
auto aType = a.getType().dyn_cast<ShapedType>();
auto bType = b.getType().dyn_cast<ShapedType>();
if (!aType || !bType)
return nullptr;
auto aQType = GET_UQTYPE(aType);
auto bQType = GET_UQTYPE(bType);
// A and B are either all quantized or all not quantized.
assert(!((bool)aQType ^ (bool)bQType) &&
"Matmul operands must be all quantized or all not quantized");
if (aQType) {
int64_t aZp = aQType.getZeroPoint();
int64_t bZp = bQType.getZeroPoint();
auto quantAttr = tosa::MatMulOpQuantizationAttr::get(
builder.getI32IntegerAttr(aZp), builder.getI32IntegerAttr(bZp),
builder.getContext());
return quantAttr;
}
return nullptr;
}
/// Builds UnaryOpQuantizationAttr
/// UnaryOpQuantInfoBuilder:
/// inputZp: input zeropoint
/// outputZp: output zeropoint.
UnaryOpQuantizationAttr
mlir::tosa::buildUnaryOpQuantizationAttr(OpBuilder &builder, Value input,
Type outputRawType) {
auto inputType = input.getType().dyn_cast<ShapedType>();
auto outputType = outputRawType.dyn_cast<ShapedType>();
if (!inputType || !outputType)
return nullptr;
auto inputQType = GET_UQTYPE(inputType);
auto outputQType = GET_UQTYPE(outputType);
// Either all quantized or all not quantized.
assert(!((bool)inputQType ^ (bool)outputQType) &&
"Unary inputs/outputs must be all quantized or all not quantized");
if (inputQType) {
int64_t inputZp = inputQType.getZeroPoint();
int64_t outputZp = outputQType.getZeroPoint();
auto quantAttr = tosa::UnaryOpQuantizationAttr::get(
builder.getI32IntegerAttr(inputZp), builder.getI32IntegerAttr(outputZp),
builder.getContext());
return quantAttr;
}
return nullptr;
}
/// Builds PadOpQuantizationAttr, called from PadOpQuantInfoBuilder:
/// inputZp: input zeropoint.
PadOpQuantizationAttr mlir::tosa::buildPadOpQuantizationAttr(OpBuilder &builder,
Value input) {
auto inputType = input.getType().dyn_cast<ShapedType>();
if (!inputType)
return nullptr;
auto inputQType = GET_UQTYPE(inputType);
if (inputQType) {
int64_t inputZp = inputQType.getZeroPoint();
auto quantAttr = tosa::PadOpQuantizationAttr::get(
builder.getI32IntegerAttr(inputZp), builder.getContext());
return quantAttr;
}
return nullptr;
}
/// Builds output type for a quantized ConvOp with the right bitwidth.
/// This is called by the builder when dealing with quantized content.
Type mlir::tosa::buildConvOpResultTypeInfo(OpBuilder &builder, Type outputType,
Value input, Value weight) {
auto inputType = input.getType().dyn_cast<ShapedType>();
auto weightType = weight.getType().dyn_cast<ShapedType>();
assert(inputType && weightType &&
"Could not extract input or weight tensors from Conv op");
auto inputQType = GET_QTYPE(inputType);
auto weightQType = GET_QTYPE(weightType);
assert(inputQType && weightQType &&
"Could not extract input or weight tensor types from Conv op");
unsigned inputBits = inputQType.getStorageTypeIntegralWidth();
unsigned weightBits = weightQType.getStorageTypeIntegralWidth();
auto outputShapedType = outputType.dyn_cast<ShapedType>();
assert(outputShapedType &&
"Could not extract output shape type from Conv op");
IntegerType accElementType;
if (inputBits == 16 && weightBits == 8)
accElementType = builder.getIntegerType(48);
else
accElementType = builder.getI32Type();
auto accType = outputShapedType.clone(accElementType);
return accType;
}
/// Builds Tosa quantization attributes from min/max values.
Type mlir::tosa::buildQTypeFromMinMax(OpBuilder builder, Type inputDType,
Attribute minAttr, Attribute maxAttr,
IntegerAttr quantBits, int filterQuantDim,
bool isSigned, BoolAttr narrowRange) {
quant::QuantizedType retType;
auto convfunc =
quant::ExpressedToQuantizedConverter::forInputType(inputDType);
auto minElems = minAttr.dyn_cast<DenseFPElementsAttr>();
auto maxElems = maxAttr.dyn_cast<DenseFPElementsAttr>();
SmallVector<double, 2> min, max;
// At least one is per-axis quantized elementsattr.
if (minElems || maxElems) {
// Must have the same number of elements.
if (minElems.getNumElements() != maxElems.getNumElements())
return {};
min.reserve(minElems.getNumElements());
max.reserve(maxElems.getNumElements());
for (auto i : minElems)
min.push_back(FloatAttr::getValueAsDouble(i));
for (auto i : maxElems)
max.push_back(FloatAttr::getValueAsDouble(i));
} else { // Just a single FP value.
auto minVal = minAttr.dyn_cast<FloatAttr>();
if (minVal)
min.push_back(minVal.getValueAsDouble());
else
return {};
auto maxVal = maxAttr.dyn_cast<FloatAttr>();
if (maxVal)
max.push_back(maxVal.getValueAsDouble());
else
return {};
}
if (min.size() == max.size()) {
if (min.size() == 1) { // Per-tensor quantization with one min/max pair.
retType = quant::fakeQuantAttrsToType(
builder.getUnknownLoc(), quantBits.getInt(), min[0], max[0],
narrowRange.getValue(), convfunc.expressedType, isSigned);
} else if (min.size() > 1) { // Per-axis quant on filterQuantDim.
auto shape = inputDType.dyn_cast<ShapedType>();
if (!shape)
return {};
if ((filterQuantDim) >= 0 && (shape.getRank() > filterQuantDim)) {
retType = quant::fakeQuantAttrsToType(
builder.getUnknownLoc(), quantBits.getInt(), filterQuantDim, min[0],
max[0], narrowRange.getValue(), convfunc.expressedType, isSigned);
}
} else {
return {};
}
} else {
return {};
}
if (!retType)
return {};
return convfunc.convert(retType);
}
/// Builds Tosa quantization attributes from min/max values.
TypeAttr
mlir::tosa::buildQTypeAttrFromMinMax(OpBuilder builder, Type inputDtype,
Attribute minAttr, Attribute maxAttr,
IntegerAttr quantBits, int filterQuantDim,
bool isSigned, BoolAttr narrowRange) {
return TypeAttr::get(buildQTypeFromMinMax(builder, inputDtype, minAttr,
maxAttr, quantBits, filterQuantDim,
isSigned, narrowRange));
}