forked from OSchip/llvm-project
4483 lines
150 KiB
C++
4483 lines
150 KiB
C++
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr constant evaluator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/ASTDiagnostic.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include <cstring>
|
|
|
|
using namespace clang;
|
|
using llvm::APSInt;
|
|
using llvm::APFloat;
|
|
|
|
/// EvalInfo - This is a private struct used by the evaluator to capture
|
|
/// information about a subexpression as it is folded. It retains information
|
|
/// about the AST context, but also maintains information about the folded
|
|
/// expression.
|
|
///
|
|
/// If an expression could be evaluated, it is still possible it is not a C
|
|
/// "integer constant expression" or constant expression. If not, this struct
|
|
/// captures information about how and why not.
|
|
///
|
|
/// One bit of information passed *into* the request for constant folding
|
|
/// indicates whether the subexpression is "evaluated" or not according to C
|
|
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
|
|
/// evaluate the expression regardless of what the RHS is, but C only allows
|
|
/// certain things in certain situations.
|
|
namespace {
|
|
struct LValue;
|
|
struct CallStackFrame;
|
|
struct EvalInfo;
|
|
|
|
/// Get an LValue path entry, which is known to not be an array index, as a
|
|
/// field declaration.
|
|
const FieldDecl *getAsField(APValue::LValuePathEntry E) {
|
|
APValue::BaseOrMemberType Value;
|
|
Value.setFromOpaqueValue(E.BaseOrMember);
|
|
return dyn_cast<FieldDecl>(Value.getPointer());
|
|
}
|
|
/// Get an LValue path entry, which is known to not be an array index, as a
|
|
/// base class declaration.
|
|
const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
|
|
APValue::BaseOrMemberType Value;
|
|
Value.setFromOpaqueValue(E.BaseOrMember);
|
|
return dyn_cast<CXXRecordDecl>(Value.getPointer());
|
|
}
|
|
/// Determine whether this LValue path entry for a base class names a virtual
|
|
/// base class.
|
|
bool isVirtualBaseClass(APValue::LValuePathEntry E) {
|
|
APValue::BaseOrMemberType Value;
|
|
Value.setFromOpaqueValue(E.BaseOrMember);
|
|
return Value.getInt();
|
|
}
|
|
|
|
/// Determine whether the described subobject is an array element.
|
|
static bool SubobjectIsArrayElement(QualType Base,
|
|
ArrayRef<APValue::LValuePathEntry> Path) {
|
|
bool IsArrayElement = false;
|
|
const Type *T = Base.getTypePtr();
|
|
for (unsigned I = 0, N = Path.size(); I != N; ++I) {
|
|
IsArrayElement = T && T->isArrayType();
|
|
if (IsArrayElement)
|
|
T = T->getBaseElementTypeUnsafe();
|
|
else if (const FieldDecl *FD = getAsField(Path[I]))
|
|
T = FD->getType().getTypePtr();
|
|
else
|
|
// Path[I] describes a base class.
|
|
T = 0;
|
|
}
|
|
return IsArrayElement;
|
|
}
|
|
|
|
/// A path from a glvalue to a subobject of that glvalue.
|
|
struct SubobjectDesignator {
|
|
/// True if the subobject was named in a manner not supported by C++11. Such
|
|
/// lvalues can still be folded, but they are not core constant expressions
|
|
/// and we cannot perform lvalue-to-rvalue conversions on them.
|
|
bool Invalid : 1;
|
|
|
|
/// Whether this designates an array element.
|
|
bool ArrayElement : 1;
|
|
|
|
/// Whether this designates 'one past the end' of the current subobject.
|
|
bool OnePastTheEnd : 1;
|
|
|
|
typedef APValue::LValuePathEntry PathEntry;
|
|
|
|
/// The entries on the path from the glvalue to the designated subobject.
|
|
SmallVector<PathEntry, 8> Entries;
|
|
|
|
SubobjectDesignator() :
|
|
Invalid(false), ArrayElement(false), OnePastTheEnd(false) {}
|
|
|
|
SubobjectDesignator(const APValue &V) :
|
|
Invalid(!V.isLValue() || !V.hasLValuePath()), ArrayElement(false),
|
|
OnePastTheEnd(false) {
|
|
if (!Invalid) {
|
|
ArrayRef<PathEntry> VEntries = V.getLValuePath();
|
|
Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
|
|
if (V.getLValueBase())
|
|
ArrayElement = SubobjectIsArrayElement(V.getLValueBase()->getType(),
|
|
V.getLValuePath());
|
|
else
|
|
assert(V.getLValuePath().empty() &&"Null pointer with nonempty path");
|
|
}
|
|
}
|
|
|
|
void setInvalid() {
|
|
Invalid = true;
|
|
Entries.clear();
|
|
}
|
|
/// Update this designator to refer to the given element within this array.
|
|
void addIndex(uint64_t N) {
|
|
if (Invalid) return;
|
|
if (OnePastTheEnd) {
|
|
setInvalid();
|
|
return;
|
|
}
|
|
PathEntry Entry;
|
|
Entry.ArrayIndex = N;
|
|
Entries.push_back(Entry);
|
|
ArrayElement = true;
|
|
}
|
|
/// Update this designator to refer to the given base or member of this
|
|
/// object.
|
|
void addDecl(const Decl *D, bool Virtual = false) {
|
|
if (Invalid) return;
|
|
if (OnePastTheEnd) {
|
|
setInvalid();
|
|
return;
|
|
}
|
|
PathEntry Entry;
|
|
APValue::BaseOrMemberType Value(D, Virtual);
|
|
Entry.BaseOrMember = Value.getOpaqueValue();
|
|
Entries.push_back(Entry);
|
|
ArrayElement = false;
|
|
}
|
|
/// Add N to the address of this subobject.
|
|
void adjustIndex(uint64_t N) {
|
|
if (Invalid) return;
|
|
if (ArrayElement) {
|
|
// FIXME: Make sure the index stays within bounds, or one past the end.
|
|
Entries.back().ArrayIndex += N;
|
|
return;
|
|
}
|
|
if (OnePastTheEnd && N == (uint64_t)-1)
|
|
OnePastTheEnd = false;
|
|
else if (!OnePastTheEnd && N == 1)
|
|
OnePastTheEnd = true;
|
|
else if (N != 0)
|
|
setInvalid();
|
|
}
|
|
};
|
|
|
|
/// A core constant value. This can be the value of any constant expression,
|
|
/// or a pointer or reference to a non-static object or function parameter.
|
|
class CCValue : public APValue {
|
|
typedef llvm::APSInt APSInt;
|
|
typedef llvm::APFloat APFloat;
|
|
/// If the value is a reference or pointer into a parameter or temporary,
|
|
/// this is the corresponding call stack frame.
|
|
CallStackFrame *CallFrame;
|
|
/// If the value is a reference or pointer, this is a description of how the
|
|
/// subobject was specified.
|
|
SubobjectDesignator Designator;
|
|
public:
|
|
struct GlobalValue {};
|
|
|
|
CCValue() {}
|
|
explicit CCValue(const APSInt &I) : APValue(I) {}
|
|
explicit CCValue(const APFloat &F) : APValue(F) {}
|
|
CCValue(const APValue *E, unsigned N) : APValue(E, N) {}
|
|
CCValue(const APSInt &R, const APSInt &I) : APValue(R, I) {}
|
|
CCValue(const APFloat &R, const APFloat &I) : APValue(R, I) {}
|
|
CCValue(const CCValue &V) : APValue(V), CallFrame(V.CallFrame) {}
|
|
CCValue(const Expr *B, const CharUnits &O, CallStackFrame *F,
|
|
const SubobjectDesignator &D) :
|
|
APValue(B, O, APValue::NoLValuePath()), CallFrame(F), Designator(D) {}
|
|
CCValue(const APValue &V, GlobalValue) :
|
|
APValue(V), CallFrame(0), Designator(V) {}
|
|
|
|
CallStackFrame *getLValueFrame() const {
|
|
assert(getKind() == LValue);
|
|
return CallFrame;
|
|
}
|
|
SubobjectDesignator &getLValueDesignator() {
|
|
assert(getKind() == LValue);
|
|
return Designator;
|
|
}
|
|
const SubobjectDesignator &getLValueDesignator() const {
|
|
return const_cast<CCValue*>(this)->getLValueDesignator();
|
|
}
|
|
};
|
|
|
|
/// A stack frame in the constexpr call stack.
|
|
struct CallStackFrame {
|
|
EvalInfo &Info;
|
|
|
|
/// Parent - The caller of this stack frame.
|
|
CallStackFrame *Caller;
|
|
|
|
/// This - The binding for the this pointer in this call, if any.
|
|
const LValue *This;
|
|
|
|
/// ParmBindings - Parameter bindings for this function call, indexed by
|
|
/// parameters' function scope indices.
|
|
const CCValue *Arguments;
|
|
|
|
typedef llvm::DenseMap<const Expr*, CCValue> MapTy;
|
|
typedef MapTy::const_iterator temp_iterator;
|
|
/// Temporaries - Temporary lvalues materialized within this stack frame.
|
|
MapTy Temporaries;
|
|
|
|
CallStackFrame(EvalInfo &Info, const LValue *This,
|
|
const CCValue *Arguments);
|
|
~CallStackFrame();
|
|
};
|
|
|
|
struct EvalInfo {
|
|
const ASTContext &Ctx;
|
|
|
|
/// EvalStatus - Contains information about the evaluation.
|
|
Expr::EvalStatus &EvalStatus;
|
|
|
|
/// CurrentCall - The top of the constexpr call stack.
|
|
CallStackFrame *CurrentCall;
|
|
|
|
/// NumCalls - The number of calls we've evaluated so far.
|
|
unsigned NumCalls;
|
|
|
|
/// CallStackDepth - The number of calls in the call stack right now.
|
|
unsigned CallStackDepth;
|
|
|
|
typedef llvm::DenseMap<const OpaqueValueExpr*, CCValue> MapTy;
|
|
/// OpaqueValues - Values used as the common expression in a
|
|
/// BinaryConditionalOperator.
|
|
MapTy OpaqueValues;
|
|
|
|
/// BottomFrame - The frame in which evaluation started. This must be
|
|
/// initialized last.
|
|
CallStackFrame BottomFrame;
|
|
|
|
/// EvaluatingDecl - This is the declaration whose initializer is being
|
|
/// evaluated, if any.
|
|
const VarDecl *EvaluatingDecl;
|
|
|
|
/// EvaluatingDeclValue - This is the value being constructed for the
|
|
/// declaration whose initializer is being evaluated, if any.
|
|
APValue *EvaluatingDeclValue;
|
|
|
|
|
|
EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
|
|
: Ctx(C), EvalStatus(S), CurrentCall(0), NumCalls(0), CallStackDepth(0),
|
|
BottomFrame(*this, 0, 0), EvaluatingDecl(0), EvaluatingDeclValue(0) {}
|
|
|
|
const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const {
|
|
MapTy::const_iterator i = OpaqueValues.find(e);
|
|
if (i == OpaqueValues.end()) return 0;
|
|
return &i->second;
|
|
}
|
|
|
|
void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
|
|
EvaluatingDecl = VD;
|
|
EvaluatingDeclValue = &Value;
|
|
}
|
|
|
|
const LangOptions &getLangOpts() { return Ctx.getLangOptions(); }
|
|
};
|
|
|
|
CallStackFrame::CallStackFrame(EvalInfo &Info, const LValue *This,
|
|
const CCValue *Arguments)
|
|
: Info(Info), Caller(Info.CurrentCall), This(This), Arguments(Arguments) {
|
|
Info.CurrentCall = this;
|
|
++Info.CallStackDepth;
|
|
}
|
|
|
|
CallStackFrame::~CallStackFrame() {
|
|
assert(Info.CurrentCall == this && "calls retired out of order");
|
|
--Info.CallStackDepth;
|
|
Info.CurrentCall = Caller;
|
|
}
|
|
|
|
struct ComplexValue {
|
|
private:
|
|
bool IsInt;
|
|
|
|
public:
|
|
APSInt IntReal, IntImag;
|
|
APFloat FloatReal, FloatImag;
|
|
|
|
ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
|
|
|
|
void makeComplexFloat() { IsInt = false; }
|
|
bool isComplexFloat() const { return !IsInt; }
|
|
APFloat &getComplexFloatReal() { return FloatReal; }
|
|
APFloat &getComplexFloatImag() { return FloatImag; }
|
|
|
|
void makeComplexInt() { IsInt = true; }
|
|
bool isComplexInt() const { return IsInt; }
|
|
APSInt &getComplexIntReal() { return IntReal; }
|
|
APSInt &getComplexIntImag() { return IntImag; }
|
|
|
|
void moveInto(CCValue &v) const {
|
|
if (isComplexFloat())
|
|
v = CCValue(FloatReal, FloatImag);
|
|
else
|
|
v = CCValue(IntReal, IntImag);
|
|
}
|
|
void setFrom(const CCValue &v) {
|
|
assert(v.isComplexFloat() || v.isComplexInt());
|
|
if (v.isComplexFloat()) {
|
|
makeComplexFloat();
|
|
FloatReal = v.getComplexFloatReal();
|
|
FloatImag = v.getComplexFloatImag();
|
|
} else {
|
|
makeComplexInt();
|
|
IntReal = v.getComplexIntReal();
|
|
IntImag = v.getComplexIntImag();
|
|
}
|
|
}
|
|
};
|
|
|
|
struct LValue {
|
|
const Expr *Base;
|
|
CharUnits Offset;
|
|
CallStackFrame *Frame;
|
|
SubobjectDesignator Designator;
|
|
|
|
const Expr *getLValueBase() const { return Base; }
|
|
CharUnits &getLValueOffset() { return Offset; }
|
|
const CharUnits &getLValueOffset() const { return Offset; }
|
|
CallStackFrame *getLValueFrame() const { return Frame; }
|
|
SubobjectDesignator &getLValueDesignator() { return Designator; }
|
|
const SubobjectDesignator &getLValueDesignator() const { return Designator;}
|
|
|
|
void moveInto(CCValue &V) const {
|
|
V = CCValue(Base, Offset, Frame, Designator);
|
|
}
|
|
void setFrom(const CCValue &V) {
|
|
assert(V.isLValue());
|
|
Base = V.getLValueBase();
|
|
Offset = V.getLValueOffset();
|
|
Frame = V.getLValueFrame();
|
|
Designator = V.getLValueDesignator();
|
|
}
|
|
|
|
void setExpr(const Expr *E, CallStackFrame *F = 0) {
|
|
Base = E;
|
|
Offset = CharUnits::Zero();
|
|
Frame = F;
|
|
Designator = SubobjectDesignator();
|
|
}
|
|
};
|
|
}
|
|
|
|
static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E);
|
|
static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
|
|
const LValue &This, const Expr *E);
|
|
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
|
|
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
|
|
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
|
|
static bool EvaluateIntegerOrLValue(const Expr *E, CCValue &Result,
|
|
EvalInfo &Info);
|
|
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
|
|
static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Should this call expression be treated as a string literal?
|
|
static bool IsStringLiteralCall(const CallExpr *E) {
|
|
unsigned Builtin = E->isBuiltinCall();
|
|
return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
|
|
Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
|
|
}
|
|
|
|
static bool IsGlobalLValue(const Expr* E) {
|
|
// C++11 [expr.const]p3 An address constant expression is a prvalue core
|
|
// constant expression of pointer type that evaluates to...
|
|
|
|
// ... a null pointer value, or a prvalue core constant expression of type
|
|
// std::nullptr_t.
|
|
if (!E) return true;
|
|
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
return false;
|
|
case Expr::DeclRefExprClass: {
|
|
const DeclRefExpr *DRE = cast<DeclRefExpr>(E);
|
|
// ... the address of an object with static storage duration,
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
return VD->hasGlobalStorage();
|
|
// ... to the address of a function,
|
|
if (isa<FunctionDecl>(DRE->getDecl()))
|
|
return true;
|
|
return false;
|
|
}
|
|
case Expr::CompoundLiteralExprClass:
|
|
return cast<CompoundLiteralExpr>(E)->isFileScope();
|
|
// A string literal has static storage duration.
|
|
case Expr::StringLiteralClass:
|
|
case Expr::PredefinedExprClass:
|
|
case Expr::ObjCStringLiteralClass:
|
|
case Expr::ObjCEncodeExprClass:
|
|
return true;
|
|
case Expr::CallExprClass:
|
|
return IsStringLiteralCall(cast<CallExpr>(E));
|
|
// For GCC compatibility, &&label has static storage duration.
|
|
case Expr::AddrLabelExprClass:
|
|
return true;
|
|
// A Block literal expression may be used as the initialization value for
|
|
// Block variables at global or local static scope.
|
|
case Expr::BlockExprClass:
|
|
return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
|
|
}
|
|
}
|
|
|
|
/// Check that this reference or pointer core constant expression is a valid
|
|
/// value for a constant expression. Type T should be either LValue or CCValue.
|
|
template<typename T>
|
|
static bool CheckLValueConstantExpression(const T &LVal, APValue &Value) {
|
|
if (!IsGlobalLValue(LVal.getLValueBase()))
|
|
return false;
|
|
|
|
const SubobjectDesignator &Designator = LVal.getLValueDesignator();
|
|
// A constant expression must refer to an object or be a null pointer.
|
|
if (Designator.Invalid || Designator.OnePastTheEnd ||
|
|
(!LVal.getLValueBase() && !Designator.Entries.empty())) {
|
|
// FIXME: Check for out-of-bounds array indices.
|
|
// FIXME: This is not a constant expression.
|
|
Value = APValue(LVal.getLValueBase(), LVal.getLValueOffset(),
|
|
APValue::NoLValuePath());
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Null references are not constant expressions.
|
|
|
|
Value = APValue(LVal.getLValueBase(), LVal.getLValueOffset(),
|
|
Designator.Entries);
|
|
return true;
|
|
}
|
|
|
|
/// Check that this core constant expression value is a valid value for a
|
|
/// constant expression, and if it is, produce the corresponding constant value.
|
|
static bool CheckConstantExpression(const CCValue &CCValue, APValue &Value) {
|
|
if (!CCValue.isLValue()) {
|
|
Value = CCValue;
|
|
return true;
|
|
}
|
|
return CheckLValueConstantExpression(CCValue, Value);
|
|
}
|
|
|
|
const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
|
|
if (!LVal.Base)
|
|
return 0;
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVal.Base))
|
|
return DRE->getDecl();
|
|
|
|
// FIXME: Static data members accessed via a MemberExpr are represented as
|
|
// that MemberExpr. We should use the Decl directly instead.
