forked from OSchip/llvm-project
1542 lines
57 KiB
C++
1542 lines
57 KiB
C++
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code dealing with code generation of C++ expressions
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "llvm/Intrinsics.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::Value *This,
|
|
llvm::Value *VTT,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd) {
|
|
assert(MD->isInstance() &&
|
|
"Trying to emit a member call expr on a static method!");
|
|
|
|
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
|
|
|
|
CallArgList Args;
|
|
|
|
// Push the this ptr.
|
|
Args.push_back(std::make_pair(RValue::get(This),
|
|
MD->getThisType(getContext())));
|
|
|
|
// If there is a VTT parameter, emit it.
|
|
if (VTT) {
|
|
QualType T = getContext().getPointerType(getContext().VoidPtrTy);
|
|
Args.push_back(std::make_pair(RValue::get(VTT), T));
|
|
}
|
|
|
|
// And the rest of the call args
|
|
EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
|
|
|
|
QualType ResultType = FPT->getResultType();
|
|
return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
|
|
FPT->getExtInfo()),
|
|
Callee, ReturnValue, Args, MD);
|
|
}
|
|
|
|
/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
|
|
/// expr can be devirtualized.
|
|
static bool canDevirtualizeMemberFunctionCalls(const Expr *Base,
|
|
const CXXMethodDecl *MD) {
|
|
|
|
// If the member function has the "final" attribute, we know that it can't be
|
|
// overridden and can therefore devirtualize it.
|
|
if (MD->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
// Similarly, if the class itself has the "final" attribute it can't be
|
|
// overridden and we can therefore devirtualize the member function call.
|
|
if (MD->getParent()->hasAttr<FinalAttr>())
|
|
return true;
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
// This is a record decl. We know the type and can devirtualize it.
|
|
return VD->getType()->isRecordType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// We can always devirtualize calls on temporary object expressions.
|
|
if (isa<CXXConstructExpr>(Base))
|
|
return true;
|
|
|
|
// And calls on bound temporaries.
|
|
if (isa<CXXBindTemporaryExpr>(Base))
|
|
return true;
|
|
|
|
// Check if this is a call expr that returns a record type.
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
|
|
return CE->getCallReturnType()->isRecordType();
|
|
|
|
// We can't devirtualize the call.
|
|
return false;
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
|
|
ReturnValueSlot ReturnValue) {
|
|
if (isa<BinaryOperator>(CE->getCallee()->IgnoreParens()))
|
|
return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
|
|
|
|
const MemberExpr *ME = cast<MemberExpr>(CE->getCallee()->IgnoreParens());
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
|
|
|
|
CGDebugInfo *DI = getDebugInfo();
|
|
if (DI && CGM.getCodeGenOpts().LimitDebugInfo
|
|
&& !isa<CallExpr>(ME->getBase())) {
|
|
QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
|
|
if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
|
|
DI->getOrCreateRecordType(PTy->getPointeeType(),
|
|
MD->getParent()->getLocation());
|
|
}
|
|
}
|
|
|
|
if (MD->isStatic()) {
|
|
// The method is static, emit it as we would a regular call.
|
|
llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
|
|
return EmitCall(getContext().getPointerType(MD->getType()), Callee,
|
|
ReturnValue, CE->arg_begin(), CE->arg_end());
|
|
}
|
|
|
|
// Compute the object pointer.
|
|
llvm::Value *This;
|
|
if (ME->isArrow())
|
|
This = EmitScalarExpr(ME->getBase());
|
|
else {
|
|
LValue BaseLV = EmitLValue(ME->getBase());
|
|
if (BaseLV.isPropertyRef() || BaseLV.isKVCRef()) {
|
|
QualType QT = ME->getBase()->getType();
|
|
RValue RV =
|
|
BaseLV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(BaseLV, QT)
|
|
: EmitLoadOfKVCRefLValue(BaseLV, QT);
|
|
This = RV.isScalar() ? RV.getScalarVal() : RV.getAggregateAddr();
|
|
}
|
|
else
|
|
This = BaseLV.getAddress();
|
|
}
|
|
|
|
if (MD->isTrivial()) {
|
|
if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
|
|
|
|
assert(MD->isCopyAssignmentOperator() && "unknown trivial member function");
|
|
// We don't like to generate the trivial copy assignment operator when
|
|
// it isn't necessary; just produce the proper effect here.
|
|
llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
|
|
EmitAggregateCopy(This, RHS, CE->getType());
|
|
return RValue::get(This);
|
|
}
|
|
|
|
// Compute the function type we're calling.
|
|
const CGFunctionInfo &FInfo =
|
|
(isa<CXXDestructorDecl>(MD)
|
|
? CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
|
|
Dtor_Complete)
|
|
: CGM.getTypes().getFunctionInfo(MD));
|
|
|
|
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
|
|
const llvm::Type *Ty
|
|
= CGM.getTypes().GetFunctionType(FInfo, FPT->isVariadic());
|
|
|
|
// C++ [class.virtual]p12:
|
|
// Explicit qualification with the scope operator (5.1) suppresses the
|
|
// virtual call mechanism.
|
|
//
|
|
// We also don't emit a virtual call if the base expression has a record type
|
|
// because then we know what the type is.
|
|
bool UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
|
|
&& !canDevirtualizeMemberFunctionCalls(ME->getBase(), MD);
|
|
|
|
llvm::Value *Callee;
|
|
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
if (UseVirtualCall) {
|
|
Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
|
|
} else {
|
|
Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
|
|
}
|
|
} else if (UseVirtualCall) {
|
|
Callee = BuildVirtualCall(MD, This, Ty);
|
|
} else {
|
|
Callee = CGM.GetAddrOfFunction(MD, Ty);
|
|
}
|
|
|
|
return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
|
|
CE->arg_begin(), CE->arg_end());
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
|
|
ReturnValueSlot ReturnValue) {
|
|
const BinaryOperator *BO =
|
|
cast<BinaryOperator>(E->getCallee()->IgnoreParens());
|
|
const Expr *BaseExpr = BO->getLHS();
|
|
const Expr *MemFnExpr = BO->getRHS();
|
|
|
|
const MemberPointerType *MPT =
|
|
MemFnExpr->getType()->getAs<MemberPointerType>();
|
|
|
|
const FunctionProtoType *FPT =
|
|
MPT->getPointeeType()->getAs<FunctionProtoType>();
|
|
const CXXRecordDecl *RD =
|
|
cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
|
|
|
|
// Get the member function pointer.
|
|
llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
|
|
|
|
// Emit the 'this' pointer.
|
|
llvm::Value *This;
|
|
|
|
if (BO->getOpcode() == BO_PtrMemI)
|
|
This = EmitScalarExpr(BaseExpr);
|
|
else
|
|
This = EmitLValue(BaseExpr).getAddress();
|
|
|
|
// Ask the ABI to load the callee. Note that This is modified.
|
|
llvm::Value *Callee =
|
|
CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(CGF, This, MemFnPtr, MPT);
|
|
|
|
CallArgList Args;
|
|
|
|
QualType ThisType =
|
|
getContext().getPointerType(getContext().getTagDeclType(RD));
|
|
|
|
// Push the this ptr.
