forked from OSchip/llvm-project
678 lines
26 KiB
C++
678 lines
26 KiB
C++
//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a model runner using Tensorflow C APIs, allowing the
|
|
// loading of a model from a command line option.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "llvm/Config/config.h"
|
|
#if defined(LLVM_HAVE_TF_API)
|
|
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
|
|
#include "llvm/Analysis/MLInlineAdvisor.h"
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<std::string> TrainingLog(
|
|
"training-log", cl::Hidden,
|
|
cl::desc("Path where the development - mode inlining log is saved."));
|
|
|
|
static cl::opt<std::string> TFModelUnderTrainingPath(
|
|
"ml-inliner-model-under-training", cl::Hidden,
|
|
cl::desc(R"(Path to SavedModel from the previous training iteration.
|
|
The directory is also expected to contain a JSON specification of the
|
|
outputs expected to be logged, where the first entry must be the
|
|
inlining decision. The file containing the specification should be
|
|
called output_spec.json. The expected JSON value is an array of
|
|
dictionaries. Each dictionary should have 2 keys:
|
|
|
|
- "tensor_spec, followed by the TensorSpec description of the
|
|
output; and
|
|
- "logging_name", a string indicating the name to use when
|
|
logging the output values.
|
|
|
|
Example:
|
|
[
|
|
{
|
|
"logging_name" : "some_name",
|
|
"tensor_spec" : {
|
|
"name" : "model_name",
|
|
"port" : 0,
|
|
"shape" : [2, 3],
|
|
"type" : "float"
|
|
}
|
|
}
|
|
]
|
|
|
|
The first value must always correspond to the decision.)"));
|
|
|
|
static cl::opt<std::string> TFOutputSpecOverride(
|
|
"ml-inliner-output-spec-override", cl::Hidden,
|
|
cl::desc("Override the path to the output spec json file. See "
|
|
"-ml-inliner-model-under-training documentation for the "
|
|
"specification of that file."));
|
|
|
|
static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
|
|
cl::Hidden, cl::init("action_"),
|
|
cl::desc("Prefix for feature names."));
|
|
|
|
namespace {
|
|
/// An InlineEvent, used by TrainingLogger.
|
|
struct InlineEvent {
|
|
/// What the default policy's decision would have been.
|
|
bool DefaultDecision = false;
|
|
|
|
/// What we advised. When training off the default policy, this is the same as
|
|
/// DefaultDecision.
|
|
bool AdvisedDecision = false;
|
|
|
|
/// What actually happened. This would be 'false' in the case of an inline
|
|
/// error, even if AdvisedDecision were true, otherwise it agrees with
|
|
/// AdvisedDecision.
|
|
bool Effect = false;
|
|
|
|
/// What the change in size was: size_after - size_before
|
|
int64_t Reward = 0;
|
|
};
|
|
|
|
/// Collect data we may use for training a model, and write it as a textual
|
|
/// Tensorflow SequenceExample
|
|
/// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample)
|
|
/// protobuf (https://developers.google.com/protocol-buffers).
|
|
/// Because this is a protobuf, we cannot just stream the events as they come.
|
|
/// Internally, TrainingLogger stores data in column-major format, because that
|
|
/// lines up with how TF SequenceExample represents it.
|
|
class ModelUnderTrainingRunner;
|
|
class TrainingLogger final {
|
|
public:
|
|
TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR);
|
|
|
|
/// Log one inlining event.
|
|
void logInlineEvent(const InlineEvent &Event,
|
|
const MLModelRunner &ModelRunner);
|
|
|
|
/// Print the stored tensors.
|
|
void print();
|
|
|
|
private:
|
|
/// Write the values of one tensor as a list.
|
|
template <typename T>
|
|
void writeTensorValues(raw_fd_ostream &OutFile, const char *TensorData,
|
|
size_t ElemCount) const {
|
|
OutFile << "[";
|
|
const T *TypedData = reinterpret_cast<const T *>(TensorData);
|
|
for (size_t I = 0; I < ElemCount; ++I) {
|
|
if (I > 0)
|
|
OutFile << ", ";
|
|
OutFile << TypedData[I];
|
|
}
|
|
OutFile << "]";
|
|
}
|
|
|
|
/// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
|
|
/// The tensors are assumed to be stored contiguously, in row-major format,
|
|
/// in the TensorData buffer. Each tensor has the shape given by Spec. The
|
|
/// feature name in the output is either the provided LoggingName, if
|
|
/// specified, otherwise it's the name of the tensor (as given by Spec).
