forked from OSchip/llvm-project
719 lines
26 KiB
C++
719 lines
26 KiB
C++
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BlockGenerator and VectorBlockGenerator classes,
|
|
// which generate sequential code and vectorized code for a polyhedral
|
|
// statement, respectively.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/ScopInfo.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/set.h"
|
|
#include "polly/CodeGen/BlockGenerators.h"
|
|
#include "polly/CodeGen/CodeGeneration.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<bool>
|
|
Aligned("enable-polly-aligned", cl::desc("Assumed aligned memory accesses."),
|
|
cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"),
|
|
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool, true>
|
|
SCEVCodegenF("polly-codegen-scev", cl::desc("Use SCEV based code generation."),
|
|
cl::Hidden, cl::location(SCEVCodegen), cl::init(false),
|
|
cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
bool polly::SCEVCodegen;
|
|
|
|
bool polly::canSynthesize(const Instruction *I, const llvm::LoopInfo *LI,
|
|
ScalarEvolution *SE, const Region *R) {
|
|
if (SCEVCodegen) {
|
|
if (!I || !SE->isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
if (const SCEV *Scev = SE->getSCEV(const_cast<Instruction *>(I)))
|
|
if (!isa<SCEVCouldNotCompute>(Scev))
|
|
if (!hasScalarDepsInsideRegion(Scev, R))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Loop *L = LI->getLoopFor(I->getParent());
|
|
return L && I == L->getCanonicalInductionVariable() && R->contains(L);
|
|
}
|
|
|
|
// Helper class to generate memory location.
|
|
namespace {
|
|
class IslGenerator {
|
|
public:
|
|
IslGenerator(IRBuilder<> &Builder, std::vector<Value *> &IVS)
|
|
: Builder(Builder), IVS(IVS) {}
|
|
Value *generateIslVal(__isl_take isl_val *Val);
|
|
Value *generateIslAff(__isl_take isl_aff *Aff);
|
|
Value *generateIslPwAff(__isl_take isl_pw_aff *PwAff);
|
|
|
|
private:
|
|
typedef struct {
|
|
Value *Result;
|
|
class IslGenerator *Generator;
|
|
} IslGenInfo;
|
|
|
|
IRBuilder<> &Builder;
|
|
std::vector<Value *> &IVS;
|
|
static int mergeIslAffValues(__isl_take isl_set *Set, __isl_take isl_aff *Aff,
|
|
void *User);
|
|
};
|
|
}
|
|
|
|
Value *IslGenerator::generateIslVal(__isl_take isl_val *Val) {
|
|
Value *IntValue = Builder.getInt(APIntFromVal(Val));
|
|
return IntValue;
|
|
}
|
|
|
|
Value *IslGenerator::generateIslAff(__isl_take isl_aff *Aff) {
|
|
Value *Result;
|
|
Value *ConstValue;
|
|
isl_val *Val;
|
|
|
|
Val = isl_aff_get_constant_val(Aff);
|
|
ConstValue = generateIslVal(Val);
|
|
Type *Ty = Builder.getInt64Ty();
|
|
|
|
// FIXME: We should give the constant and coefficients the right type. Here
|
|
// we force it into i64.