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(LVal.Base)) {
|
|
assert(!isa<FieldDecl>(ME->getMemberDecl()) && "shouldn't see fields here");
|
|
return ME->getMemberDecl();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool IsLiteralLValue(const LValue &Value) {
|
|
return Value.Base &&
|
|
!isa<DeclRefExpr>(Value.Base) &&
|
|
!isa<MemberExpr>(Value.Base) &&
|
|
!isa<MaterializeTemporaryExpr>(Value.Base);
|
|
}
|
|
|
|
static bool IsWeakDecl(const ValueDecl *Decl) {
|
|
return Decl->hasAttr<WeakAttr>() ||
|
|
Decl->hasAttr<WeakRefAttr>() ||
|
|
Decl->isWeakImported();
|
|
}
|
|
|
|
static bool IsWeakLValue(const LValue &Value) {
|
|
const ValueDecl *Decl = GetLValueBaseDecl(Value);
|
|
return Decl && IsWeakDecl(Decl);
|
|
}
|
|
|
|
static bool EvalPointerValueAsBool(const LValue &Value, bool &Result) {
|
|
const Expr* Base = Value.Base;
|
|
|
|
// A null base expression indicates a null pointer. These are always
|
|
// evaluatable, and they are false unless the offset is zero.
|
|
if (!Base) {
|
|
Result = !Value.Offset.isZero();
|
|
return true;
|
|
}
|
|
|
|
// Require the base expression to be a global l-value.
|
|
// FIXME: C++11 requires such conversions. Remove this check.
|
|
if (!IsGlobalLValue(Base)) return false;
|
|
|
|
// We have a non-null base expression. These are generally known to
|
|
// be true, but if it'a decl-ref to a weak symbol it can be null at
|
|
// runtime.
|
|
Result = true;
|
|
return !IsWeakLValue(Value);
|
|
}
|
|
|
|
static bool HandleConversionToBool(const CCValue &Val, bool &Result) {
|
|
switch (Val.getKind()) {
|
|
case APValue::Uninitialized:
|
|
return false;
|
|
case APValue::Int:
|
|
Result = Val.getInt().getBoolValue();
|
|
return true;
|
|
case APValue::Float:
|
|
Result = !Val.getFloat().isZero();
|
|
return true;
|
|
case APValue::ComplexInt:
|
|
Result = Val.getComplexIntReal().getBoolValue() ||
|
|
Val.getComplexIntImag().getBoolValue();
|
|
return true;
|
|
case APValue::ComplexFloat:
|
|
Result = !Val.getComplexFloatReal().isZero() ||
|
|
!Val.getComplexFloatImag().isZero();
|
|
return true;
|
|
case APValue::LValue: {
|
|
LValue PointerResult;
|
|
PointerResult.setFrom(Val);
|
|
return EvalPointerValueAsBool(PointerResult, Result);
|
|
}
|
|
case APValue::Vector:
|
|
case APValue::Array:
|
|
case APValue::Struct:
|
|
case APValue::Union:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("unknown APValue kind");
|
|
}
|
|
|
|
static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
|
|
EvalInfo &Info) {
|
|
assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
|
|
CCValue Val;
|
|
if (!Evaluate(Val, Info, E))
|
|
return false;
|
|
return HandleConversionToBool(Val, Result);
|
|
}
|
|
|
|
static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
|
|
APFloat &Value, const ASTContext &Ctx) {
|
|
unsigned DestWidth = Ctx.getIntWidth(DestType);
|
|
// Determine whether we are converting to unsigned or signed.
|
|
bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
|
|
|
|
// FIXME: Warning for overflow.
|
|
APSInt Result(DestWidth, !DestSigned);
|
|
bool ignored;
|
|
(void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored);
|
|
return Result;
|
|
}
|
|
|
|
static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
|
|
APFloat &Value, const ASTContext &Ctx) {
|
|
bool ignored;
|
|
APFloat Result = Value;
|
|
Result.convert(Ctx.getFloatTypeSemantics(DestType),
|
|
APFloat::rmNearestTiesToEven, &ignored);
|
|
return Result;
|
|
}
|
|
|
|
static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
|
|
APSInt &Value, const ASTContext &Ctx) {
|
|
unsigned DestWidth = Ctx.getIntWidth(DestType);
|
|
APSInt Result = Value;
|
|
// Figure out if this is a truncate, extend or noop cast.
|
|
// If the input is signed, do a sign extend, noop, or truncate.
|
|
Result = Result.extOrTrunc(DestWidth);
|
|
Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
|
|
return Result;
|
|
}
|
|
|
|
static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
|
|
APSInt &Value, const ASTContext &Ctx) {
|
|
|
|
APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
|
|
Result.convertFromAPInt(Value, Value.isSigned(),
|
|
APFloat::rmNearestTiesToEven);
|
|
return Result;
|
|
}
|
|
|
|
/// If the given LValue refers to a base subobject of some object, find the most
|
|
/// derived object and the corresponding complete record type. This is necessary
|
|
/// in order to find the offset of a virtual base class.
|
|
static bool ExtractMostDerivedObject(EvalInfo &Info, LValue &Result,
|
|
const CXXRecordDecl *&MostDerivedType) {
|
|
SubobjectDesignator &D = Result.Designator;
|
|
if (D.Invalid || !Result.Base)
|
|
return false;
|
|
|
|
const Type *T = Result.Base->getType().getTypePtr();
|
|
|
|
// Find path prefix which leads to the most-derived subobject.
|
|
unsigned MostDerivedPathLength = 0;
|
|
MostDerivedType = T->getAsCXXRecordDecl();
|
|
bool MostDerivedIsArrayElement = false;
|
|
|
|
for (unsigned I = 0, N = D.Entries.size(); I != N; ++I) {
|
|
bool IsArray = T && T->isArrayType();
|
|
if (IsArray)
|
|
T = T->getBaseElementTypeUnsafe();
|
|
else if (const FieldDecl *FD = getAsField(D.Entries[I]))
|
|
T = FD->getType().getTypePtr();
|
|
else
|
|
T = 0;
|
|
|
|
if (T) {
|
|
MostDerivedType = T->getAsCXXRecordDecl();
|
|
MostDerivedPathLength = I + 1;
|
|
MostDerivedIsArrayElement = IsArray;
|
|
}
|
|
}
|
|
|
|
if (!MostDerivedType)
|
|
return false;
|
|
|
|
// (B*)&d + 1 has no most-derived object.
|
|
if (D.OnePastTheEnd && MostDerivedPathLength != D.Entries.size())
|
|
return false;
|
|
|
|
// Remove the trailing base class path entries and their offsets.
|
|
const RecordDecl *RD = MostDerivedType;
|
|
for (unsigned I = MostDerivedPathLength, N = D.Entries.size(); I != N; ++I) {
|
|
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
|
|
if (isVirtualBaseClass(D.Entries[I])) {
|
|
assert(I == MostDerivedPathLength &&
|
|
"virtual base class must be immediately after most-derived class");
|
|
Result.Offset -= Layout.getVBaseClassOffset(Base);
|
|
} else
|
|
Result.Offset -= Layout.getBaseClassOffset(Base);
|
|
RD = Base;
|
|
}
|
|
D.Entries.resize(MostDerivedPathLength);
|
|
D.ArrayElement = MostDerivedIsArrayElement;
|
|
return true;
|
|
}
|
|
|
|
static void HandleLValueDirectBase(EvalInfo &Info, LValue &Obj,
|
|
const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *Base,
|
|
const ASTRecordLayout *RL = 0) {
|
|
if (!RL) RL = &Info.Ctx.getASTRecordLayout(Derived);
|
|
Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
|
|
Obj.Designator.addDecl(Base, /*Virtual*/ false);
|
|
}
|
|
|
|
static bool HandleLValueBase(EvalInfo &Info, LValue &Obj,
|
|
const CXXRecordDecl *DerivedDecl,
|
|
const CXXBaseSpecifier *Base) {
|
|
const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
|
|
|
|
if (!Base->isVirtual()) {
|
|
HandleLValueDirectBase(Info, Obj, DerivedDecl, BaseDecl);
|
|
return true;
|
|
}
|
|
|
|
// Extract most-derived object and corresponding type.
|
|
if (!ExtractMostDerivedObject(Info, Obj, DerivedDecl))
|
|
return false;
|
|
|
|
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
|
|
Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
|
|
Obj.Designator.addDecl(BaseDecl, /*Virtual*/ true);
|
|
return true;
|
|
}
|
|
|
|
/// Update LVal to refer to the given field, which must be a member of the type
|
|
/// currently described by LVal.
|
|
static void HandleLValueMember(EvalInfo &Info, LValue &LVal,
|
|
const FieldDecl *FD,
|
|
const ASTRecordLayout *RL = 0) {
|
|
if (!RL)
|
|
RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
|
|
|
|
unsigned I = FD->getFieldIndex();
|
|
LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
|
|
LVal.Designator.addDecl(FD);
|
|
}
|
|
|
|
/// Get the size of the given type in char units.
|
|
static bool HandleSizeof(EvalInfo &Info, QualType Type, CharUnits &Size) {
|
|
// sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
|
|
// extension.
|
|
if (Type->isVoidType() || Type->isFunctionType()) {
|
|
Size = CharUnits::One();
|
|
return true;
|
|
}
|
|
|
|
if (!Type->isConstantSizeType()) {
|
|
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
|
|
return false;
|
|
}
|
|
|
|
Size = Info.Ctx.getTypeSizeInChars(Type);
|
|
return true;
|
|
}
|
|
|
|
/// Update a pointer value to model pointer arithmetic.
|
|
/// \param Info - Information about the ongoing evaluation.
|
|
/// \param LVal - The pointer value to be updated.
|
|
/// \param EltTy - The pointee type represented by LVal.
|
|
/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
|
|
static bool HandleLValueArrayAdjustment(EvalInfo &Info, LValue &LVal,
|
|
QualType EltTy, int64_t Adjustment) {
|
|
CharUnits SizeOfPointee;
|
|
if (!HandleSizeof(Info, EltTy, SizeOfPointee))
|
|
return false;
|
|
|
|
// Compute the new offset in the appropriate width.
|
|
LVal.Offset += Adjustment * SizeOfPointee;
|
|
LVal.Designator.adjustIndex(Adjustment);
|
|
return true;
|
|
}
|
|
|
|
/// Try to evaluate the initializer for a variable declaration.
|
|
static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,const VarDecl *VD,
|
|
CallStackFrame *Frame, CCValue &Result) {
|
|
// If this is a parameter to an active constexpr function call, perform
|
|
// argument substitution.
|
|
if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
|
|
if (!Frame || !Frame->Arguments)
|
|
return false;
|
|
Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
|
|
return true;
|
|
}
|
|
|
|
// If we're currently evaluating the initializer of this declaration, use that
|
|
// in-flight value.
|
|
if (Info.EvaluatingDecl == VD) {
|
|
Result = CCValue(*Info.EvaluatingDeclValue, CCValue::GlobalValue());
|
|
return !Result.isUninit();
|
|
}
|
|
|
|
// Never evaluate the initializer of a weak variable. We can't be sure that
|
|
// this is the definition which will be used.
|
|
if (IsWeakDecl(VD))
|
|
return false;
|
|
|
|
const Expr *Init = VD->getAnyInitializer();
|
|
if (!Init || Init->isValueDependent())
|
|
return false;
|
|
|
|
if (APValue *V = VD->getEvaluatedValue()) {
|
|
Result = CCValue(*V, CCValue::GlobalValue());
|
|
return !Result.isUninit();
|
|
}
|
|
|
|
if (VD->isEvaluatingValue())
|
|
return false;
|
|
|
|
VD->setEvaluatingValue();
|
|
|
|
Expr::EvalStatus EStatus;
|
|
EvalInfo InitInfo(Info.Ctx, EStatus);
|
|
APValue EvalResult;
|
|
InitInfo.setEvaluatingDecl(VD, EvalResult);
|
|
LValue LVal;
|
|
LVal.setExpr(E);
|
|
// FIXME: The caller will need to know whether the value was a constant
|
|
// expression. If not, we should propagate up a diagnostic.
|
|
if (!EvaluateConstantExpression(EvalResult, InitInfo, LVal, Init)) {
|
|
// FIXME: If the evaluation failure was not permanent (for instance, if we
|
|
// hit a variable with no declaration yet, or a constexpr function with no
|
|
// definition yet), the standard is unclear as to how we should behave.
|
|
//
|
|
// Either the initializer should be evaluated when the variable is defined,
|
|
// or a failed evaluation of the initializer should be reattempted each time
|
|
// it is used.
|
|
VD->setEvaluatedValue(APValue());
|
|
return false;
|
|
}
|
|
|
|
VD->setEvaluatedValue(EvalResult);
|
|
Result = CCValue(EvalResult, CCValue::GlobalValue());
|
|
return true;
|
|
}
|
|
|
|
static bool IsConstNonVolatile(QualType T) {
|
|
Qualifiers Quals = T.getQualifiers();
|
|
return Quals.hasConst() && !Quals.hasVolatile();
|
|
}
|
|
|
|
/// Get the base index of the given base class within an APValue representing
|
|
/// the given derived class.
|
|
static unsigned getBaseIndex(const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *Base) {
|
|
Base = Base->getCanonicalDecl();
|
|
unsigned Index = 0;
|
|
for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
|
|
E = Derived->bases_end(); I != E; ++I, ++Index) {
|
|
if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
|
|
return Index;
|
|
}
|
|
|
|
llvm_unreachable("base class missing from derived class's bases list");
|
|
}
|
|
|
|
/// Extract the designated sub-object of an rvalue.
|
|
static bool ExtractSubobject(EvalInfo &Info, CCValue &Obj, QualType ObjType,
|
|
const SubobjectDesignator &Sub, QualType SubType) {
|
|
if (Sub.Invalid || Sub.OnePastTheEnd)
|
|
return false;
|
|
if (Sub.Entries.empty()) {
|
|
assert(Info.Ctx.hasSameUnqualifiedType(ObjType, SubType) &&
|
|
"Unexpected subobject type");
|
|
return true;
|
|
}
|
|
|
|
assert(!Obj.isLValue() && "extracting subobject of lvalue");
|
|
const APValue *O = &Obj;
|
|
// Walk the designator's path to find the subobject.
|
|
for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
|
|
if (ObjType->isArrayType()) {
|
|
// Next subobject is an array element.
|
|
const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
|
|
if (!CAT)
|
|
return false;
|
|
uint64_t Index = Sub.Entries[I].ArrayIndex;
|
|
if (CAT->getSize().ule(Index))
|
|
return false;
|
|
if (O->getArrayInitializedElts() > Index)
|
|
O = &O->getArrayInitializedElt(Index);
|
|
else
|
|
O = &O->getArrayFiller();
|
|
ObjType = CAT->getElementType();
|
|
} else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
|
|
// Next subobject is a class, struct or union field.
|
|
RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
|
|
if (RD->isUnion()) {
|
|
const FieldDecl *UnionField = O->getUnionField();
|
|
if (!UnionField ||
|
|
UnionField->getCanonicalDecl() != Field->getCanonicalDecl())
|
|
return false;
|
|
O = &O->getUnionValue();
|
|
} else
|
|
O = &O->getStructField(Field->getFieldIndex());
|
|
ObjType = Field->getType();
|
|
} else {
|
|
// Next subobject is a base class.
|
|
const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
|
|
const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
|
|
O = &O->getStructBase(getBaseIndex(Derived, Base));
|
|
ObjType = Info.Ctx.getRecordType(Base);
|
|
}
|
|
|
|
if (O->isUninit())
|
|
return false;
|
|
}
|
|
|
|
assert(Info.Ctx.hasSameUnqualifiedType(ObjType, SubType) &&
|
|
"Unexpected subobject type");
|
|
Obj = CCValue(*O, CCValue::GlobalValue());
|
|
return true;
|
|
}
|
|
|
|
/// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
|
|
/// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
|
|
/// for looking up the glvalue referred to by an entity of reference type.
|
|
///
|
|
/// \param Info - Information about the ongoing evaluation.
|
|
/// \param Type - The type we expect this conversion to produce.
|
|
/// \param LVal - The glvalue on which we are attempting to perform this action.
|
|
/// \param RVal - The produced value will be placed here.
|
|
static bool HandleLValueToRValueConversion(EvalInfo &Info, QualType Type,
|
|
const LValue &LVal, CCValue &RVal) {
|
|
const Expr *Base = LVal.Base;
|
|
CallStackFrame *Frame = LVal.Frame;
|
|
|
|
// FIXME: Indirection through a null pointer deserves a diagnostic.
|
|
if (!Base)
|
|
return false;
|
|
|
|
if (const ValueDecl *D = GetLValueBaseDecl(LVal)) {
|
|
// In C++98, const, non-volatile integers initialized with ICEs are ICEs.
|
|
// In C++11, constexpr, non-volatile variables initialized with constant
|
|
// expressions are constant expressions too. Inside constexpr functions,
|
|
// parameters are constant expressions even if they're non-const.
|
|
// In C, such things can also be folded, although they are not ICEs.
|
|
//
|
|
// FIXME: volatile-qualified ParmVarDecls need special handling. A literal
|
|
// interpretation of C++11 suggests that volatile parameters are OK if
|
|
// they're never read (there's no prohibition against constructing volatile
|
|
// objects in constant expressions), but lvalue-to-rvalue conversions on
|
|
// them are not permitted.
|
|
const VarDecl *VD = dyn_cast<VarDecl>(D);
|
|
QualType VT = VD->getType();
|
|
if (!VD || VD->isInvalidDecl())
|
|
return false;
|
|
if (!isa<ParmVarDecl>(VD)) {
|
|
if (!IsConstNonVolatile(VT))
|
|
return false;
|
|
// FIXME: Allow folding of values of any literal type in all languages.
|
|
if (!VT->isIntegralOrEnumerationType() && !VT->isRealFloatingType() &&
|
|
!VD->isConstexpr())
|
|
return false;
|
|
}
|
|
if (!EvaluateVarDeclInit(Info, LVal.Base, VD, Frame, RVal))
|
|
return false;
|
|
|
|
if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
|
|
return ExtractSubobject(Info, RVal, VT, LVal.Designator, Type);
|
|
|
|
// The declaration was initialized by an lvalue, with no lvalue-to-rvalue
|
|
// conversion. This happens when the declaration and the lvalue should be
|
|
// considered synonymous, for instance when initializing an array of char
|
|
// from a string literal. Continue as if the initializer lvalue was the
|
|
// value we were originally given.
|
|
assert(RVal.getLValueOffset().isZero() &&
|
|
"offset for lvalue init of non-reference");
|
|
Base = RVal.getLValueBase();
|
|
Frame = RVal.getLValueFrame();
|
|
}
|
|
|
|
// FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
|
|
if (const StringLiteral *S = dyn_cast<StringLiteral>(Base)) {
|
|
const SubobjectDesignator &Designator = LVal.Designator;
|
|
if (Designator.Invalid || Designator.Entries.size() != 1)
|
|
return false;
|
|
|
|
assert(Type->isIntegerType() && "string element not integer type");
|
|
uint64_t Index = Designator.Entries[0].ArrayIndex;
|
|
if (Index > S->getLength())
|
|
return false;
|
|
APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
|
|
Type->isUnsignedIntegerType());
|
|
if (Index < S->getLength())
|
|
Value = S->getCodeUnit(Index);
|
|
RVal = CCValue(Value);
|
|
return true;
|
|
}
|
|
|
|
if (Frame) {
|
|
// If this is a temporary expression with a nontrivial initializer, grab the
|
|
// value from the relevant stack frame.
