forked from OSchip/llvm-project
2568 lines
86 KiB
C++
2568 lines
86 KiB
C++
//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implements C++ name mangling according to the Itanium C++ ABI,
|
|
// which is used in GCC 3.2 and newer (and many compilers that are
|
|
// ABI-compatible with GCC):
|
|
//
|
|
// http://www.codesourcery.com/public/cxx-abi/abi.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "Mangle.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "CGVTables.h"
|
|
|
|
#define MANGLE_CHECKER 0
|
|
|
|
#if MANGLE_CHECKER
|
|
#include <cxxabi.h>
|
|
#endif
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
MiscNameMangler::MiscNameMangler(MangleContext &C,
|
|
llvm::SmallVectorImpl<char> &Res)
|
|
: Context(C), Out(Res) { }
|
|
|
|
void MiscNameMangler::mangleBlock(GlobalDecl GD, const BlockDecl *BD) {
|
|
// Mangle the context of the block.
|
|
// FIXME: We currently mimic GCC's mangling scheme, which leaves much to be
|
|
// desired. Come up with a better mangling scheme.
|
|
const DeclContext *DC = BD->getDeclContext();
|
|
while (isa<BlockDecl>(DC) || isa<EnumDecl>(DC))
|
|
DC = DC->getParent();
|
|
if (DC->isFunctionOrMethod()) {
|
|
Out << "__";
|
|
if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
|
|
mangleObjCMethodName(Method);
|
|
else {
|
|
const NamedDecl *ND = cast<NamedDecl>(DC);
|
|
if (IdentifierInfo *II = ND->getIdentifier())
|
|
Out << II->getName();
|
|
else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) {
|
|
llvm::SmallString<64> Buffer;
|
|
Context.mangleCXXDtor(D, GD.getDtorType(), Buffer);
|
|
Out << Buffer;
|
|
}
|
|
else if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) {
|
|
llvm::SmallString<64> Buffer;
|
|
Context.mangleCXXCtor(D, GD.getCtorType(), Buffer);
|
|
Out << Buffer;
|
|
}
|
|
else {
|
|
// FIXME: We were doing a mangleUnqualifiedName() before, but that's
|
|
// a private member of a class that will soon itself be private to the
|
|
// Itanium C++ ABI object. What should we do now? Right now, I'm just
|
|
// calling the mangleName() method on the MangleContext; is there a
|
|
// better way?
|
|
llvm::SmallString<64> Buffer;
|
|
Context.mangleName(ND, Buffer);
|
|
Out << Buffer;
|
|
}
|
|
}
|
|
Out << "_block_invoke_" << Context.getBlockId(BD, true);
|
|
} else {
|
|
Out << "__block_global_" << Context.getBlockId(BD, false);
|
|
}
|
|
}
|
|
|
|
void MiscNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
|
llvm::SmallString<64> Name;
|
|
llvm::raw_svector_ostream OS(Name);
|
|
|
|
const ObjCContainerDecl *CD =
|
|
dyn_cast<ObjCContainerDecl>(MD->getDeclContext());
|
|
assert (CD && "Missing container decl in GetNameForMethod");
|
|
OS << (MD->isInstanceMethod() ? '-' : '+') << '[' << CD->getName();
|
|
if (const ObjCCategoryImplDecl *CID = dyn_cast<ObjCCategoryImplDecl>(CD))
|
|
OS << '(' << CID << ')';
|
|
OS << ' ' << MD->getSelector().getAsString() << ']';
|
|
|
|
Out << OS.str().size() << OS.str();
|
|
}
|
|
|
|
namespace {
|
|
|
|
static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
|
|
const DeclContext *DC = dyn_cast<DeclContext>(ND);
|
|
if (!DC)
|
|
DC = ND->getDeclContext();
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit()) {
|
|
if (isa<FunctionDecl>(DC->getParent()))
|
|
return dyn_cast<CXXRecordDecl>(DC);
|
|
DC = DC->getParent();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
|
|
assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
|
|
"Passed in decl is not a ctor or dtor!");
|
|
|
|
if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
|
|
MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
|
|
|
|
assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
|
|
"Templated decl is not a ctor or dtor!");
|
|
}
|
|
|
|
return MD;
|
|
}
|
|
|
|
static const unsigned UnknownArity = ~0U;
|
|
|
|
/// CXXNameMangler - Manage the mangling of a single name.
|
|
class CXXNameMangler {
|
|
MangleContext &Context;
|
|
llvm::raw_svector_ostream Out;
|
|
|
|
const CXXMethodDecl *Structor;
|
|
unsigned StructorType;
|
|
|
|
/// SeqID - The next subsitution sequence number.
|
|
unsigned SeqID;
|
|
|
|
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
|
|
|
|
ASTContext &getASTContext() const { return Context.getASTContext(); }
|
|
|
|
public:
|
|
CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res)
|
|
: Context(C), Out(Res), Structor(0), StructorType(0), SeqID(0) { }
|
|
CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res,
|
|
const CXXConstructorDecl *D, CXXCtorType Type)
|
|
: Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
|
|
SeqID(0) { }
|
|
CXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res,
|
|
const CXXDestructorDecl *D, CXXDtorType Type)
|
|
: Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
|
|
SeqID(0) { }
|
|
|
|
#if MANGLE_CHECKER
|
|
~CXXNameMangler() {
|
|
if (Out.str()[0] == '\01')
|
|
return;
|
|
|
|
int status = 0;
|
|
char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
|
|
assert(status == 0 && "Could not demangle mangled name!");
|
|
free(result);
|
|
}
|
|
#endif
|
|
llvm::raw_svector_ostream &getStream() { return Out; }
|
|
|
|
void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
|
|
void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
|
|
void mangleNumber(const llvm::APSInt &I);
|
|
void mangleNumber(int64_t Number);
|
|
void mangleFloat(const llvm::APFloat &F);
|
|
void mangleFunctionEncoding(const FunctionDecl *FD);
|
|
void mangleName(const NamedDecl *ND);
|
|
void mangleType(QualType T);
|
|
void mangleNameOrStandardSubstitution(const NamedDecl *ND);
|
|
|
|
private:
|
|
bool mangleSubstitution(const NamedDecl *ND);
|
|
bool mangleSubstitution(QualType T);
|
|
bool mangleSubstitution(TemplateName Template);
|
|
bool mangleSubstitution(uintptr_t Ptr);
|
|
|
|
bool mangleStandardSubstitution(const NamedDecl *ND);
|
|
|
|
void addSubstitution(const NamedDecl *ND) {
|
|
ND = cast<NamedDecl>(ND->getCanonicalDecl());
|
|
|
|
addSubstitution(reinterpret_cast<uintptr_t>(ND));
|
|
}
|
|
void addSubstitution(QualType T);
|
|
void addSubstitution(TemplateName Template);
|
|
void addSubstitution(uintptr_t Ptr);
|
|
|
|
void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
|
|
void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
|
|
DeclarationName Name,
|
|
unsigned KnownArity = UnknownArity);
|
|
|
|
void mangleName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void mangleUnqualifiedName(const NamedDecl *ND) {
|
|
mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
|
|
}
|
|
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
|
|
unsigned KnownArity);
|
|
void mangleUnscopedName(const NamedDecl *ND);
|
|
void mangleUnscopedTemplateName(const TemplateDecl *ND);
|
|
void mangleUnscopedTemplateName(TemplateName);
|
|
void mangleSourceName(const IdentifierInfo *II);
|
|
void mangleLocalName(const NamedDecl *ND);
|
|
void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
|
|
bool NoFunction=false);
|
|
void mangleNestedName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void manglePrefix(const DeclContext *DC, bool NoFunction=false);
|
|
void mangleTemplatePrefix(const TemplateDecl *ND);
|
|
void mangleTemplatePrefix(TemplateName Template);
|
|
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
|
|
void mangleQualifiers(Qualifiers Quals);
|
|
|
|
void mangleObjCMethodName(const ObjCMethodDecl *MD);
|
|
|
|
// Declare manglers for every type class.
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
|
|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
void mangleType(const TagType*);
|
|
void mangleType(TemplateName);
|
|
void mangleBareFunctionType(const FunctionType *T,
|
|
bool MangleReturnType);
|
|
bool mangleNeonVectorType(const VectorType *T);
|
|
|
|
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
|
|
void mangleMemberExpr(const Expr *Base, bool IsArrow,
|
|
NestedNameSpecifier *Qualifier,
|
|
DeclarationName Name,
|
|
unsigned KnownArity);
|
|
void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
|
|
void mangleCXXCtorType(CXXCtorType T);
|
|
void mangleCXXDtorType(CXXDtorType T);
|
|
|
|
void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
|
|
void mangleTemplateArgs(TemplateName Template,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void mangleTemplateArgs(const TemplateParameterList &PL,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void mangleTemplateArgs(const TemplateParameterList &PL,
|
|
const TemplateArgumentList &AL);
|
|
void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
|
|
|
|
void mangleTemplateParameter(unsigned Index);
|
|
};
|
|
}
|
|
|
|
static bool isInCLinkageSpecification(const Decl *D) {
|
|
D = D->getCanonicalDecl();
|
|
for (const DeclContext *DC = D->getDeclContext();
|
|
!DC->isTranslationUnit(); DC = DC->getParent()) {
|
|
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
|
|
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MangleContext::shouldMangleDeclName(const NamedDecl *D) {
|
|
// In C, functions with no attributes never need to be mangled. Fastpath them.
|
|
if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
|
|
return false;
|
|
|
|
// Any decl can be declared with __asm("foo") on it, and this takes precedence
|
|
// over all other naming in the .o file.
|
|
if (D->hasAttr<AsmLabelAttr>())
|
|
return true;
|
|
|
|
// Clang's "overloadable" attribute extension to C/C++ implies name mangling
|
|
// (always) as does passing a C++ member function and a function
|
|
// whose name is not a simple identifier.