|
|
Result = Builder.CreateSExtOrBitCast(ConstValue, Ty);
|
|
|
|
unsigned int NbInputDims = isl_aff_dim(Aff, isl_dim_in);
|
|
|
|
assert((IVS.size() == NbInputDims) &&
|
|
"The Dimension of Induction Variables must match the dimension of the "
|
|
"affine space.");
|
|
|
|
for (unsigned int i = 0; i < NbInputDims; ++i) {
|
|
Value *CoefficientValue;
|
|
Val = isl_aff_get_coefficient_val(Aff, isl_dim_in, i);
|
|
|
|
if (isl_val_is_zero(Val)) {
|
|
isl_val_free(Val);
|
|
continue;
|
|
}
|
|
|
|
CoefficientValue = generateIslVal(Val);
|
|
CoefficientValue = Builder.CreateIntCast(CoefficientValue, Ty, true);
|
|
Value *IV = Builder.CreateIntCast(IVS[i], Ty, true);
|
|
Value *PAdd = Builder.CreateMul(CoefficientValue, IV, "p_mul_coeff");
|
|
Result = Builder.CreateAdd(Result, PAdd, "p_sum_coeff");
|
|
}
|
|
|
|
isl_aff_free(Aff);
|
|
|
|
return Result;
|
|
}
|
|
|
|
int IslGenerator::mergeIslAffValues(__isl_take isl_set *Set,
|
|
__isl_take isl_aff *Aff, void *User) {
|
|
IslGenInfo *GenInfo = (IslGenInfo *)User;
|
|
|
|
assert((GenInfo->Result == NULL) &&
|
|
"Result is already set. Currently only single isl_aff is supported");
|
|
assert(isl_set_plain_is_universe(Set) &&
|
|
"Code generation failed because the set is not universe");
|
|
|
|
GenInfo->Result = GenInfo->Generator->generateIslAff(Aff);
|
|
|
|
isl_set_free(Set);
|
|
return 0;
|
|
}
|
|
|
|
Value *IslGenerator::generateIslPwAff(__isl_take isl_pw_aff *PwAff) {
|
|
IslGenInfo User;
|
|
User.Result = NULL;
|
|
User.Generator = this;
|
|
isl_pw_aff_foreach_piece(PwAff, mergeIslAffValues, &User);
|
|
assert(User.Result && "Code generation for isl_pw_aff failed");
|
|
|
|
isl_pw_aff_free(PwAff);
|
|
return User.Result;
|
|
}
|
|
|
|
BlockGenerator::BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P)
|
|
: Builder(B), Statement(Stmt), P(P), SE(P->getAnalysis<ScalarEvolution>()) {
|
|
}
|
|
|
|
Value *BlockGenerator::lookupAvailableValue(const Value *Old, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap) const {
|
|
// We assume constants never change.
|
|
// This avoids map lookups for many calls to this function.
|
|
if (isa<Constant>(Old))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (Value *New = GlobalMap.lookup(Old)) {
|
|
if (Old->getType()->getScalarSizeInBits() <
|
|
New->getType()->getScalarSizeInBits())
|
|
New = Builder.CreateTruncOrBitCast(New, Old->getType());
|
|
|
|
return New;
|
|
}
|
|
|
|
// Or it is probably a scop-constant value defined as global, function
|
|
// parameter or an instruction not within the scop.
|
|
if (isa<GlobalValue>(Old) || isa<Argument>(Old))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (const Instruction *Inst = dyn_cast<Instruction>(Old))
|
|
if (!Statement.getParent()->getRegion().contains(Inst->getParent()))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (Value *New = BBMap.lookup(Old))
|
|
return New;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap, LoopToScevMapT <S,
|
|
Loop *L) {
|
|
if (Value *New = lookupAvailableValue(Old, BBMap, GlobalMap))
|
|
return New;
|
|
|
|
if (SCEVCodegen && SE.isSCEVable(Old->getType()))
|
|
if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
|
|
if (!isa<SCEVCouldNotCompute>(Scev)) {
|
|
const SCEV *NewScev = apply(Scev, LTS, SE);
|
|
ValueToValueMap VTV;
|
|
VTV.insert(BBMap.begin(), BBMap.end());
|
|
VTV.insert(GlobalMap.begin(), GlobalMap.end());
|
|
NewScev = SCEVParameterRewriter::rewrite(NewScev, SE, VTV);
|
|
SCEVExpander Expander(SE, "polly");
|
|
Value *Expanded = Expander.expandCodeFor(NewScev, Old->getType(),
|
|
Builder.GetInsertPoint());
|
|
|
|
BBMap[Old] = Expanded;
|
|
return Expanded;
|
|
}
|
|
}
|
|
|
|
// Now the scalar dependence is neither available nor SCEVCodegenable, this
|
|
// should never happen in the current code generator.
