llvm-project/llvm/lib/Target/Hexagon/BitTracker.h

456 lines
16 KiB
C++

//===--- BitTracker.h -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef BITTRACKER_H
#define BITTRACKER_H
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include <map>
#include <queue>
#include <set>
namespace llvm {
class ConstantInt;
class MachineRegisterInfo;
class MachineBasicBlock;
class MachineInstr;
class MachineOperand;
class raw_ostream;
}
struct BitTracker {
struct BitRef;
struct RegisterRef;
struct BitValue;
struct BitMask;
struct RegisterCell;
struct MachineEvaluator;
typedef llvm::SetVector<const llvm::MachineBasicBlock*> BranchTargetList;
struct CellMapType : public std::map<unsigned,RegisterCell> {
bool has(unsigned Reg) const;
};
BitTracker(const MachineEvaluator &E, llvm::MachineFunction &F);
~BitTracker();
void run();
void trace(bool On = false) { Trace = On; }
bool has(unsigned Reg) const;
const RegisterCell &lookup(unsigned Reg) const;
RegisterCell get(RegisterRef RR) const;
void put(RegisterRef RR, const RegisterCell &RC);
void subst(RegisterRef OldRR, RegisterRef NewRR);
bool reached(const llvm::MachineBasicBlock *B) const;
private:
void visitPHI(const llvm::MachineInstr *PI);
void visitNonBranch(const llvm::MachineInstr *MI);
void visitBranchesFrom(const llvm::MachineInstr *BI);
void visitUsesOf(unsigned Reg);
void reset();
typedef std::pair<int,int> CFGEdge;
typedef std::set<CFGEdge> EdgeSetType;
typedef std::set<const llvm::MachineInstr*> InstrSetType;
typedef std::queue<CFGEdge> EdgeQueueType;
EdgeSetType EdgeExec; // Executable flow graph edges.
InstrSetType InstrExec; // Executable instructions.
EdgeQueueType FlowQ; // Work queue of CFG edges.
bool Trace; // Enable tracing for debugging.
const MachineEvaluator &ME;
llvm::MachineFunction &MF;
llvm::MachineRegisterInfo &MRI;
CellMapType &Map;
};
// Abstraction of a reference to bit at position Pos from a register Reg.
struct BitTracker::BitRef {
BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
BitRef(const BitRef &BR) : Reg(BR.Reg), Pos(BR.Pos) {}
bool operator== (const BitRef &BR) const {
// If Reg is 0, disregard Pos.
return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
}
unsigned Reg;
uint16_t Pos;
};
// Abstraction of a register reference in MachineOperand. It contains the
// register number and the subregister index.
struct BitTracker::RegisterRef {
RegisterRef(unsigned R = 0, unsigned S = 0)
: Reg(R), Sub(S) {}
RegisterRef(const llvm::MachineOperand &MO)
: Reg(MO.getReg()), Sub(MO.getSubReg()) {}
unsigned Reg, Sub;
};
// Value that a single bit can take. This is outside of the context of
// any register, it is more of an abstraction of the two-element set of
// possible bit values. One extension here is the "Ref" type, which
// indicates that this bit takes the same value as the bit described by
// RefInfo.
struct BitTracker::BitValue {
enum ValueType {
Top, // Bit not yet defined.
Zero, // Bit = 0.
One, // Bit = 1.
Ref // Bit value same as the one described in RefI.
// Conceptually, there is no explicit "bottom" value: the lattice's
// bottom will be expressed as a "ref to itself", which, in the context
// of registers, could be read as "this value of this bit is defined by
// this bit".
// The ordering is:
// x <= Top,
// Self <= x, where "Self" is "ref to itself".
// This makes the value lattice different for each virtual register
// (even for each bit in the same virtual register), since the "bottom"
// for one register will be a simple "ref" for another register.
// Since we do not store the "Self" bit and register number, the meet
// operation will need to take it as a parameter.
//
// In practice there is a special case for values that are not associa-
// ted with any specific virtual register. An example would be a value
// corresponding to a bit of a physical register, or an intermediate
// value obtained in some computation (such as instruction evaluation).
// Such cases are identical to the usual Ref type, but the register
// number is 0. In such case the Pos field of the reference is ignored.
//
// What is worthy of notice is that in value V (that is a "ref"), as long
// as the RefI.Reg is not 0, it may actually be the same register as the
// one in which V will be contained. If the RefI.Pos refers to the posi-
// tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
// otherwise V is taken to be identical to the referenced bit of the
// same register.