|
|
Args.push_back(std::make_pair(RValue::get(This), ThisType));
|
|
|
|
// And the rest of the call args
|
|
EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
|
|
const FunctionType *BO_FPT = BO->getType()->getAs<FunctionProtoType>();
|
|
return EmitCall(CGM.getTypes().getFunctionInfo(Args, BO_FPT), Callee,
|
|
ReturnValue, Args);
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
ReturnValueSlot ReturnValue) {
|
|
assert(MD->isInstance() &&
|
|
"Trying to emit a member call expr on a static method!");
|
|
if (MD->isCopyAssignmentOperator()) {
|
|
const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
|
|
if (ClassDecl->hasTrivialCopyAssignment()) {
|
|
assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
|
|
"EmitCXXOperatorMemberCallExpr - user declared copy assignment");
|
|
LValue LV = EmitLValue(E->getArg(0));
|
|
llvm::Value *This;
|
|
if (LV.isPropertyRef() || LV.isKVCRef()) {
|
|
AggValueSlot Slot = CreateAggTemp(E->getArg(1)->getType());
|
|
EmitAggExpr(E->getArg(1), Slot);
|
|
if (LV.isPropertyRef())
|
|
EmitObjCPropertySet(LV.getPropertyRefExpr(), Slot.asRValue());
|
|
else
|
|
EmitObjCPropertySet(LV.getKVCRefExpr(), Slot.asRValue());
|
|
return RValue::getAggregate(0, false);
|
|
}
|
|
else
|
|
This = LV.getAddress();
|
|
|
|
llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
|
|
QualType Ty = E->getType();
|
|
EmitAggregateCopy(This, Src, Ty);
|
|
return RValue::get(This);
|
|
}
|
|
}
|
|
|
|
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
|
|
const llvm::Type *Ty =
|
|
CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(MD),
|
|
FPT->isVariadic());
|
|
LValue LV = EmitLValue(E->getArg(0));
|
|
llvm::Value *This;
|
|
if (LV.isPropertyRef() || LV.isKVCRef()) {
|
|
QualType QT = E->getArg(0)->getType();
|
|
RValue RV =
|
|
LV.isPropertyRef() ? EmitLoadOfPropertyRefLValue(LV, QT)
|
|
: EmitLoadOfKVCRefLValue(LV, QT);
|
|
assert (!RV.isScalar() && "EmitCXXOperatorMemberCallExpr");
|
|
This = RV.getAggregateAddr();
|
|
}
|
|
else
|
|
This = LV.getAddress();
|
|
|
|
llvm::Value *Callee;
|
|
if (MD->isVirtual() && !canDevirtualizeMemberFunctionCalls(E->getArg(0), MD))
|
|
Callee = BuildVirtualCall(MD, This, Ty);
|
|
else
|
|
Callee = CGM.GetAddrOfFunction(MD, Ty);
|
|
|
|
return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
|
|
E->arg_begin() + 1, E->arg_end());
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
|
|
AggValueSlot Dest) {
|
|
assert(!Dest.isIgnored() && "Must have a destination!");
|
|
const CXXConstructorDecl *CD = E->getConstructor();
|
|
|
|
// If we require zero initialization before (or instead of) calling the
|
|
// constructor, as can be the case with a non-user-provided default
|
|
// constructor, emit the zero initialization now.
|
|
if (E->requiresZeroInitialization())
|
|
EmitNullInitialization(Dest.getAddr(), E->getType());
|
|
|
|
// If this is a call to a trivial default constructor, do nothing.
|
|
if (CD->isTrivial() && CD->isDefaultConstructor())
|
|
return;
|
|
|
|
// Elide the constructor if we're constructing from a temporary.
|
|
// The temporary check is required because Sema sets this on NRVO
|
|
// returns.
|
|
if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
|
|
assert(getContext().hasSameUnqualifiedType(E->getType(),
|
|
E->getArg(0)->getType()));
|
|
if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
|
|
EmitAggExpr(E->getArg(0), Dest);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const ConstantArrayType *Array
|
|
= getContext().getAsConstantArrayType(E->getType());
|
|
if (Array) {
|
|
QualType BaseElementTy = getContext().getBaseElementType(Array);
|
|
const llvm::Type *BasePtr = ConvertType(BaseElementTy);
|
|
BasePtr = llvm::PointerType::getUnqual(BasePtr);
|
|
llvm::Value *BaseAddrPtr =
|
|
Builder.CreateBitCast(Dest.getAddr(), BasePtr);
|
|
|
|
EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr,
|
|
E->arg_begin(), E->arg_end());
|
|
}
|
|
else {
|
|
CXXCtorType Type =
|
|
(E->getConstructionKind() == CXXConstructExpr::CK_Complete)
|
|
? Ctor_Complete : Ctor_Base;
|
|
bool ForVirtualBase =
|
|
E->getConstructionKind() == CXXConstructExpr::CK_VirtualBase;
|
|
|
|
// Call the constructor.
|
|
EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
|
|
E->arg_begin(), E->arg_end());
|
|
}
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
|
|
llvm::Value *Src,
|
|
const BlockDeclRefExpr *BDRE) {
|
|
const Expr *Exp = BDRE->getCopyConstructorExpr();
|
|
if (const CXXExprWithTemporaries *E = dyn_cast<CXXExprWithTemporaries>(Exp))
|
|
Exp = E->getSubExpr();
|
|
assert(isa<CXXConstructExpr>(Exp) &&
|
|
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
|
|
const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
|
|
const CXXConstructorDecl *CD = E->getConstructor();
|
|
RunCleanupsScope Scope(*this);
|
|
|
|
// If we require zero initialization before (or instead of) calling the
|
|
// constructor, as can be the case with a non-user-provided default
|
|
// constructor, emit the zero initialization now.
|
|
// FIXME. Do I still need this for a copy ctor synthesis?
|
|
if (E->requiresZeroInitialization())
|
|
EmitNullInitialization(Dest, E->getType());
|
|
|
|
const ConstantArrayType *Array
|
|
= getContext().getAsConstantArrayType(E->getType());
|
|
assert (!Array && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
|
|
EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
|
|
E->arg_begin(), E->arg_end());
|
|
}
|
|
|
|
/// Check whether the given operator new[] is the global placement
|
|
/// operator new[].
|
|
static bool IsPlacementOperatorNewArray(ASTContext &Ctx,
|
|
const FunctionDecl *Fn) {
|
|
// Must be in global scope. Note that allocation functions can't be
|
|
// declared in namespaces.
|
|
if (!Fn->getDeclContext()->getRedeclContext()->isFileContext())
|
|
return false;
|
|
|
|
// Signature must be void *operator new[](size_t, void*).
|
|
// The size_t is common to all operator new[]s.
|
|
if (Fn->getNumParams() != 2)
|
|
return false;
|
|
|
|
CanQualType ParamType = Ctx.getCanonicalType(Fn->getParamDecl(1)->getType());
|
|
return (ParamType == Ctx.VoidPtrTy);
|
|
}
|
|
|
|
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
|
|
const CXXNewExpr *E) {
|
|
if (!E->isArray())
|
|
return CharUnits::Zero();
|
|
|
|
// No cookie is required if the new operator being used is
|
|
// ::operator new[](size_t, void*).
|
|
const FunctionDecl *OperatorNew = E->getOperatorNew();
|
|
if (IsPlacementOperatorNewArray(CGF.getContext(), OperatorNew))
|
|
return CharUnits::Zero();
|
|
|
|
return CGF.CGM.getCXXABI().GetArrayCookieSize(E->getAllocatedType());
|
|
}
|
|
|
|
static llvm::Value *EmitCXXNewAllocSize(ASTContext &Context,
|
|
CodeGenFunction &CGF,
|
|
const CXXNewExpr *E,
|
|
llvm::Value *&NumElements,
|
|
llvm::Value *&SizeWithoutCookie) {
|
|
QualType ElemType = E->getAllocatedType();
|
|
|
|
const llvm::IntegerType *SizeTy =
|
|
cast<llvm::IntegerType>(CGF.ConvertType(CGF.getContext().getSizeType()));
|
|
|
|
CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(ElemType);
|
|
|
|
if (!E->isArray()) {
|
|
SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity());
|
|
return SizeWithoutCookie;
|
|
}
|
|
|
|
// Figure out the cookie size.
