llvm-project/mlir/lib/Conversion/LinalgToSPIRV/LinalgToSPIRV.cpp

212 lines
8.6 KiB
C++

//===- LinalgToSPIRV.cpp - Linalg to SPIR-V Patterns ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToSPIRV/LinalgToSPIRV.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// Returns a `Value` containing the `dim`-th dimension's size of SPIR-V
/// location invocation ID. This function will create necessary operations with
/// `builder` at the proper region containing `op`.
static Value getLocalInvocationDimSize(Operation *op, int dim, Type integerType,
Location loc, OpBuilder *builder) {
assert(dim >= 0 && dim < 3 && "local invocation only has three dimensions");
Value invocation = spirv::getBuiltinVariableValue(
op, spirv::BuiltIn::LocalInvocationId, integerType, *builder);
Type xType = invocation.getType().cast<ShapedType>().getElementType();
return builder->create<spirv::CompositeExtractOp>(
loc, xType, invocation, builder->getI32ArrayAttr({dim}));
}
//===----------------------------------------------------------------------===//
// Reduction (single workgroup)
//===----------------------------------------------------------------------===//
namespace {
/// A pattern to convert a linalg.generic op to SPIR-V ops under the condition
/// that the linalg.generic op is performing reduction with a workload size that
/// can fit in one workgroup.
struct SingleWorkgroupReduction final
: public OpConversionPattern<linalg::GenericOp> {
using OpConversionPattern::OpConversionPattern;
/// Matches the given linalg.generic op as performing reduction and returns
/// the binary op kind if successful.
static Optional<linalg::RegionMatcher::BinaryOpKind>
matchAsPerformingReduction(linalg::GenericOp genericOp);
LogicalResult
matchAndRewrite(linalg::GenericOp genericOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
Optional<linalg::RegionMatcher::BinaryOpKind>
SingleWorkgroupReduction::matchAsPerformingReduction(
linalg::GenericOp genericOp) {
Operation *op = genericOp.getOperation();
// Make sure the linalg.generic is working on memrefs.
if (!genericOp.hasBufferSemantics())
return llvm::None;
// Make sure this is reduction with one input and one output.
if (genericOp.getNumInputs() != 1 || genericOp.getNumOutputs() != 1)
return llvm::None;
auto originalInputType = op->getOperand(0).getType().cast<MemRefType>();
auto originalOutputType = op->getOperand(1).getType().cast<MemRefType>();
// Make sure the original input has one dimension.
if (!originalInputType.hasStaticShape() || originalInputType.getRank() != 1)
return llvm::None;
// Make sure the original output has one element.
if (!originalOutputType.hasStaticShape() ||
originalOutputType.getNumElements() != 1)
return llvm::None;
if (!genericOp.hasSingleReductionLoop())
return llvm::None;
if (genericOp.indexing_maps().getValue().size() != 2)
return llvm::None;
// TODO: create utility functions for these checks in Linalg
// and use them.
auto inputMap = genericOp.indexing_maps().getValue()[0].cast<AffineMapAttr>();
auto outputMap =
genericOp.indexing_maps().getValue()[1].cast<AffineMapAttr>();
// The indexing map for the input should be `(i) -> (i)`.
if (inputMap.getValue() !=
AffineMap::get(1, 0, getAffineDimExpr(0, op->getContext())))
return llvm::None;
// The indexing map for the input should be `(i) -> (0)`.
if (outputMap.getValue() !=
AffineMap::get(1, 0, getAffineConstantExpr(0, op->getContext())))
return llvm::None;
return linalg::RegionMatcher::matchAsScalarBinaryOp(genericOp);
}
LogicalResult SingleWorkgroupReduction::matchAndRewrite(
linalg::GenericOp genericOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Operation *op = genericOp.getOperation();
auto originalInputType = op->getOperand(0).getType().cast<MemRefType>();
auto originalOutputType = op->getOperand(1).getType().cast<MemRefType>();
auto binaryOpKind = matchAsPerformingReduction(genericOp);
if (!binaryOpKind)
return failure();
// Query the shader interface for local workgroup size to make sure the
// invocation configuration fits with the input memref's shape.
DenseIntElementsAttr localSize = spirv::lookupLocalWorkGroupSize(genericOp);
if (!localSize)
return failure();
if ((*localSize.begin()).getSExtValue() != originalInputType.getDimSize(0))
return failure();
if (llvm::any_of(llvm::drop_begin(localSize.getValues<APInt>(), 1),
[](const APInt &size) { return !size.isOneValue(); }))
return failure();
// TODO: Query the target environment to make sure the current
// workload fits in a local workgroup.
Value convertedInput = adaptor.getOperands()[0];
Value convertedOutput = adaptor.getOperands()[1];
Location loc = genericOp.getLoc();
auto *typeConverter = getTypeConverter<SPIRVTypeConverter>();
auto indexType = typeConverter->getIndexType();
// Get the invocation ID.
Value x = getLocalInvocationDimSize(genericOp, /*dim=*/0, indexType, loc,
&rewriter);
// TODO: Load to Workgroup storage class first.
// Get the input element accessed by this invocation.
Value inputElementPtr = spirv::getElementPtr(
*typeConverter, originalInputType, convertedInput, {x}, loc, rewriter);
Value inputElement = rewriter.create<spirv::LoadOp>(loc, inputElementPtr);
// Perform the group reduction operation.
Value groupOperation;
#define CREATE_GROUP_NON_UNIFORM_BIN_OP(opKind, spvOp) \
case linalg::RegionMatcher::BinaryOpKind::opKind: { \
groupOperation = rewriter.create<spirv::spvOp>( \
loc, originalInputType.getElementType(), spirv::Scope::Subgroup, \
spirv::GroupOperation::Reduce, inputElement, \
/*cluster_size=*/nullptr); \
} break
switch (*binaryOpKind) {
CREATE_GROUP_NON_UNIFORM_BIN_OP(IAdd, GroupNonUniformIAddOp);
}
#undef CREATE_GROUP_NON_UNIFORM_BIN_OP
// Get the output element accessed by this reduction.
Value zero = spirv::ConstantOp::getZero(indexType, loc, rewriter);
SmallVector<Value, 1> zeroIndices(originalOutputType.getRank(), zero);
Value outputElementPtr =
spirv::getElementPtr(*typeConverter, originalOutputType, convertedOutput,
zeroIndices, loc, rewriter);
// Write out the final reduction result. This should be only conducted by one
// invocation. We use spv.GroupNonUniformElect to find the invocation with the
// lowest ID.
//
// ```
// if (spv.GroupNonUniformElect) { output = ... }
// ```
Value condition = rewriter.create<spirv::GroupNonUniformElectOp>(
loc, spirv::Scope::Subgroup);
auto createAtomicOp = [&](OpBuilder &builder) {
#define CREATE_ATOMIC_BIN_OP(opKind, spvOp) \
case linalg::RegionMatcher::BinaryOpKind::opKind: { \
builder.create<spirv::spvOp>(loc, outputElementPtr, spirv::Scope::Device, \
spirv::MemorySemantics::AcquireRelease, \
groupOperation); \
} break
switch (*binaryOpKind) { CREATE_ATOMIC_BIN_OP(IAdd, AtomicIAddOp); }
#undef CREATE_ATOMIC_BIN_OP
};
spirv::SelectionOp::createIfThen(loc, condition, createAtomicOp, rewriter);
rewriter.eraseOp(genericOp);
return success();
}
//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//
void mlir::populateLinalgToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<SingleWorkgroupReduction>(typeConverter, patterns.getContext());
}