|
|
template <typename T>
|
|
void
|
|
writeTensorsAsFeatureLists(raw_fd_ostream &OutFile, const TensorSpec &Spec,
|
|
const T *TensorData, size_t TensorCount,
|
|
Optional<StringRef> LoggingName = None) const {
|
|
writeRawTensorsAsFeatureLists(OutFile, Spec,
|
|
reinterpret_cast<const char *>(TensorData),
|
|
TensorCount, LoggingName);
|
|
}
|
|
|
|
/// Untyped implementation of the API above.
|
|
void
|
|
writeRawTensorsAsFeatureLists(raw_fd_ostream &OutFile, const TensorSpec &Spec,
|
|
const char *TensorData, size_t TensorCount,
|
|
Optional<StringRef> LoggingName = None) const {
|
|
const char *FieldName = "<invalid>";
|
|
std::function<void(const char *)> ValueWriter;
|
|
// The 'Feature' protobuf only has 3 possible fields: float_list,
|
|
// int64_list, or bytes_list, so we capture int32 values as int64. We don't
|
|
// support any other types.
|
|
if (Spec.isElementType<int64_t>()) {
|
|
FieldName = "int64_list";
|
|
ValueWriter = [&](const char *Data) {
|
|
writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount());
|
|
};
|
|
} else if (Spec.isElementType<int32_t>()) {
|
|
FieldName = "int64_list";
|
|
ValueWriter = [&](const char *Data) {
|
|
writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount());
|
|
};
|
|
|
|
} else if (Spec.isElementType<float>()) {
|
|
FieldName = "float_list";
|
|
ValueWriter = [&](const char *Data) {
|
|
writeTensorValues<float>(OutFile, Data, Spec.getElementCount());
|
|
};
|
|
|
|
} else
|
|
llvm_unreachable("Unsupported tensor type.");
|
|
|
|
OutFile << " feature_list: {\n";
|
|
OutFile << " key: "
|
|
<< "\"" << (LoggingName ? *LoggingName : Spec.name()) << "\" ";
|
|
OutFile << "value: {\n";
|
|
size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize();
|
|
for (const char *P = TensorData,
|
|
*E = TensorData + TensorByteSize * TensorCount;
|
|
P < E; P += TensorByteSize) {
|
|
OutFile << " feature: { " << FieldName << ": { value: ";
|
|
ValueWriter(P);
|
|
OutFile << " } }\n";
|
|
}
|
|
OutFile << " }\n";
|
|
OutFile << " }\n";
|
|
}
|
|
|
|
StringRef LogFileName;
|
|
const ModelUnderTrainingRunner *const MUTR;
|
|
std::vector<InlineFeatures> Features;
|
|
std::vector<int64_t> DefaultDecisions;
|
|
// We store all outputs as data blobs, but we always expect to have one, the
|
|
// first one, representing the decision. While we could track that separately,
|
|
// for uniformity, we store it, generically, here.
|
|
std::vector<std::vector<char>> Outputs;
|
|
std::vector<bool> Effects;
|
|
std::vector<int64_t> Rewards;
|
|
};
|
|
|
|
/// An extension of the MLInlineAdvisor for the 'development' mode, targeting
|
|
/// the offline training scenario. Note that training happens outside of the
|
|
/// compiler, this facility is concerned with producing training data ("logs").
|
|
/// This InlineAdvisor can operate in the following modes:
|
|
///
|
|
/// 1) collect logs for the default policy. This is useful for bootstrapping
|
|
/// training, which will be considerably faster by starting from a reasonable
|
|
/// policy.