|
|
CharUnits CookieSize = CalculateCookiePadding(CGF, E);
|
|
|
|
// Emit the array size expression.
|
|
// We multiply the size of all dimensions for NumElements.
|
|
// e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
|
|
NumElements = CGF.EmitScalarExpr(E->getArraySize());
|
|
assert(NumElements->getType() == SizeTy && "element count not a size_t");
|
|
|
|
uint64_t ArraySizeMultiplier = 1;
|
|
while (const ConstantArrayType *CAT
|
|
= CGF.getContext().getAsConstantArrayType(ElemType)) {
|
|
ElemType = CAT->getElementType();
|
|
ArraySizeMultiplier *= CAT->getSize().getZExtValue();
|
|
}
|
|
|
|
llvm::Value *Size;
|
|
|
|
// If someone is doing 'new int[42]' there is no need to do a dynamic check.
|
|
// Don't bloat the -O0 code.
|
|
if (llvm::ConstantInt *NumElementsC =
|
|
dyn_cast<llvm::ConstantInt>(NumElements)) {
|
|
llvm::APInt NEC = NumElementsC->getValue();
|
|
unsigned SizeWidth = NEC.getBitWidth();
|
|
|
|
// Determine if there is an overflow here by doing an extended multiply.
|
|
NEC.zext(SizeWidth*2);
|
|
llvm::APInt SC(SizeWidth*2, TypeSize.getQuantity());
|
|
SC *= NEC;
|
|
|
|
if (!CookieSize.isZero()) {
|
|
// Save the current size without a cookie. We don't care if an
|
|
// overflow's already happened because SizeWithoutCookie isn't
|
|
// used if the allocator returns null or throws, as it should
|
|
// always do on an overflow.
|
|
llvm::APInt SWC = SC;
|
|
SWC.trunc(SizeWidth);
|
|
SizeWithoutCookie = llvm::ConstantInt::get(SizeTy, SWC);
|
|
|
|
// Add the cookie size.
|
|
SC += llvm::APInt(SizeWidth*2, CookieSize.getQuantity());
|
|
}
|
|
|
|
if (SC.countLeadingZeros() >= SizeWidth) {
|
|
SC.trunc(SizeWidth);
|
|
Size = llvm::ConstantInt::get(SizeTy, SC);
|
|
} else {
|
|
// On overflow, produce a -1 so operator new throws.
|
|
Size = llvm::Constant::getAllOnesValue(SizeTy);
|
|
}
|
|
|
|
// Scale NumElements while we're at it.
|
|
uint64_t N = NEC.getZExtValue() * ArraySizeMultiplier;
|
|
NumElements = llvm::ConstantInt::get(SizeTy, N);
|
|
|
|
// Otherwise, we don't need to do an overflow-checked multiplication if
|
|
// we're multiplying by one.
|
|
} else if (TypeSize.isOne()) {
|
|
assert(ArraySizeMultiplier == 1);
|
|
|
|
Size = NumElements;
|
|
|
|
// If we need a cookie, add its size in with an overflow check.
|
|
// This is maybe a little paranoid.
|
|
if (!CookieSize.isZero()) {
|
|
SizeWithoutCookie = Size;
|
|
|
|
llvm::Value *CookieSizeV
|
|
= llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
|
|
|
|
const llvm::Type *Types[] = { SizeTy };
|
|
llvm::Value *UAddF
|
|
= CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1);
|
|
llvm::Value *AddRes
|
|
= CGF.Builder.CreateCall2(UAddF, Size, CookieSizeV);
|
|
|
|
Size = CGF.Builder.CreateExtractValue(AddRes, 0);
|
|
llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1);
|
|
Size = CGF.Builder.CreateSelect(DidOverflow,
|
|
llvm::ConstantInt::get(SizeTy, -1),
|
|
Size);
|
|
}
|
|
|
|
// Otherwise use the int.umul.with.overflow intrinsic.
|
|
} else {
|
|
llvm::Value *OutermostElementSize
|
|
= llvm::ConstantInt::get(SizeTy, TypeSize.getQuantity());
|
|
|
|
llvm::Value *NumOutermostElements = NumElements;
|
|
|
|
// Scale NumElements by the array size multiplier. This might
|
|
// overflow, but only if the multiplication below also overflows,
|
|
// in which case this multiplication isn't used.
|
|
if (ArraySizeMultiplier != 1)
|
|
NumElements = CGF.Builder.CreateMul(NumElements,
|
|
llvm::ConstantInt::get(SizeTy, ArraySizeMultiplier));
|
|
|
|
// The requested size of the outermost array is non-constant.
|
|
// Multiply that by the static size of the elements of that array;
|
|
// on unsigned overflow, set the size to -1 to trigger an
|
|
// exception from the allocation routine. This is sufficient to
|
|
// prevent buffer overruns from the allocator returning a
|
|
// seemingly valid pointer to insufficient space. This idea comes
|
|
// originally from MSVC, and GCC has an open bug requesting
|
|
// similar behavior:
|
|
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19351
|
|
//
|
|
// This will not be sufficient for C++0x, which requires a
|
|
// specific exception class (std::bad_array_new_length).
|
|
// That will require ABI support that has not yet been specified.
|
|
const llvm::Type *Types[] = { SizeTy };
|
|
llvm::Value *UMulF
|
|
= CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, Types, 1);
|
|
llvm::Value *MulRes = CGF.Builder.CreateCall2(UMulF, NumOutermostElements,
|
|
OutermostElementSize);
|
|
|
|
// The overflow bit.
|
|
llvm::Value *DidOverflow = CGF.Builder.CreateExtractValue(MulRes, 1);
|
|
|
|
// The result of the multiplication.
|
|
Size = CGF.Builder.CreateExtractValue(MulRes, 0);
|
|
|
|
// If we have a cookie, we need to add that size in, too.
|
|
if (!CookieSize.isZero()) {
|
|
SizeWithoutCookie = Size;
|
|
|
|
llvm::Value *CookieSizeV
|
|
= llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
|
|
llvm::Value *UAddF
|
|
= CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, Types, 1);
|
|
llvm::Value *AddRes
|
|
= CGF.Builder.CreateCall2(UAddF, SizeWithoutCookie, CookieSizeV);
|
|
|
|
Size = CGF.Builder.CreateExtractValue(AddRes, 0);
|
|
|
|
llvm::Value *AddDidOverflow = CGF.Builder.CreateExtractValue(AddRes, 1);
|
|
DidOverflow = CGF.Builder.CreateAnd(DidOverflow, AddDidOverflow);
|
|
}
|
|
|
|
Size = CGF.Builder.CreateSelect(DidOverflow,
|
|
llvm::ConstantInt::get(SizeTy, -1),
|
|
Size);
|
|
}
|
|
|
|
if (CookieSize.isZero())
|
|
SizeWithoutCookie = Size;
|
|
else
|
|
assert(SizeWithoutCookie && "didn't set SizeWithoutCookie?");
|
|
|
|
return Size;
|
|
}
|
|
|
|
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
|
|
llvm::Value *NewPtr) {
|
|
|
|
assert(E->getNumConstructorArgs() == 1 &&
|
|
"Can only have one argument to initializer of POD type.");
|
|
|
|
const Expr *Init = E->getConstructorArg(0);
|
|
QualType AllocType = E->getAllocatedType();
|
|
|
|
unsigned Alignment =
|
|
CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
|
|
if (!CGF.hasAggregateLLVMType(AllocType))
|
|
CGF.EmitStoreOfScalar(CGF.EmitScalarExpr(Init), NewPtr,
|
|
AllocType.isVolatileQualified(), Alignment,
|
|
AllocType);
|
|
else if (AllocType->isAnyComplexType())
|
|
CGF.EmitComplexExprIntoAddr(Init, NewPtr,
|
|
AllocType.isVolatileQualified());
|
|
else {
|
|
AggValueSlot Slot
|
|
= AggValueSlot::forAddr(NewPtr, AllocType.isVolatileQualified(), true);
|
|
CGF.EmitAggExpr(Init, Slot);
|
|
}
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements) {
|
|
// We have a POD type.