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
|
|
!FD->getDeclName().isIdentifier()))
|
|
return true;
|
|
|
|
// Otherwise, no mangling is done outside C++ mode.
|
|
if (!getASTContext().getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
// Variables at global scope with non-internal linkage are not mangled
|
|
if (!FD) {
|
|
const DeclContext *DC = D->getDeclContext();
|
|
// Check for extern variable declared locally.
|
|
if (DC->isFunctionOrMethod() && D->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = DC->getParent();
|
|
if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
|
|
return false;
|
|
}
|
|
|
|
// Class members are always mangled.
|
|
if (D->getDeclContext()->isRecord())
|
|
return true;
|
|
|
|
// C functions and "main" are not mangled.
|
|
if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
|
|
// Any decl can be declared with __asm("foo") on it, and this takes precedence
|
|
// over all other naming in the .o file.
|
|
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
|
|
// If we have an asm name, then we use it as the mangling.
|
|
Out << '\01'; // LLVM IR Marker for __asm("foo")
|
|
Out << ALA->getLabel();
|
|
return;
|
|
}
|
|
|
|
// <mangled-name> ::= _Z <encoding>
|
|
// ::= <data name>
|
|
// ::= <special-name>
|
|
Out << Prefix;
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
mangleFunctionEncoding(FD);
|
|
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
mangleName(VD);
|
|
else
|
|
mangleName(cast<FieldDecl>(D));
|
|
}
|
|
|
|
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
|
|
// <encoding> ::= <function name> <bare-function-type>
|
|
mangleName(FD);
|
|
|
|
// Don't mangle in the type if this isn't a decl we should typically mangle.
|
|
if (!Context.shouldMangleDeclName(FD))
|
|
return;
|
|
|
|
// Whether the mangling of a function type includes the return type depends on
|
|
// the context and the nature of the function. The rules for deciding whether
|
|
// the return type is included are:
|
|
//
|
|
// 1. Template functions (names or types) have return types encoded, with
|
|
// the exceptions listed below.
|
|
// 2. Function types not appearing as part of a function name mangling,
|
|
// e.g. parameters, pointer types, etc., have return type encoded, with the
|
|
// exceptions listed below.
|
|
// 3. Non-template function names do not have return types encoded.
|
|
//
|
|
// The exceptions mentioned in (1) and (2) above, for which the return type is
|
|
// never included, are
|
|
// 1. Constructors.
|
|
// 2. Destructors.
|
|
// 3. Conversion operator functions, e.g. operator int.
|
|
bool MangleReturnType = false;
|
|
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
|
|
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
|
|
isa<CXXConversionDecl>(FD)))
|
|
MangleReturnType = true;
|
|
|
|
// Mangle the type of the primary template.
|
|
FD = PrimaryTemplate->getTemplatedDecl();
|
|
}
|
|
|
|
// Do the canonicalization out here because parameter types can
|
|
// undergo additional canonicalization (e.g. array decay).
|
|
FunctionType *FT = cast<FunctionType>(Context.getASTContext()
|
|
.getCanonicalType(FD->getType()));
|
|
|
|
mangleBareFunctionType(FT, MangleReturnType);
|
|
}
|
|
|
|
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
|
|
while (isa<LinkageSpecDecl>(DC)) {
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
return DC;
|
|
}
|
|
|
|
/// isStd - Return whether a given namespace is the 'std' namespace.
|
|
static bool isStd(const NamespaceDecl *NS) {
|
|
if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
|
|
return false;
|
|
|
|
const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
|
|
return II && II->isStr("std");
|
|
}
|
|
|
|
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
|
|
// namespace.
|
|
static bool isStdNamespace(const DeclContext *DC) {
|
|
if (!DC->isNamespace())
|
|
return false;
|
|
|
|
return isStd(cast<NamespaceDecl>(DC));
|
|
}
|
|
|
|
static const TemplateDecl *
|
|
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
|
|
// Check if we have a function template.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
|
|
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
|
|
TemplateArgs = FD->getTemplateSpecializationArgs();
|
|
return TD;
|
|
}
|
|
}
|
|
|
|
// Check if we have a class template.
|
|
if (const ClassTemplateSpecializationDecl *Spec =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
TemplateArgs = &Spec->getTemplateArgs();
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CXXNameMangler::mangleName(const NamedDecl *ND) {
|
|
// <name> ::= <nested-name>
|
|
// ::= <unscoped-name>
|
|
// ::= <unscoped-template-name> <template-args>
|
|
// ::= <local-name>
|
|
//
|
|
const DeclContext *DC = ND->getDeclContext();
|
|
|
|
// If this is an extern variable declared locally, the relevant DeclContext
|
|
// is that of the containing namespace, or the translation unit.
|
|
if (isa<FunctionDecl>(DC) && ND->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = DC->getParent();
|
|
else if (GetLocalClassDecl(ND)) {
|
|
mangleLocalName(ND);
|
|
return;
|
|
}
|
|
|
|
while (isa<LinkageSpecDecl>(DC))
|
|
DC = DC->getParent();
|
|
|
|
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
mangleUnscopedTemplateName(TD);
|
|
TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
|
|
mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
|
|
return;
|
|
}
|
|
|
|
mangleUnscopedName(ND);
|
|
return;
|
|
}
|
|
|
|
if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
|
|
mangleLocalName(ND);
|
|
return;
|
|
}
|
|
|
|
mangleNestedName(ND, DC);
|
|
}
|
|
void CXXNameMangler::mangleName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
|
|
|
|
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
|
|
mangleUnscopedTemplateName(TD);
|
|
TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
|
|
mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
|
|
} else {
|
|
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
|
|
// <unscoped-name> ::= <unqualified-name>
|
|
// ::= St <unqualified-name> # ::std::
|
|
if (isStdNamespace(ND->getDeclContext()))
|
|
Out << "St";
|
|
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
|
|
// <unscoped-template-name> ::= <unscoped-name>
|
|
// ::= <substitution>
|
|
if (mangleSubstitution(ND))
|
|
return;
|
|
|
|
// <template-template-param> ::= <template-param>
|
|
if (const TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
|
|
mangleTemplateParameter(TTP->getIndex());
|
|
return;
|
|
}
|
|
|
|
mangleUnscopedName(ND->getTemplatedDecl());
|
|
addSubstitution(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
|
|
// <unscoped-template-name> ::= <unscoped-name>
|
|
// ::= <substitution>
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleUnscopedTemplateName(TD);
|
|
|
|
if (mangleSubstitution(Template))
|
|
return;
|
|
|
|
// FIXME: How to cope with operators here?
|
|
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
|
|
assert(Dependent && "Not a dependent template name?");
|
|
if (!Dependent->isIdentifier()) {
|
|
// FIXME: We can't possibly know the arity of the operator here!
|
|
Diagnostic &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
|
|
"cannot mangle dependent operator name");
|
|
Diags.Report(FullSourceLoc(), DiagID);
|
|
return;
|
|
}
|
|
|
|
mangleSourceName(Dependent->getIdentifier());
|
|
addSubstitution(Template);
|
|
}
|
|
|
|
void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
|
|
// TODO: avoid this copy with careful stream management.
|
|
llvm::SmallString<20> Buffer;
|
|
F.bitcastToAPInt().toString(Buffer, 16, false);
|
|
Out.write(Buffer.data(), Buffer.size());
|
|
}
|
|
|
|
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
|
|
if (Value.isSigned() && Value.isNegative()) {
|
|
Out << 'n';
|
|
Value.abs().print(Out, true);
|
|
} else
|
|
Value.print(Out, Value.isSigned());
|
|
}
|
|
|
|
void CXXNameMangler::mangleNumber(int64_t Number) {
|
|
// <number> ::= [n] <non-negative decimal integer>
|
|
if (Number < 0) {
|
|
Out << 'n';
|
|
Number = -Number;
|
|
}
|
|
|
|
Out << Number;
|
|
}
|
|
|
|
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
|
|
// <call-offset> ::= h <nv-offset> _
|
|
// ::= v <v-offset> _
|
|
// <nv-offset> ::= <offset number> # non-virtual base override
|
|
// <v-offset> ::= <offset number> _ <virtual offset number>
|
|
// # virtual base override, with vcall offset
|
|
if (!Virtual) {
|
|
Out << 'h';
|
|
mangleNumber(NonVirtual);
|
|
Out << '_';
|
|
return;
|
|
}
|
|
|
|
Out << 'v';
|
|
mangleNumber(NonVirtual);
|
|
Out << '_';
|
|
mangleNumber(Virtual);
|
|
Out << '_';
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
|
|
Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
|
|
switch (Qualifier->getKind()) {
|
|
case NestedNameSpecifier::Global:
|
|
// nothing
|
|
break;
|
|
case NestedNameSpecifier::Namespace:
|
|
mangleName(Qualifier->getAsNamespace());
|
|
break;
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
const Type *QTy = Qualifier->getAsType();
|
|
|
|
if (const TemplateSpecializationType *TST =
|
|
dyn_cast<TemplateSpecializationType>(QTy)) {
|
|
if (!mangleSubstitution(QualType(TST, 0))) {
|
|
mangleTemplatePrefix(TST->getTemplateName());
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
|
|
TST->getNumArgs());
|
|
addSubstitution(QualType(TST, 0));
|
|
}
|
|
} else {
|
|
// We use the QualType mangle type variant here because it handles
|
|
// substitutions.
|
|
mangleType(QualType(QTy, 0));
|
|
}
|
|
}
|
|
break;
|
|
case NestedNameSpecifier::Identifier:
|
|
// Member expressions can have these without prefixes.
|
|
if (Qualifier->getPrefix())
|
|
mangleUnresolvedScope(Qualifier->getPrefix());
|
|
mangleSourceName(Qualifier->getAsIdentifier());
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Mangles a name which was not resolved to a specific entity.