|
|
///
|
|
/// 2) collect logs for the ML policy, using a model from a previous
|
|
/// training. Potentially, that model uses internally some small random
|
|
/// perturbation of its weights, to induce exploration (setting this up is the
|
|
/// responsibility of the training algorithm). The logs would then be used to
|
|
/// retrain and improve on this model.
|
|
///
|
|
/// 3) use the provided model, with no logging. This is useful for end to end
|
|
/// validation - the model, in this case, is a release candidate and shouldn't
|
|
/// have random perturbations. It is a convenience feature: rather than needing
|
|
/// to take the release candidate model and compile it in 'release' mode,
|
|
/// validate it, then potentially discard it, it's easier to just pass the model
|
|
/// to the compiler, albeit compilation would be slower, as a one-off. Once the
|
|
/// model behaves satisfactorily, it can be compiled AOT, for efficiency, in
|
|
/// release mode. The expectation is that a well-trained model provides a good
|
|
/// policy over a sufficiently diverse codebase, over many changes (i.e.
|
|
/// training happens seldom).
|
|
class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor {
|
|
public:
|
|
DevelopmentModeMLInlineAdvisor(
|
|
Module &M, ModuleAnalysisManager &MAM,
|
|
std::unique_ptr<MLModelRunner> ModelRunner,
|
|
std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference,
|
|
std::unique_ptr<TrainingLogger> Logger);
|
|
|
|
size_t getTotalSizeEstimate();
|
|
|
|
virtual ~DevelopmentModeMLInlineAdvisor();
|
|
void updateNativeSizeEstimate(int64_t Change) { CurrentNativeSize += Change; }
|
|
void resetNativeSize(Function *F) {
|
|
FAM.invalidate<InlineSizeEstimatorAnalysis>(*F);
|
|
}
|
|
|
|
std::unique_ptr<MLInlineAdvice>
|
|
getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
|
|
std::unique_ptr<MLInlineAdvice>
|
|
getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
|
|
|
|
size_t getNativeSizeEstimate(const Function &F) const;
|
|
|
|
private:
|
|
bool isLogging() const { return !!Logger; }
|
|
|
|
std::function<bool(CallBase &)> GetDefaultAdvice;
|
|
const bool IsDoingInference;
|
|
std::unique_ptr<TrainingLogger> Logger;
|
|
|
|
const int32_t InitialNativeSize;
|
|
int32_t CurrentNativeSize = 0;
|
|
};
|
|
|
|
/// A variant of MLInlineAdvice that tracks all non-trivial inlining
|
|
/// decisions, for training/logging.
|
|
class LoggingMLInlineAdvice : public MLInlineAdvice {
|
|
public:
|
|
LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB,
|
|
OptimizationRemarkEmitter &ORE, bool Recommendation,
|
|
TrainingLogger &Logger, size_t CallerSizeEstimateBefore,
|
|
size_t CalleeSizeEstimateBefore, bool DefaultDecision,
|
|
bool Mandatory = false)
|
|
: MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger),
|
|
CallerSizeEstimateBefore(CallerSizeEstimateBefore),
|
|
CalleeSizeEstimateBefore(CalleeSizeEstimateBefore),
|
|
DefaultDecision(DefaultDecision), Mandatory(Mandatory) {}
|
|
|
|
virtual ~LoggingMLInlineAdvice() = default;
|
|
|
|
private:
|
|
DevelopmentModeMLInlineAdvisor *getAdvisor() const {
|
|
return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor);
|
|
}
|
|
void recordInliningImpl() override {
|
|
MLInlineAdvice::recordInliningImpl();
|
|
getAdvisor()->resetNativeSize(Caller);
|
|
int Reward = std::numeric_limits<int>::max();
|
|
if (!getAdvisor()->isForcedToStop()) {
|
|
int NativeSizeAfter = getAdvisor()->getNativeSizeEstimate(*Caller) +
|
|
CalleeSizeEstimateBefore;
|
|
Reward = NativeSizeAfter -
|
|
(CallerSizeEstimateBefore + CalleeSizeEstimateBefore);