|
|
if (E->getNumConstructorArgs() == 0)
|
|
return;
|
|
|
|
const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
|
|
|
|
// Create a temporary for the loop index and initialize it with 0.
|
|
llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
|
|
Builder.CreateStore(Zero, IndexPtr);
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
|
|
llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
|
|
|
|
EmitBlock(CondBlock);
|
|
|
|
llvm::BasicBlock *ForBody = createBasicBlock("for.body");
|
|
|
|
// Generate: if (loop-index < number-of-elements fall to the loop body,
|
|
// otherwise, go to the block after the for-loop.
|
|
llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
|
|
llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
|
|
// If the condition is true, execute the body.
|
|
Builder.CreateCondBr(IsLess, ForBody, AfterFor);
|
|
|
|
EmitBlock(ForBody);
|
|
|
|
llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
|
|
// Inside the loop body, emit the constructor call on the array element.
|
|
Counter = Builder.CreateLoad(IndexPtr);
|
|
llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter,
|
|
"arrayidx");
|
|
StoreAnyExprIntoOneUnit(*this, E, Address);
|
|
|
|
EmitBlock(ContinueBlock);
|
|
|
|
// Emit the increment of the loop counter.
|
|
llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
|
|
Counter = Builder.CreateLoad(IndexPtr);
|
|
NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
|
|
Builder.CreateStore(NextVal, IndexPtr);
|
|
|
|
// Finally, branch back up to the condition for the next iteration.
|
|
EmitBranch(CondBlock);
|
|
|
|
// Emit the fall-through block.
|
|
EmitBlock(AfterFor, true);
|
|
}
|
|
|
|
static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
|
|
llvm::Value *NewPtr, llvm::Value *Size) {
|
|
llvm::LLVMContext &VMContext = CGF.CGM.getLLVMContext();
|
|
const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
|
|
if (NewPtr->getType() != BP)
|
|
NewPtr = CGF.Builder.CreateBitCast(NewPtr, BP, "tmp");
|
|
|
|
CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(BP, CGF.IntPtrTy), NewPtr,
|
|
llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)),
|
|
Size,
|
|
llvm::ConstantInt::get(CGF.Int32Ty,
|
|
CGF.getContext().getTypeAlign(T)/8),
|
|
llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext),
|
|
0));
|
|
}
|
|
|
|
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements,
|
|
llvm::Value *AllocSizeWithoutCookie) {
|
|
if (E->isArray()) {
|
|
if (CXXConstructorDecl *Ctor = E->getConstructor()) {
|
|
bool RequiresZeroInitialization = false;
|
|
if (Ctor->getParent()->hasTrivialConstructor()) {
|
|
// If new expression did not specify value-initialization, then there
|
|
// is no initialization.
|
|
if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
|
|
return;
|
|
|
|
if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
|
|
// Optimization: since zero initialization will just set the memory
|
|
// to all zeroes, generate a single memset to do it in one shot.
|
|
EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
|
|
AllocSizeWithoutCookie);
|
|
return;
|
|
}
|
|
|
|
RequiresZeroInitialization = true;
|
|
}
|
|
|
|
CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
|
|
E->constructor_arg_begin(),
|
|
E->constructor_arg_end(),
|
|
RequiresZeroInitialization);
|
|
return;
|
|
} else if (E->getNumConstructorArgs() == 1 &&
|
|
isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
|
|
// Optimization: since zero initialization will just set the memory
|
|
// to all zeroes, generate a single memset to do it in one shot.
|
|
EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
|
|
AllocSizeWithoutCookie);
|
|
return;
|
|
} else {
|
|
CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (CXXConstructorDecl *Ctor = E->getConstructor()) {
|
|
// Per C++ [expr.new]p15, if we have an initializer, then we're performing
|
|
// direct initialization. C++ [dcl.init]p5 requires that we
|
|
// zero-initialize storage if there are no user-declared constructors.
|
|
if (E->hasInitializer() &&
|
|
!Ctor->getParent()->hasUserDeclaredConstructor() &&
|
|
!Ctor->getParent()->isEmpty())
|
|
CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
|
|
|
|
CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
|
|
NewPtr, E->constructor_arg_begin(),
|
|
E->constructor_arg_end());
|
|
|
|
return;
|
|
}
|
|
// We have a POD type.
|
|
if (E->getNumConstructorArgs() == 0)
|
|
return;
|
|
|
|
StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
|
|
}
|
|
|
|
namespace {
|
|
/// A utility class for saving an rvalue.
|
|
class SavedRValue {
|
|
public:
|
|
enum Kind { ScalarLiteral, ScalarAddress,
|
|
AggregateLiteral, AggregateAddress,
|
|
Complex };
|
|
|
|
private:
|
|
llvm::Value *Value;
|
|
Kind K;
|
|
|
|
SavedRValue(llvm::Value *V, Kind K) : Value(V), K(K) {}
|
|
|
|
public:
|
|
SavedRValue() {}
|
|
|
|
static SavedRValue forScalarLiteral(llvm::Value *V) {
|
|
return SavedRValue(V, ScalarLiteral);
|
|
}
|
|
|
|
static SavedRValue forScalarAddress(llvm::Value *Addr) {
|
|
return SavedRValue(Addr, ScalarAddress);
|
|
}
|
|
|
|
static SavedRValue forAggregateLiteral(llvm::Value *V) {
|
|
return SavedRValue(V, AggregateLiteral);
|
|
}
|
|
|
|
static SavedRValue forAggregateAddress(llvm::Value *Addr) {
|
|
return SavedRValue(Addr, AggregateAddress);
|
|
}
|
|
|
|
static SavedRValue forComplexAddress(llvm::Value *Addr) {
|
|
return SavedRValue(Addr, Complex);
|
|
}
|
|
|
|
Kind getKind() const { return K; }
|
|
llvm::Value *getValue() const { return Value; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Given an r-value, perform the code necessary to make sure that a
|
|
/// future RestoreRValue will be able to load the value without
|
|
/// domination concerns.
|
|
static SavedRValue SaveRValue(CodeGenFunction &CGF, RValue RV) {
|
|
if (RV.isScalar()) {
|
|
llvm::Value *V = RV.getScalarVal();
|
|
|
|
// These automatically dominate and don't need to be saved.
|
|
if (isa<llvm::Constant>(V) || isa<llvm::AllocaInst>(V))
|
|
return SavedRValue::forScalarLiteral(V);
|
|
|
|
// Everything else needs an alloca.
|
|
llvm::Value *Addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
|
|
CGF.Builder.CreateStore(V, Addr);
|
|
return SavedRValue::forScalarAddress(Addr);
|
|
}
|
|
|
|
if (RV.isComplex()) {
|
|
CodeGenFunction::ComplexPairTy V = RV.getComplexVal();
|
|
const llvm::Type *ComplexTy =
|
|
llvm::StructType::get(CGF.getLLVMContext(),
|
|
V.first->getType(), V.second->getType(),
|
|
(void*) 0);
|
|
llvm::Value *Addr = CGF.CreateTempAlloca(ComplexTy, "saved-complex");
|
|
CGF.StoreComplexToAddr(V, Addr, /*volatile*/ false);
|
|
return SavedRValue::forComplexAddress(Addr);
|
|
}
|
|
|
|
assert(RV.isAggregate());
|
|
llvm::Value *V = RV.getAggregateAddr(); // TODO: volatile?