|
|
void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
|
|
DeclarationName Name,
|
|
unsigned KnownArity) {
|
|
if (Qualifier)
|
|
mangleUnresolvedScope(Qualifier);
|
|
// FIXME: ambiguity of unqualified lookup with ::
|
|
|
|
mangleUnqualifiedName(0, Name, KnownArity);
|
|
}
|
|
|
|
static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
|
|
assert(RD->isAnonymousStructOrUnion() &&
|
|
"Expected anonymous struct or union!");
|
|
|
|
for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I) {
|
|
const FieldDecl *FD = *I;
|
|
|
|
if (FD->getIdentifier())
|
|
return FD;
|
|
|
|
if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
|
|
if (const FieldDecl *NamedDataMember =
|
|
FindFirstNamedDataMember(RT->getDecl()))
|
|
return NamedDataMember;
|
|
}
|
|
}
|
|
|
|
// We didn't find a named data member.
|
|
return 0;
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
|
|
DeclarationName Name,
|
|
unsigned KnownArity) {
|
|
// <unqualified-name> ::= <operator-name>
|
|
// ::= <ctor-dtor-name>
|
|
// ::= <source-name>
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier: {
|
|
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
|
|
// We must avoid conflicts between internally- and externally-
|
|
// linked variable declaration names in the same TU.
|
|
// This naming convention is the same as that followed by GCC, though it
|
|
// shouldn't actually matter.
|
|
if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
|
|
ND->getDeclContext()->isFileContext())
|
|
Out << 'L';
|
|
|
|
mangleSourceName(II);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, an anonymous entity. We must have a declaration.
|
|
assert(ND && "mangling empty name without declaration");
|
|
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (NS->isAnonymousNamespace()) {
|
|
// This is how gcc mangles these names.
|
|
Out << "12_GLOBAL__N_1";
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
|
|
// We must have an anonymous union or struct declaration.
|
|
const RecordDecl *RD =
|
|
cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Itanium C++ ABI 5.1.2:
|
|
//
|
|
// For the purposes of mangling, the name of an anonymous union is
|
|
// considered to be the name of the first named data member found by a
|
|
// pre-order, depth-first, declaration-order walk of the data members of
|
|
// the anonymous union. If there is no such data member (i.e., if all of
|
|
// the data members in the union are unnamed), then there is no way for
|
|
// a program to refer to the anonymous union, and there is therefore no
|
|
// need to mangle its name.
|
|
const FieldDecl *FD = FindFirstNamedDataMember(RD);
|
|
|
|
// It's actually possible for various reasons for us to get here
|
|
// with an empty anonymous struct / union. Fortunately, it
|
|
// doesn't really matter what name we generate.
|
|
if (!FD) break;
|
|
assert(FD->getIdentifier() && "Data member name isn't an identifier!");
|
|
|
|
mangleSourceName(FD->getIdentifier());
|
|
break;
|
|
}
|
|
|
|
// We must have an anonymous struct.
|
|
const TagDecl *TD = cast<TagDecl>(ND);
|
|
if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
|
|
assert(TD->getDeclContext() == D->getDeclContext() &&
|
|
"Typedef should not be in another decl context!");
|
|
assert(D->getDeclName().getAsIdentifierInfo() &&
|
|
"Typedef was not named!");
|
|
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
|
|
break;
|
|
}
|
|
|
|
// Get a unique id for the anonymous struct.
|
|
uint64_t AnonStructId = Context.getAnonymousStructId(TD);
|
|
|
|
// Mangle it as a source name in the form
|
|
// [n] $_<id>
|
|
// where n is the length of the string.
|
|
llvm::SmallString<8> Str;
|
|
Str += "$_";
|
|
Str += llvm::utostr(AnonStructId);
|
|
|
|
Out << Str.size();
|
|
Out << Str.str();
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
assert(false && "Can't mangle Objective-C selector names here!");
|
|
break;
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
if (ND == Structor)
|
|
// If the named decl is the C++ constructor we're mangling, use the type
|
|
// we were given.
|
|
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
|
|
else
|
|
// Otherwise, use the complete constructor name. This is relevant if a
|
|
// class with a constructor is declared within a constructor.
|
|
mangleCXXCtorType(Ctor_Complete);
|
|
break;
|
|
|
|
case DeclarationName::CXXDestructorName:
|
|
if (ND == Structor)
|
|
// If the named decl is the C++ destructor we're mangling, use the type we
|
|
// were given.
|
|
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
|
|
else
|
|
// Otherwise, use the complete destructor name. This is relevant if a
|
|
// class with a destructor is declared within a destructor.
|
|
mangleCXXDtorType(Dtor_Complete);
|
|
break;
|
|
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
// <operator-name> ::= cv <type> # (cast)
|
|
Out << "cv";
|
|
mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
|
|
break;
|
|
|
|
case DeclarationName::CXXOperatorName: {
|
|
unsigned Arity;
|
|
if (ND) {
|
|
Arity = cast<FunctionDecl>(ND)->getNumParams();
|
|
|
|
// If we have a C++ member function, we need to include the 'this' pointer.
|
|
// FIXME: This does not make sense for operators that are static, but their
|
|
// names stay the same regardless of the arity (operator new for instance).
|
|
if (isa<CXXMethodDecl>(ND))
|
|
Arity++;
|
|
} else
|
|
Arity = KnownArity;
|
|
|
|
mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::CXXLiteralOperatorName:
|
|
// FIXME: This mangling is not yet official.
|
|
Out << "li";
|
|
mangleSourceName(Name.getCXXLiteralIdentifier());
|
|
break;
|
|
|
|
case DeclarationName::CXXUsingDirective:
|
|
assert(false && "Can't mangle a using directive name!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
|
|
// <source-name> ::= <positive length number> <identifier>
|
|
// <number> ::= [n] <non-negative decimal integer>
|
|
// <identifier> ::= <unqualified source code identifier>
|
|
Out << II->getLength() << II->getName();
|
|
}
|
|
|
|
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
|
|
const DeclContext *DC,
|
|
bool NoFunction) {
|
|
// <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
|
|
// ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
|
|
|
|
Out << 'N';
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
|
|
mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
|
|
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
mangleTemplatePrefix(TD);
|
|
TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
|
|
mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
|
|
}
|
|
else {
|
|
manglePrefix(DC, NoFunction);
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
Out << 'E';
|
|
}
|
|
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
|
|
|
|
Out << 'N';
|
|
|
|
mangleTemplatePrefix(TD);
|
|
TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
|
|
mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
|
|
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
|
|
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
|
|
// := Z <function encoding> E s [<discriminator>]
|
|
// <discriminator> := _ <non-negative number>
|
|
const DeclContext *DC = ND->getDeclContext();
|
|
Out << 'Z';
|
|
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
|
|
mangleObjCMethodName(MD);
|
|
} else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
|
|
mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
|
|
Out << 'E';
|
|
|
|
// Mangle the name relative to the closest enclosing function.
|
|
if (ND == RD) // equality ok because RD derived from ND above
|
|
mangleUnqualifiedName(ND);
|
|
else
|
|
mangleNestedName(ND, DC, true /*NoFunction*/);
|
|
|
|
unsigned disc;
|
|
if (Context.getNextDiscriminator(RD, disc)) {
|
|
if (disc < 10)
|
|
Out << '_' << disc;
|
|
else
|
|
Out << "__" << disc << '_';
|
|
}
|
|
|
|
return;
|
|
}
|
|
else
|
|
mangleFunctionEncoding(cast<FunctionDecl>(DC));
|
|
|
|
Out << 'E';
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
|
|
// <prefix> ::= <prefix> <unqualified-name>
|
|
// ::= <template-prefix> <template-args>
|
|
// ::= <template-param>
|
|
// ::= # empty
|
|
// ::= <substitution>
|
|
|
|
while (isa<LinkageSpecDecl>(DC))
|
|
DC = DC->getParent();
|
|
|
|
if (DC->isTranslationUnit())
|
|
return;
|
|
|
|
if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
|
|
manglePrefix(DC->getParent(), NoFunction);
|
|
llvm::SmallString<64> Name;
|
|
Context.mangleBlock(GlobalDecl(), Block, Name);
|
|
Out << Name.size() << Name;
|
|
return;
|
|
}
|
|
|
|
if (mangleSubstitution(cast<NamedDecl>(DC)))
|
|
return;
|
|
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
|
|
mangleTemplatePrefix(TD);
|
|
TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
|
|
mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
|
|
}
|
|
else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
|
|
return;
|
|
else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
|
|
mangleObjCMethodName(Method);
|
|
else {
|
|
manglePrefix(DC->getParent(), NoFunction);
|
|
mangleUnqualifiedName(cast<NamedDecl>(DC));
|
|
}
|
|
|
|
addSubstitution(cast<NamedDecl>(DC));
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
|
|
// <template-prefix> ::= <prefix> <template unqualified-name>
|
|
// ::= <template-param>
|
|
// ::= <substitution>
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleTemplatePrefix(TD);
|
|
|
|
if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
|
|
mangleUnresolvedScope(Qualified->getQualifier());
|
|
|
|
if (OverloadedTemplateStorage *Overloaded
|
|
= Template.getAsOverloadedTemplate()) {
|
|
mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
|
|
UnknownArity);
|
|
return;
|
|
}
|
|
|
|
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
|
|
assert(Dependent && "Unknown template name kind?");
|
|
mangleUnresolvedScope(Dependent->getQualifier());
|
|
mangleUnscopedTemplateName(Template);
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
|
|
// <template-prefix> ::= <prefix> <template unqualified-name>
|
|
// ::= <template-param>
|
|
// ::= <substitution>
|
|
// <template-template-param> ::= <template-param>
|
|
// <substitution>
|
|
|
|
if (mangleSubstitution(ND))
|
|
return;
|
|
|
|
// <template-template-param> ::= <template-param>
|
|
if (const TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
|
|
mangleTemplateParameter(TTP->getIndex());
|
|
return;
|
|
}
|
|
|
|
manglePrefix(ND->getDeclContext());
|
|
mangleUnqualifiedName(ND->getTemplatedDecl());
|
|
addSubstitution(ND);
|
|
}
|
|
|
|
/// Mangles a template name under the production <type>. Required for
|
|
/// template template arguments.