|
|
llvm_unreachable("Unexpected scalar dependence in region!");
|
|
return NULL;
|
|
}
|
|
|
|
void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap, LoopToScevMapT <S) {
|
|
Instruction *NewInst = Inst->clone();
|
|
|
|
// Replace old operands with the new ones.
|
|
for (Instruction::const_op_iterator OI = Inst->op_begin(),
|
|
OE = Inst->op_end();
|
|
OI != OE; ++OI) {
|
|
Value *OldOperand = *OI;
|
|
Value *NewOperand =
|
|
getNewValue(OldOperand, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
|
|
|
|
if (!NewOperand) {
|
|
assert(!isa<StoreInst>(NewInst) &&
|
|
"Store instructions are always needed!");
|
|
delete NewInst;
|
|
return;
|
|
}
|
|
|
|
NewInst->replaceUsesOfWith(OldOperand, NewOperand);
|
|
}
|
|
|
|
Builder.Insert(NewInst);
|
|
BBMap[Inst] = NewInst;
|
|
|
|
if (!NewInst->getType()->isVoidTy())
|
|
NewInst->setName("p_" + Inst->getName());
|
|
}
|
|
|
|
std::vector<Value *> BlockGenerator::getMemoryAccessIndex(
|
|
__isl_keep isl_map *AccessRelation, Value *BaseAddress, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap, LoopToScevMapT <S, Loop *L) {
|
|
|
|
assert((isl_map_dim(AccessRelation, isl_dim_out) == 1) &&
|
|
"Only single dimensional access functions supported");
|
|
|
|
std::vector<Value *> IVS;
|
|
for (unsigned i = 0; i < Statement.getNumIterators(); ++i) {
|
|
const Value *OriginalIV = Statement.getInductionVariableForDimension(i);
|
|
Value *NewIV = getNewValue(OriginalIV, BBMap, GlobalMap, LTS, L);
|
|
IVS.push_back(NewIV);
|
|
}
|
|
|
|
isl_pw_aff *PwAff = isl_map_dim_max(isl_map_copy(AccessRelation), 0);
|
|
IslGenerator IslGen(Builder, IVS);
|
|
Value *OffsetValue = IslGen.generateIslPwAff(PwAff);
|
|
|
|
Type *Ty = Builder.getInt64Ty();
|
|
OffsetValue = Builder.CreateIntCast(OffsetValue, Ty, true);
|
|
|
|
std::vector<Value *> IndexArray;
|
|
Value *NullValue = Constant::getNullValue(Ty);
|
|
IndexArray.push_back(NullValue);
|
|
IndexArray.push_back(OffsetValue);
|
|
return IndexArray;
|
|
}
|
|
|
|
Value *BlockGenerator::getNewAccessOperand(
|
|
__isl_keep isl_map *NewAccessRelation, Value *BaseAddress, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap, LoopToScevMapT <S, Loop *L) {
|
|
std::vector<Value *> IndexArray = getMemoryAccessIndex(
|
|
NewAccessRelation, BaseAddress, BBMap, GlobalMap, LTS, L);
|
|
Value *NewOperand =
|
|
Builder.CreateGEP(BaseAddress, IndexArray, "p_newarrayidx_");
|
|
return NewOperand;
|
|
}
|
|
|
|
Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst,
|
|
const Value *Pointer,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const MemoryAccess &Access = Statement.getAccessFor(Inst);
|
|
isl_map *CurrentAccessRelation = Access.getAccessRelation();
|
|
isl_map *NewAccessRelation = Access.getNewAccessRelation();
|
|
|
|
assert(isl_map_has_equal_space(CurrentAccessRelation, NewAccessRelation) &&
|
|
"Current and new access function use different spaces");
|
|
|
|
Value *NewPointer;
|
|
|
|
if (!NewAccessRelation) {
|
|
NewPointer =
|
|
getNewValue(Pointer, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
|
|
} else {
|
|
Value *BaseAddress = const_cast<Value *>(Access.getBaseAddr());
|
|
NewPointer = getNewAccessOperand(NewAccessRelation, BaseAddress, BBMap,
|
|
GlobalMap, LTS, getLoopForInst(Inst));
|
|
}
|
|
|
|
isl_map_free(CurrentAccessRelation);
|
|
isl_map_free(NewAccessRelation);
|
|
return NewPointer;
|
|
}
|
|
|
|
Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
|
|
return P->getAnalysis<LoopInfo>().getLoopFor(Inst->getParent());
|
|
}
|
|
|
|
Value *BlockGenerator::generateScalarLoad(const LoadInst *Load,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
const Instruction *Inst = dyn_cast<Instruction>(Load);