// If RefI.Reg is 0, however, such a reference to the same register is
// not possible. Any value V that is a "ref", and whose RefI.Reg is 0
// is treated as "bottom".
};
ValueType Type;
BitRef RefI;
BitValue(ValueType T = Top) : Type(T) {}
BitValue(bool B) : Type(B ? One : Zero) {}
BitValue(const BitValue &V) : Type(V.Type), RefI(V.RefI) {}
BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
bool operator== (const BitValue &V) const {
if (Type != V.Type)
return false;
if (Type == Ref && !(RefI == V.RefI))
return false;
return true;
}
bool operator!= (const BitValue &V) const {
return !operator==(V);
}
bool is(unsigned T) const {
assert(T == 0 || T == 1);
return T == 0 ? Type == Zero
: (T == 1 ? Type == One : false);
}
// The "meet" operation is the "." operation in a semilattice (L, ., T, B):
// (1) x.x = x
// (2) x.y = y.x
// (3) x.(y.z) = (x.y).z
// (4) x.T = x (i.e. T = "top")
// (5) x.B = B (i.e. B = "bottom")
//
// This "meet" function will update the value of the "*this" object with
// the newly calculated one, and return "true" if the value of *this has
// changed, and "false" otherwise.
// To prove that it satisfies the conditions (1)-(5), it is sufficient
// to show that a relation
// x <= y <=> x.y = x
// defines a partial order (i.e. that "meet" is same as "infimum").
bool meet(const BitValue &V, const BitRef &Self) {
// First, check the cases where there is nothing to be done.
if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
return false;
if (V.Type == Top) // This.meet(Top) = This
return false;
if (*this == V) // This.meet(This) = This
return false;
// At this point, we know that the value of "this" will change.
// If it is Top, it will become the same as V, otherwise it will
// become "bottom" (i.e. Self).
if (Type == Top) {
Type = V.Type;
RefI = V.RefI; // This may be irrelevant, but copy anyway.
return true;
}
// Become "bottom".
Type = Ref;
RefI = Self;
return true;
}
// Create a reference to the bit value V.
static BitValue ref(const BitValue &V);
// Create a "self".
static BitValue self(const BitRef &Self = BitRef());
bool num() const {
return Type == Zero || Type == One;
}
operator bool() const {
assert(Type == Zero || Type == One);
return Type == One;
}
friend llvm::raw_ostream &operator<< (llvm::raw_ostream &OS,
const BitValue &BV);
};
// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
inline BitTracker::BitValue
BitTracker::BitValue::ref(const BitValue &V) {
if (V.Type != Ref)
return BitValue(V.Type);
if (V.RefI.Reg != 0)
return BitValue(V.RefI.Reg, V.RefI.Pos);
return self();
}
inline BitTracker::BitValue
BitTracker::BitValue::self(const BitRef &Self) {
return BitValue(Self.Reg, Self.Pos);
}
// A sequence of bits starting from index B up to and including index E.
// If E < B, the mask represents two sections: [0..E] and [B..W) where
// W is the width of the register.
struct BitTracker::BitMask {
BitMask() : B(0), E(0) {}
BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
uint16_t first() const { return B; }
uint16_t last() const { return E; }
private:
uint16_t B, E;
};
// Representation of a register: a list of BitValues.
struct BitTracker::RegisterCell {
RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
uint16_t width() const {
return Bits.size();
}
const BitValue &operator[](uint16_t BitN) const {
assert(BitN < Bits.size());
return Bits[BitN];
}
BitValue &operator[](uint16_t BitN) {
assert(BitN < Bits.size());
return Bits[BitN];
}
bool meet(const RegisterCell &RC, unsigned SelfR);
RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
RegisterCell extract(const BitMask &M) const; // Returns a new cell.
RegisterCell &rol(uint16_t Sh); // Rotate left.
RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
RegisterCell &cat(const RegisterCell &RC); // Concatenate.
uint16_t cl(bool B) const;
uint16_t ct(bool B) const;
bool operator== (const RegisterCell &RC) const;
bool operator!= (const RegisterCell &RC) const {
return !operator==(RC);
}
const RegisterCell &operator=(const RegisterCell &RC) {
Bits = RC.Bits;
return *this;
}
// Generate a "ref" cell for the corresponding register. In the resulting
// cell each bit will be described as being the same as the corresponding
// bit in register Reg (i.e. the cell is "defined" by register Reg).
static RegisterCell self(unsigned Reg, uint16_t Width);
// Generate a "top" cell of given size.
static RegisterCell top(uint16_t Width);
// Generate a cell that is a "ref" to another cell.