|
|
/// <type> ::= <class-enum-type>
|
|
/// ::= <template-param>
|
|
/// ::= <substitution>
|
|
void CXXNameMangler::mangleType(TemplateName TN) {
|
|
if (mangleSubstitution(TN))
|
|
return;
|
|
|
|
TemplateDecl *TD = 0;
|
|
|
|
switch (TN.getKind()) {
|
|
case TemplateName::QualifiedTemplate:
|
|
TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
|
|
goto HaveDecl;
|
|
|
|
case TemplateName::Template:
|
|
TD = TN.getAsTemplateDecl();
|
|
goto HaveDecl;
|
|
|
|
HaveDecl:
|
|
if (isa<TemplateTemplateParmDecl>(TD))
|
|
mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
|
|
else
|
|
mangleName(TD);
|
|
break;
|
|
|
|
case TemplateName::OverloadedTemplate:
|
|
llvm_unreachable("can't mangle an overloaded template name as a <type>");
|
|
break;
|
|
|
|
case TemplateName::DependentTemplate: {
|
|
const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
|
|
assert(Dependent->isIdentifier());
|
|
|
|
// <class-enum-type> ::= <name>
|
|
// <name> ::= <nested-name>
|
|
mangleUnresolvedScope(Dependent->getQualifier());
|
|
mangleSourceName(Dependent->getIdentifier());
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
addSubstitution(TN);
|
|
}
|
|
|
|
void
|
|
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
|
|
switch (OO) {
|
|
// <operator-name> ::= nw # new
|
|
case OO_New: Out << "nw"; break;
|
|
// ::= na # new[]
|
|
case OO_Array_New: Out << "na"; break;
|
|
// ::= dl # delete
|
|
case OO_Delete: Out << "dl"; break;
|
|
// ::= da # delete[]
|
|
case OO_Array_Delete: Out << "da"; break;
|
|
// ::= ps # + (unary)
|
|
// ::= pl # + (binary or unknown)
|
|
case OO_Plus:
|
|
Out << (Arity == 1? "ps" : "pl"); break;
|
|
// ::= ng # - (unary)
|
|
// ::= mi # - (binary or unknown)
|
|
case OO_Minus:
|
|
Out << (Arity == 1? "ng" : "mi"); break;
|
|
// ::= ad # & (unary)
|
|
// ::= an # & (binary or unknown)
|
|
case OO_Amp:
|
|
Out << (Arity == 1? "ad" : "an"); break;
|
|
// ::= de # * (unary)
|
|
// ::= ml # * (binary or unknown)
|
|
case OO_Star:
|
|
// Use binary when unknown.
|
|
Out << (Arity == 1? "de" : "ml"); break;
|
|
// ::= co # ~
|
|
case OO_Tilde: Out << "co"; break;
|
|
// ::= dv # /
|
|
case OO_Slash: Out << "dv"; break;
|
|
// ::= rm # %
|
|
case OO_Percent: Out << "rm"; break;
|
|
// ::= or # |
|
|
case OO_Pipe: Out << "or"; break;
|
|
// ::= eo # ^
|
|
case OO_Caret: Out << "eo"; break;
|
|
// ::= aS # =
|
|
case OO_Equal: Out << "aS"; break;
|
|
// ::= pL # +=
|
|
case OO_PlusEqual: Out << "pL"; break;
|
|
// ::= mI # -=
|
|
case OO_MinusEqual: Out << "mI"; break;
|
|
// ::= mL # *=
|
|
case OO_StarEqual: Out << "mL"; break;
|
|
// ::= dV # /=
|
|
case OO_SlashEqual: Out << "dV"; break;
|
|
// ::= rM # %=
|
|
case OO_PercentEqual: Out << "rM"; break;
|
|
// ::= aN # &=
|
|
case OO_AmpEqual: Out << "aN"; break;
|
|
// ::= oR # |=
|
|
case OO_PipeEqual: Out << "oR"; break;
|
|
// ::= eO # ^=
|
|
case OO_CaretEqual: Out << "eO"; break;
|
|
// ::= ls # <<
|
|
case OO_LessLess: Out << "ls"; break;
|
|
// ::= rs # >>
|
|
case OO_GreaterGreater: Out << "rs"; break;
|
|
// ::= lS # <<=
|
|
case OO_LessLessEqual: Out << "lS"; break;
|
|
// ::= rS # >>=
|
|
case OO_GreaterGreaterEqual: Out << "rS"; break;
|
|
// ::= eq # ==
|
|
case OO_EqualEqual: Out << "eq"; break;
|
|
// ::= ne # !=
|
|
case OO_ExclaimEqual: Out << "ne"; break;
|
|
// ::= lt # <
|
|
case OO_Less: Out << "lt"; break;
|
|
// ::= gt # >
|
|
case OO_Greater: Out << "gt"; break;
|
|
// ::= le # <=
|
|
case OO_LessEqual: Out << "le"; break;
|
|
// ::= ge # >=
|
|
case OO_GreaterEqual: Out << "ge"; break;
|
|
// ::= nt # !
|
|
case OO_Exclaim: Out << "nt"; break;
|
|
// ::= aa # &&
|
|
case OO_AmpAmp: Out << "aa"; break;
|
|
// ::= oo # ||
|
|
case OO_PipePipe: Out << "oo"; break;
|
|
// ::= pp # ++
|
|
case OO_PlusPlus: Out << "pp"; break;
|
|
// ::= mm # --
|
|
case OO_MinusMinus: Out << "mm"; break;
|
|
// ::= cm # ,
|
|
case OO_Comma: Out << "cm"; break;
|
|
// ::= pm # ->*
|
|
case OO_ArrowStar: Out << "pm"; break;
|
|
// ::= pt # ->
|
|
case OO_Arrow: Out << "pt"; break;
|
|
// ::= cl # ()
|
|
case OO_Call: Out << "cl"; break;
|
|
// ::= ix # []
|
|
case OO_Subscript: Out << "ix"; break;
|
|
|
|
// ::= qu # ?
|
|
// The conditional operator can't be overloaded, but we still handle it when
|
|
// mangling expressions.
|
|
case OO_Conditional: Out << "qu"; break;
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
assert(false && "Not an overloaded operator");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
|
|
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
|
|
if (Quals.hasRestrict())
|
|
Out << 'r';
|
|
if (Quals.hasVolatile())
|
|
Out << 'V';
|
|
if (Quals.hasConst())
|
|
Out << 'K';
|
|
|
|
if (Quals.hasAddressSpace()) {
|
|
// Extension:
|
|
//
|
|
// <type> ::= U <address-space-number>
|
|
//
|
|
// where <address-space-number> is a source name consisting of 'AS'
|
|
// followed by the address space <number>.
|
|
llvm::SmallString<64> ASString;
|
|
ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
|
|
Out << 'U' << ASString.size() << ASString;
|
|
}
|
|
|
|
// FIXME: For now, just drop all extension qualifiers on the floor.
|
|
}
|
|
|
|
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
|
llvm::SmallString<64> Buffer;
|
|
MiscNameMangler(Context, Buffer).mangleObjCMethodName(MD);
|
|
Out << Buffer;
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(QualType T) {
|
|
// Only operate on the canonical type!
|
|
T = Context.getASTContext().getCanonicalType(T);
|
|
|
|
bool IsSubstitutable = T.hasLocalQualifiers() || !isa<BuiltinType>(T);
|
|
if (IsSubstitutable && mangleSubstitution(T))
|
|
return;
|
|
|
|
if (Qualifiers Quals = T.getLocalQualifiers()) {
|
|
mangleQualifiers(Quals);
|
|
// Recurse: even if the qualified type isn't yet substitutable,
|
|
// the unqualified type might be.
|
|
mangleType(T.getLocalUnqualifiedType());
|
|
} else {
|
|
switch (T->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
|
|
return;
|
|
#define TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
|
|
break;
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
|
|
// Add the substitution.
|
|
if (IsSubstitutable)
|
|
addSubstitution(T);
|
|
}
|
|
|
|
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
|
|
if (!mangleStandardSubstitution(ND))
|
|
mangleName(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const BuiltinType *T) {
|
|
// <type> ::= <builtin-type>
|
|
// <builtin-type> ::= v # void
|
|
// ::= w # wchar_t
|
|
// ::= b # bool
|
|
// ::= c # char
|
|
// ::= a # signed char
|
|
// ::= h # unsigned char
|
|
// ::= s # short
|
|
// ::= t # unsigned short
|
|
// ::= i # int
|
|
// ::= j # unsigned int
|
|
// ::= l # long
|
|
// ::= m # unsigned long
|
|
// ::= x # long long, __int64
|
|
// ::= y # unsigned long long, __int64
|
|
// ::= n # __int128
|
|
// UNSUPPORTED: ::= o # unsigned __int128
|
|
// ::= f # float
|
|
// ::= d # double
|
|
// ::= e # long double, __float80
|
|
// UNSUPPORTED: ::= g # __float128
|
|
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
|
|
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
|
|
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
|
|
// UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits)
|
|
// ::= Di # char32_t
|
|
// ::= Ds # char16_t
|
|
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
|
|
// ::= u <source-name> # vendor extended type
|
|
switch (T->getKind()) {
|
|
case BuiltinType::Void: Out << 'v'; break;
|
|
case BuiltinType::Bool: Out << 'b'; break;
|
|
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
|
|
case BuiltinType::UChar: Out << 'h'; break;
|
|
case BuiltinType::UShort: Out << 't'; break;
|
|
case BuiltinType::UInt: Out << 'j'; break;
|
|
case BuiltinType::ULong: Out << 'm'; break;
|
|
case BuiltinType::ULongLong: Out << 'y'; break;
|
|
case BuiltinType::UInt128: Out << 'o'; break;
|
|
case BuiltinType::SChar: Out << 'a'; break;
|
|
case BuiltinType::WChar: Out << 'w'; break;
|
|
case BuiltinType::Char16: Out << "Ds"; break;
|
|
case BuiltinType::Char32: Out << "Di"; break;
|
|
case BuiltinType::Short: Out << 's'; break;
|
|
case BuiltinType::Int: Out << 'i'; break;
|
|
case BuiltinType::Long: Out << 'l'; break;
|
|
case BuiltinType::LongLong: Out << 'x'; break;
|
|
case BuiltinType::Int128: Out << 'n'; break;
|
|
case BuiltinType::Float: Out << 'f'; break;
|
|
case BuiltinType::Double: Out << 'd'; break;
|
|
case BuiltinType::LongDouble: Out << 'e'; break;
|
|
case BuiltinType::NullPtr: Out << "Dn"; break;
|
|
|
|
case BuiltinType::Overload:
|
|
case BuiltinType::Dependent:
|
|
assert(false &&
|
|
"Overloaded and dependent types shouldn't get to name mangling");
|
|
break;
|
|
case BuiltinType::UndeducedAuto:
|
|
assert(0 && "Should not see undeduced auto here");
|
|
break;
|
|
case BuiltinType::ObjCId: Out << "11objc_object"; break;
|
|
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
|
|
case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
|
|
}
|
|
}
|
|
|
|
// <type> ::= <function-type>
|
|
// <function-type> ::= F [Y] <bare-function-type> E
|
|
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
|
|
Out << 'F';
|
|
// FIXME: We don't have enough information in the AST to produce the 'Y'
|
|
// encoding for extern "C" function types.
|
|
mangleBareFunctionType(T, /*MangleReturnType=*/true);
|
|
Out << 'E';
|
|
}
|
|
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
|
|
llvm_unreachable("Can't mangle K&R function prototypes");
|
|
}
|
|
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
|
|
bool MangleReturnType) {
|
|
// We should never be mangling something without a prototype.