|
|
if (isa<llvm::Constant>(V) || isa<llvm::AllocaInst>(V))
|
|
return SavedRValue::forAggregateLiteral(V);
|
|
|
|
llvm::Value *Addr = CGF.CreateTempAlloca(V->getType(), "saved-rvalue");
|
|
CGF.Builder.CreateStore(V, Addr);
|
|
return SavedRValue::forAggregateAddress(Addr);
|
|
}
|
|
|
|
/// Given a saved r-value produced by SaveRValue, perform the code
|
|
/// necessary to restore it to usability at the current insertion
|
|
/// point.
|
|
static RValue RestoreRValue(CodeGenFunction &CGF, SavedRValue RV) {
|
|
switch (RV.getKind()) {
|
|
case SavedRValue::ScalarLiteral:
|
|
return RValue::get(RV.getValue());
|
|
case SavedRValue::ScalarAddress:
|
|
return RValue::get(CGF.Builder.CreateLoad(RV.getValue()));
|
|
case SavedRValue::AggregateLiteral:
|
|
return RValue::getAggregate(RV.getValue());
|
|
case SavedRValue::AggregateAddress:
|
|
return RValue::getAggregate(CGF.Builder.CreateLoad(RV.getValue()));
|
|
case SavedRValue::Complex:
|
|
return RValue::getComplex(CGF.LoadComplexFromAddr(RV.getValue(), false));
|
|
}
|
|
|
|
llvm_unreachable("bad saved r-value kind");
|
|
return RValue();
|
|
}
|
|
|
|
namespace {
|
|
/// A cleanup to call the given 'operator delete' function upon
|
|
/// abnormal exit from a new expression.
|
|
class CallDeleteDuringNew : public EHScopeStack::Cleanup {
|
|
size_t NumPlacementArgs;
|
|
const FunctionDecl *OperatorDelete;
|
|
llvm::Value *Ptr;
|
|
llvm::Value *AllocSize;
|
|
|
|
RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
|
|
|
|
public:
|
|
static size_t getExtraSize(size_t NumPlacementArgs) {
|
|
return NumPlacementArgs * sizeof(RValue);
|
|
}
|
|
|
|
CallDeleteDuringNew(size_t NumPlacementArgs,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *Ptr,
|
|
llvm::Value *AllocSize)
|
|
: NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
|
|
Ptr(Ptr), AllocSize(AllocSize) {}
|
|
|
|
void setPlacementArg(unsigned I, RValue Arg) {
|
|
assert(I < NumPlacementArgs && "index out of range");
|
|
getPlacementArgs()[I] = Arg;
|
|
}
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
const FunctionProtoType *FPT
|
|
= OperatorDelete->getType()->getAs<FunctionProtoType>();
|
|
assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
|
|
(FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
|
|
|
|
CallArgList DeleteArgs;
|
|
|
|
// The first argument is always a void*.
|
|
FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
|
|
DeleteArgs.push_back(std::make_pair(RValue::get(Ptr), *AI++));
|
|
|
|
// A member 'operator delete' can take an extra 'size_t' argument.
|
|
if (FPT->getNumArgs() == NumPlacementArgs + 2)
|
|
DeleteArgs.push_back(std::make_pair(RValue::get(AllocSize), *AI++));
|
|
|
|
// Pass the rest of the arguments, which must match exactly.
|
|
for (unsigned I = 0; I != NumPlacementArgs; ++I)
|
|
DeleteArgs.push_back(std::make_pair(getPlacementArgs()[I], *AI++));
|
|
|
|
// Call 'operator delete'.
|
|
CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
|
|
CGF.CGM.GetAddrOfFunction(OperatorDelete),
|
|
ReturnValueSlot(), DeleteArgs, OperatorDelete);
|
|
}
|
|
};
|
|
|
|
/// A cleanup to call the given 'operator delete' function upon
|
|
/// abnormal exit from a new expression when the new expression is
|
|
/// conditional.
|
|
class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
|
|
size_t NumPlacementArgs;
|
|
const FunctionDecl *OperatorDelete;
|
|
SavedRValue Ptr;
|
|
SavedRValue AllocSize;
|
|
|
|
SavedRValue *getPlacementArgs() {
|
|
return reinterpret_cast<SavedRValue*>(this+1);
|
|
}
|
|
|
|
public:
|
|
static size_t getExtraSize(size_t NumPlacementArgs) {
|
|
return NumPlacementArgs * sizeof(SavedRValue);
|
|
}
|
|
|
|
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
|
|
const FunctionDecl *OperatorDelete,
|
|
SavedRValue Ptr,
|
|
SavedRValue AllocSize)
|
|
: NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
|
|
Ptr(Ptr), AllocSize(AllocSize) {}
|
|
|
|
void setPlacementArg(unsigned I, SavedRValue Arg) {
|
|
assert(I < NumPlacementArgs && "index out of range");
|
|
getPlacementArgs()[I] = Arg;
|
|
}
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
const FunctionProtoType *FPT
|
|
= OperatorDelete->getType()->getAs<FunctionProtoType>();
|
|
assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
|
|
(FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
|
|
|
|
CallArgList DeleteArgs;
|
|
|
|
// The first argument is always a void*.
|
|
FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
|
|
DeleteArgs.push_back(std::make_pair(RestoreRValue(CGF, Ptr), *AI++));
|
|
|
|
// A member 'operator delete' can take an extra 'size_t' argument.
|
|
if (FPT->getNumArgs() == NumPlacementArgs + 2) {
|
|
RValue RV = RestoreRValue(CGF, AllocSize);
|
|
DeleteArgs.push_back(std::make_pair(RV, *AI++));
|
|
}
|
|
|
|
// Pass the rest of the arguments, which must match exactly.
|
|
for (unsigned I = 0; I != NumPlacementArgs; ++I) {
|
|
RValue RV = RestoreRValue(CGF, getPlacementArgs()[I]);
|
|
DeleteArgs.push_back(std::make_pair(RV, *AI++));
|
|
}
|
|
|
|
// Call 'operator delete'.
|
|
CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
|
|
CGF.CGM.GetAddrOfFunction(OperatorDelete),
|
|
ReturnValueSlot(), DeleteArgs, OperatorDelete);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Enter a cleanup to call 'operator delete' if the initializer in a
|
|
/// new-expression throws.
|
|
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
|
|
const CXXNewExpr *E,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *AllocSize,
|
|
const CallArgList &NewArgs) {
|
|
// If we're not inside a conditional branch, then the cleanup will
|
|
// dominate and we can do the easier (and more efficient) thing.
|
|
if (!CGF.isInConditionalBranch()) {
|
|
CallDeleteDuringNew *Cleanup = CGF.EHStack
|
|
.pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
|
|
E->getNumPlacementArgs(),
|
|
E->getOperatorDelete(),
|
|
NewPtr, AllocSize);
|
|
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
|
|
Cleanup->setPlacementArg(I, NewArgs[I+1].first);
|
|
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we need to save all this stuff.
|
|
SavedRValue SavedNewPtr = SaveRValue(CGF, RValue::get(NewPtr));
|
|
SavedRValue SavedAllocSize = SaveRValue(CGF, RValue::get(AllocSize));
|
|
|
|
CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
|
|
.pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
|
|
E->getNumPlacementArgs(),
|
|
E->getOperatorDelete(),
|
|
SavedNewPtr,
|
|
SavedAllocSize);
|
|
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
|
|
Cleanup->setPlacementArg(I, SaveRValue(CGF, NewArgs[I+1].first));
|
|
|
|
CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
|
|
QualType AllocType = E->getAllocatedType();
|
|
if (AllocType->isArrayType())
|
|
while (const ArrayType *AType = getContext().getAsArrayType(AllocType))
|
|
AllocType = AType->getElementType();
|
|
|
|
FunctionDecl *NewFD = E->getOperatorNew();
|
|
const FunctionProtoType *NewFTy = NewFD->getType()->getAs<FunctionProtoType>();
|
|
|
|
CallArgList NewArgs;
|
|
|
|
// The allocation size is the first argument.