|
|
RVal = Frame->Temporaries[Base];
|
|
} else if (const CompoundLiteralExpr *CLE
|
|
= dyn_cast<CompoundLiteralExpr>(Base)) {
|
|
// In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
|
|
// initializer until now for such expressions. Such an expression can't be
|
|
// an ICE in C, so this only matters for fold.
|
|
assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
|
|
if (!Evaluate(RVal, Info, CLE->getInitializer()))
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
return ExtractSubobject(Info, RVal, Base->getType(), LVal.Designator, Type);
|
|
}
|
|
|
|
/// Build an lvalue for the object argument of a member function call.
|
|
static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
|
|
LValue &This) {
|
|
if (Object->getType()->isPointerType())
|
|
return EvaluatePointer(Object, This, Info);
|
|
|
|
if (Object->isGLValue())
|
|
return EvaluateLValue(Object, This, Info);
|
|
|
|
// Implicitly promote a prvalue *this object to a glvalue.
|
|
This.setExpr(Object, Info.CurrentCall);
|
|
return EvaluateConstantExpression(Info.CurrentCall->Temporaries[Object], Info,
|
|
This, Object);
|
|
}
|
|
|
|
namespace {
|
|
enum EvalStmtResult {
|
|
/// Evaluation failed.
|
|
ESR_Failed,
|
|
/// Hit a 'return' statement.
|
|
ESR_Returned,
|
|
/// Evaluation succeeded.
|
|
ESR_Succeeded
|
|
};
|
|
}
|
|
|
|
// Evaluate a statement.
|
|
static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info,
|
|
const Stmt *S) {
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
return ESR_Failed;
|
|
|
|
case Stmt::NullStmtClass:
|
|
case Stmt::DeclStmtClass:
|
|
return ESR_Succeeded;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
if (Evaluate(Result, Info, cast<ReturnStmt>(S)->getRetValue()))
|
|
return ESR_Returned;
|
|
return ESR_Failed;
|
|
|
|
case Stmt::CompoundStmtClass: {
|
|
const CompoundStmt *CS = cast<CompoundStmt>(S);
|
|
for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
|
|
BE = CS->body_end(); BI != BE; ++BI) {
|
|
EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
|
|
if (ESR != ESR_Succeeded)
|
|
return ESR;
|
|
}
|
|
return ESR_Succeeded;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
typedef SmallVector<CCValue, 16> ArgVector;
|
|
}
|
|
|
|
/// EvaluateArgs - Evaluate the arguments to a function call.
|
|
static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
|
|
EvalInfo &Info) {
|
|
for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
|
|
I != E; ++I)
|
|
if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Evaluate a function call.
|
|
static bool HandleFunctionCall(const LValue *This, ArrayRef<const Expr*> Args,
|
|
const Stmt *Body, EvalInfo &Info,
|
|
CCValue &Result) {
|
|
// FIXME: Implement a proper call limit, along with a command-line flag.
|
|
if (Info.NumCalls >= 1000000 || Info.CallStackDepth >= 512)
|
|
return false;
|
|
|
|
ArgVector ArgValues(Args.size());
|
|
if (!EvaluateArgs(Args, ArgValues, Info))
|
|
return false;
|
|
|
|
CallStackFrame Frame(Info, This, ArgValues.data());
|
|
return EvaluateStmt(Result, Info, Body) == ESR_Returned;
|
|
}
|
|
|
|
/// Evaluate a constructor call.
|
|
static bool HandleConstructorCall(const LValue &This,
|
|
ArrayRef<const Expr*> Args,
|
|
const CXXConstructorDecl *Definition,
|
|
EvalInfo &Info,
|
|
APValue &Result) {
|
|
if (Info.NumCalls >= 1000000 || Info.CallStackDepth >= 512)
|
|
return false;
|
|
|
|
ArgVector ArgValues(Args.size());
|
|
if (!EvaluateArgs(Args, ArgValues, Info))
|
|
return false;
|
|
|
|
CallStackFrame Frame(Info, &This, ArgValues.data());
|
|
|
|
// If it's a delegating constructor, just delegate.
|
|
if (Definition->isDelegatingConstructor()) {
|
|
CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
|
|
return EvaluateConstantExpression(Result, Info, This, (*I)->getInit());
|
|
}
|
|
|
|
// Reserve space for the struct members.
|
|
const CXXRecordDecl *RD = Definition->getParent();
|
|
if (!RD->isUnion())
|
|
Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
|
|
std::distance(RD->field_begin(), RD->field_end()));
|
|
|
|
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
|
|
|
|
unsigned BasesSeen = 0;
|
|
#ifndef NDEBUG
|
|
CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
|
|
#endif
|
|
for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
|
|
E = Definition->init_end(); I != E; ++I) {
|
|
if ((*I)->isBaseInitializer()) {
|
|
QualType BaseType((*I)->getBaseClass(), 0);
|
|
#ifndef NDEBUG
|
|
// Non-virtual base classes are initialized in the order in the class
|
|
// definition. We cannot have a virtual base class for a literal type.
|
|
assert(!BaseIt->isVirtual() && "virtual base for literal type");
|
|
assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
|
|
"base class initializers not in expected order");
|
|
++BaseIt;
|
|
#endif
|
|
LValue Subobject = This;
|
|
HandleLValueDirectBase(Info, Subobject, RD,
|
|
BaseType->getAsCXXRecordDecl(), &Layout);
|
|
if (!EvaluateConstantExpression(Result.getStructBase(BasesSeen++), Info,
|
|
Subobject, (*I)->getInit()))
|
|
return false;
|
|
} else if (FieldDecl *FD = (*I)->getMember()) {
|
|
LValue Subobject = This;
|
|
HandleLValueMember(Info, Subobject, FD, &Layout);
|
|
if (RD->isUnion()) {
|
|
Result = APValue(FD);
|
|
if (!EvaluateConstantExpression(Result.getUnionValue(), Info,
|
|
Subobject, (*I)->getInit()))
|
|
return false;
|
|
} else if (!EvaluateConstantExpression(
|
|
Result.getStructField(FD->getFieldIndex()),
|
|
Info, Subobject, (*I)->getInit()))
|
|
return false;
|
|
} else {
|
|
// FIXME: handle indirect field initializers
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
class HasSideEffect
|
|
: public ConstStmtVisitor<HasSideEffect, bool> {
|
|
const ASTContext &Ctx;
|
|
public:
|
|
|
|
HasSideEffect(const ASTContext &C) : Ctx(C) {}
|
|
|
|
// Unhandled nodes conservatively default to having side effects.
|
|
bool VisitStmt(const Stmt *S) {
|
|
return true;
|
|
}
|
|
|
|
bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
|
|
return Visit(E->getResultExpr());
|
|
}
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
|
|
return true;
|
|
return false;
|
|
}
|
|
bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
|
|
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
|
|
return true;
|
|
return false;
|
|
}
|
|
bool VisitBlockDeclRefExpr (const BlockDeclRefExpr *E) {
|
|
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// We don't want to evaluate BlockExprs multiple times, as they generate
|
|
// a ton of code.
|
|
bool VisitBlockExpr(const BlockExpr *E) { return true; }
|
|
bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; }
|
|
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E)
|
|
{ return Visit(E->getInitializer()); }
|
|
bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); }
|
|
bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; }
|
|
bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; }
|
|
bool VisitStringLiteral(const StringLiteral *E) { return false; }
|
|
bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; }
|
|
bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E)
|
|
{ return false; }
|
|
bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E)
|
|
{ return Visit(E->getLHS()) || Visit(E->getRHS()); }
|
|
bool VisitChooseExpr(const ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Ctx)); }
|
|
bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); }
|
|
bool VisitBinAssign(const BinaryOperator *E) { return true; }
|
|
bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; }
|
|
bool VisitBinaryOperator(const BinaryOperator *E)
|
|
{ return Visit(E->getLHS()) || Visit(E->getRHS()); }
|
|
bool VisitUnaryPreInc(const UnaryOperator *E) { return true; }
|
|
bool VisitUnaryPostInc(const UnaryOperator *E) { return true; }
|
|
bool VisitUnaryPreDec(const UnaryOperator *E) { return true; }
|
|
bool VisitUnaryPostDec(const UnaryOperator *E) { return true; }
|
|
bool VisitUnaryDeref(const UnaryOperator *E) {
|
|
if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
|
|
return true;
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); }
|
|
|
|
// Has side effects if any element does.
|
|
bool VisitInitListExpr(const InitListExpr *E) {
|
|
for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
|
|
if (Visit(E->getInit(i))) return true;
|
|
if (const Expr *filler = E->getArrayFiller())
|
|
return Visit(filler);
|
|
return false;
|
|
}
|
|
|
|
bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; }
|
|
};
|
|
|
|
class OpaqueValueEvaluation {
|
|
EvalInfo &info;
|
|
OpaqueValueExpr *opaqueValue;
|
|
|
|
public:
|
|
OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
|
|
Expr *value)
|
|
: info(info), opaqueValue(opaqueValue) {
|
|
|
|
// If evaluation fails, fail immediately.
|
|
if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) {
|
|
this->opaqueValue = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool hasError() const { return opaqueValue == 0; }
|
|
|
|
~OpaqueValueEvaluation() {
|
|
// FIXME: This will not work for recursive constexpr functions using opaque
|
|
// values. Restore the former value.
|
|
if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
|
|
template <class Derived, typename RetTy=void>
|
|
class ExprEvaluatorBase
|
|
: public ConstStmtVisitor<Derived, RetTy> {
|
|
private:
|
|
RetTy DerivedSuccess(const CCValue &V, const Expr *E) {
|
|
return static_cast<Derived*>(this)->Success(V, E);
|
|
}
|
|
RetTy DerivedError(const Expr *E) {
|
|
return static_cast<Derived*>(this)->Error(E);
|
|
}
|
|
RetTy DerivedValueInitialization(const Expr *E) {
|
|
return static_cast<Derived*>(this)->ValueInitialization(E);
|
|
}
|
|
|
|
protected:
|
|
EvalInfo &Info;
|
|
typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
|
|
typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
|
|
|
|
RetTy ValueInitialization(const Expr *E) { return DerivedError(E); }
|
|
|
|
public:
|
|
ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
|
|
|
|
RetTy VisitStmt(const Stmt *) {
|
|
llvm_unreachable("Expression evaluator should not be called on stmts");
|
|
}
|
|
RetTy VisitExpr(const Expr *E) {
|
|
return DerivedError(E);
|
|
}
|
|
|
|
RetTy VisitParenExpr(const ParenExpr *E)
|
|
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
|
|
RetTy VisitUnaryExtension(const UnaryOperator *E)
|
|
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
|
|
RetTy VisitUnaryPlus(const UnaryOperator *E)
|
|
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
|
|
RetTy VisitChooseExpr(const ChooseExpr *E)
|
|
{ return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
|
|
{ return StmtVisitorTy::Visit(E->getResultExpr()); }
|
|
RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
|
|
{ return StmtVisitorTy::Visit(E->getReplacement()); }
|
|
RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
|
|
{ return StmtVisitorTy::Visit(E->getExpr()); }
|
|
|
|
RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
|
|
OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon());
|
|
if (opaque.hasError())
|
|
return DerivedError(E);
|
|
|
|
bool cond;
|
|
if (!EvaluateAsBooleanCondition(E->getCond(), cond, Info))
|
|
return DerivedError(E);
|
|
|
|
return StmtVisitorTy::Visit(cond ? E->getTrueExpr() : E->getFalseExpr());
|
|
}
|
|
|
|
RetTy VisitConditionalOperator(const ConditionalOperator *E) {
|
|
bool BoolResult;
|
|
if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info))
|
|
return DerivedError(E);
|
|
|
|
Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
|
|
return StmtVisitorTy::Visit(EvalExpr);
|
|
}
|
|
|
|
RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
|
|
const CCValue *Value = Info.getOpaqueValue(E);
|
|
if (!Value)
|
|
return (E->getSourceExpr() ? StmtVisitorTy::Visit(E->getSourceExpr())
|
|
: DerivedError(E));
|
|
return DerivedSuccess(*Value, E);
|
|
}
|
|
|
|
RetTy VisitCallExpr(const CallExpr *E) {
|
|
const Expr *Callee = E->getCallee();
|
|
QualType CalleeType = Callee->getType();
|
|
|
|
const FunctionDecl *FD = 0;
|
|
LValue *This = 0, ThisVal;
|
|
llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
|
|
|
|
// Extract function decl and 'this' pointer from the callee.
|
|
if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
|
|
// Explicit bound member calls, such as x.f() or p->g();
|
|
// FIXME: Handle a BinaryOperator callee ('.*' or '->*').
|
|
const MemberExpr *ME = dyn_cast<MemberExpr>(Callee->IgnoreParens());
|
|
if (!ME)
|
|
return DerivedError(Callee);
|
|
if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
|
|
return DerivedError(ME->getBase());
|
|
This = &ThisVal;
|
|
FD = dyn_cast<FunctionDecl>(ME->getMemberDecl());
|
|
if (!FD)
|
|
return DerivedError(ME);
|
|
} else if (CalleeType->isFunctionPointerType()) {
|
|
CCValue Call;
|
|
if (!Evaluate(Call, Info, Callee) || !Call.isLValue() ||
|
|
!Call.getLValueBase() || !Call.getLValueOffset().isZero())
|
|
return DerivedError(Callee);
|
|
|
|
const Expr *Base = Call.getLValueBase();
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
|
|
FD = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
|
|
FD = dyn_cast<FunctionDecl>(ME->getMemberDecl());
|
|
if (!FD)
|
|
return DerivedError(Callee);
|
|
|
|
// Overloaded operator calls to member functions are represented as normal
|
|
// calls with '*this' as the first argument.
|
|
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
if (MD && !MD->isStatic()) {
|
|
if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
|
|
return false;
|
|
This = &ThisVal;
|
|
Args = Args.slice(1);
|
|
}
|
|
|
|
// Don't call function pointers which have been cast to some other type.
|
|
if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
|
|
return DerivedError(E);
|
|
} else
|
|
return DerivedError(E);
|
|
|
|
const FunctionDecl *Definition;
|
|
Stmt *Body = FD->getBody(Definition);
|
|
CCValue CCResult;
|
|
APValue Result;
|
|
|
|
if (Body && Definition->isConstexpr() && !Definition->isInvalidDecl() &&
|
|
HandleFunctionCall(This, Args, Body, Info, CCResult) &&
|
|
CheckConstantExpression(CCResult, Result))
|
|
return DerivedSuccess(CCValue(Result, CCValue::GlobalValue()), E);
|
|
|
|
return DerivedError(E);
|
|
}
|
|
|
|
RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
|
|
return StmtVisitorTy::Visit(E->getInitializer());
|
|
}
|
|
RetTy VisitInitListExpr(const InitListExpr *E) {
|
|
if (Info.getLangOpts().CPlusPlus0x) {
|
|
if (E->getNumInits() == 0)
|
|
return DerivedValueInitialization(E);
|
|
if (E->getNumInits() == 1)
|
|
return StmtVisitorTy::Visit(E->getInit(0));
|
|
}
|
|
return DerivedError(E);
|
|
}
|
|
RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
|
|
return DerivedValueInitialization(E);
|
|
}
|
|
RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
|
|
return DerivedValueInitialization(E);
|
|
}
|
|
|
|
/// A member expression where the object is a prvalue is itself a prvalue.
|
|
RetTy VisitMemberExpr(const MemberExpr *E) {
|
|
assert(!E->isArrow() && "missing call to bound member function?");
|
|
|
|
CCValue Val;
|
|
if (!Evaluate(Val, Info, E->getBase()))
|
|
return false;
|
|
|
|
QualType BaseTy = E->getBase()->getType();
|
|
|
|
const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
|
|
if (!FD) return false;
|
|
assert(!FD->getType()->isReferenceType() && "prvalue reference?");
|
|
assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
|
|
FD->getParent()->getCanonicalDecl() && "record / field mismatch");
|
|
|
|
SubobjectDesignator Designator;
|
|
Designator.addDecl(FD);
|
|
|
|
return ExtractSubobject(Info, Val, BaseTy, Designator, E->getType()) &&
|
|
DerivedSuccess(Val, E);
|
|
}
|
|
|
|
RetTy VisitCastExpr(const CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
break;
|
|
|
|
case CK_NoOp:
|
|
return StmtVisitorTy::Visit(E->getSubExpr());
|
|
|
|
case CK_LValueToRValue: {
|
|
LValue LVal;
|
|
if (EvaluateLValue(E->getSubExpr(), LVal, Info)) {
|
|
CCValue RVal;
|
|
if (HandleLValueToRValueConversion(Info, E->getType(), LVal, RVal))
|
|
return DerivedSuccess(RVal, E);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return DerivedError(E);
|
|
}
|
|
|
|
/// Visit a value which is evaluated, but whose value is ignored.
|
|
void VisitIgnoredValue(const Expr *E) {
|
|
CCValue Scratch;
|
|
if (!Evaluate(Scratch, Info, E))
|
|
Info.EvalStatus.HasSideEffects = true;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LValue Evaluation
|
|
//
|
|
// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
|
|
// function designators (in C), decl references to void objects (in C), and
|
|
// temporaries (if building with -Wno-address-of-temporary).
|
|
//
|
|
// LValue evaluation produces values comprising a base expression of one of the
|
|
// following types:
|
|
// * DeclRefExpr
|
|
// * MemberExpr for a static member
|
|
// * CompoundLiteralExpr in C
|
|
// * StringLiteral
|
|
// * PredefinedExpr
|
|
// * ObjCStringLiteralExpr
|
|
// * ObjCEncodeExpr
|
|
// * AddrLabelExpr
|
|
// * BlockExpr
|
|
// * CallExpr for a MakeStringConstant builtin
|
|
// plus an offset in bytes. It can also produce lvalues referring to locals. In
|
|
// that case, the Frame will point to a stack frame, and the Expr is used as a
|
|
// key to find the relevant temporary's value.
