llvm-project/mlir/lib/Analysis/VectorAnalysis.cpp

241 lines
9.5 KiB
C++

//===- VectorAnalysis.cpp - Analysis for Vectorization --------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/IR/Instruction.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/SuperVectorOps/SuperVectorOps.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
///
/// Implements Analysis functions specific to vectors which support
/// the vectorization and vectorization materialization passes.
///
using namespace mlir;
using llvm::SetVector;
Optional<SmallVector<unsigned, 4>>
mlir::shapeRatio(ArrayRef<int64_t> superShape, ArrayRef<int64_t> subShape) {
if (superShape.size() < subShape.size()) {
return Optional<SmallVector<unsigned, 4>>();
}
// Starting from the end, compute the integer divisors.
// Set the boolean `divides` if integral division is not possible.
std::vector<unsigned> result;
result.reserve(superShape.size());
bool divides = true;
auto divide = [&divides, &result](int superSize, int subSize) {
assert(superSize > 0 && "superSize must be > 0");
assert(subSize > 0 && "subSize must be > 0");
divides &= (superSize % subSize == 0);
result.push_back(superSize / subSize);
};
functional::zipApply(
divide, SmallVector<int64_t, 8>{superShape.rbegin(), superShape.rend()},
SmallVector<int64_t, 8>{subShape.rbegin(), subShape.rend()});
// If integral division does not occur, return and let the caller decide.
if (!divides) {
return None;
}
// At this point we computed the ratio (in reverse) for the common
// size. Fill with the remaining entries from the super-vector shape (still in
// reverse).
int commonSize = subShape.size();
std::copy(superShape.rbegin() + commonSize, superShape.rend(),
std::back_inserter(result));
assert(result.size() == superShape.size() &&
"super to sub shape ratio is not of the same size as the super rank");
// Reverse again to get it back in the proper order and return.
return SmallVector<unsigned, 4>{result.rbegin(), result.rend()};
}
Optional<SmallVector<unsigned, 4>> mlir::shapeRatio(VectorType superVectorType,
VectorType subVectorType) {
assert(superVectorType.getElementType() == subVectorType.getElementType() &&
"vector types must be of the same elemental type");
return shapeRatio(superVectorType.getShape(), subVectorType.getShape());
}
/// Constructs a permutation map from memref indices to vector dimension.
///
/// The implementation uses the knowledge of the mapping of enclosing loop to
/// vector dimension. `enclosingLoopToVectorDim` carries this information as a
/// map with:
/// - keys representing "vectorized enclosing loops";
/// - values representing the corresponding vector dimension.
/// The algorithm traverses "vectorized enclosing loops" and extracts the
/// at-most-one MemRef index that is invariant along said loop. This index is
/// guaranteed to be at most one by construction: otherwise the MemRef is not
/// vectorizable.
/// If this invariant index is found, it is added to the permutation_map at the
/// proper vector dimension.
/// If no index is found to be invariant, 0 is added to the permutation_map and
/// corresponds to a vector broadcast along that dimension.
///
/// Examples can be found in the documentation of `makePermutationMap`, in the
/// header file.
static AffineMap makePermutationMap(
MLIRContext *context,
llvm::iterator_range<Instruction::operand_iterator> indices,
const DenseMap<Instruction *, unsigned> &enclosingLoopToVectorDim) {
using functional::makePtrDynCaster;
using functional::map;
auto unwrappedIndices = map(makePtrDynCaster<Value, Value>(), indices);
SmallVector<AffineExpr, 4> perm(enclosingLoopToVectorDim.size(),
getAffineConstantExpr(0, context));
for (auto kvp : enclosingLoopToVectorDim) {
assert(kvp.second < perm.size());
auto invariants = getInvariantAccesses(
*kvp.first->cast<AffineForOp>()->getInductionVar(), unwrappedIndices);
unsigned numIndices = unwrappedIndices.size();
unsigned countInvariantIndices = 0;
for (unsigned dim = 0; dim < numIndices; ++dim) {
if (!invariants.count(unwrappedIndices[dim])) {
assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
"permutationMap already has an entry along dim");
perm[kvp.second] = getAffineDimExpr(dim, context);
} else {
++countInvariantIndices;
}
}
assert((countInvariantIndices == numIndices ||
countInvariantIndices == numIndices - 1) &&
"Vectorization prerequisite violated: at most 1 index may be "
"invariant wrt a vectorized loop");
}
return AffineMap::get(unwrappedIndices.size(), 0, perm, {});
}
/// Implementation detail that walks up the parents and records the ones with
/// the specified type.