|
|
getAdvisor()->updateNativeSizeEstimate(Reward);
|
|
}
|
|
log(Reward, /*Success=*/true);
|
|
}
|
|
|
|
void recordInliningWithCalleeDeletedImpl() override {
|
|
MLInlineAdvice::recordInliningWithCalleeDeletedImpl();
|
|
getAdvisor()->resetNativeSize(Caller);
|
|
if (!getAdvisor()->isForcedToStop()) {
|
|
int NativeSizeAfter = getAdvisor()->getNativeSizeEstimate(*Caller);
|
|
int Reward = NativeSizeAfter -
|
|
(CallerSizeEstimateBefore + CalleeSizeEstimateBefore);
|
|
getAdvisor()->updateNativeSizeEstimate(Reward);
|
|
log(Reward, /*Success=*/true);
|
|
}
|
|
}
|
|
|
|
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override {
|
|
MLInlineAdvice::recordUnsuccessfulInliningImpl(Result);
|
|
log(NoReward, /*Success=*/false);
|
|
}
|
|
|
|
void recordUnattemptedInliningImpl() override {
|
|
MLInlineAdvice::recordUnattemptedInliningImpl();
|
|
log(NoReward, /*Success=*/false);
|
|
}
|
|
|
|
void log(int64_t Reward, bool Success) {
|
|
if (Mandatory)
|
|
return;
|
|
InlineEvent Event;
|
|
Event.AdvisedDecision = isInliningRecommended();
|
|
Event.DefaultDecision = DefaultDecision;
|
|
Event.Effect = Success;
|
|
Event.Reward = Reward;
|
|
Logger.logInlineEvent(Event, getAdvisor()->getModelRunner());
|
|
}
|
|
|
|
static const int64_t NoReward = 0;
|
|
TrainingLogger &Logger;
|
|
const size_t CallerSizeEstimateBefore;
|
|
const size_t CalleeSizeEstimateBefore;
|
|
const bool DefaultDecision;
|
|
const bool Mandatory;
|
|
};
|
|
|
|
/// A pseudo model runner. We use it to store feature values when collecting
|
|
/// logs for the default policy, but never ask it to 'run'.
|
|
class NoInferenceModelRunner : public MLModelRunner {
|
|
public:
|
|
NoInferenceModelRunner(LLVMContext &Ctx)
|
|
: MLModelRunner(Ctx), Features(NumberOfFeatures) {}
|
|
void setFeature(FeatureIndex Index, int64_t Value) override {
|
|
Features[static_cast<int>(Index)] = Value;
|
|
}
|
|
|
|
int64_t getFeature(int Index) const override { return Features[Index]; }
|
|
bool run() override {
|
|
llvm_unreachable("We shouldn't call run on this model runner.");
|
|
}
|
|
|
|
private:
|
|
InlineFeatures Features;
|
|
};
|
|
|
|
/// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs
|
|
/// to dynamically load and evaluate a TF SavedModel
|
|
/// (https://www.tensorflow.org/guide/saved_model). Runtime performance is
|
|
/// sacrificed for ease of use while training.
|
|
class ModelUnderTrainingRunner final : public MLModelRunner {
|
|
public:
|
|
ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath);
|
|
|
|
bool run() override;
|
|
|
|
// Disallows copy and assign.
|
|
ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete;
|
|
ModelUnderTrainingRunner &
|
|
operator=(const ModelUnderTrainingRunner &) = delete;
|
|
|
|
void setFeature(FeatureIndex Index, int64_t Value) override;
|
|
int64_t getFeature(int Index) const override;
|
|
bool isValid() const { return !!Evaluator; }
|
|
|
|
const std::vector<std::string> outputNames() const { return OutputNames; }
|
|
|
|
const std::vector<TensorSpec> outputSpecs() const { return OutputSpecs; }
|
|
|
|
const Optional<TFModelEvaluator::EvaluationResult> &
|
|
lastEvaluationResult() const {
|
|
return LastEvaluationResult;
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<TFModelEvaluator> Evaluator;
|
|
std::vector<std::string> OutputNames;
|
|
std::vector<TensorSpec> OutputSpecs;
|
|
Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult;
|
|
|
|
bool loadOutputSpecs(LLVMContext &Ctx, StringRef FileName);
|
|
|
|
// The training framework needs some additional features.