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
class LValueExprEvaluator
|
|
: public ExprEvaluatorBase<LValueExprEvaluator, bool> {
|
|
LValue &Result;
|
|
const Decl *PrevDecl;
|
|
|
|
bool Success(const Expr *E) {
|
|
Result.setExpr(E);
|
|
return true;
|
|
}
|
|
public:
|
|
|
|
LValueExprEvaluator(EvalInfo &info, LValue &Result) :
|
|
ExprEvaluatorBaseTy(info), Result(Result), PrevDecl(0) {}
|
|
|
|
bool Success(const CCValue &V, const Expr *E) {
|
|
Result.setFrom(V);
|
|
return true;
|
|
}
|
|
bool Error(const Expr *E) {
|
|
return false;
|
|
}
|
|
|
|
bool VisitVarDecl(const Expr *E, const VarDecl *VD);
|
|
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E);
|
|
bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
|
|
bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
|
|
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
|
|
bool VisitMemberExpr(const MemberExpr *E);
|
|
bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
|
|
bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
|
|
bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
|
|
bool VisitUnaryDeref(const UnaryOperator *E);
|
|
|
|
bool VisitCastExpr(const CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
|
|
case CK_LValueBitCast:
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
Result.Designator.setInvalid();
|
|
return true;
|
|
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase: {
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
// Now figure out the necessary offset to add to the base LV to get from
|
|
// the derived class to the base class.
|
|
QualType Type = E->getSubExpr()->getType();
|
|
|
|
for (CastExpr::path_const_iterator PathI = E->path_begin(),
|
|
PathE = E->path_end(); PathI != PathE; ++PathI) {
|
|
if (!HandleLValueBase(Info, Result, Type->getAsCXXRecordDecl(), *PathI))
|
|
return false;
|
|
Type = (*PathI)->getType();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Missing: __real__, __imag__
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Evaluate an expression as an lvalue. This can be legitimately called on
|
|
/// expressions which are not glvalues, in a few cases:
|
|
/// * function designators in C,
|
|
/// * "extern void" objects,
|
|
/// * temporaries, if building with -Wno-address-of-temporary.
|
|
static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
|
|
assert((E->isGLValue() || E->getType()->isFunctionType() ||
|
|
E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
|
|
"can't evaluate expression as an lvalue");
|
|
return LValueExprEvaluator(Info, Result).Visit(E);
|
|
}
|
|
|
|
bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
if (isa<FunctionDecl>(E->getDecl()))
|
|
return Success(E);
|
|
if (const VarDecl* VD = dyn_cast<VarDecl>(E->getDecl()))
|
|
return VisitVarDecl(E, VD);
|
|
return Error(E);
|
|
}
|
|
|
|
bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
|
|
if (!VD->getType()->isReferenceType()) {
|
|
if (isa<ParmVarDecl>(VD)) {
|
|
Result.setExpr(E, Info.CurrentCall);
|
|
return true;
|
|
}
|
|
return Success(E);
|
|
}
|
|
|
|
CCValue V;
|
|
if (EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
|
|
return Success(V, E);
|
|
|
|
return Error(E);
|
|
}
|
|
|
|
bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
|
|
const MaterializeTemporaryExpr *E) {
|
|
Result.setExpr(E, Info.CurrentCall);
|
|
return EvaluateConstantExpression(Info.CurrentCall->Temporaries[E], Info,
|
|
Result, E->GetTemporaryExpr());
|
|
}
|
|
|
|
bool
|
|
LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
|
|
assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
|
|
// Defer visiting the literal until the lvalue-to-rvalue conversion. We can
|
|
// only see this when folding in C, so there's no standard to follow here.
|
|
return Success(E);
|
|
}
|
|
|
|
bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
|
|
// Handle static data members.
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
|
|
VisitIgnoredValue(E->getBase());
|
|
return VisitVarDecl(E, VD);
|
|
}
|
|
|
|
// Handle static member functions.
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
|
|
if (MD->isStatic()) {
|
|
VisitIgnoredValue(E->getBase());
|
|
return Success(E);
|
|
}
|
|
}
|
|
|
|
// Handle non-static data members.
|
|
QualType BaseTy;
|
|
if (E->isArrow()) {
|
|
if (!EvaluatePointer(E->getBase(), Result, Info))
|
|
return false;
|
|
BaseTy = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
if (!Visit(E->getBase()))
|
|
return false;
|
|
BaseTy = E->getBase()->getType();
|
|
}
|
|
|
|
const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
|
|
if (!FD) return false;
|
|
assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
|
|
FD->getParent()->getCanonicalDecl() && "record / field mismatch");
|
|
(void)BaseTy;
|
|
|
|
HandleLValueMember(Info, Result, FD);
|
|
|
|
if (FD->getType()->isReferenceType()) {
|
|
CCValue RefValue;
|
|
if (!HandleLValueToRValueConversion(Info, FD->getType(), Result, RefValue))
|
|
return false;
|
|
return Success(RefValue, E);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
|
|
// FIXME: Deal with vectors as array subscript bases.
|
|
if (E->getBase()->getType()->isVectorType())
|
|
return false;
|
|
|
|
if (!EvaluatePointer(E->getBase(), Result, Info))
|
|
return false;
|
|
|
|
APSInt Index;
|
|
if (!EvaluateInteger(E->getIdx(), Index, Info))
|
|
return false;
|
|
int64_t IndexValue
|
|
= Index.isSigned() ? Index.getSExtValue()
|
|
: static_cast<int64_t>(Index.getZExtValue());
|
|
|
|
return HandleLValueArrayAdjustment(Info, Result, E->getType(), IndexValue);
|
|
}
|
|
|
|
bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
|
|
return EvaluatePointer(E->getSubExpr(), Result, Info);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pointer Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class PointerExprEvaluator
|
|
: public ExprEvaluatorBase<PointerExprEvaluator, bool> {
|
|
LValue &Result;
|
|
|
|
bool Success(const Expr *E) {
|
|
Result.setExpr(E);
|
|
return true;
|
|
}
|
|
public:
|
|
|
|
PointerExprEvaluator(EvalInfo &info, LValue &Result)
|
|
: ExprEvaluatorBaseTy(info), Result(Result) {}
|
|
|
|
bool Success(const CCValue &V, const Expr *E) {
|
|
Result.setFrom(V);
|
|
return true;
|
|
}
|
|
bool Error(const Stmt *S) {
|
|
return false;
|
|
}
|
|
bool ValueInitialization(const Expr *E) {
|
|
return Success((Expr*)0);
|
|
}
|
|
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitCastExpr(const CastExpr* E);
|
|
bool VisitUnaryAddrOf(const UnaryOperator *E);
|
|
bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
|
|
{ return Success(E); }
|
|
bool VisitAddrLabelExpr(const AddrLabelExpr *E)
|
|
{ return Success(E); }
|
|
bool VisitCallExpr(const CallExpr *E);
|
|
bool VisitBlockExpr(const BlockExpr *E) {
|
|
if (!E->getBlockDecl()->hasCaptures())
|
|
return Success(E);
|
|
return false;
|
|
}
|
|
bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E)
|
|
{ return ValueInitialization(E); }
|
|
bool VisitCXXThisExpr(const CXXThisExpr *E) {
|
|
if (!Info.CurrentCall->This)
|
|
return false;
|
|
Result = *Info.CurrentCall->This;
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Missing: @protocol, @selector
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->hasPointerRepresentation());
|
|
return PointerExprEvaluator(Info, Result).Visit(E);
|
|
}
|
|
|
|
bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() != BO_Add &&
|
|
E->getOpcode() != BO_Sub)
|
|
return false;
|
|
|
|
const Expr *PExp = E->getLHS();
|
|
const Expr *IExp = E->getRHS();
|
|
if (IExp->getType()->isPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
if (!EvaluatePointer(PExp, Result, Info))
|
|
return false;
|
|
|
|
llvm::APSInt Offset;
|
|
if (!EvaluateInteger(IExp, Offset, Info))
|
|
return false;
|
|
int64_t AdditionalOffset
|
|
= Offset.isSigned() ? Offset.getSExtValue()
|
|
: static_cast<int64_t>(Offset.getZExtValue());
|
|
if (E->getOpcode() == BO_Sub)
|
|
AdditionalOffset = -AdditionalOffset;
|
|
|
|
QualType Pointee = PExp->getType()->getAs<PointerType>()->getPointeeType();
|
|
return HandleLValueArrayAdjustment(Info, Result, Pointee, AdditionalOffset);
|
|
}
|
|
|
|
bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
return EvaluateLValue(E->getSubExpr(), Result, Info);
|
|
}
|
|
|
|
bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
|
|
const Expr* SubExpr = E->getSubExpr();
|
|
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
break;
|
|
|
|
case CK_BitCast:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
if (!Visit(SubExpr))
|
|
return false;
|
|
Result.Designator.setInvalid();
|
|
return true;
|
|
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase: {
|
|
if (!EvaluatePointer(E->getSubExpr(), Result, Info))
|
|
return false;
|
|
|
|
// Now figure out the necessary offset to add to the base LV to get from
|
|
// the derived class to the base class.
|
|
QualType Type =
|
|
E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
|
|
|
|
for (CastExpr::path_const_iterator PathI = E->path_begin(),
|
|
PathE = E->path_end(); PathI != PathE; ++PathI) {
|
|
if (!HandleLValueBase(Info, Result, Type->getAsCXXRecordDecl(), *PathI))
|
|
return false;
|
|
Type = (*PathI)->getType();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
case CK_NullToPointer:
|
|
return ValueInitialization(E);
|
|
|
|
case CK_IntegralToPointer: {
|
|
CCValue Value;
|
|
if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
|
|
break;
|
|
|
|
if (Value.isInt()) {
|
|
unsigned Size = Info.Ctx.getTypeSize(E->getType());
|
|
uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
|
|
Result.Base = 0;
|
|
Result.Offset = CharUnits::fromQuantity(N);
|
|
Result.Frame = 0;
|
|
Result.Designator.setInvalid();
|
|
return true;
|
|
} else {
|
|
// Cast is of an lvalue, no need to change value.
|
|
Result.setFrom(Value);
|
|
return true;
|
|
}
|
|
}
|
|
case CK_ArrayToPointerDecay:
|
|
// FIXME: Support array-to-pointer decay on array rvalues.
|
|
if (!SubExpr->isGLValue())
|
|
return Error(E);
|
|
if (!EvaluateLValue(SubExpr, Result, Info))
|
|
return false;
|
|
// The result is a pointer to the first element of the array.
|
|
Result.Designator.addIndex(0);
|
|
return true;
|
|
|
|
case CK_FunctionToPointerDecay:
|
|
return EvaluateLValue(SubExpr, Result, Info);
|
|
}
|
|
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
}
|
|
|
|
bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
|
|
if (IsStringLiteralCall(E))
|
|
return Success(E);
|
|
|
|
return ExprEvaluatorBaseTy::VisitCallExpr(E);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Record Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class RecordExprEvaluator
|
|
: public ExprEvaluatorBase<RecordExprEvaluator, bool> {
|
|
const LValue &This;
|
|
APValue &Result;
|
|
public:
|
|
|
|
RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
|
|
: ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
|
|
|
|
bool Success(const CCValue &V, const Expr *E) {
|
|
return CheckConstantExpression(V, Result);
|
|
}
|
|
bool Error(const Expr *E) { return false; }
|
|
|
|
bool VisitCastExpr(const CastExpr *E);
|
|
bool VisitInitListExpr(const InitListExpr *E);
|
|
bool VisitCXXConstructExpr(const CXXConstructExpr *E);
|
|
};
|
|
}
|
|
|
|
bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
|
|
case CK_ConstructorConversion:
|
|
return Visit(E->getSubExpr());
|
|
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase: {
|
|
CCValue DerivedObject;
|
|
if (!Evaluate(DerivedObject, Info, E->getSubExpr()) ||
|
|
!DerivedObject.isStruct())
|
|
return false;
|
|
|
|
// Derived-to-base rvalue conversion: just slice off the derived part.
|
|
APValue *Value = &DerivedObject;
|
|
const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
|
|
for (CastExpr::path_const_iterator PathI = E->path_begin(),
|
|
PathE = E->path_end(); PathI != PathE; ++PathI) {
|
|
assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
|
|
const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
|
|
Value = &Value->getStructBase(getBaseIndex(RD, Base));
|
|
RD = Base;
|
|
}
|
|
Result = *Value;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
|
|
const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
|
|
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
|
|
|
|
if (RD->isUnion()) {
|
|
Result = APValue(E->getInitializedFieldInUnion());
|
|
if (!E->getNumInits())
|
|
return true;
|
|
LValue Subobject = This;
|
|
HandleLValueMember(Info, Subobject, E->getInitializedFieldInUnion(),
|
|
&Layout);
|
|
return EvaluateConstantExpression(Result.getUnionValue(), Info,
|
|
Subobject, E->getInit(0));
|
|
}
|
|
|
|
assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
|
|
"initializer list for class with base classes");
|
|
Result = APValue(APValue::UninitStruct(), 0,
|
|
std::distance(RD->field_begin(), RD->field_end()));
|
|
unsigned ElementNo = 0;
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
|
|
// Anonymous bit-fields are not considered members of the class for
|
|
// purposes of aggregate initialization.
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
LValue Subobject = This;
|
|
HandleLValueMember(Info, Subobject, *Field, &Layout);
|
|
|
|
if (ElementNo < E->getNumInits()) {
|
|
if (!EvaluateConstantExpression(
|
|
Result.getStructField((*Field)->getFieldIndex()),
|
|
Info, Subobject, E->getInit(ElementNo++)))
|
|
return false;
|
|
} else {
|
|
// Perform an implicit value-initialization for members beyond the end of
|
|
// the initializer list.
|
|
ImplicitValueInitExpr VIE(Field->getType());
|
|
if (!EvaluateConstantExpression(
|
|
Result.getStructField((*Field)->getFieldIndex()),
|
|
Info, Subobject, &VIE))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
|
|
const CXXConstructorDecl *FD = E->getConstructor();
|
|
const FunctionDecl *Definition = 0;
|
|
FD->getBody(Definition);
|
|
|
|
if (!Definition || !Definition->isConstexpr() || Definition->isInvalidDecl())
|
|
return false;
|
|
|
|
// FIXME: Elide the copy/move construction wherever we can.
|
|
if (E->isElidable())
|
|
if (const MaterializeTemporaryExpr *ME
|
|
= dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
|
|
return Visit(ME->GetTemporaryExpr());
|
|
|
|
llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
|
|
return HandleConstructorCall(This, Args, cast<CXXConstructorDecl>(Definition),
|
|
Info, Result);
|
|
}
|
|
|
|
static bool EvaluateRecord(const Expr *E, const LValue &This,
|
|
APValue &Result, EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->isRecordType() &&
|
|
E->getType()->isLiteralType() &&
|
|
"can't evaluate expression as a record rvalue");
|
|
return RecordExprEvaluator(Info, This, Result).Visit(E);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VectorExprEvaluator
|
|
: public ExprEvaluatorBase<VectorExprEvaluator, bool> {
|
|
APValue &Result;
|
|
public:
|
|
|
|
VectorExprEvaluator(EvalInfo &info, APValue &Result)
|
|
: ExprEvaluatorBaseTy(info), Result(Result) {}
|
|
|
|
bool Success(const ArrayRef<APValue> &V, const Expr *E) {
|
|
assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
|
|
// FIXME: remove this APValue copy.
|
|
Result = APValue(V.data(), V.size());
|
|
return true;
|
|
}
|
|
bool Success(const CCValue &V, const Expr *E) {
|
|
assert(V.isVector());
|
|
Result = V;
|
|
return true;
|
|
}
|
|
bool Error(const Expr *E) { return false; }
|
|
bool ValueInitialization(const Expr *E);
|
|
|
|
bool VisitUnaryReal(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
bool VisitCastExpr(const CastExpr* E);
|
|
bool VisitInitListExpr(const InitListExpr *E);
|
|
bool VisitUnaryImag(const UnaryOperator *E);
|
|
// FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
|
|
// binary comparisons, binary and/or/xor,
|
|
// shufflevector, ExtVectorElementExpr
|
|
// (Note that these require implementing conversions
|
|
// between vector types.)
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
|
|
return VectorExprEvaluator(Info, Result).Visit(E);
|
|
}
|
|
|
|
bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
|
|
const VectorType *VTy = E->getType()->castAs<VectorType>();
|
|
QualType EltTy = VTy->getElementType();
|
|
unsigned NElts = VTy->getNumElements();
|
|
unsigned EltWidth = Info.Ctx.getTypeSize(EltTy);
|
|
|
|
const Expr* SE = E->getSubExpr();
|
|
QualType SETy = SE->getType();
|
|
|
|
switch (E->getCastKind()) {
|
|
case CK_VectorSplat: {
|
|
APValue Val = APValue();
|
|
if (SETy->isIntegerType()) {
|
|
APSInt IntResult;
|
|
if (!EvaluateInteger(SE, IntResult, Info))
|
|
return Error(E);
|
|
Val = APValue(IntResult);
|
|
} else if (SETy->isRealFloatingType()) {
|
|
APFloat F(0.0);
|
|
if (!EvaluateFloat(SE, F, Info))
|
|
return Error(E);
|
|
Val = APValue(F);
|
|
} else {
|
|
return Error(E);
|
|
}
|
|
|
|
// Splat and create vector APValue.
|
|
SmallVector<APValue, 4> Elts(NElts, Val);
|
|
return Success(Elts, E);
|
|
}
|
|
case CK_BitCast: {
|
|
// FIXME: this is wrong for any cast other than a no-op cast.
|
|
if (SETy->isVectorType())
|
|
return Visit(SE);
|
|
|
|
if (!SETy->isIntegerType())
|
|
return Error(E);
|
|
|
|
APSInt Init;
|
|
if (!EvaluateInteger(SE, Init, Info))
|
|
return Error(E);
|
|
|
|
assert((EltTy->isIntegerType() || EltTy->isRealFloatingType()) &&
|
|
"Vectors must be composed of ints or floats");
|
|
|
|
SmallVector<APValue, 4> Elts;
|
|
for (unsigned i = 0; i != NElts; ++i) {
|
|
APSInt Tmp = Init.extOrTrunc(EltWidth);
|
|
|
|
if (EltTy->isIntegerType())
|
|
Elts.push_back(APValue(Tmp));
|
|
else
|
|
Elts.push_back(APValue(APFloat(Tmp)));
|
|
|
|
Init >>= EltWidth;
|
|
}
|
|
return Success(Elts, E);
|
|
}
|
|
default:
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
}
|
|
}
|
|
|
|
bool
|
|
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
|
|
const VectorType *VT = E->getType()->castAs<VectorType>();
|
|
unsigned NumInits = E->getNumInits();
|
|
unsigned NumElements = VT->getNumElements();
|
|
|
|
QualType EltTy = VT->getElementType();
|
|
SmallVector<APValue, 4> Elements;
|
|
|
|
// If a vector is initialized with a single element, that value
|
|
// becomes every element of the vector, not just the first.
|
|
// This is the behavior described in the IBM AltiVec documentation.
|
|
if (NumInits == 1) {
|
|
|
|
// Handle the case where the vector is initialized by another
|
|
// vector (OpenCL 6.1.6).