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap, LTS);
|
|
Value *ScalarLoad =
|
|
Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
|
|
return ScalarLoad;
|
|
}
|
|
|
|
Value *BlockGenerator::generateScalarStore(const StoreInst *Store,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const Value *Pointer = Store->getPointerOperand();
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Store, Pointer, BBMap, GlobalMap, LTS);
|
|
Value *ValueOperand = getNewValue(Store->getValueOperand(), BBMap, GlobalMap,
|
|
LTS, getLoopForInst(Store));
|
|
|
|
return Builder.CreateStore(ValueOperand, NewPointer);
|
|
}
|
|
|
|
void BlockGenerator::copyInstruction(const Instruction *Inst, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSynthesize(Inst, &P->getAnalysis<LoopInfo>(), &SE,
|
|
&Statement.getParent()->getRegion()))
|
|
return;
|
|
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
Value *NewLoad = generateScalarLoad(Load, BBMap, GlobalMap, LTS);
|
|
// Compute NewLoad before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Load] = NewLoad;
|
|
return;
|
|
}
|
|
|
|
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
Value *NewStore = generateScalarStore(Store, BBMap, GlobalMap, LTS);
|
|
// Compute NewStore before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Store] = NewStore;
|
|
return;
|
|
}
|
|
|
|
copyInstScalar(Inst, BBMap, GlobalMap, LTS);
|
|
}
|
|
|
|
void BlockGenerator::copyBB(ValueMapT &GlobalMap, LoopToScevMapT <S) {
|
|
BasicBlock *BB = Statement.getBasicBlock();
|
|
BasicBlock *CopyBB =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(CopyBB->begin());
|
|
|
|
ValueMapT BBMap;
|
|
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
|
|
++II)
|
|
copyInstruction(II, BBMap, GlobalMap, LTS);
|
|
}
|
|
|
|
VectorBlockGenerator::VectorBlockGenerator(IRBuilder<> &B,
|
|
VectorValueMapT &GlobalMaps,
|
|
std::vector<LoopToScevMapT> &VLTS,
|
|
ScopStmt &Stmt,
|
|
__isl_keep isl_map *Schedule,
|
|
Pass *P)
|
|
: BlockGenerator(B, Stmt, P), GlobalMaps(GlobalMaps), VLTS(VLTS),
|
|
Schedule(Schedule) {
|
|
assert(GlobalMaps.size() > 1 && "Only one vector lane found");
|
|
assert(Schedule && "No statement domain provided");
|
|
}
|
|
|
|
Value *VectorBlockGenerator::getVectorValue(const Value *Old,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps,
|
|
Loop *L) {
|
|
if (Value *NewValue = VectorMap.lookup(Old))
|
|
return NewValue;
|
|
|
|
int Width = getVectorWidth();
|
|
|
|
Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
|
|
|
|
for (int Lane = 0; Lane < Width; Lane++)
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector,
|
|
getNewValue(Old, ScalarMaps[Lane], GlobalMaps[Lane], VLTS[Lane], L),
|
|
Builder.getInt32(Lane));
|
|
|
|
VectorMap[Old] = Vector;
|
|
|
|
return Vector;
|
|
}
|
|
|
|
Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
|
|
PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
|
|
assert(PointerTy && "PointerType expected");
|
|
|
|
Type *ScalarType = PointerTy->getElementType();
|
|
VectorType *VectorType = VectorType::get(ScalarType, Width);
|
|
|
|
return PointerType::getUnqual(VectorType);
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load,
|
|
ValueMapT &BBMap) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
|
|
Value *NewPointer =
|
|
getNewValue(Pointer, BBMap, GlobalMaps[0], VLTS[0], getLoopForInst(Load));
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
LoadInst *VecLoad =
|
|
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
|
|
if (!Aligned)
|
|
VecLoad->setAlignment(8);
|
|
|
|
return VecLoad;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load,
|
|
ValueMapT &BBMap) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
|
|