|
|
QualType SizeTy = getContext().getSizeType();
|
|
|
|
llvm::Value *NumElements = 0;
|
|
llvm::Value *AllocSizeWithoutCookie = 0;
|
|
llvm::Value *AllocSize = EmitCXXNewAllocSize(getContext(),
|
|
*this, E, NumElements,
|
|
AllocSizeWithoutCookie);
|
|
|
|
NewArgs.push_back(std::make_pair(RValue::get(AllocSize), SizeTy));
|
|
|
|
// Emit the rest of the arguments.
|
|
// FIXME: Ideally, this should just use EmitCallArgs.
|
|
CXXNewExpr::const_arg_iterator NewArg = E->placement_arg_begin();
|
|
|
|
// First, use the types from the function type.
|
|
// We start at 1 here because the first argument (the allocation size)
|
|
// has already been emitted.
|
|
for (unsigned i = 1, e = NewFTy->getNumArgs(); i != e; ++i, ++NewArg) {
|
|
QualType ArgType = NewFTy->getArgType(i);
|
|
|
|
assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
|
|
getTypePtr() ==
|
|
getContext().getCanonicalType(NewArg->getType()).getTypePtr() &&
|
|
"type mismatch in call argument!");
|
|
|
|
NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
|
|
ArgType));
|
|
|
|
}
|
|
|
|
// Either we've emitted all the call args, or we have a call to a
|
|
// variadic function.
|
|
assert((NewArg == E->placement_arg_end() || NewFTy->isVariadic()) &&
|
|
"Extra arguments in non-variadic function!");
|
|
|
|
// If we still have any arguments, emit them using the type of the argument.
|
|
for (CXXNewExpr::const_arg_iterator NewArgEnd = E->placement_arg_end();
|
|
NewArg != NewArgEnd; ++NewArg) {
|
|
QualType ArgType = NewArg->getType();
|
|
NewArgs.push_back(std::make_pair(EmitCallArg(*NewArg, ArgType),
|
|
ArgType));
|
|
}
|
|
|
|
// Emit the call to new.
|
|
RValue RV =
|
|
EmitCall(CGM.getTypes().getFunctionInfo(NewArgs, NewFTy),
|
|
CGM.GetAddrOfFunction(NewFD), ReturnValueSlot(), NewArgs, NewFD);
|
|
|
|
// If an allocation function is declared with an empty exception specification
|
|
// it returns null to indicate failure to allocate storage. [expr.new]p13.
|
|
// (We don't need to check for null when there's no new initializer and
|
|
// we're allocating a POD type).
|
|
bool NullCheckResult = NewFTy->hasEmptyExceptionSpec() &&
|
|
!(AllocType->isPODType() && !E->hasInitializer());
|
|
|
|
llvm::BasicBlock *NullCheckSource = 0;
|
|
llvm::BasicBlock *NewNotNull = 0;
|
|
llvm::BasicBlock *NewEnd = 0;
|
|
|
|
llvm::Value *NewPtr = RV.getScalarVal();
|
|
unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
|
|
|
|
if (NullCheckResult) {
|
|
NullCheckSource = Builder.GetInsertBlock();
|
|
NewNotNull = createBasicBlock("new.notnull");
|
|
NewEnd = createBasicBlock("new.end");
|
|
|
|
llvm::Value *IsNull = Builder.CreateIsNull(NewPtr, "new.isnull");
|
|
Builder.CreateCondBr(IsNull, NewEnd, NewNotNull);
|
|
EmitBlock(NewNotNull);
|
|
}
|
|
|
|
assert((AllocSize == AllocSizeWithoutCookie) ==
|
|
CalculateCookiePadding(*this, E).isZero());
|
|
if (AllocSize != AllocSizeWithoutCookie) {
|
|
assert(E->isArray());
|
|
NewPtr = CGM.getCXXABI().InitializeArrayCookie(CGF, NewPtr, NumElements,
|
|
AllocType);
|
|
}
|
|
|
|
// If there's an operator delete, enter a cleanup to call it if an
|
|
// exception is thrown.
|
|
EHScopeStack::stable_iterator CallOperatorDelete;
|
|
if (E->getOperatorDelete()) {
|
|
EnterNewDeleteCleanup(*this, E, NewPtr, AllocSize, NewArgs);
|
|
CallOperatorDelete = EHStack.stable_begin();
|
|
}
|
|
|
|
const llvm::Type *ElementPtrTy
|
|
= ConvertTypeForMem(AllocType)->getPointerTo(AS);
|
|
NewPtr = Builder.CreateBitCast(NewPtr, ElementPtrTy);
|
|
|
|
if (E->isArray()) {
|
|
EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie);
|
|
|
|
// NewPtr is a pointer to the base element type. If we're
|
|
// allocating an array of arrays, we'll need to cast back to the
|
|
// array pointer type.
|
|
const llvm::Type *ResultTy = ConvertTypeForMem(E->getType());
|
|
if (NewPtr->getType() != ResultTy)
|
|
NewPtr = Builder.CreateBitCast(NewPtr, ResultTy);
|
|
} else {
|
|
EmitNewInitializer(*this, E, NewPtr, NumElements, AllocSizeWithoutCookie);
|
|
}
|
|
|
|
// Deactivate the 'operator delete' cleanup if we finished
|
|
// initialization.
|
|
if (CallOperatorDelete.isValid())
|
|
DeactivateCleanupBlock(CallOperatorDelete);
|
|
|
|
if (NullCheckResult) {
|
|
Builder.CreateBr(NewEnd);
|
|
llvm::BasicBlock *NotNullSource = Builder.GetInsertBlock();
|
|
EmitBlock(NewEnd);
|
|
|
|
llvm::PHINode *PHI = Builder.CreatePHI(NewPtr->getType());
|
|
PHI->reserveOperandSpace(2);
|
|
PHI->addIncoming(NewPtr, NotNullSource);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(NewPtr->getType()),
|
|
NullCheckSource);
|
|
|
|
NewPtr = PHI;
|
|
}
|
|
|
|
return NewPtr;
|
|
}
|
|
|
|
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
|
|
llvm::Value *Ptr,
|
|
QualType DeleteTy) {
|
|
assert(DeleteFD->getOverloadedOperator() == OO_Delete);
|
|
|
|
const FunctionProtoType *DeleteFTy =
|
|
DeleteFD->getType()->getAs<FunctionProtoType>();
|
|
|
|
CallArgList DeleteArgs;
|
|
|
|
// Check if we need to pass the size to the delete operator.
|
|
llvm::Value *Size = 0;
|
|
QualType SizeTy;
|
|
if (DeleteFTy->getNumArgs() == 2) {
|
|
SizeTy = DeleteFTy->getArgType(1);
|
|
CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
|
|
Size = llvm::ConstantInt::get(ConvertType(SizeTy),
|
|
DeleteTypeSize.getQuantity());
|
|
}
|
|
|
|
QualType ArgTy = DeleteFTy->getArgType(0);
|
|
llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
|
|
DeleteArgs.push_back(std::make_pair(RValue::get(DeletePtr), ArgTy));
|
|
|
|
if (Size)
|
|
DeleteArgs.push_back(std::make_pair(RValue::get(Size), SizeTy));
|
|
|
|
// Emit the call to delete.
|
|
EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
|
|
CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
|
|
DeleteArgs, DeleteFD);
|
|
}
|
|
|
|
namespace {
|
|
/// Calls the given 'operator delete' on a single object.