|
|
const std::vector<TensorSpec> TrainingOnlyFeatures{
|
|
TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}),
|
|
TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}),
|
|
TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}),
|
|
TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})};
|
|
};
|
|
} // namespace
|
|
|
|
TrainingLogger::TrainingLogger(StringRef LogFileName,
|
|
const ModelUnderTrainingRunner *MUTR)
|
|
: LogFileName(LogFileName), MUTR(MUTR) {
|
|
for (size_t I = 0; I < NumberOfFeatures; ++I)
|
|
Features.push_back(InlineFeatures());
|
|
|
|
// The first output is the inlining decision.
|
|
auto OutputCount = MUTR ? MUTR->outputSpecs().size() : 1;
|
|
Outputs.assign(OutputCount, std::vector<char>());
|
|
}
|
|
|
|
/// Log one inlining event.
|
|
void TrainingLogger::logInlineEvent(const InlineEvent &Event,
|
|
const MLModelRunner &ModelRunner) {
|
|
for (size_t I = 0; I < NumberOfFeatures; ++I)
|
|
Features[I].push_back(ModelRunner.getFeature(I));
|
|
|
|
Effects.push_back(Event.Effect);
|
|
Rewards.push_back(Event.Reward);
|
|
DefaultDecisions.push_back(Event.DefaultDecision);
|
|
int64_t Advice = static_cast<int64_t>(Event.AdvisedDecision);
|
|
const char *AdviceData = reinterpret_cast<const char *>(&Advice);
|
|
Outputs[0].insert(Outputs[0].end(), AdviceData, AdviceData + sizeof(int64_t));
|
|
for (size_t I = 1; I < Outputs.size(); ++I) {
|
|
const auto &Result = *MUTR->lastEvaluationResult();
|
|
auto &Spec = MUTR->outputSpecs()[I];
|
|
const char *RawData =
|
|
reinterpret_cast<const char *>(Result.getUntypedTensorValue(I));
|
|
Outputs[I].insert(Outputs[I].end(), RawData,
|
|
RawData +
|
|
Spec.getElementCount() * Spec.getElementByteSize());
|
|
}
|
|
}
|
|
|
|
void TrainingLogger::print() {
|
|
std::error_code EC;
|
|
raw_fd_ostream OutFile(LogFileName, EC);
|
|
size_t NumberOfRecords = Rewards.size();
|
|
if (NumberOfRecords == 0)
|
|
return;
|
|
|
|
OutFile << "feature_lists: {\n";
|
|
for (size_t I = 0; I < Features.size(); ++I)
|
|
writeTensorsAsFeatureLists(
|
|
OutFile, TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}),
|
|
Features[I].data(), NumberOfRecords);
|
|
|
|
writeTensorsAsFeatureLists(
|
|
OutFile, TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}),
|
|
DefaultDecisions.data(), NumberOfRecords);
|
|
|
|
writeRawTensorsAsFeatureLists(
|
|
OutFile, TensorSpec::createSpec<int64_t>(DecisionName, {1}),
|
|
Outputs[0].data(), NumberOfRecords);
|
|
writeTensorsAsFeatureLists(OutFile,
|
|
TensorSpec::createSpec<int64_t>(RewardName, {1}),
|
|
Rewards.data(), NumberOfRecords);
|
|
|
|
for (size_t I = 1; I < Outputs.size(); ++I)
|
|
writeRawTensorsAsFeatureLists(OutFile, MUTR->outputSpecs()[I],
|
|
Outputs[I].data(), NumberOfRecords,
|
|
StringRef(MUTR->outputNames()[I]));
|
|
|
|
OutFile << "}\n";
|
|
}
|
|
|
|
DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor(
|
|
Module &M, ModuleAnalysisManager &MAM,
|
|
std::unique_ptr<MLModelRunner> ModelRunner,
|
|
std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference,
|
|
std::unique_ptr<TrainingLogger> Logger)
|
|
: MLInlineAdvisor(M, MAM, std::move(ModelRunner)),
|
|
GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference),
|
|
Logger(std::move(Logger)),
|
|
InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0),
|
|
CurrentNativeSize(InitialNativeSize) {
|
|
// We cannot have the case of neither inference nor logging.