|
|
if (E->getInit(0)->getType()->isVectorType())
|
|
return Visit(E->getInit(0));
|
|
|
|
APValue InitValue;
|
|
if (EltTy->isIntegerType()) {
|
|
llvm::APSInt sInt(32);
|
|
if (!EvaluateInteger(E->getInit(0), sInt, Info))
|
|
return Error(E);
|
|
InitValue = APValue(sInt);
|
|
} else {
|
|
llvm::APFloat f(0.0);
|
|
if (!EvaluateFloat(E->getInit(0), f, Info))
|
|
return Error(E);
|
|
InitValue = APValue(f);
|
|
}
|
|
for (unsigned i = 0; i < NumElements; i++) {
|
|
Elements.push_back(InitValue);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < NumElements; i++) {
|
|
if (EltTy->isIntegerType()) {
|
|
llvm::APSInt sInt(32);
|
|
if (i < NumInits) {
|
|
if (!EvaluateInteger(E->getInit(i), sInt, Info))
|
|
return Error(E);
|
|
} else {
|
|
sInt = Info.Ctx.MakeIntValue(0, EltTy);
|
|
}
|
|
Elements.push_back(APValue(sInt));
|
|
} else {
|
|
llvm::APFloat f(0.0);
|
|
if (i < NumInits) {
|
|
if (!EvaluateFloat(E->getInit(i), f, Info))
|
|
return Error(E);
|
|
} else {
|
|
f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
|
|
}
|
|
Elements.push_back(APValue(f));
|
|
}
|
|
}
|
|
}
|
|
return Success(Elements, E);
|
|
}
|
|
|
|
bool
|
|
VectorExprEvaluator::ValueInitialization(const Expr *E) {
|
|
const VectorType *VT = E->getType()->getAs<VectorType>();
|
|
QualType EltTy = VT->getElementType();
|
|
APValue ZeroElement;
|
|
if (EltTy->isIntegerType())
|
|
ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
|
|
else
|
|
ZeroElement =
|
|
APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
|
|
|
|
SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
|
|
return Success(Elements, E);
|
|
}
|
|
|
|
bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
|
|
VisitIgnoredValue(E->getSubExpr());
|
|
return ValueInitialization(E);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Array Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ArrayExprEvaluator
|
|
: public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
|
|
const LValue &This;
|
|
APValue &Result;
|
|
public:
|
|
|
|
ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
|
|
: ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
|
|
|
|
bool Success(const APValue &V, const Expr *E) {
|
|
assert(V.isArray() && "Expected array type");
|
|
Result = V;
|
|
return true;
|
|
}
|
|
bool Error(const Expr *E) { return false; }
|
|
|
|
bool ValueInitialization(const Expr *E) {
|
|
const ConstantArrayType *CAT =
|
|
Info.Ctx.getAsConstantArrayType(E->getType());
|
|
if (!CAT)
|
|
return false;
|
|
|
|
Result = APValue(APValue::UninitArray(), 0,
|
|
CAT->getSize().getZExtValue());
|
|
if (!Result.hasArrayFiller()) return true;
|
|
|
|
// Value-initialize all elements.
|
|
LValue Subobject = This;
|
|
Subobject.Designator.addIndex(0);
|
|
ImplicitValueInitExpr VIE(CAT->getElementType());
|
|
return EvaluateConstantExpression(Result.getArrayFiller(), Info,
|
|
Subobject, &VIE);
|
|
}
|
|
|
|
// FIXME: We also get CXXConstructExpr, in cases like:
|
|
// struct S { constexpr S(); }; constexpr S s[10];
|
|
bool VisitInitListExpr(const InitListExpr *E);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateArray(const Expr *E, const LValue &This,
|
|
APValue &Result, EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->isArrayType() &&
|
|
E->getType()->isLiteralType() && "not a literal array rvalue");
|
|
return ArrayExprEvaluator(Info, This, Result).Visit(E);
|
|
}
|
|
|
|
bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
|
|
const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
|
|
if (!CAT)
|
|
return false;
|
|
|
|
Result = APValue(APValue::UninitArray(), E->getNumInits(),
|
|
CAT->getSize().getZExtValue());
|
|
LValue Subobject = This;
|
|
Subobject.Designator.addIndex(0);
|
|
unsigned Index = 0;
|
|
for (InitListExpr::const_iterator I = E->begin(), End = E->end();
|
|
I != End; ++I, ++Index) {
|
|
if (!EvaluateConstantExpression(Result.getArrayInitializedElt(Index),
|
|
Info, Subobject, cast<Expr>(*I)))
|
|
return false;
|
|
if (!HandleLValueArrayAdjustment(Info, Subobject, CAT->getElementType(), 1))
|
|
return false;
|
|
}
|
|
|
|
if (!Result.hasArrayFiller()) return true;
|
|
assert(E->hasArrayFiller() && "no array filler for incomplete init list");
|
|
// FIXME: The Subobject here isn't necessarily right. This rarely matters,
|
|
// but sometimes does:
|
|
// struct S { constexpr S() : p(&p) {} void *p; };
|
|
// S s[10] = {};
|
|
return EvaluateConstantExpression(Result.getArrayFiller(), Info,
|
|
Subobject, E->getArrayFiller());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Evaluation
|
|
//
|
|
// As a GNU extension, we support casting pointers to sufficiently-wide integer
|
|
// types and back in constant folding. Integer values are thus represented
|
|
// either as an integer-valued APValue, or as an lvalue-valued APValue.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class IntExprEvaluator
|
|
: public ExprEvaluatorBase<IntExprEvaluator, bool> {
|
|
CCValue &Result;
|
|
public:
|
|
IntExprEvaluator(EvalInfo &info, CCValue &result)
|
|
: ExprEvaluatorBaseTy(info), Result(result) {}
|
|
|
|
bool Success(const llvm::APSInt &SI, const Expr *E) {
|
|
assert(E->getType()->isIntegralOrEnumerationType() &&
|
|
"Invalid evaluation result.");
|
|
assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
|
|
"Invalid evaluation result.");
|
|
assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
|
|
"Invalid evaluation result.");
|
|
Result = CCValue(SI);
|
|
return true;
|
|
}
|
|
|
|
bool Success(const llvm::APInt &I, const Expr *E) {
|
|
assert(E->getType()->isIntegralOrEnumerationType() &&
|
|
"Invalid evaluation result.");
|
|
assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
|
|
"Invalid evaluation result.");
|
|
Result = CCValue(APSInt(I));
|
|
Result.getInt().setIsUnsigned(
|
|
E->getType()->isUnsignedIntegerOrEnumerationType());
|
|
return true;
|
|
}
|
|
|
|
bool Success(uint64_t Value, const Expr *E) {
|
|
assert(E->getType()->isIntegralOrEnumerationType() &&
|
|
"Invalid evaluation result.");
|
|
Result = CCValue(Info.Ctx.MakeIntValue(Value, E->getType()));
|
|
return true;
|
|
}
|
|
|
|
bool Success(CharUnits Size, const Expr *E) {
|
|
return Success(Size.getQuantity(), E);
|
|
}
|
|
|
|
|
|
bool Error(SourceLocation L, diag::kind D, const Expr *E) {
|
|
// Take the first error.
|
|
if (Info.EvalStatus.Diag == 0) {
|
|
Info.EvalStatus.DiagLoc = L;
|
|
Info.EvalStatus.Diag = D;
|
|
Info.EvalStatus.DiagExpr = E;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Success(const CCValue &V, const Expr *E) {
|
|
if (V.isLValue()) {
|
|
Result = V;
|
|
return true;
|
|
}
|
|
return Success(V.getInt(), E);
|
|
}
|
|
bool Error(const Expr *E) {
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
|
|
bool ValueInitialization(const Expr *E) { return Success(0, E); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
bool VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
bool CheckReferencedDecl(const Expr *E, const Decl *D);
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
if (CheckReferencedDecl(E, E->getDecl()))
|
|
return true;
|
|
|
|
return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
|
|
}
|
|
bool VisitMemberExpr(const MemberExpr *E) {
|
|
if (CheckReferencedDecl(E, E->getMemberDecl())) {
|
|
VisitIgnoredValue(E->getBase());
|
|
return true;
|
|
}
|
|
|
|
return ExprEvaluatorBaseTy::VisitMemberExpr(E);
|
|
}
|
|
|
|
bool VisitCallExpr(const CallExpr *E);
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitOffsetOfExpr(const OffsetOfExpr *E);
|
|
bool VisitUnaryOperator(const UnaryOperator *E);
|
|
|
|
bool VisitCastExpr(const CastExpr* E);
|
|
bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
|
|
|
|
bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
// Note, GNU defines __null as an integer, not a pointer.
|
|
bool VisitGNUNullExpr(const GNUNullExpr *E) {
|
|
return ValueInitialization(E);
|
|
}
|
|
|
|
bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
bool VisitUnaryReal(const UnaryOperator *E);
|
|
bool VisitUnaryImag(const UnaryOperator *E);
|
|
|
|
bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
|
|
bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
|
|
|
|
private:
|
|
CharUnits GetAlignOfExpr(const Expr *E);
|
|
CharUnits GetAlignOfType(QualType T);
|
|
static QualType GetObjectType(const Expr *E);
|
|
bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
|
|
// FIXME: Missing: array subscript of vector, member of vector
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
|
|
/// produce either the integer value or a pointer.
|
|
///
|
|
/// GCC has a heinous extension which folds casts between pointer types and
|
|
/// pointer-sized integral types. We support this by allowing the evaluation of
|
|
/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
|
|
/// Some simple arithmetic on such values is supported (they are treated much
|
|
/// like char*).
|
|
static bool EvaluateIntegerOrLValue(const Expr* E, CCValue &Result,
|
|
EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
|
|
return IntExprEvaluator(Info, Result).Visit(E);
|
|
}
|
|
|
|
static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
|
|
CCValue Val;
|
|
if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt())
|
|
return false;
|
|
Result = Val.getInt();
|
|
return true;
|
|
}
|
|
|
|
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
|
|
// Enums are integer constant exprs.
|
|
if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
|
|
// Check for signedness/width mismatches between E type and ECD value.
|
|
bool SameSign = (ECD->getInitVal().isSigned()
|
|
== E->getType()->isSignedIntegerOrEnumerationType());
|
|
bool SameWidth = (ECD->getInitVal().getBitWidth()
|
|
== Info.Ctx.getIntWidth(E->getType()));
|
|
if (SameSign && SameWidth)
|
|
return Success(ECD->getInitVal(), E);
|
|
else {
|
|
// Get rid of mismatch (otherwise Success assertions will fail)
|
|
// by computing a new value matching the type of E.
|
|
llvm::APSInt Val = ECD->getInitVal();
|
|
if (!SameSign)
|
|
Val.setIsSigned(!ECD->getInitVal().isSigned());
|
|
if (!SameWidth)
|
|
Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
|
|
return Success(Val, E);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
|
|
/// as GCC.
|
|
static int EvaluateBuiltinClassifyType(const CallExpr *E) {
|
|
// The following enum mimics the values returned by GCC.
|
|
// FIXME: Does GCC differ between lvalue and rvalue references here?
|
|
enum gcc_type_class {
|
|
no_type_class = -1,
|
|
void_type_class, integer_type_class, char_type_class,
|
|
enumeral_type_class, boolean_type_class,
|
|
pointer_type_class, reference_type_class, offset_type_class,
|
|
real_type_class, complex_type_class,
|
|
function_type_class, method_type_class,
|
|
record_type_class, union_type_class,
|
|
array_type_class, string_type_class,
|
|
lang_type_class
|
|
};
|
|
|
|
// If no argument was supplied, default to "no_type_class". This isn't
|
|
// ideal, however it is what gcc does.
|
|
if (E->getNumArgs() == 0)
|
|
return no_type_class;
|
|
|
|
QualType ArgTy = E->getArg(0)->getType();
|
|
if (ArgTy->isVoidType())
|
|
return void_type_class;
|
|
else if (ArgTy->isEnumeralType())
|
|
return enumeral_type_class;
|
|
else if (ArgTy->isBooleanType())
|
|
return boolean_type_class;
|
|
else if (ArgTy->isCharType())
|
|
return string_type_class; // gcc doesn't appear to use char_type_class
|
|
else if (ArgTy->isIntegerType())
|
|
return integer_type_class;
|
|
else if (ArgTy->isPointerType())
|
|
return pointer_type_class;
|
|
else if (ArgTy->isReferenceType())
|
|
return reference_type_class;
|
|
else if (ArgTy->isRealType())
|
|
return real_type_class;
|
|
else if (ArgTy->isComplexType())
|
|
return complex_type_class;
|
|
else if (ArgTy->isFunctionType())
|
|
return function_type_class;
|
|
else if (ArgTy->isStructureOrClassType())
|
|
return record_type_class;
|
|
else if (ArgTy->isUnionType())
|
|
return union_type_class;
|
|
else if (ArgTy->isArrayType())
|
|
return array_type_class;
|
|
else if (ArgTy->isUnionType())
|
|
return union_type_class;
|
|
else // FIXME: offset_type_class, method_type_class, & lang_type_class?
|
|
llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
|
|
return -1;
|
|
}
|
|
|
|
/// Retrieves the "underlying object type" of the given expression,
|
|
/// as used by __builtin_object_size.
|
|
QualType IntExprEvaluator::GetObjectType(const Expr *E) {
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
return VD->getType();
|
|
} else if (isa<CompoundLiteralExpr>(E)) {
|
|
return E->getType();
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
|
|
// TODO: Perhaps we should let LLVM lower this?
|
|
LValue Base;
|
|
if (!EvaluatePointer(E->getArg(0), Base, Info))
|
|
return false;
|
|
|
|
// If we can prove the base is null, lower to zero now.
|
|
const Expr *LVBase = Base.getLValueBase();
|
|
if (!LVBase) return Success(0, E);
|
|
|
|
QualType T = GetObjectType(LVBase);
|
|
if (T.isNull() ||
|
|
T->isIncompleteType() ||
|
|
T->isFunctionType() ||
|
|
T->isVariablyModifiedType() ||
|
|
T->isDependentType())
|
|
return false;
|
|
|
|
CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
|
|
CharUnits Offset = Base.getLValueOffset();
|
|
|
|
if (!Offset.isNegative() && Offset <= Size)
|
|
Size -= Offset;
|
|
else
|
|
Size = CharUnits::Zero();
|
|
return Success(Size, E);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
|
|
switch (E->isBuiltinCall()) {
|
|
default:
|
|
return ExprEvaluatorBaseTy::VisitCallExpr(E);
|
|
|
|
case Builtin::BI__builtin_object_size: {
|
|
if (TryEvaluateBuiltinObjectSize(E))
|
|
return true;
|
|
|
|
// If evaluating the argument has side-effects we can't determine
|
|
// the size of the object and lower it to unknown now.
|
|
if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
|
|
if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
|
|
return Success(-1ULL, E);
|
|
return Success(0, E);
|
|
}
|
|
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
|
|
case Builtin::BI__builtin_classify_type:
|
|
return Success(EvaluateBuiltinClassifyType(E), E);
|
|
|
|
case Builtin::BI__builtin_constant_p:
|
|
// __builtin_constant_p always has one operand: it returns true if that
|
|
// operand can be folded, false otherwise.
|
|
return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E);
|
|
|
|
case Builtin::BI__builtin_eh_return_data_regno: {
|
|
int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
|
|
Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
|
|
return Success(Operand, E);
|
|
}
|
|
|
|
case Builtin::BI__builtin_expect:
|
|
return Visit(E->getArg(0));
|
|
|
|
case Builtin::BIstrlen:
|
|
case Builtin::BI__builtin_strlen:
|
|
// As an extension, we support strlen() and __builtin_strlen() as constant
|
|
// expressions when the argument is a string literal.
|
|
if (const StringLiteral *S
|
|
= dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
|
|
// The string literal may have embedded null characters. Find the first
|
|
// one and truncate there.
|
|
StringRef Str = S->getString();
|
|
StringRef::size_type Pos = Str.find(0);
|
|
if (Pos != StringRef::npos)
|
|
Str = Str.substr(0, Pos);
|
|
|
|
return Success(Str.size(), E);
|
|
}
|
|
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
case Builtin::BI__atomic_is_lock_free: {
|
|
APSInt SizeVal;
|
|
if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
|
|
return false;
|
|
|
|
// For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
|
|
// of two less than the maximum inline atomic width, we know it is
|
|
// lock-free. If the size isn't a power of two, or greater than the
|
|
// maximum alignment where we promote atomics, we know it is not lock-free
|
|
// (at least not in the sense of atomic_is_lock_free). Otherwise,
|
|
// the answer can only be determined at runtime; for example, 16-byte
|
|
// atomics have lock-free implementations on some, but not all,
|
|
// x86-64 processors.
|
|
|
|
// Check power-of-two.
|
|
CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
|
|
if (!Size.isPowerOfTwo())
|
|
#if 0
|
|
// FIXME: Suppress this folding until the ABI for the promotion width
|
|
// settles.
|
|
return Success(0, E);
|
|
#else
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
#endif
|
|
|
|
#if 0
|
|
// Check against promotion width.
|
|
// FIXME: Suppress this folding until the ABI for the promotion width
|
|
// settles.
|
|
unsigned PromoteWidthBits =
|
|
Info.Ctx.getTargetInfo().getMaxAtomicPromoteWidth();
|
|
if (Size > Info.Ctx.toCharUnitsFromBits(PromoteWidthBits))
|
|
return Success(0, E);
|
|
#endif
|
|
|
|
// Check against inlining width.
|
|
unsigned InlineWidthBits =
|
|
Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
|
|
if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits))
|
|
return Success(1, E);
|
|
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool HasSameBase(const LValue &A, const LValue &B) {
|
|
if (!A.getLValueBase())
|
|
return !B.getLValueBase();
|
|
if (!B.getLValueBase())
|
|
return false;
|
|
|
|
if (A.getLValueBase() != B.getLValueBase()) {
|
|
const Decl *ADecl = GetLValueBaseDecl(A);
|
|
if (!ADecl)
|
|
return false;
|
|
const Decl *BDecl = GetLValueBaseDecl(B);
|
|
if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
|
|
return false;
|
|
}
|
|
|
|
return IsGlobalLValue(A.getLValueBase()) ||
|
|
A.getLValueFrame() == B.getLValueFrame();
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->isAssignmentOp())
|
|
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
if (E->getOpcode() == BO_Comma) {
|
|
VisitIgnoredValue(E->getLHS());
|
|
return Visit(E->getRHS());
|
|
}
|
|
|
|
if (E->isLogicalOp()) {
|
|
// These need to be handled specially because the operands aren't
|
|
// necessarily integral
|
|
bool lhsResult, rhsResult;
|
|
|
|
if (EvaluateAsBooleanCondition(E->getLHS(), lhsResult, Info)) {
|
|
// We were able to evaluate the LHS, see if we can get away with not
|
|
// evaluating the RHS: 0 && X -> 0, 1 || X -> 1
|
|
if (lhsResult == (E->getOpcode() == BO_LOr))
|
|
return Success(lhsResult, E);
|
|
|
|
if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
|
|
if (E->getOpcode() == BO_LOr)
|
|
return Success(lhsResult || rhsResult, E);
|
|
else
|
|
return Success(lhsResult && rhsResult, E);
|
|
}
|
|
} else {
|
|
if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
|
|
// We can't evaluate the LHS; however, sometimes the result
|
|
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
|
|
if (rhsResult == (E->getOpcode() == BO_LOr) ||
|
|
!rhsResult == (E->getOpcode() == BO_LAnd)) {
|
|
// Since we weren't able to evaluate the left hand side, it
|
|
// must have had side effects.