|
|
struct CallObjectDelete : EHScopeStack::Cleanup {
|
|
llvm::Value *Ptr;
|
|
const FunctionDecl *OperatorDelete;
|
|
QualType ElementType;
|
|
|
|
CallObjectDelete(llvm::Value *Ptr,
|
|
const FunctionDecl *OperatorDelete,
|
|
QualType ElementType)
|
|
: Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit the code for deleting a single object.
|
|
static void EmitObjectDelete(CodeGenFunction &CGF,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *Ptr,
|
|
QualType ElementType) {
|
|
// Find the destructor for the type, if applicable. If the
|
|
// destructor is virtual, we'll just emit the vcall and return.
|
|
const CXXDestructorDecl *Dtor = 0;
|
|
if (const RecordType *RT = ElementType->getAs<RecordType>()) {
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!RD->hasTrivialDestructor()) {
|
|
Dtor = RD->getDestructor();
|
|
|
|
if (Dtor->isVirtual()) {
|
|
const llvm::Type *Ty =
|
|
CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
|
|
Dtor_Complete),
|
|
/*isVariadic=*/false);
|
|
|
|
llvm::Value *Callee
|
|
= CGF.BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty);
|
|
CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
|
|
0, 0);
|
|
|
|
// The dtor took care of deleting the object.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure that we call delete even if the dtor throws.
|
|
CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
|
|
Ptr, OperatorDelete, ElementType);
|
|
|
|
if (Dtor)
|
|
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
|
|
/*ForVirtualBase=*/false, Ptr);
|
|
|
|
CGF.PopCleanupBlock();
|
|
}
|
|
|
|
namespace {
|
|
/// Calls the given 'operator delete' on an array of objects.
|
|
struct CallArrayDelete : EHScopeStack::Cleanup {
|
|
llvm::Value *Ptr;
|
|
const FunctionDecl *OperatorDelete;
|
|
llvm::Value *NumElements;
|
|
QualType ElementType;
|
|
CharUnits CookieSize;
|
|
|
|
CallArrayDelete(llvm::Value *Ptr,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *NumElements,
|
|
QualType ElementType,
|
|
CharUnits CookieSize)
|
|
: Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
|
|
ElementType(ElementType), CookieSize(CookieSize) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, bool IsForEH) {
|
|
const FunctionProtoType *DeleteFTy =
|
|
OperatorDelete->getType()->getAs<FunctionProtoType>();
|
|
assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
|
|
|
|
CallArgList Args;
|
|
|
|
// Pass the pointer as the first argument.
|
|
QualType VoidPtrTy = DeleteFTy->getArgType(0);
|
|
llvm::Value *DeletePtr
|
|
= CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
|
|
Args.push_back(std::make_pair(RValue::get(DeletePtr), VoidPtrTy));
|
|
|
|
// Pass the original requested size as the second argument.
|
|
if (DeleteFTy->getNumArgs() == 2) {
|
|
QualType size_t = DeleteFTy->getArgType(1);
|
|
const llvm::IntegerType *SizeTy
|
|
= cast<llvm::IntegerType>(CGF.ConvertType(size_t));
|
|
|
|
CharUnits ElementTypeSize =
|
|
CGF.CGM.getContext().getTypeSizeInChars(ElementType);
|
|
|
|
// The size of an element, multiplied by the number of elements.
|
|
llvm::Value *Size
|
|
= llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
|
|
Size = CGF.Builder.CreateMul(Size, NumElements);
|
|
|
|
// Plus the size of the cookie if applicable.
|
|
if (!CookieSize.isZero()) {
|
|
llvm::Value *CookieSizeV
|
|
= llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
|
|
Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
|
|
}
|
|
|
|
Args.push_back(std::make_pair(RValue::get(Size), size_t));
|
|
}
|
|
|
|
// Emit the call to delete.
|
|
CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
|
|
CGF.CGM.GetAddrOfFunction(OperatorDelete),
|
|
ReturnValueSlot(), Args, OperatorDelete);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit the code for deleting an array of objects.
|
|
static void EmitArrayDelete(CodeGenFunction &CGF,
|
|
const FunctionDecl *OperatorDelete,
|
|
llvm::Value *Ptr,
|
|
QualType ElementType) {
|
|
llvm::Value *NumElements = 0;
|
|
llvm::Value *AllocatedPtr = 0;
|
|
CharUnits CookieSize;
|
|
CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr, ElementType,
|
|
NumElements, AllocatedPtr, CookieSize);
|
|
|
|
assert(AllocatedPtr && "ReadArrayCookie didn't set AllocatedPtr");
|
|
|
|
// Make sure that we call delete even if one of the dtors throws.
|
|
CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
|
|
AllocatedPtr, OperatorDelete,
|
|
NumElements, ElementType,
|
|
CookieSize);
|
|
|
|
if (const CXXRecordDecl *RD = ElementType->getAsCXXRecordDecl()) {
|
|
if (!RD->hasTrivialDestructor()) {
|
|
assert(NumElements && "ReadArrayCookie didn't find element count"
|
|
" for a class with destructor");
|
|
CGF.EmitCXXAggrDestructorCall(RD->getDestructor(), NumElements, Ptr);
|
|
}
|
|
}
|
|
|
|
CGF.PopCleanupBlock();
|
|
}
|
|
|
|
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
|
|
|
|
// Get at the argument before we performed the implicit conversion
|
|
// to void*.
|
|
const Expr *Arg = E->getArgument();
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
|
|
if (ICE->getCastKind() != CK_UserDefinedConversion &&
|
|
ICE->getType()->isVoidPointerType())
|
|
Arg = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
llvm::Value *Ptr = EmitScalarExpr(Arg);
|
|
|
|
// Null check the pointer.
|
|
llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
|
|
llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
|
|
|
|
llvm::Value *IsNull =
|
|
Builder.CreateICmpEQ(Ptr, llvm::Constant::getNullValue(Ptr->getType()),
|
|
"isnull");
|
|
|
|
Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
|
|
EmitBlock(DeleteNotNull);
|
|
|
|
// We might be deleting a pointer to array. If so, GEP down to the
|
|
// first non-array element.
|
|
// (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
|
|
QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
|
|
if (DeleteTy->isConstantArrayType()) {
|
|
llvm::Value *Zero = Builder.getInt32(0);
|
|
llvm::SmallVector<llvm::Value*,8> GEP;
|
|
|
|
GEP.push_back(Zero); // point at the outermost array
|
|
|
|
// For each layer of array type we're pointing at:
|
|
while (const ConstantArrayType *Arr
|
|
= getContext().getAsConstantArrayType(DeleteTy)) {
|
|
// 1. Unpeel the array type.
|
|
DeleteTy = Arr->getElementType();
|
|
|
|
// 2. GEP to the first element of the array.
|
|
GEP.push_back(Zero);
|
|
}
|
|
|
|
Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
|
|
}
|
|
|
|
assert(ConvertTypeForMem(DeleteTy) ==
|
|
cast<llvm::PointerType>(Ptr->getType())->getElementType());
|
|
|
|
if (E->isArrayForm()) {
|
|
EmitArrayDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy);
|
|
} else {
|
|
EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy);
|
|
}
|
|
|
|
EmitBlock(DeleteEnd);
|
|
}
|
|
|
|
llvm::Value * CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
|
|
QualType Ty = E->getType();
|
|
const llvm::Type *LTy = ConvertType(Ty)->getPointerTo();
|
|
|
|
if (E->isTypeOperand()) {
|
|
llvm::Constant *TypeInfo =
|
|
CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
|
|
return Builder.CreateBitCast(TypeInfo, LTy);
|
|
}
|
|
|
|
Expr *subE = E->getExprOperand();
|
|
Ty = subE->getType();
|
|
CanQualType CanTy = CGM.getContext().getCanonicalType(Ty);
|
|
Ty = CanTy.getUnqualifiedType().getNonReferenceType();
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (RD->isPolymorphic()) {
|
|
// FIXME: if subE is an lvalue do
|
|
LValue Obj = EmitLValue(subE);
|
|
llvm::Value *This = Obj.getAddress();
|
|
// We need to do a zero check for *p, unless it has NonNullAttr.