|
|
assert(IsDoingInference || isLogging());
|
|
}
|
|
|
|
DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() {
|
|
if (isLogging())
|
|
Logger->print();
|
|
}
|
|
|
|
size_t
|
|
DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const {
|
|
auto &R =
|
|
FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F));
|
|
if (!R) {
|
|
F.getParent()->getContext().emitError(
|
|
"Native size estimator is not present.");
|
|
return 0;
|
|
}
|
|
return *R;
|
|
}
|
|
|
|
std::unique_ptr<MLInlineAdvice>
|
|
DevelopmentModeMLInlineAdvisor::getMandatoryAdvice(
|
|
CallBase &CB, OptimizationRemarkEmitter &ORE) {
|
|
if (!isLogging())
|
|
return MLInlineAdvisor::getMandatoryAdvice(CB, ORE);
|
|
return std::make_unique<LoggingMLInlineAdvice>(
|
|
/*Advisor=*/this,
|
|
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/true, /*Logger=*/*Logger,
|
|
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
|
|
/*CalleeSizeEstimateBefore=*/
|
|
getNativeSizeEstimate(*CB.getCalledFunction()),
|
|
/*DefaultDecision=*/true, /*Mandatory*/ true);
|
|
}
|
|
|
|
std::unique_ptr<MLInlineAdvice>
|
|
DevelopmentModeMLInlineAdvisor::getAdviceFromModel(
|
|
CallBase &CB, OptimizationRemarkEmitter &ORE) {
|
|
if (IsDoingInference && !isLogging())
|
|
return MLInlineAdvisor::getAdviceFromModel(CB, ORE);
|
|
|
|
bool DefaultAdvice = GetDefaultAdvice(CB);
|
|
auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice;
|
|
return std::make_unique<LoggingMLInlineAdvice>(
|
|
/*Advisor=*/this,
|
|
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation,
|
|
/*Logger=*/*Logger,
|
|
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
|
|
/*CalleeSizeEstimateBefore=*/
|
|
getNativeSizeEstimate(*CB.getCalledFunction()),
|
|
/*DefaultDecision=*/DefaultAdvice);
|
|
}
|
|
|
|
size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() {
|
|
size_t Ret = 0;
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
if (isFunctionDeleted(&F))
|
|
continue;
|
|
Ret += getNativeSizeEstimate(F);
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx,
|
|
const std::string &ModelPath)
|
|
: MLModelRunner(Ctx) {
|
|
std::vector<TensorSpec> InputSpecs;
|
|
for (size_t I = 0; I < NumberOfFeatures; ++I)
|
|
InputSpecs.push_back(
|
|
TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1}));
|
|
InputSpecs.insert(InputSpecs.end(), TrainingOnlyFeatures.begin(),
|
|
TrainingOnlyFeatures.end());
|
|
SmallVector<char, 128> OutputSpecsPath;
|
|
StringRef OutputSpecPath = TFOutputSpecOverride;
|
|
if (OutputSpecPath.empty()) {
|
|
llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
|
|
OutputSpecPath = {OutputSpecsPath.data(), OutputSpecsPath.size()};
|
|
}
|
|
if (!loadOutputSpecs(Ctx, OutputSpecPath))
|
|
return;
|
|
|
|
Evaluator =
|
|
std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs);
|
|
if (!Evaluator || !Evaluator->isValid()) {
|
|
Ctx.emitError("Failed to create inliner saved model evaluator");
|
|
Evaluator.reset();
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool ModelUnderTrainingRunner::loadOutputSpecs(LLVMContext &Ctx,
|
|
StringRef FileName) {
|
|
auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
|
|
if (!BufferOrError) {
|
|
Ctx.emitError("Error opening output specs file: " + FileName + " : " +
|
|
BufferOrError.getError().message());
|
|
return false;
|
|
}
|
|
auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
|
|
if (!ParsedJSONValues) {
|
|
Ctx.emitError("Could not parse specs file: " + FileName);
|
|
return false;
|
|
}
|
|
auto ValuesArray = ParsedJSONValues->getAsArray();
|
|
if (!ValuesArray) {