Value *NewPointer =
|
|
getNewValue(Pointer, BBMap, GlobalMaps[0], VLTS[0], getLoopForInst(Load));
|
|
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
|
|
Load->getName() + "_p_vec_p");
|
|
LoadInst *ScalarLoad =
|
|
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
|
|
|
|
if (!Aligned)
|
|
ScalarLoad->setAlignment(8);
|
|
|
|
Constant *SplatVector = Constant::getNullValue(
|
|
VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
|
|
|
|
Value *VectorLoad = Builder.CreateShuffleVector(
|
|
ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
|
|
return VectorLoad;
|
|
}
|
|
|
|
Value *
|
|
VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
VectorType *VectorType = VectorType::get(
|
|
dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
|
|
|
|
Value *Vector = UndefValue::get(VectorType);
|
|
|
|
for (int i = 0; i < VectorWidth; i++) {
|
|
Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i],
|
|
VLTS[i], getLoopForInst(Load));
|
|
Value *ScalarLoad =
|
|
Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
|
|
}
|
|
|
|
return Vector;
|
|
}
|
|
|
|
void VectorBlockGenerator::generateLoad(const LoadInst *Load,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
if (PollyVectorizerChoice >= VECTORIZER_FIRST_NEED_GROUPED_UNROLL ||
|
|
!VectorType::isValidElementType(Load->getType())) {
|
|
for (int i = 0; i < getVectorWidth(); i++)
|
|
ScalarMaps[i][Load] =
|
|
generateScalarLoad(Load, ScalarMaps[i], GlobalMaps[i], VLTS[i]);
|
|
return;
|
|
}
|
|
|
|
const MemoryAccess &Access = Statement.getAccessFor(Load);
|
|
|
|
Value *NewLoad;
|
|
if (Access.isStrideZero(isl_map_copy(Schedule)))
|
|
NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]);
|
|
else if (Access.isStrideOne(isl_map_copy(Schedule)))
|
|
NewLoad = generateStrideOneLoad(Load, ScalarMaps[0]);
|
|
else
|
|
NewLoad = generateUnknownStrideLoad(Load, ScalarMaps);
|
|
|
|
VectorMap[Load] = NewLoad;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap, ScalarMaps,
|
|
getLoopForInst(Inst));
|
|
|
|
assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
|
|
|
|
const CastInst *Cast = dyn_cast<CastInst>(Inst);
|
|
VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
|
|
VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
Loop *L = getLoopForInst(Inst);
|
|
Value *OpZero = Inst->getOperand(0);
|
|
Value *OpOne = Inst->getOperand(1);
|
|
|
|
Value *NewOpZero, *NewOpOne;
|
|
NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps, L);
|
|
NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps, L);
|
|
|
|
Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
|
|
Inst->getName() + "p_vec");
|
|
VectorMap[Inst] = NewInst;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyStore(const StoreInst *Store,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
const MemoryAccess &Access = Statement.getAccessFor(Store);
|
|
|
|
const Value *Pointer = Store->getPointerOperand();
|
|
Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap,
|
|
ScalarMaps, getLoopForInst(Store));
|
|
|
|
if (Access.isStrideOne(isl_map_copy(Schedule))) {
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
|
|
Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0],
|
|
VLTS[0], getLoopForInst(Store));
|
|
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
|
|
|
|
if (!Aligned)
|
|
Store->setAlignment(8);
|
|
} else {
|
|
for (unsigned i = 0; i < ScalarMaps.size(); i++) {
|
|
Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
|
|
Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i],
|
|
VLTS[i], getLoopForInst(Store));
|
|
Builder.CreateStore(Scalar, NewPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
|
|
ValueMapT &VectorMap) {
|
|
for (Instruction::const_op_iterator OI = Inst->op_begin(),