|
|
Info.EvalStatus.HasSideEffects = true;
|
|
|
|
return Success(rhsResult, E);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
QualType RHSTy = E->getRHS()->getType();
|
|
|
|
if (LHSTy->isAnyComplexType()) {
|
|
assert(RHSTy->isAnyComplexType() && "Invalid comparison");
|
|
ComplexValue LHS, RHS;
|
|
|
|
if (!EvaluateComplex(E->getLHS(), LHS, Info))
|
|
return false;
|
|
|
|
if (!EvaluateComplex(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
if (LHS.isComplexFloat()) {
|
|
APFloat::cmpResult CR_r =
|
|
LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
|
|
APFloat::cmpResult CR_i =
|
|
LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
|
|
|
|
if (E->getOpcode() == BO_EQ)
|
|
return Success((CR_r == APFloat::cmpEqual &&
|
|
CR_i == APFloat::cmpEqual), E);
|
|
else {
|
|
assert(E->getOpcode() == BO_NE &&
|
|
"Invalid complex comparison.");
|
|
return Success(((CR_r == APFloat::cmpGreaterThan ||
|
|
CR_r == APFloat::cmpLessThan ||
|
|
CR_r == APFloat::cmpUnordered) ||
|
|
(CR_i == APFloat::cmpGreaterThan ||
|
|
CR_i == APFloat::cmpLessThan ||
|
|
CR_i == APFloat::cmpUnordered)), E);
|
|
}
|
|
} else {
|
|
if (E->getOpcode() == BO_EQ)
|
|
return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
|
|
LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
|
|
else {
|
|
assert(E->getOpcode() == BO_NE &&
|
|
"Invalid compex comparison.");
|
|
return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
|
|
LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LHSTy->isRealFloatingType() &&
|
|
RHSTy->isRealFloatingType()) {
|
|
APFloat RHS(0.0), LHS(0.0);
|
|
|
|
if (!EvaluateFloat(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
if (!EvaluateFloat(E->getLHS(), LHS, Info))
|
|
return false;
|
|
|
|
APFloat::cmpResult CR = LHS.compare(RHS);
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid binary operator!");
|
|
case BO_LT:
|
|
return Success(CR == APFloat::cmpLessThan, E);
|
|
case BO_GT:
|
|
return Success(CR == APFloat::cmpGreaterThan, E);
|
|
case BO_LE:
|
|
return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
|
|
case BO_GE:
|
|
return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
|
|
E);
|
|
case BO_EQ:
|
|
return Success(CR == APFloat::cmpEqual, E);
|
|
case BO_NE:
|
|
return Success(CR == APFloat::cmpGreaterThan
|
|
|| CR == APFloat::cmpLessThan
|
|
|| CR == APFloat::cmpUnordered, E);
|
|
}
|
|
}
|
|
|
|
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
|
|
if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
|
|
LValue LHSValue;
|
|
if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
|
|
return false;
|
|
|
|
LValue RHSValue;
|
|
if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
|
|
return false;
|
|
|
|
// Reject differing bases from the normal codepath; we special-case
|
|
// comparisons to null.
|
|
if (!HasSameBase(LHSValue, RHSValue)) {
|
|
// Inequalities and subtractions between unrelated pointers have
|
|
// unspecified or undefined behavior.
|
|
if (!E->isEqualityOp())
|
|
return false;
|
|
// A constant address may compare equal to the address of a symbol.
|
|
// The one exception is that address of an object cannot compare equal
|
|
// to a null pointer constant.
|
|
if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
|
|
(!RHSValue.Base && !RHSValue.Offset.isZero()))
|
|
return false;
|
|
// It's implementation-defined whether distinct literals will have
|
|
// distinct addresses. In clang, we do not guarantee the addresses are
|
|
// distinct. However, we do know that the address of a literal will be
|
|
// non-null.
|
|
if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
|
|
LHSValue.Base && RHSValue.Base)
|
|
return false;
|
|
// We can't tell whether weak symbols will end up pointing to the same
|
|
// object.
|
|
if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
|
|
return false;
|
|
// Pointers with different bases cannot represent the same object.
|
|
// (Note that clang defaults to -fmerge-all-constants, which can
|
|
// lead to inconsistent results for comparisons involving the address
|
|
// of a constant; this generally doesn't matter in practice.)
|
|
return Success(E->getOpcode() == BO_NE, E);
|
|
}
|
|
|
|
// FIXME: Implement the C++11 restrictions:
|
|
// - Pointer subtractions must be on elements of the same array.
|
|
// - Pointer comparisons must be between members with the same access.
|
|
|
|
if (E->getOpcode() == BO_Sub) {
|
|
QualType Type = E->getLHS()->getType();
|
|
QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
|
|
|
|
CharUnits ElementSize;
|
|
if (!HandleSizeof(Info, ElementType, ElementSize))
|
|
return false;
|
|
|
|
CharUnits Diff = LHSValue.getLValueOffset() -
|
|
RHSValue.getLValueOffset();
|
|
return Success(Diff / ElementSize, E);
|
|
}
|
|
|
|
const CharUnits &LHSOffset = LHSValue.getLValueOffset();
|
|
const CharUnits &RHSOffset = RHSValue.getLValueOffset();
|
|
switch (E->getOpcode()) {
|
|
default: llvm_unreachable("missing comparison operator");
|
|
case BO_LT: return Success(LHSOffset < RHSOffset, E);
|
|
case BO_GT: return Success(LHSOffset > RHSOffset, E);
|
|
case BO_LE: return Success(LHSOffset <= RHSOffset, E);
|
|
case BO_GE: return Success(LHSOffset >= RHSOffset, E);
|
|
case BO_EQ: return Success(LHSOffset == RHSOffset, E);
|
|
case BO_NE: return Success(LHSOffset != RHSOffset, E);
|
|
}
|
|
}
|
|
}
|
|
if (!LHSTy->isIntegralOrEnumerationType() ||
|
|
!RHSTy->isIntegralOrEnumerationType()) {
|
|
// We can't continue from here for non-integral types, and they
|
|
// could potentially confuse the following operations.
|
|
return false;
|
|
}
|
|
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
CCValue LHSVal;
|
|
if (!EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info))
|
|
return false; // error in subexpression.
|
|
|
|
if (!Visit(E->getRHS()))
|
|
return false;
|
|
CCValue &RHSVal = Result;
|
|
|
|
// Handle cases like (unsigned long)&a + 4.
|
|
if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
|
|
CharUnits AdditionalOffset = CharUnits::fromQuantity(
|
|
RHSVal.getInt().getZExtValue());
|
|
if (E->getOpcode() == BO_Add)
|
|
LHSVal.getLValueOffset() += AdditionalOffset;
|
|
else
|
|
LHSVal.getLValueOffset() -= AdditionalOffset;
|
|
Result = LHSVal;
|
|
return true;
|
|
}
|
|
|
|
// Handle cases like 4 + (unsigned long)&a
|
|
if (E->getOpcode() == BO_Add &&
|
|
RHSVal.isLValue() && LHSVal.isInt()) {
|
|
RHSVal.getLValueOffset() += CharUnits::fromQuantity(
|
|
LHSVal.getInt().getZExtValue());
|
|
// Note that RHSVal is Result.
|
|
return true;
|
|
}
|
|
|
|
// All the following cases expect both operands to be an integer
|
|
if (!LHSVal.isInt() || !RHSVal.isInt())
|
|
return false;
|
|
|
|
APSInt &LHS = LHSVal.getInt();
|
|
APSInt &RHS = RHSVal.getInt();
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
case BO_Mul: return Success(LHS * RHS, E);
|
|
case BO_Add: return Success(LHS + RHS, E);
|
|
case BO_Sub: return Success(LHS - RHS, E);
|
|
case BO_And: return Success(LHS & RHS, E);
|
|
case BO_Xor: return Success(LHS ^ RHS, E);
|
|
case BO_Or: return Success(LHS | RHS, E);
|
|
case BO_Div:
|
|
if (RHS == 0)
|
|
return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
|
|
return Success(LHS / RHS, E);
|
|
case BO_Rem:
|
|
if (RHS == 0)
|
|
return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
|
|
return Success(LHS % RHS, E);
|
|
case BO_Shl: {
|
|
// During constant-folding, a negative shift is an opposite shift.
|
|
if (RHS.isSigned() && RHS.isNegative()) {
|
|
RHS = -RHS;
|
|
goto shift_right;
|
|
}
|
|
|
|
shift_left:
|
|
unsigned SA
|
|
= (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
|
|
return Success(LHS << SA, E);
|
|
}
|
|
case BO_Shr: {
|
|
// During constant-folding, a negative shift is an opposite shift.
|
|
if (RHS.isSigned() && RHS.isNegative()) {
|
|
RHS = -RHS;
|
|
goto shift_left;
|
|
}
|
|
|
|
shift_right:
|
|
unsigned SA =
|
|
(unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
|
|
return Success(LHS >> SA, E);
|
|
}
|
|
|
|
case BO_LT: return Success(LHS < RHS, E);
|
|
case BO_GT: return Success(LHS > RHS, E);
|
|
case BO_LE: return Success(LHS <= RHS, E);
|
|
case BO_GE: return Success(LHS >= RHS, E);
|
|
case BO_EQ: return Success(LHS == RHS, E);
|
|
case BO_NE: return Success(LHS != RHS, E);
|
|
}
|
|
}
|
|
|
|
CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
|
// result shall be the alignment of the referenced type."
|
|
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
|
|
T = Ref->getPointeeType();
|
|
|
|
// __alignof is defined to return the preferred alignment.
|
|
return Info.Ctx.toCharUnitsFromBits(
|
|
Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
|
|
}
|
|
|
|
CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
|
|
E = E->IgnoreParens();
|
|
|
|
// alignof decl is always accepted, even if it doesn't make sense: we default
|
|
// to 1 in those cases.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return Info.Ctx.getDeclAlign(DRE->getDecl(),
|
|
/*RefAsPointee*/true);
|
|
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
|
return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
|
|
/*RefAsPointee*/true);
|
|
|
|
return GetAlignOfType(E->getType());
|
|
}
|
|
|
|
|
|
/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
|
|
/// a result as the expression's type.
|
|
bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
|
|
const UnaryExprOrTypeTraitExpr *E) {
|
|
switch(E->getKind()) {
|
|
case UETT_AlignOf: {
|
|
if (E->isArgumentType())
|
|
return Success(GetAlignOfType(E->getArgumentType()), E);
|
|
else
|
|
return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
|
|
}
|
|
|
|
case UETT_VecStep: {
|
|
QualType Ty = E->getTypeOfArgument();
|
|
|
|
if (Ty->isVectorType()) {
|
|
unsigned n = Ty->getAs<VectorType>()->getNumElements();
|
|
|
|
// The vec_step built-in functions that take a 3-component
|
|
// vector return 4. (OpenCL 1.1 spec 6.11.12)
|
|
if (n == 3)
|
|
n = 4;
|
|
|
|
return Success(n, E);
|
|
} else
|
|
return Success(1, E);
|
|
}
|
|
|
|
case UETT_SizeOf: {
|
|
QualType SrcTy = E->getTypeOfArgument();
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
|
// result shall be the alignment of the referenced type."
|
|
if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
|
|
SrcTy = Ref->getPointeeType();
|
|
|
|
CharUnits Sizeof;
|
|
if (!HandleSizeof(Info, SrcTy, Sizeof))
|
|
return false;
|
|
return Success(Sizeof, E);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("unknown expr/type trait");
|
|
return false;
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
|
|
CharUnits Result;
|
|
unsigned n = OOE->getNumComponents();
|
|
if (n == 0)
|
|
return false;
|
|
QualType CurrentType = OOE->getTypeSourceInfo()->getType();
|
|
for (unsigned i = 0; i != n; ++i) {
|
|
OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
|
|
switch (ON.getKind()) {
|
|
case OffsetOfExpr::OffsetOfNode::Array: {
|
|
const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
|
|
APSInt IdxResult;
|
|
if (!EvaluateInteger(Idx, IdxResult, Info))
|
|
return false;
|
|
const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
|
|
if (!AT)
|
|
return false;
|
|
CurrentType = AT->getElementType();
|
|
CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
|
|
Result += IdxResult.getSExtValue() * ElementSize;
|
|
break;
|
|
}
|
|
|
|
case OffsetOfExpr::OffsetOfNode::Field: {
|
|
FieldDecl *MemberDecl = ON.getField();
|
|
const RecordType *RT = CurrentType->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
|
|
unsigned i = MemberDecl->getFieldIndex();
|
|
assert(i < RL.getFieldCount() && "offsetof field in wrong type");
|
|
Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
|
|
CurrentType = MemberDecl->getType().getNonReferenceType();
|
|
break;
|
|
}
|
|
|
|
case OffsetOfExpr::OffsetOfNode::Identifier:
|
|
llvm_unreachable("dependent __builtin_offsetof");
|
|
return false;
|
|
|
|
case OffsetOfExpr::OffsetOfNode::Base: {
|
|
CXXBaseSpecifier *BaseSpec = ON.getBase();
|
|
if (BaseSpec->isVirtual())
|
|
return false;
|
|
|
|
// Find the layout of the class whose base we are looking into.
|
|
const RecordType *RT = CurrentType->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
|
|
|
|
// Find the base class itself.
|
|
CurrentType = BaseSpec->getType();
|
|
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
|
|
if (!BaseRT)
|
|
return false;
|
|
|
|
// Add the offset to the base.
|
|
Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Success(Result, OOE);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
|
|
if (E->getOpcode() == UO_LNot) {
|
|
// LNot's operand isn't necessarily an integer, so we handle it specially.
|
|
bool bres;
|
|
if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
|
|
return false;
|
|
return Success(!bres, E);
|
|
}
|
|
|
|
// Only handle integral operations...
|
|
if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType())
|
|
return false;
|
|
|
|
// Get the operand value.
|
|
CCValue Val;
|
|
if (!Evaluate(Val, Info, E->getSubExpr()))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
case UO_Extension:
|
|
// FIXME: Should extension allow i-c-e extension expressions in its scope?
|
|
// If so, we could clear the diagnostic ID.
|
|
return Success(Val, E);
|
|
case UO_Plus:
|
|
// The result is just the value.
|
|
return Success(Val, E);
|
|
case UO_Minus:
|
|
if (!Val.isInt()) return false;
|
|
return Success(-Val.getInt(), E);
|
|
case UO_Not:
|
|
if (!Val.isInt()) return false;
|
|
return Success(~Val.getInt(), E);
|
|
}
|
|
}
|
|
|
|
/// HandleCast - This is used to evaluate implicit or explicit casts where the
|
|
/// result type is integer.
|
|
bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
QualType DestType = E->getType();
|
|
QualType SrcType = SubExpr->getType();
|
|
|
|
switch (E->getCastKind()) {
|
|
case CK_BaseToDerived:
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_Dynamic:
|
|
case CK_ToUnion:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NullToPointer:
|
|
case CK_NullToMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_ConstructorConversion:
|
|
case CK_IntegralToPointer:
|
|
case CK_ToVoid:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingCast:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCObjectLValueCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
llvm_unreachable("invalid cast kind for integral value");
|
|
|
|
case CK_BitCast:
|
|
case CK_Dependent:
|
|
case CK_LValueBitCast:
|
|
case CK_UserDefinedConversion:
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject:
|
|
return false;
|
|
|
|
case CK_LValueToRValue:
|
|
case CK_NoOp:
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_PointerToBoolean:
|
|
case CK_IntegralToBoolean:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_IntegralComplexToBoolean: {
|
|
bool BoolResult;
|
|
if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
|
|
return false;
|
|
return Success(BoolResult, E);
|
|
}
|
|
|
|
case CK_IntegralCast: {
|
|
if (!Visit(SubExpr))
|
|
return false;
|
|
|
|
if (!Result.isInt()) {
|
|
// Only allow casts of lvalues if they are lossless.
|
|
return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
|
|
}
|
|
|
|
return Success(HandleIntToIntCast(DestType, SrcType,
|
|
Result.getInt(), Info.Ctx), E);
|
|
}
|
|
|
|
case CK_PointerToIntegral: {
|
|
LValue LV;
|
|
if (!EvaluatePointer(SubExpr, LV, Info))
|
|
return false;
|
|
|
|
if (LV.getLValueBase()) {
|
|
// Only allow based lvalue casts if they are lossless.
|
|
if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
|
|
return false;
|
|
|
|
LV.moveInto(Result);
|
|
return true;
|
|
}
|
|
|
|
APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
|
|
SrcType);
|
|
return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E);
|
|
}
|
|
|
|
case CK_IntegralComplexToReal: {
|
|
ComplexValue C;
|
|
if (!EvaluateComplex(SubExpr, C, Info))
|
|
return false;
|
|
return Success(C.getComplexIntReal(), E);
|
|
}
|
|
|
|
case CK_FloatingToIntegral: {
|
|
APFloat F(0.0);
|
|
if (!EvaluateFloat(SubExpr, F, Info))
|
|
return false;
|
|
|
|
return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("unknown cast resulting in integral value");
|
|
return false;
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
|
|
if (E->getSubExpr()->getType()->isAnyComplexType()) {
|
|
ComplexValue LV;
|
|
if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
|
|
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
return Success(LV.getComplexIntReal(), E);
|
|
}
|
|
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
|
|
if (E->getSubExpr()->getType()->isComplexIntegerType()) {
|
|
ComplexValue LV;
|
|
if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
|
|
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
return Success(LV.getComplexIntImag(), E);
|
|
}
|
|
|
|
VisitIgnoredValue(E->getSubExpr());
|
|
return Success(0, E);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
|
|
return Success(E->getPackLength(), E);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Float Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class FloatExprEvaluator
|
|
: public ExprEvaluatorBase<FloatExprEvaluator, bool> {
|
|
APFloat &Result;
|
|
public:
|
|
FloatExprEvaluator(EvalInfo &info, APFloat &result)
|
|
: ExprEvaluatorBaseTy(info), Result(result) {}
|
|
|
|
bool Success(const CCValue &V, const Expr *e) {
|
|
Result = V.getFloat();
|
|
return true;
|
|
}
|
|
bool Error(const Stmt *S) {
|
|
return false;
|
|
}
|
|
|
|
bool ValueInitialization(const Expr *E) {
|
|
Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
|
|
return true;
|
|
}
|
|
|
|
bool VisitCallExpr(const CallExpr *E);
|
|
|
|
bool VisitUnaryOperator(const UnaryOperator *E);
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitFloatingLiteral(const FloatingLiteral *E);
|
|
bool VisitCastExpr(const CastExpr *E);
|
|
|
|
bool VisitUnaryReal(const UnaryOperator *E);
|
|
bool VisitUnaryImag(const UnaryOperator *E);
|
|
|
|
// FIXME: Missing: array subscript of vector, member of vector,
|
|
// ImplicitValueInitExpr
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->isRealFloatingType());
|
|
return FloatExprEvaluator(Info, Result).Visit(E);
|
|
}
|
|
|
|
static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
|
|
QualType ResultTy,
|
|
const Expr *Arg,
|
|
bool SNaN,
|
|
llvm::APFloat &Result) {
|
|
const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
|
|
if (!S) return false;
|
|
|
|
const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
|
|
|
|
llvm::APInt fill;
|
|
|
|
// Treat empty strings as if they were zero.