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
|
|
// <bare-function-type> ::= <signature type>+
|
|
if (MangleReturnType)
|
|
mangleType(Proto->getResultType());
|
|
|
|
if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
|
|
// <builtin-type> ::= v # void
|
|
Out << 'v';
|
|
return;
|
|
}
|
|
|
|
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
|
ArgEnd = Proto->arg_type_end();
|
|
Arg != ArgEnd; ++Arg)
|
|
mangleType(*Arg);
|
|
|
|
// <builtin-type> ::= z # ellipsis
|
|
if (Proto->isVariadic())
|
|
Out << 'z';
|
|
}
|
|
|
|
// <type> ::= <class-enum-type>
|
|
// <class-enum-type> ::= <name>
|
|
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
// <type> ::= <class-enum-type>
|
|
// <class-enum-type> ::= <name>
|
|
void CXXNameMangler::mangleType(const EnumType *T) {
|
|
mangleType(static_cast<const TagType*>(T));
|
|
}
|
|
void CXXNameMangler::mangleType(const RecordType *T) {
|
|
mangleType(static_cast<const TagType*>(T));
|
|
}
|
|
void CXXNameMangler::mangleType(const TagType *T) {
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
// <type> ::= <array-type>
|
|
// <array-type> ::= A <positive dimension number> _ <element type>
|
|
// ::= A [<dimension expression>] _ <element type>
|
|
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
|
|
Out << 'A' << T->getSize() << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const VariableArrayType *T) {
|
|
Out << 'A';
|
|
// decayed vla types (size 0) will just be skipped.
|
|
if (T->getSizeExpr())
|
|
mangleExpression(T->getSizeExpr());
|
|
Out << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
|
|
Out << 'A';
|
|
mangleExpression(T->getSizeExpr());
|
|
Out << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
|
|
Out << "A_";
|
|
mangleType(T->getElementType());
|
|
}
|
|
|
|
// <type> ::= <pointer-to-member-type>
|
|
// <pointer-to-member-type> ::= M <class type> <member type>
|
|
void CXXNameMangler::mangleType(const MemberPointerType *T) {
|
|
Out << 'M';
|
|
mangleType(QualType(T->getClass(), 0));
|
|
QualType PointeeType = T->getPointeeType();
|
|
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
|
|
mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
|
|
mangleType(FPT);
|
|
|
|
// Itanium C++ ABI 5.1.8:
|
|
//
|
|
// The type of a non-static member function is considered to be different,
|
|
// for the purposes of substitution, from the type of a namespace-scope or
|
|
// static member function whose type appears similar. The types of two
|
|
// non-static member functions are considered to be different, for the
|
|
// purposes of substitution, if the functions are members of different
|
|
// classes. In other words, for the purposes of substitution, the class of
|
|
// which the function is a member is considered part of the type of
|
|
// function.
|
|
|
|
// We increment the SeqID here to emulate adding an entry to the
|
|
// substitution table. We can't actually add it because we don't want this
|
|
// particular function type to be substituted.
|
|
++SeqID;
|
|
} else
|
|
mangleType(PointeeType);
|
|
}
|
|
|
|
// <type> ::= <template-param>
|
|
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
|
|
mangleTemplateParameter(T->getIndex());
|
|
}
|
|
|
|
// <type> ::= P <type> # pointer-to
|
|
void CXXNameMangler::mangleType(const PointerType *T) {
|
|
Out << 'P';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
|
|
Out << 'P';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
// <type> ::= R <type> # reference-to
|
|
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
|
|
Out << 'R';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
// <type> ::= O <type> # rvalue reference-to (C++0x)
|
|
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
|
|
Out << 'O';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
// <type> ::= C <type> # complex pair (C 2000)
|
|
void CXXNameMangler::mangleType(const ComplexType *T) {
|
|
Out << 'C';
|
|
mangleType(T->getElementType());
|
|
}
|
|
|
|
// ARM's ABI for Neon vector types specifies that they should be mangled as
|
|
// if they are structs (to match ARM's initial implementation). If the
|
|
// vector type is not one of the special types predefined by ARM, return false
|
|
// so it will be mangled as an ordinary vector type.
|
|
bool CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
|
|
QualType EltType = T->getElementType();
|
|
if (!EltType->isBuiltinType())
|
|
return false;
|
|
const char *EltName = 0;
|
|
if (T->getVectorKind() == VectorType::NeonPolyVector) {
|
|
switch (cast<BuiltinType>(EltType)->getKind()) {
|
|
case BuiltinType::SChar: EltName = "poly8_t"; break;
|
|
case BuiltinType::Short: EltName = "poly16_t"; break;
|
|
default: return false;
|
|
}
|
|
} else {
|
|
switch (cast<BuiltinType>(EltType)->getKind()) {
|
|
case BuiltinType::SChar: EltName = "int8_t"; break;
|
|
case BuiltinType::UChar: EltName = "uint8_t"; break;
|
|
case BuiltinType::Short: EltName = "int16_t"; break;
|
|
case BuiltinType::UShort: EltName = "uint16_t"; break;
|
|
case BuiltinType::Int: EltName = "int32_t"; break;
|
|
case BuiltinType::UInt: EltName = "uint32_t"; break;
|
|
case BuiltinType::LongLong: EltName = "int64_t"; break;
|
|
case BuiltinType::ULongLong: EltName = "uint64_t"; break;
|
|
case BuiltinType::Float: EltName = "float32_t"; break;
|
|
default: return false;
|
|
}
|
|
}
|
|
const char *BaseName = 0;
|
|
unsigned BitSize = (T->getNumElements() *
|
|
getASTContext().getTypeInfo(EltType).first);
|
|
if (BitSize == 64)
|
|
BaseName = "__simd64_";
|
|
else if (BitSize == 128)
|
|
BaseName = "__simd128_";
|
|
else
|
|
return false;
|
|
Out << strlen(BaseName) + strlen(EltName);
|
|
Out << BaseName << EltName;
|
|
return true;
|
|
}
|
|
|
|
// GNU extension: vector types
|
|
// <type> ::= <vector-type>
|
|
// <vector-type> ::= Dv <positive dimension number> _
|
|
// <extended element type>
|
|
// ::= Dv [<dimension expression>] _ <element type>
|
|
// <extended element type> ::= <element type>
|
|
// ::= p # AltiVec vector pixel
|
|
void CXXNameMangler::mangleType(const VectorType *T) {
|
|
if ((T->getVectorKind() == VectorType::NeonVector ||
|
|
T->getVectorKind() == VectorType::NeonPolyVector) &&
|
|
mangleNeonVectorType(T))
|
|
return;
|
|
Out << "Dv" << T->getNumElements() << '_';
|
|
if (T->getVectorKind() == VectorType::AltiVecPixel)
|
|
Out << 'p';
|
|
else if (T->getVectorKind() == VectorType::AltiVecBool)
|
|
Out << 'b';
|
|
else
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const ExtVectorType *T) {
|
|
mangleType(static_cast<const VectorType*>(T));
|
|
}
|
|
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
|
|
Out << "Dv";
|
|
mangleExpression(T->getSizeExpr());
|
|
Out << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
|
|
mangleSourceName(T->getDecl()->getIdentifier());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const ObjCObjectType *T) {
|
|
// We don't allow overloading by different protocol qualification,
|
|
// so mangling them isn't necessary.
|
|
mangleType(T->getBaseType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const BlockPointerType *T) {
|
|
Out << "U13block_pointer";
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
|
|
// Mangle injected class name types as if the user had written the
|
|
// specialization out fully. It may not actually be possible to see
|
|
// this mangling, though.
|
|
mangleType(T->getInjectedSpecializationType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
|
|
if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
|
|
mangleName(TD, T->getArgs(), T->getNumArgs());
|
|
} else {
|
|
if (mangleSubstitution(QualType(T, 0)))
|
|
return;
|
|
|
|
mangleTemplatePrefix(T->getTemplateName());
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
|
|
addSubstitution(QualType(T, 0));
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const DependentNameType *T) {
|
|
// Typename types are always nested
|
|
Out << 'N';
|
|
mangleUnresolvedScope(T->getQualifier());
|
|
mangleSourceName(T->getIdentifier());
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
|
|
// Dependently-scoped template types are always nested
|
|
Out << 'N';
|
|
|
|
// TODO: avoid making this TemplateName.
|
|
TemplateName Prefix =
|
|
getASTContext().getDependentTemplateName(T->getQualifier(),
|
|
T->getIdentifier());
|
|
mangleTemplatePrefix(Prefix);
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const TypeOfType *T) {
|
|
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
|
|
// "extension with parameters" mangling.
|
|
Out << "u6typeof";
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
|
|
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
|
|
// "extension with parameters" mangling.