|
|
OE = Inst->op_end();
|
|
OI != OE; ++OI)
|
|
if (VectorMap.count(*OI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand = false;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
for (Instruction::const_op_iterator OI = Inst->op_begin(),
|
|
OE = Inst->op_end();
|
|
OI != OE; ++OI) {
|
|
ValueMapT::iterator VecOp = VectorMap.find(*OI);
|
|
|
|
if (VecOp == VectorMap.end())
|
|
continue;
|
|
|
|
HasVectorOperand = true;
|
|
Value *NewVector = VecOp->second;
|
|
|
|
for (int i = 0; i < VectorWidth; ++i) {
|
|
ValueMapT &SM = ScalarMaps[i];
|
|
|
|
// If there is one scalar extracted, all scalar elements should have
|
|
// already been extracted by the code here. So no need to check for the
|
|
// existance of all of them.
|
|
if (SM.count(*OI))
|
|
break;
|
|
|
|
SM[*OI] = Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
|
|
}
|
|
}
|
|
|
|
return HasVectorOperand;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyInstScalarized(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
|
|
|
|
for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
|
|
copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane],
|
|
VLTS[VectorLane]);
|
|
|
|
if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
|
|
return;
|
|
|
|
// Make the result available as vector value.
|
|
VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
|
|
Value *Vector = UndefValue::get(VectorType);
|
|
|
|
for (int i = 0; i < VectorWidth; i++)
|
|
Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
|
|
Builder.getInt32(i));
|
|
|
|
VectorMap[Inst] = Vector;
|
|
}
|
|
|
|
int VectorBlockGenerator::getVectorWidth() { return GlobalMaps.size(); }
|
|
|
|
void VectorBlockGenerator::copyInstruction(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSynthesize(Inst, &P->getAnalysis<LoopInfo>(), &SE,
|
|
&Statement.getParent()->getRegion()))
|
|
return;
|
|
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
generateLoad(Load, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (hasVectorOperands(Inst, VectorMap)) {
|
|
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
copyStore(Store, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
|
|
copyUnaryInst(Unary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
|
|
copyBinaryInst(Binary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
// Falltrough: We generate scalar instructions, if we don't know how to
|
|
// generate vector code.
|
|
}
|
|
|
|
copyInstScalarized(Inst, VectorMap, ScalarMaps);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyBB() {
|
|
BasicBlock *BB = Statement.getBasicBlock();
|
|
BasicBlock *CopyBB =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(CopyBB->begin());
|
|
|
|
// Create two maps that store the mapping from the original instructions of
|
|
// the old basic block to their copies in the new basic block. Those maps
|
|
// are basic block local.
|
|
//
|
|
// As vector code generation is supported there is one map for scalar values
|
|
// and one for vector values.
|
|
//
|
|
// In case we just do scalar code generation, the vectorMap is not used and
|
|
// the scalarMap has just one dimension, which contains the mapping.
|
|
//
|
|
// In case vector code generation is done, an instruction may either appear
|
|
// in the vector map once (as it is calculating >vectorwidth< values at a
|
|
// time. Or (if the values are calculated using scalar operations), it
|
|
// appears once in every dimension of the scalarMap.
|
|
VectorValueMapT ScalarBlockMap(getVectorWidth());
|
|
ValueMapT VectorBlockMap;
|
|
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
|
|
++II)
|
|
copyInstruction(II, VectorBlockMap, ScalarBlockMap);
|
|
}
|