|
|
// FIXME: PointerType->hasAttr<NonNullAttr>()
|
|
bool CanBeZero = false;
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(subE->IgnoreParens()))
|
|
if (UO->getOpcode() == UO_Deref)
|
|
CanBeZero = true;
|
|
if (CanBeZero) {
|
|
llvm::BasicBlock *NonZeroBlock = createBasicBlock();
|
|
llvm::BasicBlock *ZeroBlock = createBasicBlock();
|
|
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(This->getType());
|
|
Builder.CreateCondBr(Builder.CreateICmpNE(This, Zero),
|
|
NonZeroBlock, ZeroBlock);
|
|
EmitBlock(ZeroBlock);
|
|
/// Call __cxa_bad_typeid
|
|
const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
|
|
const llvm::FunctionType *FTy;
|
|
FTy = llvm::FunctionType::get(ResultType, false);
|
|
llvm::Value *F = CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
|
|
Builder.CreateCall(F)->setDoesNotReturn();
|
|
Builder.CreateUnreachable();
|
|
EmitBlock(NonZeroBlock);
|
|
}
|
|
llvm::Value *V = GetVTablePtr(This, LTy->getPointerTo());
|
|
V = Builder.CreateConstInBoundsGEP1_64(V, -1ULL);
|
|
V = Builder.CreateLoad(V);
|
|
return V;
|
|
}
|
|
}
|
|
return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(Ty), LTy);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *V,
|
|
const CXXDynamicCastExpr *DCE) {
|
|
QualType SrcTy = DCE->getSubExpr()->getType();
|
|
QualType DestTy = DCE->getTypeAsWritten();
|
|
QualType InnerType = DestTy->getPointeeType();
|
|
|
|
const llvm::Type *LTy = ConvertType(DCE->getType());
|
|
|
|
bool CanBeZero = false;
|
|
bool ToVoid = false;
|
|
bool ThrowOnBad = false;
|
|
if (DestTy->isPointerType()) {
|
|
// FIXME: if PointerType->hasAttr<NonNullAttr>(), we don't set this
|
|
CanBeZero = true;
|
|
if (InnerType->isVoidType())
|
|
ToVoid = true;
|
|
} else {
|
|
LTy = LTy->getPointerTo();
|
|
|
|
// FIXME: What if exceptions are disabled?
|
|
ThrowOnBad = true;
|
|
}
|
|
|
|
if (SrcTy->isPointerType() || SrcTy->isReferenceType())
|
|
SrcTy = SrcTy->getPointeeType();
|
|
SrcTy = SrcTy.getUnqualifiedType();
|
|
|
|
if (DestTy->isPointerType() || DestTy->isReferenceType())
|
|
DestTy = DestTy->getPointeeType();
|
|
DestTy = DestTy.getUnqualifiedType();
|
|
|
|
llvm::BasicBlock *ContBlock = createBasicBlock();
|
|
llvm::BasicBlock *NullBlock = 0;
|
|
llvm::BasicBlock *NonZeroBlock = 0;
|
|
if (CanBeZero) {
|
|
NonZeroBlock = createBasicBlock();
|
|
NullBlock = createBasicBlock();
|
|
Builder.CreateCondBr(Builder.CreateIsNotNull(V), NonZeroBlock, NullBlock);
|
|
EmitBlock(NonZeroBlock);
|
|
}
|
|
|
|
llvm::BasicBlock *BadCastBlock = 0;
|
|
|
|
const llvm::Type *PtrDiffTy = ConvertType(getContext().getPointerDiffType());
|
|
|
|
// See if this is a dynamic_cast(void*)
|
|
if (ToVoid) {
|
|
llvm::Value *This = V;
|
|
V = GetVTablePtr(This, PtrDiffTy->getPointerTo());
|
|
V = Builder.CreateConstInBoundsGEP1_64(V, -2ULL);
|
|
V = Builder.CreateLoad(V, "offset to top");
|
|
This = Builder.CreateBitCast(This, llvm::Type::getInt8PtrTy(VMContext));
|
|
V = Builder.CreateInBoundsGEP(This, V);
|
|
V = Builder.CreateBitCast(V, LTy);
|
|
} else {
|
|
/// Call __dynamic_cast
|
|
const llvm::Type *ResultType = llvm::Type::getInt8PtrTy(VMContext);
|
|
const llvm::FunctionType *FTy;
|
|
std::vector<const llvm::Type*> ArgTys;
|
|
const llvm::Type *PtrToInt8Ty
|
|
= llvm::Type::getInt8Ty(VMContext)->getPointerTo();
|
|
ArgTys.push_back(PtrToInt8Ty);
|
|
ArgTys.push_back(PtrToInt8Ty);
|
|
ArgTys.push_back(PtrToInt8Ty);
|
|
ArgTys.push_back(PtrDiffTy);
|
|
FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
|
|
|
|
// FIXME: Calculate better hint.
|
|
llvm::Value *hint = llvm::ConstantInt::get(PtrDiffTy, -1ULL);
|
|
|
|
assert(SrcTy->isRecordType() && "Src type must be record type!");
|
|
assert(DestTy->isRecordType() && "Dest type must be record type!");
|
|
|
|
llvm::Value *SrcArg
|
|
= CGM.GetAddrOfRTTIDescriptor(SrcTy.getUnqualifiedType());
|
|
llvm::Value *DestArg
|
|
= CGM.GetAddrOfRTTIDescriptor(DestTy.getUnqualifiedType());
|
|
|
|
V = Builder.CreateBitCast(V, PtrToInt8Ty);
|
|
V = Builder.CreateCall4(CGM.CreateRuntimeFunction(FTy, "__dynamic_cast"),
|
|
V, SrcArg, DestArg, hint);
|
|
V = Builder.CreateBitCast(V, LTy);
|
|
|
|
if (ThrowOnBad) {
|
|
BadCastBlock = createBasicBlock();
|
|
Builder.CreateCondBr(Builder.CreateIsNotNull(V), ContBlock, BadCastBlock);
|
|
EmitBlock(BadCastBlock);
|
|
/// Invoke __cxa_bad_cast
|
|
ResultType = llvm::Type::getVoidTy(VMContext);
|
|
const llvm::FunctionType *FBadTy;
|
|
FBadTy = llvm::FunctionType::get(ResultType, false);
|
|
llvm::Value *F = CGM.CreateRuntimeFunction(FBadTy, "__cxa_bad_cast");
|
|
if (llvm::BasicBlock *InvokeDest = getInvokeDest()) {
|
|
llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
|
|
Builder.CreateInvoke(F, Cont, InvokeDest)->setDoesNotReturn();
|
|
EmitBlock(Cont);
|
|
} else {
|
|
// FIXME: Does this ever make sense?
|
|
Builder.CreateCall(F)->setDoesNotReturn();
|
|
}
|
|
Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
if (CanBeZero) {
|
|
Builder.CreateBr(ContBlock);
|
|
EmitBlock(NullBlock);
|
|
Builder.CreateBr(ContBlock);
|
|
}
|
|
EmitBlock(ContBlock);
|
|
if (CanBeZero) {
|
|
llvm::PHINode *PHI = Builder.CreatePHI(LTy);
|
|
PHI->reserveOperandSpace(2);
|
|
PHI->addIncoming(V, NonZeroBlock);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(LTy), NullBlock);
|
|
V = PHI;
|
|
}
|
|
|
|
return V;
|
|
}
|