|
|
Out << "u6typeof";
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const DecltypeType *T) {
|
|
Expr *E = T->getUnderlyingExpr();
|
|
|
|
// type ::= Dt <expression> E # decltype of an id-expression
|
|
// # or class member access
|
|
// ::= DT <expression> E # decltype of an expression
|
|
|
|
// This purports to be an exhaustive list of id-expressions and
|
|
// class member accesses. Note that we do not ignore parentheses;
|
|
// parentheses change the semantics of decltype for these
|
|
// expressions (and cause the mangler to use the other form).
|
|
if (isa<DeclRefExpr>(E) ||
|
|
isa<MemberExpr>(E) ||
|
|
isa<UnresolvedLookupExpr>(E) ||
|
|
isa<DependentScopeDeclRefExpr>(E) ||
|
|
isa<CXXDependentScopeMemberExpr>(E) ||
|
|
isa<UnresolvedMemberExpr>(E))
|
|
Out << "Dt";
|
|
else
|
|
Out << "DT";
|
|
mangleExpression(E);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleIntegerLiteral(QualType T,
|
|
const llvm::APSInt &Value) {
|
|
// <expr-primary> ::= L <type> <value number> E # integer literal
|
|
Out << 'L';
|
|
|
|
mangleType(T);
|
|
if (T->isBooleanType()) {
|
|
// Boolean values are encoded as 0/1.
|
|
Out << (Value.getBoolValue() ? '1' : '0');
|
|
} else {
|
|
mangleNumber(Value);
|
|
}
|
|
Out << 'E';
|
|
|
|
}
|
|
|
|
/// Mangles a member expression. Implicit accesses are not handled,
|
|
/// but that should be okay, because you shouldn't be able to
|
|
/// make an implicit access in a function template declaration.
|
|
void CXXNameMangler::mangleMemberExpr(const Expr *Base,
|
|
bool IsArrow,
|
|
NestedNameSpecifier *Qualifier,
|
|
DeclarationName Member,
|
|
unsigned Arity) {
|
|
// gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
|
|
// OTOH, gcc also mangles the name as an expression.
|
|
Out << (IsArrow ? "pt" : "dt");
|
|
mangleExpression(Base);
|
|
mangleUnresolvedName(Qualifier, Member, Arity);
|
|
}
|
|
|
|
void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
|
|
// <expression> ::= <unary operator-name> <expression>
|
|
// ::= <binary operator-name> <expression> <expression>
|
|
// ::= <trinary operator-name> <expression> <expression> <expression>
|
|
// ::= cl <expression>* E # call
|
|
// ::= cv <type> expression # conversion with one argument
|
|
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
|
|
// ::= st <type> # sizeof (a type)
|
|
// ::= at <type> # alignof (a type)
|
|
// ::= <template-param>
|
|
// ::= <function-param>
|
|
// ::= sr <type> <unqualified-name> # dependent name
|
|
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
|
|
// ::= sZ <template-param> # size of a parameter pack
|
|
// ::= <expr-primary>
|
|
// <expr-primary> ::= L <type> <value number> E # integer literal
|
|
// ::= L <type <value float> E # floating literal
|
|
// ::= L <mangled-name> E # external name
|
|
switch (E->getStmtClass()) {
|
|
case Expr::NoStmtClass:
|
|
#define EXPR(Type, Base)
|
|
#define STMT(Type, Base) \
|
|
case Expr::Type##Class:
|
|
#include "clang/AST/StmtNodes.inc"
|
|
// fallthrough
|
|
|
|
// These all can only appear in local or variable-initialization
|
|
// contexts and so should never appear in a mangling.
|
|
case Expr::AddrLabelExprClass:
|
|
case Expr::BlockDeclRefExprClass:
|
|
case Expr::CXXThisExprClass:
|
|
case Expr::DesignatedInitExprClass:
|
|
case Expr::ImplicitValueInitExprClass:
|
|
case Expr::InitListExprClass:
|
|
case Expr::ParenListExprClass:
|
|
case Expr::CXXScalarValueInitExprClass:
|
|
llvm_unreachable("unexpected statement kind");
|
|
break;
|
|
|
|
// FIXME: invent manglings for all these.
|
|
case Expr::BlockExprClass:
|
|
case Expr::CXXPseudoDestructorExprClass:
|
|
case Expr::ChooseExprClass:
|
|
case Expr::CompoundLiteralExprClass:
|
|
case Expr::ExtVectorElementExprClass:
|
|
case Expr::ObjCEncodeExprClass:
|
|
case Expr::ObjCImplicitSetterGetterRefExprClass:
|
|
case Expr::ObjCIsaExprClass:
|
|
case Expr::ObjCIvarRefExprClass:
|
|
case Expr::ObjCMessageExprClass:
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
case Expr::ObjCProtocolExprClass:
|
|
case Expr::ObjCSelectorExprClass:
|
|
case Expr::ObjCStringLiteralClass:
|
|
case Expr::OffsetOfExprClass:
|
|
case Expr::PredefinedExprClass:
|
|
case Expr::ShuffleVectorExprClass:
|
|
case Expr::StmtExprClass:
|
|
case Expr::TypesCompatibleExprClass:
|
|
case Expr::UnaryTypeTraitExprClass:
|
|
case Expr::VAArgExprClass:
|
|
case Expr::CXXUuidofExprClass:
|
|
case Expr::CXXNoexceptExprClass: {
|
|
// As bad as this diagnostic is, it's better than crashing.
|
|
Diagnostic &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
|
|
"cannot yet mangle expression type %0");
|
|
Diags.Report(FullSourceLoc(E->getExprLoc(),
|
|
getASTContext().getSourceManager()),
|
|
DiagID)
|
|
<< E->getStmtClassName() << E->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXDefaultArgExprClass:
|
|
mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
|
|
break;
|
|
|
|
case Expr::CXXMemberCallExprClass: // fallthrough
|
|
case Expr::CallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
Out << "cl";
|
|
mangleExpression(CE->getCallee(), CE->getNumArgs());
|
|
for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
|
|
mangleExpression(CE->getArg(I));
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXNewExprClass: {
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
const CXXNewExpr *New = cast<CXXNewExpr>(E);
|
|
if (New->isGlobalNew()) Out << "gs";
|
|
Out << (New->isArray() ? "na" : "nw");
|
|
for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
|
|
E = New->placement_arg_end(); I != E; ++I)
|
|
mangleExpression(*I);
|
|
Out << '_';
|
|
mangleType(New->getAllocatedType());
|
|
if (New->hasInitializer()) {
|
|
Out << "pi";
|
|
for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
|
|
E = New->constructor_arg_end(); I != E; ++I)
|
|
mangleExpression(*I);
|
|
}
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::MemberExprClass: {
|
|
const MemberExpr *ME = cast<MemberExpr>(E);
|
|
mangleMemberExpr(ME->getBase(), ME->isArrow(),
|
|
ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
|
|
Arity);
|
|
break;
|
|
}
|
|
|
|
case Expr::UnresolvedMemberExprClass: {
|
|
const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
|
|
mangleMemberExpr(ME->getBase(), ME->isArrow(),
|
|
ME->getQualifier(), ME->getMemberName(),
|
|
Arity);
|
|
if (ME->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(ME->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXDependentScopeMemberExprClass: {
|
|
const CXXDependentScopeMemberExpr *ME
|
|
= cast<CXXDependentScopeMemberExpr>(E);
|
|
mangleMemberExpr(ME->getBase(), ME->isArrow(),
|
|
ME->getQualifier(), ME->getMember(),
|
|
Arity);
|
|
if (ME->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(ME->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::UnresolvedLookupExprClass: {
|
|
// The ABI doesn't cover how to mangle overload sets, so we mangle
|
|
// using something as close as possible to the original lookup
|
|
// expression.
|
|
const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
|
|
mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
|
|
if (ULE->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(ULE->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXUnresolvedConstructExprClass: {
|
|
const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
|
|
unsigned N = CE->arg_size();
|
|
|
|
Out << "cv";
|
|
mangleType(CE->getType());
|
|
if (N != 1) Out << '_';
|
|
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
|
|
if (N != 1) Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXTemporaryObjectExprClass:
|
|
case Expr::CXXConstructExprClass: {
|
|
const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
|
|
unsigned N = CE->getNumArgs();
|
|
|
|
Out << "cv";
|
|
mangleType(CE->getType());
|
|
if (N != 1) Out << '_';
|
|
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
|
|
if (N != 1) Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::SizeOfAlignOfExprClass: {
|
|
const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
|
|
if (SAE->isSizeOf()) Out << 's';
|
|
else Out << 'a';
|
|
if (SAE->isArgumentType()) {
|
|
Out << 't';
|
|
mangleType(SAE->getArgumentType());
|
|
} else {
|
|
Out << 'z';
|
|
mangleExpression(SAE->getArgumentExpr());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXThrowExprClass: {
|
|
const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
|
|
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
if (TE->getSubExpr()) {
|
|
Out << "tw";
|
|
mangleExpression(TE->getSubExpr());
|
|
} else {
|
|
Out << "tr";
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXTypeidExprClass: {
|
|
const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
|
|
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
if (TIE->isTypeOperand()) {
|
|
Out << "ti";
|
|
mangleType(TIE->getTypeOperand());
|
|
} else {
|
|
Out << "te";
|
|
mangleExpression(TIE->getExprOperand());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXDeleteExprClass: {
|
|
const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
|
|
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
if (DE->isGlobalDelete()) Out << "gs";
|
|
Out << (DE->isArrayForm() ? "da" : "dl");
|
|
mangleExpression(DE->getArgument());
|
|
break;
|
|
}
|
|
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
|
|
/*Arity=*/1);
|
|
mangleExpression(UO->getSubExpr());
|
|
break;
|
|
}
|
|
|
|
case Expr::ArraySubscriptExprClass: {
|
|
const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
|
|
|
|
// Array subscript is treated as a syntactically wierd form of
|
|
// binary operator.
|
|
Out << "ix";
|
|
mangleExpression(AE->getLHS());
|
|
mangleExpression(AE->getRHS());
|
|
break;
|
|
}
|
|
|
|
case Expr::CompoundAssignOperatorClass: // fallthrough
|
|
case Expr::BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(E);
|
|
mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
|
|
/*Arity=*/2);
|
|
mangleExpression(BO->getLHS());
|
|
mangleExpression(BO->getRHS());
|
|
break;
|
|
}
|
|
|
|
case Expr::ConditionalOperatorClass: {
|
|
const ConditionalOperator *CO = cast<ConditionalOperator>(E);
|
|
mangleOperatorName(OO_Conditional, /*Arity=*/3);
|
|
mangleExpression(CO->getCond());
|
|
mangleExpression(CO->getLHS(), Arity);
|
|
mangleExpression(CO->getRHS(), Arity);
|
|
break;
|
|
}
|
|
|
|
case Expr::ImplicitCastExprClass: {
|
|
mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
|
|
break;
|
|
}
|
|
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXDynamicCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass: {
|
|
const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
|
|
Out << "cv";
|
|
mangleType(ECE->getType());
|
|
mangleExpression(ECE->getSubExpr());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXOperatorCallExprClass: {
|
|
const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
|
|
unsigned NumArgs = CE->getNumArgs();
|
|
mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
|
|
// Mangle the arguments.