|
|
if (S->getString().empty())
|
|
fill = llvm::APInt(32, 0);
|
|
else if (S->getString().getAsInteger(0, fill))
|
|
return false;
|
|
|
|
if (SNaN)
|
|
Result = llvm::APFloat::getSNaN(Sem, false, &fill);
|
|
else
|
|
Result = llvm::APFloat::getQNaN(Sem, false, &fill);
|
|
return true;
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
|
|
switch (E->isBuiltinCall()) {
|
|
default:
|
|
return ExprEvaluatorBaseTy::VisitCallExpr(E);
|
|
|
|
case Builtin::BI__builtin_huge_val:
|
|
case Builtin::BI__builtin_huge_valf:
|
|
case Builtin::BI__builtin_huge_vall:
|
|
case Builtin::BI__builtin_inf:
|
|
case Builtin::BI__builtin_inff:
|
|
case Builtin::BI__builtin_infl: {
|
|
const llvm::fltSemantics &Sem =
|
|
Info.Ctx.getFloatTypeSemantics(E->getType());
|
|
Result = llvm::APFloat::getInf(Sem);
|
|
return true;
|
|
}
|
|
|
|
case Builtin::BI__builtin_nans:
|
|
case Builtin::BI__builtin_nansf:
|
|
case Builtin::BI__builtin_nansl:
|
|
return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
|
|
true, Result);
|
|
|
|
case Builtin::BI__builtin_nan:
|
|
case Builtin::BI__builtin_nanf:
|
|
case Builtin::BI__builtin_nanl:
|
|
// If this is __builtin_nan() turn this into a nan, otherwise we
|
|
// can't constant fold it.
|
|
return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
|
|
false, Result);
|
|
|
|
case Builtin::BI__builtin_fabs:
|
|
case Builtin::BI__builtin_fabsf:
|
|
case Builtin::BI__builtin_fabsl:
|
|
if (!EvaluateFloat(E->getArg(0), Result, Info))
|
|
return false;
|
|
|
|
if (Result.isNegative())
|
|
Result.changeSign();
|
|
return true;
|
|
|
|
case Builtin::BI__builtin_copysign:
|
|
case Builtin::BI__builtin_copysignf:
|
|
case Builtin::BI__builtin_copysignl: {
|
|
APFloat RHS(0.);
|
|
if (!EvaluateFloat(E->getArg(0), Result, Info) ||
|
|
!EvaluateFloat(E->getArg(1), RHS, Info))
|
|
return false;
|
|
Result.copySign(RHS);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
|
|
if (E->getSubExpr()->getType()->isAnyComplexType()) {
|
|
ComplexValue CV;
|
|
if (!EvaluateComplex(E->getSubExpr(), CV, Info))
|
|
return false;
|
|
Result = CV.FloatReal;
|
|
return true;
|
|
}
|
|
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
|
|
if (E->getSubExpr()->getType()->isAnyComplexType()) {
|
|
ComplexValue CV;
|
|
if (!EvaluateComplex(E->getSubExpr(), CV, Info))
|
|
return false;
|
|
Result = CV.FloatImag;
|
|
return true;
|
|
}
|
|
|
|
VisitIgnoredValue(E->getSubExpr());
|
|
const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
|
|
Result = llvm::APFloat::getZero(Sem);
|
|
return true;
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
|
|
switch (E->getOpcode()) {
|
|
default: return false;
|
|
case UO_Plus:
|
|
return EvaluateFloat(E->getSubExpr(), Result, Info);
|
|
case UO_Minus:
|
|
if (!EvaluateFloat(E->getSubExpr(), Result, Info))
|
|
return false;
|
|
Result.changeSign();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() == BO_Comma) {
|
|
VisitIgnoredValue(E->getLHS());
|
|
return Visit(E->getRHS());
|
|
}
|
|
|
|
// We can't evaluate pointer-to-member operations or assignments.
|
|
if (E->isPtrMemOp() || E->isAssignmentOp())
|
|
return false;
|
|
|
|
// FIXME: Diagnostics? I really don't understand how the warnings
|
|
// and errors are supposed to work.
|
|
APFloat RHS(0.0);
|
|
if (!EvaluateFloat(E->getLHS(), Result, Info))
|
|
return false;
|
|
if (!EvaluateFloat(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default: return false;
|
|
case BO_Mul:
|
|
Result.multiply(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BO_Add:
|
|
Result.add(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BO_Sub:
|
|
Result.subtract(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BO_Div:
|
|
Result.divide(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
Result = E->getValue();
|
|
return true;
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
|
|
const Expr* SubExpr = E->getSubExpr();
|
|
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
|
|
case CK_IntegralToFloating: {
|
|
APSInt IntResult;
|
|
if (!EvaluateInteger(SubExpr, IntResult, Info))
|
|
return false;
|
|
Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
|
|
IntResult, Info.Ctx);
|
|
return true;
|
|
}
|
|
|
|
case CK_FloatingCast: {
|
|
if (!Visit(SubExpr))
|
|
return false;
|
|
Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
|
|
Result, Info.Ctx);
|
|
return true;
|
|
}
|
|
|
|
case CK_FloatingComplexToReal: {
|
|
ComplexValue V;
|
|
if (!EvaluateComplex(SubExpr, V, Info))
|
|
return false;
|
|
Result = V.getComplexFloatReal();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Complex Evaluation (for float and integer)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ComplexExprEvaluator
|
|
: public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
|
|
ComplexValue &Result;
|
|
|
|
public:
|
|
ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
|
|
: ExprEvaluatorBaseTy(info), Result(Result) {}
|
|
|
|
bool Success(const CCValue &V, const Expr *e) {
|
|
Result.setFrom(V);
|
|
return true;
|
|
}
|
|
bool Error(const Expr *E) {
|
|
return false;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
|
|
|
|
bool VisitCastExpr(const CastExpr *E);
|
|
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitUnaryOperator(const UnaryOperator *E);
|
|
// FIXME Missing: ImplicitValueInitExpr, InitListExpr
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
|
|
EvalInfo &Info) {
|
|
assert(E->isRValue() && E->getType()->isAnyComplexType());
|
|
return ComplexExprEvaluator(Info, Result).Visit(E);
|
|
}
|
|
|
|
bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
|
|
const Expr* SubExpr = E->getSubExpr();
|
|
|
|
if (SubExpr->getType()->isRealFloatingType()) {
|
|
Result.makeComplexFloat();
|
|
APFloat &Imag = Result.FloatImag;
|
|
if (!EvaluateFloat(SubExpr, Imag, Info))
|
|
return false;
|
|
|
|
Result.FloatReal = APFloat(Imag.getSemantics());
|
|
return true;
|
|
} else {
|
|
assert(SubExpr->getType()->isIntegerType() &&
|
|
"Unexpected imaginary literal.");
|
|
|
|
Result.makeComplexInt();
|
|
APSInt &Imag = Result.IntImag;
|
|
if (!EvaluateInteger(SubExpr, Imag, Info))
|
|
return false;
|
|
|
|
Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
|
|
|
|
switch (E->getCastKind()) {
|
|
case CK_BitCast:
|
|
case CK_BaseToDerived:
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_Dynamic:
|
|
case CK_ToUnion:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NullToPointer:
|
|
case CK_NullToMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_ConstructorConversion:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_ToVoid:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralCast:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCObjectLValueCast:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject:
|
|
llvm_unreachable("invalid cast kind for complex value");
|
|
|
|
case CK_LValueToRValue:
|
|
case CK_NoOp:
|
|
return ExprEvaluatorBaseTy::VisitCastExpr(E);
|
|
|
|
case CK_Dependent:
|
|
case CK_LValueBitCast:
|
|
case CK_UserDefinedConversion:
|
|
return false;
|
|
|
|
case CK_FloatingRealToComplex: {
|
|
APFloat &Real = Result.FloatReal;
|
|
if (!EvaluateFloat(E->getSubExpr(), Real, Info))
|
|
return false;
|
|
|
|
Result.makeComplexFloat();
|
|
Result.FloatImag = APFloat(Real.getSemantics());
|
|
return true;
|
|
}
|
|
|
|
case CK_FloatingComplexCast: {
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
|
|
QualType From
|
|
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
|
|
|
|
Result.FloatReal
|
|
= HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx);
|
|
Result.FloatImag
|
|
= HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx);
|
|
return true;
|
|
}
|
|
|
|
case CK_FloatingComplexToIntegralComplex: {
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
|
|
QualType From
|
|
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
|
|
Result.makeComplexInt();
|
|
Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx);
|
|
Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx);
|
|
return true;
|
|
}
|
|
|
|
case CK_IntegralRealToComplex: {
|
|
APSInt &Real = Result.IntReal;
|
|
if (!EvaluateInteger(E->getSubExpr(), Real, Info))
|
|
return false;
|
|
|
|
Result.makeComplexInt();
|
|
Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
|
|
return true;
|
|
}
|
|
|
|
case CK_IntegralComplexCast: {
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
|
|
QualType From
|
|
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
|
|
|
|
Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx);
|
|
Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx);
|
|
return true;
|
|
}
|
|
|
|
case CK_IntegralComplexToFloatingComplex: {
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
QualType To = E->getType()->getAs<ComplexType>()->getElementType();
|
|
QualType From
|
|
= E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
|
|
Result.makeComplexFloat();
|
|
Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx);
|
|
Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("unknown cast resulting in complex value");
|
|
return false;
|
|
}
|
|
|
|
bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() == BO_Comma) {
|
|
VisitIgnoredValue(E->getLHS());
|
|
return Visit(E->getRHS());
|
|
}
|
|
if (!Visit(E->getLHS()))
|
|
return false;
|
|
|
|
ComplexValue RHS;
|
|
if (!EvaluateComplex(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
|
|
"Invalid operands to binary operator.");
|
|
switch (E->getOpcode()) {
|
|
default: return false;
|
|
case BO_Add:
|
|
if (Result.isComplexFloat()) {
|
|
Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
|
|
APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
|
|
APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
Result.getComplexIntReal() += RHS.getComplexIntReal();
|
|
Result.getComplexIntImag() += RHS.getComplexIntImag();
|
|
}
|
|
break;
|
|
case BO_Sub:
|
|
if (Result.isComplexFloat()) {
|
|
Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
|
|
APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
|
|
APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
Result.getComplexIntReal() -= RHS.getComplexIntReal();
|
|
Result.getComplexIntImag() -= RHS.getComplexIntImag();
|
|
}
|
|
break;
|
|
case BO_Mul:
|
|
if (Result.isComplexFloat()) {
|
|
ComplexValue LHS = Result;
|
|
APFloat &LHS_r = LHS.getComplexFloatReal();
|
|
APFloat &LHS_i = LHS.getComplexFloatImag();
|
|
APFloat &RHS_r = RHS.getComplexFloatReal();
|
|
APFloat &RHS_i = RHS.getComplexFloatImag();
|
|
|
|
APFloat Tmp = LHS_r;
|
|
Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatReal() = Tmp;
|
|
Tmp = LHS_i;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
|
|
|
|
Tmp = LHS_r;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag() = Tmp;
|
|
Tmp = LHS_i;
|
|
Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
ComplexValue LHS = Result;
|
|
Result.getComplexIntReal() =
|
|
(LHS.getComplexIntReal() * RHS.getComplexIntReal() -
|
|
LHS.getComplexIntImag() * RHS.getComplexIntImag());
|
|
Result.getComplexIntImag() =
|
|
(LHS.getComplexIntReal() * RHS.getComplexIntImag() +
|
|
LHS.getComplexIntImag() * RHS.getComplexIntReal());
|
|
}
|
|
break;
|
|
case BO_Div:
|
|
if (Result.isComplexFloat()) {
|
|
ComplexValue LHS = Result;
|
|
APFloat &LHS_r = LHS.getComplexFloatReal();
|
|
APFloat &LHS_i = LHS.getComplexFloatImag();
|
|
APFloat &RHS_r = RHS.getComplexFloatReal();
|
|
APFloat &RHS_i = RHS.getComplexFloatImag();
|
|
APFloat &Res_r = Result.getComplexFloatReal();
|
|
APFloat &Res_i = Result.getComplexFloatImag();
|
|
|
|
APFloat Den = RHS_r;
|
|
Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
APFloat Tmp = RHS_i;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Den.add(Tmp, APFloat::rmNearestTiesToEven);
|
|
|
|
Res_r = LHS_r;
|
|
Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
Tmp = LHS_i;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
|
|
Res_r.divide(Den, APFloat::rmNearestTiesToEven);
|
|
|
|
Res_i = LHS_i;
|
|
Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
Tmp = LHS_r;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
|
|
Res_i.divide(Den, APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) {
|
|
// FIXME: what about diagnostics?
|
|
return false;
|
|
}
|
|
ComplexValue LHS = Result;
|
|
APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
|
|
RHS.getComplexIntImag() * RHS.getComplexIntImag();
|
|
Result.getComplexIntReal() =
|
|
(LHS.getComplexIntReal() * RHS.getComplexIntReal() +
|
|
LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
|
|
Result.getComplexIntImag() =
|
|
(LHS.getComplexIntImag() * RHS.getComplexIntReal() -
|
|
LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
|
|
// Get the operand value into 'Result'.
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
// FIXME: what about diagnostics?
|
|
return false;
|
|
case UO_Extension:
|
|
return true;
|
|
case UO_Plus:
|
|
// The result is always just the subexpr.
|
|
return true;
|
|
case UO_Minus:
|
|
if (Result.isComplexFloat()) {
|
|
Result.getComplexFloatReal().changeSign();
|
|
Result.getComplexFloatImag().changeSign();
|
|
}
|
|
else {
|
|
Result.getComplexIntReal() = -Result.getComplexIntReal();
|
|
Result.getComplexIntImag() = -Result.getComplexIntImag();
|
|
}
|
|
return true;
|
|
case UO_Not:
|
|
if (Result.isComplexFloat())
|
|
Result.getComplexFloatImag().changeSign();
|
|
else
|
|
Result.getComplexIntImag() = -Result.getComplexIntImag();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top level Expr::EvaluateAsRValue method.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) {
|
|
// In C, function designators are not lvalues, but we evaluate them as if they
|
|
// are.
|
|
if (E->isGLValue() || E->getType()->isFunctionType()) {
|
|
LValue LV;
|
|
if (!EvaluateLValue(E, LV, Info))
|
|
return false;
|
|
LV.moveInto(Result);
|
|
} else if (E->getType()->isVectorType()) {
|
|
if (!EvaluateVector(E, Result, Info))
|
|
return false;
|
|
} else if (E->getType()->isIntegralOrEnumerationType()) {
|
|
if (!IntExprEvaluator(Info, Result).Visit(E))
|
|
return false;
|
|
} else if (E->getType()->hasPointerRepresentation()) {
|
|
LValue LV;
|
|
if (!EvaluatePointer(E, LV, Info))
|
|
return false;
|
|
LV.moveInto(Result);
|
|
} else if (E->getType()->isRealFloatingType()) {
|
|
llvm::APFloat F(0.0);
|
|
if (!EvaluateFloat(E, F, Info))
|
|
return false;
|
|
Result = CCValue(F);
|
|
} else if (E->getType()->isAnyComplexType()) {
|
|
ComplexValue C;
|
|
if (!EvaluateComplex(E, C, Info))
|
|
return false;
|
|
C.moveInto(Result);
|
|
} else if (E->getType()->isMemberPointerType()) {
|
|
// FIXME: Implement evaluation of pointer-to-member types.
|
|
return false;
|
|
} else if (E->getType()->isArrayType() && E->getType()->isLiteralType()) {
|
|
LValue LV;
|
|
LV.setExpr(E, Info.CurrentCall);
|
|
if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
|
|
return false;
|
|
Result = Info.CurrentCall->Temporaries[E];
|
|
} else if (E->getType()->isRecordType() && E->getType()->isLiteralType()) {
|
|
LValue LV;
|
|
LV.setExpr(E, Info.CurrentCall);
|
|
if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
|
|
return false;
|
|
Result = Info.CurrentCall->Temporaries[E];
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// EvaluateConstantExpression - Evaluate an expression as a constant expression
|
|
/// in-place in an APValue. In some cases, the in-place evaluation is essential,
|
|
/// since later initializers for an object can indirectly refer to subobjects
|
|
/// which were initialized earlier.
|
|
static bool EvaluateConstantExpression(APValue &Result, EvalInfo &Info,
|
|
const LValue &This, const Expr *E) {
|
|
if (E->isRValue() && E->getType()->isLiteralType()) {
|
|
// Evaluate arrays and record types in-place, so that later initializers can
|
|
// refer to earlier-initialized members of the object.
|
|
if (E->getType()->isArrayType())
|
|
return EvaluateArray(E, This, Result, Info);
|
|
else if (E->getType()->isRecordType())
|
|
return EvaluateRecord(E, This, Result, Info);
|
|
}
|
|
|
|
// For any other type, in-place evaluation is unimportant.
|
|
CCValue CoreConstResult;
|
|
return Evaluate(CoreConstResult, Info, E) &&
|
|
CheckConstantExpression(CoreConstResult, Result);
|
|
}
|
|
|
|
|
|
/// EvaluateAsRValue - Return true if this is a constant which we can fold using
|
|
/// any crazy technique (that has nothing to do with language standards) that
|
|
/// we want to. If this function returns true, it returns the folded constant
|
|
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
|
|
/// will be applied to the result.
|
|
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
|
|
// FIXME: Evaluating initializers for large arrays can cause performance
|
|
// problems, and we don't use such values yet. Once we have a more efficient
|
|
// array representation, this should be reinstated, and used by CodeGen.
|
|
if (isRValue() && getType()->isArrayType())
|
|
return false;
|
|
|
|
EvalInfo Info(Ctx, Result);
|
|
|
|
// FIXME: If this is the initializer for an lvalue, pass that in.
|
|
CCValue Value;
|
|
if (!::Evaluate(Value, Info, this))
|
|
return false;
|
|
|
|
if (isGLValue()) {
|
|
LValue LV;
|
|
LV.setFrom(Value);
|
|
if (!HandleLValueToRValueConversion(Info, getType(), LV, Value))
|
|
return false;
|
|
}
|
|
|
|
// Check this core constant expression is a constant expression, and if so,
|
|
// convert it to one.