/// TODO(ntv): could also be implemented as a collect parents followed by a
/// filter and made available outside this file.
template <typename T>
static SetVector<Instruction *> getParentsOfType(Instruction *inst) {
SetVector<Instruction *> res;
auto *current = inst;
while (auto *parent = current->getParentInst()) {
if (auto typedParent = parent->template dyn_cast<T>()) {
assert(res.count(parent) == 0 && "Already inserted");
res.insert(parent);
}
current = parent;
}
return res;
}
/// Returns the enclosing AffineForOp, from closest to farthest.
static SetVector<Instruction *> getEnclosingforOps(Instruction *inst) {
return getParentsOfType<AffineForOp>(inst);
}
AffineMap mlir::makePermutationMap(
Instruction *opInst,
const DenseMap<Instruction *, unsigned> &loopToVectorDim) {
DenseMap<Instruction *, unsigned> enclosingLoopToVectorDim;
auto enclosingLoops = getEnclosingforOps(opInst);
for (auto *forInst : enclosingLoops) {
auto it = loopToVectorDim.find(forInst);
if (it != loopToVectorDim.end()) {
enclosingLoopToVectorDim.insert(*it);
}
}
if (auto load = opInst->dyn_cast<LoadOp>()) {
return ::makePermutationMap(opInst->getContext(), load->getIndices(),
enclosingLoopToVectorDim);
}
auto store = opInst->cast<StoreOp>();
return ::makePermutationMap(opInst->getContext(), store->getIndices(),
enclosingLoopToVectorDim);
}
bool mlir::matcher::operatesOnSuperVectors(const Instruction &opInst,
VectorType subVectorType) {
// First, extract the vector type and ditinguish between:
// a. ops that *must* lower a super-vector (i.e. vector_transfer_read,
// vector_transfer_write); and
// b. ops that *may* lower a super-vector (all other ops).
// The ops that *may* lower a super-vector only do so if the super-vector to
// sub-vector ratio exists. The ops that *must* lower a super-vector are
// explicitly checked for this property.
/// TODO(ntv): there should be a single function for all ops to do this so we
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
bool mustDivide = false;
VectorType superVectorType;
if (auto read = opInst.dyn_cast<VectorTransferReadOp>()) {
superVectorType = read->getResultType();
mustDivide = true;
} else if (auto write = opInst.dyn_cast<VectorTransferWriteOp>()) {
superVectorType = write->getVectorType();
mustDivide = true;
} else if (opInst.getNumResults() == 0) {
if (!opInst.isa<ReturnOp>()) {
opInst.emitError("NYI: assuming only return instructions can have 0 "
" results at this point");
}
return false;
} else if (opInst.getNumResults() == 1) {
if (auto v = opInst.getResult(0)->getType().dyn_cast<VectorType>()) {
superVectorType = v;
} else {
// Not a vector type.
return false;
}
} else {
// Not a vector_transfer and has more than 1 result, fail hard for now to
// wake us up when something changes.
opInst.emitError("NYI: instruction has more than 1 result");
return false;
}
// Get the ratio.
auto ratio = shapeRatio(superVectorType, subVectorType);
// Sanity check.
assert((ratio.hasValue() || !mustDivide) &&
"vector_transfer instruction in which super-vector size is not an"
" integer multiple of sub-vector size");
// This catches cases that are not strictly necessary to have multiplicity but
// still aren't divisible by the sub-vector shape.
// This could be useful information if we wanted to reshape at the level of
// the vector type (but we would have to look at the compute and distinguish
// between parallel, reduction and possibly other cases.
if (!ratio.hasValue()) {
return false;
}
return true;
}