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
mangleExpression(CE->getArg(i));
|
|
break;
|
|
}
|
|
|
|
case Expr::ParenExprClass:
|
|
mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
|
|
break;
|
|
|
|
case Expr::DeclRefExprClass: {
|
|
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
|
|
|
|
switch (D->getKind()) {
|
|
default:
|
|
// <expr-primary> ::= L <mangled-name> E # external name
|
|
Out << 'L';
|
|
mangle(D, "_Z");
|
|
Out << 'E';
|
|
break;
|
|
|
|
case Decl::EnumConstant: {
|
|
const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
|
|
mangleIntegerLiteral(ED->getType(), ED->getInitVal());
|
|
break;
|
|
}
|
|
|
|
case Decl::NonTypeTemplateParm: {
|
|
const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
|
|
mangleTemplateParameter(PD->getIndex());
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Expr::DependentScopeDeclRefExprClass: {
|
|
const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
|
|
NestedNameSpecifier *NNS = DRE->getQualifier();
|
|
const Type *QTy = NNS->getAsType();
|
|
|
|
// When we're dealing with a nested-name-specifier that has just a
|
|
// dependent identifier in it, mangle that as a typename. FIXME:
|
|
// It isn't clear that we ever actually want to have such a
|
|
// nested-name-specifier; why not just represent it as a typename type?
|
|
if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
|
|
QTy = getASTContext().getDependentNameType(ETK_Typename,
|
|
NNS->getPrefix(),
|
|
NNS->getAsIdentifier())
|
|
.getTypePtr();
|
|
}
|
|
assert(QTy && "Qualifier was not type!");
|
|
|
|
// ::= sr <type> <unqualified-name> # dependent name
|
|
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
|
|
Out << "sr";
|
|
mangleType(QualType(QTy, 0));
|
|
mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
|
|
if (DRE->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(DRE->getExplicitTemplateArgs());
|
|
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXBindTemporaryExprClass:
|
|
mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
|
|
break;
|
|
|
|
case Expr::CXXExprWithTemporariesClass:
|
|
mangleExpression(cast<CXXExprWithTemporaries>(E)->getSubExpr(), Arity);
|
|
break;
|
|
|
|
case Expr::FloatingLiteralClass: {
|
|
const FloatingLiteral *FL = cast<FloatingLiteral>(E);
|
|
Out << 'L';
|
|
mangleType(FL->getType());
|
|
mangleFloat(FL->getValue());
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CharacterLiteralClass:
|
|
Out << 'L';
|
|
mangleType(E->getType());
|
|
Out << cast<CharacterLiteral>(E)->getValue();
|
|
Out << 'E';
|
|
break;
|
|
|
|
case Expr::CXXBoolLiteralExprClass:
|
|
Out << "Lb";
|
|
Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
|
|
Out << 'E';
|
|
break;
|
|
|
|
case Expr::IntegerLiteralClass: {
|
|
llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
|
|
if (E->getType()->isSignedIntegerType())
|
|
Value.setIsSigned(true);
|
|
mangleIntegerLiteral(E->getType(), Value);
|
|
break;
|
|
}
|
|
|
|
case Expr::ImaginaryLiteralClass: {
|
|
const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
|
|
// Mangle as if a complex literal.
|
|
// Proposal from David Vandevoorde, 2010.06.30.
|
|
Out << 'L';
|
|
mangleType(E->getType());
|
|
if (const FloatingLiteral *Imag =
|
|
dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
|
|
// Mangle a floating-point zero of the appropriate type.
|
|
mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
|
|
Out << '_';
|
|
mangleFloat(Imag->getValue());
|
|
} else {
|
|
Out << "0_";
|
|
llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
|
|
if (IE->getSubExpr()->getType()->isSignedIntegerType())
|
|
Value.setIsSigned(true);
|
|
mangleNumber(Value);
|
|
}
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::StringLiteralClass: {
|
|
// Revised proposal from David Vandervoorde, 2010.07.15.
|
|
Out << 'L';
|
|
assert(isa<ConstantArrayType>(E->getType()));
|
|
mangleType(E->getType());
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::GNUNullExprClass:
|
|
// FIXME: should this really be mangled the same as nullptr?
|
|
// fallthrough
|
|
|
|
case Expr::CXXNullPtrLiteralExprClass: {
|
|
// Proposal from David Vandervoorde, 2010.06.30, as
|
|
// modified by ABI list discussion.
|
|
Out << "LDnE";
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
|
|
// <ctor-dtor-name> ::= C1 # complete object constructor
|
|
// ::= C2 # base object constructor
|
|
// ::= C3 # complete object allocating constructor
|
|
//
|
|
switch (T) {
|
|
case Ctor_Complete:
|
|
Out << "C1";
|
|
break;
|
|
case Ctor_Base:
|
|
Out << "C2";
|
|
break;
|
|
case Ctor_CompleteAllocating:
|
|
Out << "C3";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
|
|
// <ctor-dtor-name> ::= D0 # deleting destructor
|
|
// ::= D1 # complete object destructor
|
|
// ::= D2 # base object destructor
|
|
//
|
|
switch (T) {
|
|
case Dtor_Deleting:
|
|
Out << "D0";
|
|
break;
|
|
case Dtor_Complete:
|
|
Out << "D1";
|
|
break;
|
|
case Dtor_Base:
|
|
Out << "D2";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(
|
|
const ExplicitTemplateArgumentList &TemplateArgs) {
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
|
|
mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
|
|
NumTemplateArgs);
|
|
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned i = 0; i != NumTemplateArgs; ++i)
|
|
mangleTemplateArg(0, TemplateArgs[i]);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
|
|
const TemplateArgumentList &AL) {
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned i = 0, e = AL.size(); i != e; ++i)
|
|
mangleTemplateArg(PL.getParam(i), AL[i]);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned i = 0; i != NumTemplateArgs; ++i)
|
|
mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
|
|
const TemplateArgument &A) {
|
|
// <template-arg> ::= <type> # type or template
|
|
// ::= X <expression> E # expression
|
|
// ::= <expr-primary> # simple expressions
|
|
// ::= I <template-arg>* E # argument pack
|
|
// ::= sp <expression> # pack expansion of (C++0x)
|
|
switch (A.getKind()) {
|
|
default:
|
|
assert(0 && "Unknown template argument kind!");
|
|
case TemplateArgument::Type:
|
|
mangleType(A.getAsType());
|
|
break;
|
|
case TemplateArgument::Template:
|
|
// This is mangled as <type>.
|
|
mangleType(A.getAsTemplate());
|
|
break;
|
|
case TemplateArgument::Expression:
|
|
Out << 'X';
|
|
mangleExpression(A.getAsExpr());
|
|
Out << 'E';
|
|
break;
|
|
case TemplateArgument::Integral:
|
|
mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
|
|
break;
|
|
case TemplateArgument::Declaration: {
|
|
assert(P && "Missing template parameter for declaration argument");
|
|
// <expr-primary> ::= L <mangled-name> E # external name
|
|
|
|
// Clang produces AST's where pointer-to-member-function expressions
|
|
// and pointer-to-function expressions are represented as a declaration not
|
|
// an expression. We compensate for it here to produce the correct mangling.
|
|
NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
|
|
const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
|
|
bool compensateMangling = D->isCXXClassMember() &&
|
|
!Parameter->getType()->isReferenceType();
|
|
if (compensateMangling) {
|
|
Out << 'X';
|
|
mangleOperatorName(OO_Amp, 1);
|
|
}
|
|
|
|
Out << 'L';
|
|
// References to external entities use the mangled name; if the name would
|
|
// not normally be manged then mangle it as unqualified.
|
|
//
|
|
// FIXME: The ABI specifies that external names here should have _Z, but
|
|
// gcc leaves this off.
|
|
if (compensateMangling)
|
|
mangle(D, "_Z");
|
|
else
|
|
mangle(D, "Z");
|
|
Out << 'E';
|
|
|
|
if (compensateMangling)
|
|
Out << 'E';
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
|
|
// <template-param> ::= T_ # first template parameter
|
|
// ::= T <parameter-2 non-negative number> _
|
|
if (Index == 0)
|
|
Out << "T_";
|
|
else
|
|
Out << 'T' << (Index - 1) << '_';
|
|
}
|
|
|
|
// <substitution> ::= S <seq-id> _
|
|
// ::= S_
|
|
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
|
|
// Try one of the standard substitutions first.