static RegisterCell ref(const RegisterCell &C);
private:
// The DefaultBitN is here only to avoid frequent reallocation of the
// memory in the vector.
static const unsigned DefaultBitN = 32;
typedef llvm::SmallVector<BitValue,DefaultBitN> BitValueList;
BitValueList Bits;
friend llvm::raw_ostream &operator<< (llvm::raw_ostream &OS,
const RegisterCell &RC);
};
inline bool BitTracker::has(unsigned Reg) const {
return Map.find(Reg) != Map.end();
}
inline const BitTracker::RegisterCell&
BitTracker::lookup(unsigned Reg) const {
CellMapType::const_iterator F = Map.find(Reg);
assert(F != Map.end());
return F->second;
}
inline BitTracker::RegisterCell
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
RegisterCell RC(Width);
for (uint16_t i = 0; i < Width; ++i)
RC.Bits[i] = BitValue::self(BitRef(Reg, i));
return RC;
}
inline BitTracker::RegisterCell
BitTracker::RegisterCell::top(uint16_t Width) {
RegisterCell RC(Width);
for (uint16_t i = 0; i < Width; ++i)
RC.Bits[i] = BitValue(BitValue::Top);
return RC;
}
inline BitTracker::RegisterCell
BitTracker::RegisterCell::ref(const RegisterCell &C) {
uint16_t W = C.width();
RegisterCell RC(W);
for (unsigned i = 0; i < W; ++i)
RC[i] = BitValue::ref(C[i]);
return RC;
}
inline bool BitTracker::CellMapType::has(unsigned Reg) const {
return find(Reg) != end();
}
// A class to evaluate target's instructions and update the cell maps.
// This is used internally by the bit tracker. A target that wants to
// utilize this should implement the evaluation functions (noted below)
// in a subclass of this class.
struct BitTracker::MachineEvaluator {
MachineEvaluator(const llvm::TargetRegisterInfo &T,
llvm::MachineRegisterInfo &M) : TRI(T), MRI(M) {}
virtual ~MachineEvaluator() {}
uint16_t getRegBitWidth(const RegisterRef &RR) const;
RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
// A result of any operation should use refs to the source cells, not
// the cells directly. This function is a convenience wrapper to quickly
// generate a ref for a cell corresponding to a register reference.
RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
RegisterCell RC = getCell(RR, M);
return RegisterCell::ref(RC);
}
// Helper functions.
// Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
bool isInt(const RegisterCell &A) const;
// Convert cell to an immediate value.
uint64_t toInt(const RegisterCell &A) const;
// Generate cell from an immediate value.
RegisterCell eIMM(int64_t V, uint16_t W) const;
RegisterCell eIMM(const llvm::ConstantInt *CI) const;
// Arithmetic.
RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
// Shifts.
RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
// Logical.
RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
RegisterCell eNOT(const RegisterCell &A1) const;
// Set bit, clear bit.
RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
// Count leading/trailing bits (zeros/ones).
RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
// Sign/zero extension.
RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
// Extract/insert
// XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
// INS R,S,b: take R and replace bits starting from b with S.
RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
uint16_t AtN) const;
// User-provided functions for individual targets:
// Return a sub-register mask that indicates which bits in Reg belong
// to the subregister Sub. These bits are assumed to be contiguous in
// the super-register, and have the same ordering in the sub-register
// as in the super-register. It is valid to call this function with
// Sub == 0, in this case, the function should return a mask that spans
// the entire register Reg (which is what the default implementation
// does).
virtual BitMask mask(unsigned Reg, unsigned Sub) const;
// Indicate whether a given register class should be tracked.
virtual bool track(const llvm::TargetRegisterClass *RC) const {
return true;
}
// Evaluate a non-branching machine instruction, given the cell map with
// the input values. Place the results in the Outputs map. Return "true"
// if evaluation succeeded, "false" otherwise.
virtual bool evaluate(const llvm::MachineInstr *MI,
const CellMapType &Inputs, CellMapType &Outputs) const;
// Evaluate a branch, given the cell map with the input values. Fill out
// a list of all possible branch targets and indicate (through a flag)
// whether the branch could fall-through. Return "true" if this information
// has been successfully computed, "false" otherwise.
virtual bool evaluate(const llvm::MachineInstr *BI,
const CellMapType &Inputs, BranchTargetList &Targets,
bool &FallsThru) const = 0;
const llvm::TargetRegisterInfo &TRI;
llvm::MachineRegisterInfo &MRI;
};
#endif