|
|
return CheckConstantExpression(Value, Result.Val);
|
|
}
|
|
|
|
bool Expr::EvaluateAsBooleanCondition(bool &Result,
|
|
const ASTContext &Ctx) const {
|
|
EvalResult Scratch;
|
|
return EvaluateAsRValue(Scratch, Ctx) &&
|
|
HandleConversionToBool(CCValue(Scratch.Val, CCValue::GlobalValue()),
|
|
Result);
|
|
}
|
|
|
|
bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx) const {
|
|
EvalResult ExprResult;
|
|
if (!EvaluateAsRValue(ExprResult, Ctx) || ExprResult.HasSideEffects ||
|
|
!ExprResult.Val.isInt()) {
|
|
return false;
|
|
}
|
|
Result = ExprResult.Val.getInt();
|
|
return true;
|
|
}
|
|
|
|
bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
|
|
EvalInfo Info(Ctx, Result);
|
|
|
|
LValue LV;
|
|
return EvaluateLValue(this, LV, Info) && !Result.HasSideEffects &&
|
|
CheckLValueConstantExpression(LV, Result.Val);
|
|
}
|
|
|
|
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
|
|
/// constant folded, but discard the result.
|
|
bool Expr::isEvaluatable(const ASTContext &Ctx) const {
|
|
EvalResult Result;
|
|
return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
|
|
}
|
|
|
|
bool Expr::HasSideEffects(const ASTContext &Ctx) const {
|
|
return HasSideEffect(Ctx).Visit(this);
|
|
}
|
|
|
|
APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
|
|
EvalResult EvalResult;
|
|
bool Result = EvaluateAsRValue(EvalResult, Ctx);
|
|
(void)Result;
|
|
assert(Result && "Could not evaluate expression");
|
|
assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
|
|
|
|
return EvalResult.Val.getInt();
|
|
}
|
|
|
|
bool Expr::EvalResult::isGlobalLValue() const {
|
|
assert(Val.isLValue());
|
|
return IsGlobalLValue(Val.getLValueBase());
|
|
}
|
|
|
|
|
|
/// isIntegerConstantExpr - this recursive routine will test if an expression is
|
|
/// an integer constant expression.
|
|
|
|
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
|
|
/// comma, etc
|
|
///
|
|
/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
|
|
/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
|
|
/// cast+dereference.
|
|
|
|
// CheckICE - This function does the fundamental ICE checking: the returned
|
|
// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
|
|
// Note that to reduce code duplication, this helper does no evaluation
|
|
// itself; the caller checks whether the expression is evaluatable, and
|
|
// in the rare cases where CheckICE actually cares about the evaluated
|
|
// value, it calls into Evalute.
|
|
//
|
|
// Meanings of Val:
|
|
// 0: This expression is an ICE.
|
|
// 1: This expression is not an ICE, but if it isn't evaluated, it's
|
|
// a legal subexpression for an ICE. This return value is used to handle
|
|
// the comma operator in C99 mode.
|
|
// 2: This expression is not an ICE, and is not a legal subexpression for one.
|
|
|
|
namespace {
|
|
|
|
struct ICEDiag {
|
|
unsigned Val;
|
|
SourceLocation Loc;
|
|
|
|
public:
|
|
ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
|
|
ICEDiag() : Val(0) {}
|
|
};
|
|
|
|
}
|
|
|
|
static ICEDiag NoDiag() { return ICEDiag(); }
|
|
|
|
static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
|
|
Expr::EvalResult EVResult;
|
|
if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
|
|
!EVResult.Val.isInt()) {
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
return NoDiag();
|
|
}
|
|
|
|
static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
|
|
assert(!E->isValueDependent() && "Should not see value dependent exprs!");
|
|
if (!E->getType()->isIntegralOrEnumerationType()) {
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
|
|
switch (E->getStmtClass()) {
|
|
#define ABSTRACT_STMT(Node)
|
|
#define STMT(Node, Base) case Expr::Node##Class:
|
|
#define EXPR(Node, Base)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
case Expr::PredefinedExprClass:
|
|
case Expr::FloatingLiteralClass:
|
|
case Expr::ImaginaryLiteralClass:
|
|
case Expr::StringLiteralClass:
|
|
case Expr::ArraySubscriptExprClass:
|
|
case Expr::MemberExprClass:
|
|
case Expr::CompoundAssignOperatorClass:
|
|
case Expr::CompoundLiteralExprClass:
|
|
case Expr::ExtVectorElementExprClass:
|
|
case Expr::DesignatedInitExprClass:
|
|
case Expr::ImplicitValueInitExprClass:
|
|
case Expr::ParenListExprClass:
|
|
case Expr::VAArgExprClass:
|
|
case Expr::AddrLabelExprClass:
|
|
case Expr::StmtExprClass:
|
|
case Expr::CXXMemberCallExprClass:
|
|
case Expr::CUDAKernelCallExprClass:
|
|
case Expr::CXXDynamicCastExprClass:
|
|
case Expr::CXXTypeidExprClass:
|
|
case Expr::CXXUuidofExprClass:
|
|
case Expr::CXXNullPtrLiteralExprClass:
|
|
case Expr::CXXThisExprClass:
|
|
case Expr::CXXThrowExprClass:
|
|
case Expr::CXXNewExprClass:
|
|
case Expr::CXXDeleteExprClass:
|
|
case Expr::CXXPseudoDestructorExprClass:
|
|
case Expr::UnresolvedLookupExprClass:
|
|
case Expr::DependentScopeDeclRefExprClass:
|
|
case Expr::CXXConstructExprClass:
|
|
case Expr::CXXBindTemporaryExprClass:
|
|
case Expr::ExprWithCleanupsClass:
|
|
case Expr::CXXTemporaryObjectExprClass:
|
|
case Expr::CXXUnresolvedConstructExprClass:
|
|
case Expr::CXXDependentScopeMemberExprClass:
|
|
case Expr::UnresolvedMemberExprClass:
|
|
case Expr::ObjCStringLiteralClass:
|
|
case Expr::ObjCEncodeExprClass:
|
|
case Expr::ObjCMessageExprClass:
|
|
case Expr::ObjCSelectorExprClass:
|
|
case Expr::ObjCProtocolExprClass:
|
|
case Expr::ObjCIvarRefExprClass:
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
case Expr::ObjCIsaExprClass:
|
|
case Expr::ShuffleVectorExprClass:
|
|
case Expr::BlockExprClass:
|
|
case Expr::BlockDeclRefExprClass:
|
|
case Expr::NoStmtClass:
|
|
case Expr::OpaqueValueExprClass:
|
|
case Expr::PackExpansionExprClass:
|
|
case Expr::SubstNonTypeTemplateParmPackExprClass:
|
|
case Expr::AsTypeExprClass:
|
|
case Expr::ObjCIndirectCopyRestoreExprClass:
|
|
case Expr::MaterializeTemporaryExprClass:
|
|
case Expr::PseudoObjectExprClass:
|
|
case Expr::AtomicExprClass:
|
|
return ICEDiag(2, E->getLocStart());
|
|
|
|
case Expr::InitListExprClass:
|
|
if (Ctx.getLangOptions().CPlusPlus0x) {
|
|
const InitListExpr *ILE = cast<InitListExpr>(E);
|
|
if (ILE->getNumInits() == 0)
|
|
return NoDiag();
|
|
if (ILE->getNumInits() == 1)
|
|
return CheckICE(ILE->getInit(0), Ctx);
|
|
// Fall through for more than 1 expression.
|
|
}
|
|
return ICEDiag(2, E->getLocStart());
|
|
|
|
case Expr::SizeOfPackExprClass:
|
|
case Expr::GNUNullExprClass:
|
|
// GCC considers the GNU __null value to be an integral constant expression.
|
|
return NoDiag();
|
|
|
|
case Expr::SubstNonTypeTemplateParmExprClass:
|
|
return
|
|
CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
|
|
|
|
case Expr::ParenExprClass:
|
|
return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
|
|
case Expr::GenericSelectionExprClass:
|
|
return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
|
|
case Expr::IntegerLiteralClass:
|
|
case Expr::CharacterLiteralClass:
|
|
case Expr::CXXBoolLiteralExprClass:
|
|
case Expr::CXXScalarValueInitExprClass:
|
|
case Expr::UnaryTypeTraitExprClass:
|
|
case Expr::BinaryTypeTraitExprClass:
|
|
case Expr::ArrayTypeTraitExprClass:
|
|
case Expr::ExpressionTraitExprClass:
|
|
case Expr::CXXNoexceptExprClass:
|
|
return NoDiag();
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXOperatorCallExprClass: {
|
|
// C99 6.6/3 allows function calls within unevaluated subexpressions of
|
|
// constant expressions, but they can never be ICEs because an ICE cannot
|
|
// contain an operand of (pointer to) function type.
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
if (CE->isBuiltinCall())
|
|
return CheckEvalInICE(E, Ctx);
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
case Expr::DeclRefExprClass:
|
|
if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
|
|
return NoDiag();
|
|
if (Ctx.getLangOptions().CPlusPlus && IsConstNonVolatile(E->getType())) {
|
|
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
|
|
|
|
// Parameter variables are never constants. Without this check,
|
|
// getAnyInitializer() can find a default argument, which leads
|
|
// to chaos.
|
|
if (isa<ParmVarDecl>(D))
|
|
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
|
|
|
|
// C++ 7.1.5.1p2
|
|
// A variable of non-volatile const-qualified integral or enumeration
|
|
// type initialized by an ICE can be used in ICEs.
|
|
if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
|
|
if (!Dcl->getType()->isIntegralOrEnumerationType())
|
|
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
|
|
|
|
// Look for a declaration of this variable that has an initializer.
|
|
const VarDecl *ID = 0;
|
|
const Expr *Init = Dcl->getAnyInitializer(ID);
|
|
if (Init) {
|
|
if (ID->isInitKnownICE()) {
|
|
// We have already checked whether this subexpression is an
|
|
// integral constant expression.
|
|
if (ID->isInitICE())
|
|
return NoDiag();
|
|
else
|
|
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
|
|
}
|
|
|
|
// It's an ICE whether or not the definition we found is
|
|
// out-of-line. See DR 721 and the discussion in Clang PR
|
|
// 6206 for details.
|
|
|
|
if (Dcl->isCheckingICE()) {
|
|
return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
|
|
}
|
|
|
|
Dcl->setCheckingICE();
|
|
ICEDiag Result = CheckICE(Init, Ctx);
|
|
// Cache the result of the ICE test.
|
|
Dcl->setInitKnownICE(Result.Val == 0);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
return ICEDiag(2, E->getLocStart());
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(E);
|
|
switch (Exp->getOpcode()) {
|
|
case UO_PostInc:
|
|
case UO_PostDec:
|
|
case UO_PreInc:
|
|
case UO_PreDec:
|
|
case UO_AddrOf:
|
|
case UO_Deref:
|
|
// C99 6.6/3 allows increment and decrement within unevaluated
|
|
// subexpressions of constant expressions, but they can never be ICEs
|
|
// because an ICE cannot contain an lvalue operand.
|
|
return ICEDiag(2, E->getLocStart());
|
|
case UO_Extension:
|
|
case UO_LNot:
|
|
case UO_Plus:
|
|
case UO_Minus:
|
|
case UO_Not:
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
return CheckICE(Exp->getSubExpr(), Ctx);
|
|
}
|
|
|
|
// OffsetOf falls through here.
|
|
}
|
|
case Expr::OffsetOfExprClass: {
|
|
// Note that per C99, offsetof must be an ICE. And AFAIK, using
|
|
// EvaluateAsRValue matches the proposed gcc behavior for cases like
|
|
// "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
|
|
// compliance: we should warn earlier for offsetof expressions with
|
|
// array subscripts that aren't ICEs, and if the array subscripts
|
|
// are ICEs, the value of the offsetof must be an integer constant.
|
|
return CheckEvalInICE(E, Ctx);
|
|
}
|
|
case Expr::UnaryExprOrTypeTraitExprClass: {
|
|
const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
|
|
if ((Exp->getKind() == UETT_SizeOf) &&
|
|
Exp->getTypeOfArgument()->isVariableArrayType())
|
|
return ICEDiag(2, E->getLocStart());
|
|
return NoDiag();
|
|
}
|
|
case Expr::BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(E);
|
|
switch (Exp->getOpcode()) {
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_Assign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_AndAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
// C99 6.6/3 allows assignments within unevaluated subexpressions of
|
|
// constant expressions, but they can never be ICEs because an ICE cannot
|
|
// contain an lvalue operand.
|
|
return ICEDiag(2, E->getLocStart());
|
|
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_And:
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
case BO_Comma: {
|
|
ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
|
|
ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
|
|
if (Exp->getOpcode() == BO_Div ||
|
|
Exp->getOpcode() == BO_Rem) {
|
|
// EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
|
|
// we don't evaluate one.
|
|
if (LHSResult.Val == 0 && RHSResult.Val == 0) {
|
|
llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
|
|
if (REval == 0)
|
|
return ICEDiag(1, E->getLocStart());
|
|
if (REval.isSigned() && REval.isAllOnesValue()) {
|
|
llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
|
|
if (LEval.isMinSignedValue())
|
|
return ICEDiag(1, E->getLocStart());
|
|
}
|
|
}
|
|
}
|
|
if (Exp->getOpcode() == BO_Comma) {
|
|
if (Ctx.getLangOptions().C99) {
|
|
// C99 6.6p3 introduces a strange edge case: comma can be in an ICE
|
|
// if it isn't evaluated.
|
|
if (LHSResult.Val == 0 && RHSResult.Val == 0)
|
|
return ICEDiag(1, E->getLocStart());
|
|
} else {
|
|
// In both C89 and C++, commas in ICEs are illegal.
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
}
|
|
if (LHSResult.Val >= RHSResult.Val)
|
|
return LHSResult;
|
|
return RHSResult;
|
|
}
|
|
case BO_LAnd:
|
|
case BO_LOr: {
|
|
ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
|
|
|
|
// C++0x [expr.const]p2:
|
|
// [...] subexpressions of logical AND (5.14), logical OR
|
|
// (5.15), and condi- tional (5.16) operations that are not
|
|
// evaluated are not considered.
|
|
if (Ctx.getLangOptions().CPlusPlus0x && LHSResult.Val == 0) {
|
|
if (Exp->getOpcode() == BO_LAnd &&
|
|
Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)
|
|
return LHSResult;
|
|
|
|
if (Exp->getOpcode() == BO_LOr &&
|
|
Exp->getLHS()->EvaluateKnownConstInt(Ctx) != 0)
|
|
return LHSResult;
|
|
}
|
|
|
|
ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
|
|
if (LHSResult.Val == 0 && RHSResult.Val == 1) {
|
|
// Rare case where the RHS has a comma "side-effect"; we need
|
|
// to actually check the condition to see whether the side
|
|
// with the comma is evaluated.
|
|
if ((Exp->getOpcode() == BO_LAnd) !=
|
|
(Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
|
|
return RHSResult;
|
|
return NoDiag();
|
|
}
|
|
|
|
if (LHSResult.Val >= RHSResult.Val)
|
|
return LHSResult;
|
|
return RHSResult;
|
|
}
|
|
}
|
|
}
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::ObjCBridgedCastExprClass: {
|
|
const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
|
|
if (isa<ExplicitCastExpr>(E) &&
|
|
isa<FloatingLiteral>(SubExpr->IgnoreParenImpCasts()))
|
|
return NoDiag();
|
|
switch (cast<CastExpr>(E)->getCastKind()) {
|
|
case CK_LValueToRValue:
|
|
case CK_NoOp:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralCast:
|
|
return CheckICE(SubExpr, Ctx);
|
|
default:
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
}
|
|
case Expr::BinaryConditionalOperatorClass: {
|
|
const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
|
|
ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
|
|
if (CommonResult.Val == 2) return CommonResult;
|
|
ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
|
|
if (FalseResult.Val == 2) return FalseResult;
|
|
if (CommonResult.Val == 1) return CommonResult;
|
|
if (FalseResult.Val == 1 &&
|
|
Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
|
|
return FalseResult;
|
|
}
|
|
case Expr::ConditionalOperatorClass: {
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
|
|
// If the condition (ignoring parens) is a __builtin_constant_p call,
|
|
// then only the true side is actually considered in an integer constant
|
|
// expression, and it is fully evaluated. This is an important GNU
|
|
// extension. See GCC PR38377 for discussion.
|
|
if (const CallExpr *CallCE
|
|
= dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
|
|
if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p) {
|
|
Expr::EvalResult EVResult;
|
|
if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
|
|
!EVResult.Val.isInt()) {
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
return NoDiag();
|
|
}
|
|
ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
|
|
if (CondResult.Val == 2)
|
|
return CondResult;
|
|
|
|
// C++0x [expr.const]p2:
|
|
// subexpressions of [...] conditional (5.16) operations that
|
|
// are not evaluated are not considered
|
|
bool TrueBranch = Ctx.getLangOptions().CPlusPlus0x
|
|
? Exp->getCond()->EvaluateKnownConstInt(Ctx) != 0
|
|
: false;
|
|
ICEDiag TrueResult = NoDiag();
|
|
if (!Ctx.getLangOptions().CPlusPlus0x || TrueBranch)
|
|
TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
|
|
ICEDiag FalseResult = NoDiag();
|
|
if (!Ctx.getLangOptions().CPlusPlus0x || !TrueBranch)
|
|
FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
|
|
|
|
if (TrueResult.Val == 2)
|
|
return TrueResult;
|
|
if (FalseResult.Val == 2)
|
|
return FalseResult;
|
|
if (CondResult.Val == 1)
|
|
return CondResult;
|
|
if (TrueResult.Val == 0 && FalseResult.Val == 0)
|
|
return NoDiag();
|
|
// Rare case where the diagnostics depend on which side is evaluated
|
|
// Note that if we get here, CondResult is 0, and at least one of
|
|
// TrueResult and FalseResult is non-zero.
|
|
if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
|
|
return FalseResult;
|
|
}
|
|
return TrueResult;
|
|
}
|
|
case Expr::CXXDefaultArgExprClass:
|
|
return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
|
|
case Expr::ChooseExprClass: {
|
|
return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
|
|
}
|
|
}
|
|
|
|
// Silence a GCC warning
|
|
return ICEDiag(2, E->getLocStart());
|
|
}
|
|
|
|
bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
|
|
SourceLocation *Loc, bool isEvaluated) const {
|
|
ICEDiag d = CheckICE(this, Ctx);
|
|
if (d.Val != 0) {
|
|
if (Loc) *Loc = d.Loc;
|
|
return false;
|
|
}
|
|
if (!EvaluateAsInt(Result, Ctx))
|
|
llvm_unreachable("ICE cannot be evaluated!");
|
|
return true;
|
|
}
|