|
|
if (mangleStandardSubstitution(ND))
|
|
return true;
|
|
|
|
ND = cast<NamedDecl>(ND->getCanonicalDecl());
|
|
return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
|
|
}
|
|
|
|
bool CXXNameMangler::mangleSubstitution(QualType T) {
|
|
if (!T.getCVRQualifiers()) {
|
|
if (const RecordType *RT = T->getAs<RecordType>())
|
|
return mangleSubstitution(RT->getDecl());
|
|
}
|
|
|
|
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
|
|
|
|
return mangleSubstitution(TypePtr);
|
|
}
|
|
|
|
bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleSubstitution(TD);
|
|
|
|
Template = Context.getASTContext().getCanonicalTemplateName(Template);
|
|
return mangleSubstitution(
|
|
reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
|
|
}
|
|
|
|
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
|
|
llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
|
|
if (I == Substitutions.end())
|
|
return false;
|
|
|
|
unsigned SeqID = I->second;
|
|
if (SeqID == 0)
|
|
Out << "S_";
|
|
else {
|
|
SeqID--;
|
|
|
|
// <seq-id> is encoded in base-36, using digits and upper case letters.
|
|
char Buffer[10];
|
|
char *BufferPtr = llvm::array_endof(Buffer);
|
|
|
|
if (SeqID == 0) *--BufferPtr = '0';
|
|
|
|
while (SeqID) {
|
|
assert(BufferPtr > Buffer && "Buffer overflow!");
|
|
|
|
char c = static_cast<char>(SeqID % 36);
|
|
|
|
*--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
|
|
SeqID /= 36;
|
|
}
|
|
|
|
Out << 'S'
|
|
<< llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
|
|
<< '_';
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isCharType(QualType T) {
|
|
if (T.isNull())
|
|
return false;
|
|
|
|
return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
T->isSpecificBuiltinType(BuiltinType::Char_U);
|
|
}
|
|
|
|
/// isCharSpecialization - Returns whether a given type is a template
|
|
/// specialization of a given name with a single argument of type char.
|
|
static bool isCharSpecialization(QualType T, const char *Name) {
|
|
if (T.isNull())
|
|
return false;
|
|
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
const ClassTemplateSpecializationDecl *SD =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
|
|
if (!SD)
|
|
return false;
|
|
|
|
if (!isStdNamespace(SD->getDeclContext()))
|
|
return false;
|
|
|
|
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
|
|
if (TemplateArgs.size() != 1)
|
|
return false;
|
|
|
|
if (!isCharType(TemplateArgs[0].getAsType()))
|
|
return false;
|
|
|
|
return SD->getIdentifier()->getName() == Name;
|
|
}
|
|
|
|
template <std::size_t StrLen>
|
|
bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD,
|
|
const char (&Str)[StrLen]) {
|
|
if (!SD->getIdentifier()->isStr(Str))
|
|
return false;
|
|
|
|
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
|
|
if (TemplateArgs.size() != 2)
|
|
return false;
|
|
|
|
if (!isCharType(TemplateArgs[0].getAsType()))
|
|
return false;
|
|
|
|
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
|
|
// <substitution> ::= St # ::std::
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (isStd(NS)) {
|
|
Out << "St";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
|
|
if (!isStdNamespace(TD->getDeclContext()))
|
|
return false;
|
|
|
|
// <substitution> ::= Sa # ::std::allocator
|
|
if (TD->getIdentifier()->isStr("allocator")) {
|
|
Out << "Sa";
|
|
return true;
|
|
}
|
|
|
|
// <<substitution> ::= Sb # ::std::basic_string
|
|
if (TD->getIdentifier()->isStr("basic_string")) {
|
|
Out << "Sb";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const ClassTemplateSpecializationDecl *SD =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
if (!isStdNamespace(SD->getDeclContext()))
|
|
return false;
|
|
|
|
// <substitution> ::= Ss # ::std::basic_string<char,
|
|
// ::std::char_traits<char>,
|
|
// ::std::allocator<char> >
|
|
if (SD->getIdentifier()->isStr("basic_string")) {
|
|
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
|
|
|
|
if (TemplateArgs.size() != 3)
|
|
return false;
|
|
|
|
if (!isCharType(TemplateArgs[0].getAsType()))
|
|
return false;
|
|
|
|
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
|
|
return false;
|
|
|
|
if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
|
|
return false;
|
|
|
|
Out << "Ss";
|
|
return true;
|
|
}
|
|
|
|
// <substitution> ::= Si # ::std::basic_istream<char,
|
|
// ::std::char_traits<char> >
|
|
if (isStreamCharSpecialization(SD, "basic_istream")) {
|
|
Out << "Si";
|
|
return true;
|
|
}
|
|
|
|
// <substitution> ::= So # ::std::basic_ostream<char,
|
|
// ::std::char_traits<char> >
|
|
if (isStreamCharSpecialization(SD, "basic_ostream")) {
|
|
Out << "So";
|
|
return true;
|
|
}
|
|
|
|
// <substitution> ::= Sd # ::std::basic_iostream<char,
|
|
// ::std::char_traits<char> >
|
|
if (isStreamCharSpecialization(SD, "basic_iostream")) {
|
|
Out << "Sd";
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CXXNameMangler::addSubstitution(QualType T) {
|
|
if (!T.getCVRQualifiers()) {
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
addSubstitution(RT->getDecl());
|
|
return;
|
|
}
|
|
}
|
|
|
|
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
|
|
addSubstitution(TypePtr);
|
|
}
|
|
|
|
void CXXNameMangler::addSubstitution(TemplateName Template) {
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return addSubstitution(TD);
|
|
|
|
Template = Context.getASTContext().getCanonicalTemplateName(Template);
|
|
addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
|
|
}
|
|
|
|
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
|
|
assert(!Substitutions.count(Ptr) && "Substitution already exists!");
|
|
Substitutions[Ptr] = SeqID++;
|
|
}
|
|
|
|
//
|
|
|
|
/// \brief Mangles the name of the declaration D and emits that name to the
|
|
/// given output stream.
|
|
///
|
|
/// If the declaration D requires a mangled name, this routine will emit that
|
|
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
|
|
/// and this routine will return false. In this case, the caller should just
|
|
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
|
|
/// name.
|
|
void MangleContext::mangleName(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
|
|
"Invalid mangleName() call, argument is not a variable or function!");
|
|
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
|
|
"Invalid mangleName() call on 'structor decl!");
|
|
|
|
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
|
|
getASTContext().getSourceManager(),
|
|
"Mangling declaration");
|
|
|
|
CXXNameMangler Mangler(*this, Res);
|
|
return Mangler.mangle(D);
|
|
}
|
|
|
|
void MangleContext::mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
CXXNameMangler Mangler(*this, Res, D, Type);
|
|
Mangler.mangle(D);
|
|
}
|
|
|
|
void MangleContext::mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
CXXNameMangler Mangler(*this, Res, D, Type);
|
|
Mangler.mangle(D);
|
|
}
|
|
|
|
void MangleContext::mangleBlock(GlobalDecl GD, const BlockDecl *BD,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
MiscNameMangler Mangler(*this, Res);
|
|
Mangler.mangleBlock(GD, BD);
|
|
}
|
|
|
|
void MangleContext::mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= T <call-offset> <base encoding>
|
|
// # base is the nominal target function of thunk
|
|
// <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
|
|
// # base is the nominal target function of thunk
|
|
// # first call-offset is 'this' adjustment
|
|
// # second call-offset is result adjustment
|
|
|
|
assert(!isa<CXXDestructorDecl>(MD) &&
|
|
"Use mangleCXXDtor for destructor decls!");
|
|
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZT";
|
|
if (!Thunk.Return.isEmpty())
|
|
Mangler.getStream() << 'c';
|
|
|
|
// Mangle the 'this' pointer adjustment.
|
|
Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
|
|
|
|
// Mangle the return pointer adjustment if there is one.
|
|
if (!Thunk.Return.isEmpty())
|
|
Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
|
|
Thunk.Return.VBaseOffsetOffset);
|
|
|
|
Mangler.mangleFunctionEncoding(MD);
|
|
}
|
|
|
|
void
|
|
MangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &ThisAdjustment,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= T <call-offset> <base encoding>
|
|
// # base is the nominal target function of thunk
|
|
|
|
CXXNameMangler Mangler(*this, Res, DD, Type);
|
|
Mangler.getStream() << "_ZT";
|
|
|
|
// Mangle the 'this' pointer adjustment.
|
|
Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
|
|
ThisAdjustment.VCallOffsetOffset);
|
|
|
|
Mangler.mangleFunctionEncoding(DD);
|
|
}
|
|
|
|
/// mangleGuardVariable - Returns the mangled name for a guard variable
|
|
/// for the passed in VarDecl.
|
|
void MangleContext::mangleItaniumGuardVariable(const VarDecl *D,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= GV <object name> # Guard variable for one-time
|
|
// # initialization
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZGV";
|
|
Mangler.mangleName(D);
|
|
}
|
|
|
|
void MangleContext::mangleReferenceTemporary(const VarDecl *D,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// We match the GCC mangling here.
|
|
// <special-name> ::= GR <object name>
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZGR";
|
|
Mangler.mangleName(D);
|
|
}
|
|
|
|
void MangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= TV <type> # virtual table
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZTV";
|
|
Mangler.mangleNameOrStandardSubstitution(RD);
|
|
}
|
|
|
|
void MangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= TT <type> # VTT structure
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZTT";
|
|
Mangler.mangleNameOrStandardSubstitution(RD);
|
|
}
|
|
|
|
void MangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
|
|
const CXXRecordDecl *Type,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= TC <type> <offset number> _ <base type>
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZTC";
|
|
Mangler.mangleNameOrStandardSubstitution(RD);
|
|
Mangler.getStream() << Offset;
|
|
Mangler.getStream() << '_';
|
|
Mangler.mangleNameOrStandardSubstitution(Type);
|
|
}
|
|
|
|
void MangleContext::mangleCXXRTTI(QualType Ty,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= TI <type> # typeinfo structure
|
|
assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZTI";
|
|
Mangler.mangleType(Ty);
|
|
}
|
|
|
|
void MangleContext::mangleCXXRTTIName(QualType Ty,
|
|
llvm::SmallVectorImpl<char> &Res) {
|
|
// <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
|
|
CXXNameMangler Mangler(*this, Res);
|
|
Mangler.getStream() << "_ZTS";
|
|
Mangler.mangleType(Ty);
|
|
}
|