|
|
Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
|
|
"logging_name:<name>} dictionaries");
|
|
return false;
|
|
}
|
|
|
|
for (const auto &Value : *ValuesArray)
|
|
if (const auto *Obj = Value.getAsObject())
|
|
if (const auto *SpecPart = Obj->get("tensor_spec"))
|
|
if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
|
|
if (auto LoggingName = Obj->getString("logging_name")) {
|
|
if (!TensorSpec->isElementType<int64_t>() &&
|
|
!TensorSpec->isElementType<int32_t>() &&
|
|
!TensorSpec->isElementType<float>()) {
|
|
Ctx.emitError(
|
|
"Only int64, int32, and float tensors are supported. "
|
|
"Found unsupported type for tensor named " +
|
|
TensorSpec->name());
|
|
return false;
|
|
}
|
|
OutputNames.push_back(LoggingName->str());
|
|
OutputSpecs.push_back(*TensorSpec);
|
|
}
|
|
|
|
if (ValuesArray->size() != OutputNames.size()) {
|
|
Ctx.emitError(
|
|
"Unable to parse output spec. It should be a json file containing an "
|
|
"array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
|
|
"with a json object describing a TensorSpec; and a 'logging_name' key, "
|
|
"which is a string to use as name when logging this tensor in the "
|
|
"training log.");
|
|
return false;
|
|
}
|
|
assert(OutputNames.size() == OutputSpecs.size());
|
|
if (OutputNames.empty() || OutputNames[0] != DecisionName) {
|
|
Ctx.emitError("The first output spec must describe the decision tensor, "
|
|
"and must have the logging_name " +
|
|
StringRef(DecisionName));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ModelUnderTrainingRunner::run() {
|
|
LastEvaluationResult = Evaluator->evaluate();
|
|
if (!LastEvaluationResult.hasValue()) {
|
|
Ctx.emitError("Error evaluating model.");
|
|
return false;
|
|
}
|
|
int64_t Decision = *LastEvaluationResult->getTensorValue<int64_t>(0);
|
|
return static_cast<bool>(Decision);
|
|
}
|
|
|
|
int64_t ModelUnderTrainingRunner::getFeature(int Index) const {
|
|
return *Evaluator->getInput<int64_t>(Index);
|
|
}
|
|
|
|
void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) {
|
|
size_t NumericIndex = static_cast<size_t>(Index);
|
|
*(Evaluator->getInput<int64_t>(NumericIndex)) = Value;
|
|
}
|
|
|
|
std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
|
|
Module &M, ModuleAnalysisManager &MAM,
|
|
std::function<bool(CallBase &)> GetDefaultAdvice) {
|
|
auto &Ctx = M.getContext();
|
|
if (TrainingLog.empty() !=
|
|
!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) {
|
|
Ctx.emitError("For development mode, if training logs are requested, then "
|
|
"a size estimator must be available; either that, or neither "
|
|
"are specified.");
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<MLModelRunner> Runner;
|
|
ModelUnderTrainingRunner *MUTRPtr = nullptr;
|
|
bool IsDoingInference = false;
|
|
if (TFModelUnderTrainingPath.empty())
|
|
Runner.reset(new NoInferenceModelRunner(Ctx));
|
|
else {
|
|
auto MUTR = std::make_unique<ModelUnderTrainingRunner>(
|
|
Ctx, TFModelUnderTrainingPath);
|
|
if (!MUTR || !MUTR->isValid()) {
|
|
Ctx.emitError("Could not load the policy model from the provided path");
|
|
return nullptr;
|
|
}
|
|
IsDoingInference = true;
|
|
MUTRPtr = MUTR.get();
|
|
Runner = std::move(MUTR);
|
|
}
|
|
std::unique_ptr<TrainingLogger> Logger;
|
|
if (!TrainingLog.empty())
|
|
Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr);
|
|
|
|
return std::make_unique<DevelopmentModeMLInlineAdvisor>(
|
|
M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference,
|
|
std::move(Logger));
|
|
}
|
|
#endif // defined(LLVM_HAVE_TF_API)
|