llvm-project/llvm/lib/CodeGen/MIRParser/MIParser.cpp

424 lines
13 KiB
C++

//===- MIParser.cpp - Machine instructions parser implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the parsing of machine instructions.
//
//===----------------------------------------------------------------------===//
#include "MIParser.h"
#include "MILexer.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
namespace {
class MIParser {
SourceMgr &SM;
MachineFunction &MF;
SMDiagnostic &Error;
StringRef Source, CurrentSource;
MIToken Token;
/// Maps from basic block numbers to MBBs.
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots;
/// Maps from indices to unnamed global values and metadata nodes.
const SlotMapping &IRSlots;
/// Maps from instruction names to op codes.
StringMap<unsigned> Names2InstrOpCodes;
/// Maps from register names to registers.
StringMap<unsigned> Names2Regs;
/// Maps from register mask names to register masks.
StringMap<const uint32_t *> Names2RegMasks;
public:
MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
StringRef Source,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots);
void lex();
/// Report an error at the current location with the given message.
///
/// This function always return true.
bool error(const Twine &Msg);
/// Report an error at the given location with the given message.
///
/// This function always return true.
bool error(StringRef::iterator Loc, const Twine &Msg);
bool parse(MachineInstr *&MI);
bool parseMBB(MachineBasicBlock *&MBB);
bool parseRegister(unsigned &Reg);
bool parseRegisterOperand(MachineOperand &Dest, bool IsDef = false);
bool parseImmediateOperand(MachineOperand &Dest);
bool parseMBBReference(MachineBasicBlock *&MBB);
bool parseMBBOperand(MachineOperand &Dest);
bool parseGlobalAddressOperand(MachineOperand &Dest);
bool parseMachineOperand(MachineOperand &Dest);
private:
/// Convert the integer literal in the current token into an unsigned integer.
///
/// Return true if an error occurred.
bool getUnsigned(unsigned &Result);
void initNames2InstrOpCodes();
/// Try to convert an instruction name to an opcode. Return true if the
/// instruction name is invalid.
bool parseInstrName(StringRef InstrName, unsigned &OpCode);
bool parseInstruction(unsigned &OpCode);
void initNames2Regs();
/// Try to convert a register name to a register number. Return true if the
/// register name is invalid.
bool getRegisterByName(StringRef RegName, unsigned &Reg);
void initNames2RegMasks();
/// Check if the given identifier is a name of a register mask.
///
/// Return null if the identifier isn't a register mask.
const uint32_t *getRegMask(StringRef Identifier);
};
} // end anonymous namespace
MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
StringRef Source,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots)
: SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source),
Token(MIToken::Error, StringRef()), MBBSlots(MBBSlots), IRSlots(IRSlots) {
}
void MIParser::lex() {
CurrentSource = lexMIToken(
CurrentSource, Token,
[this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
}
bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
// TODO: Get the proper location in the MIR file, not just a location inside
// the string.
assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
Error = SMDiagnostic(
SM, SMLoc(),
SM.getMemoryBuffer(SM.getMainFileID())->getBufferIdentifier(), 1,
Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), Source, None, None);
return true;
}
bool MIParser::parse(MachineInstr *&MI) {
lex();
// Parse any register operands before '='
// TODO: Allow parsing of multiple operands before '='
MachineOperand MO = MachineOperand::CreateImm(0);
SmallVector<MachineOperand, 8> Operands;
if (Token.isRegister()) {
if (parseRegisterOperand(MO, /*IsDef=*/true))
return true;
Operands.push_back(MO);
if (Token.isNot(MIToken::equal))
return error("expected '='");
lex();
}
unsigned OpCode;
if (Token.isError() || parseInstruction(OpCode))
return true;
// TODO: Parse the instruction flags and memory operands.
// Parse the remaining machine operands.
while (Token.isNot(MIToken::Eof)) {
if (parseMachineOperand(MO))
return true;
Operands.push_back(MO);
if (Token.is(MIToken::Eof))
break;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine operand");
lex();
}
const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
// Verify machine operands.
if (!MCID.isVariadic()) {
for (size_t I = 0, E = Operands.size(); I < E; ++I) {
if (I < MCID.getNumOperands())
continue;
// Mark this register as implicit to prevent an assertion when it's added
// to an instruction. This is a temporary workaround until the implicit
// register flag can be parsed.
if (Operands[I].isReg())
Operands[I].setImplicit();
}
}
// TODO: Determine the implicit behaviour when implicit register flags are
// parsed.
MI = MF.CreateMachineInstr(MCID, DebugLoc(), /*NoImplicit=*/true);
for (const auto &Operand : Operands)
MI->addOperand(MF, Operand);
return false;
}
bool MIParser::parseMBB(MachineBasicBlock *&MBB) {
lex();
if (Token.isNot(MIToken::MachineBasicBlock))
return error("expected a machine basic block reference");
if (parseMBBReference(MBB))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error(
"expected end of string after the machine basic block reference");
return false;
}
bool MIParser::parseInstruction(unsigned &OpCode) {
if (Token.isNot(MIToken::Identifier))
return error("expected a machine instruction");
StringRef InstrName = Token.stringValue();
if (parseInstrName(InstrName, OpCode))
return error(Twine("unknown machine instruction name '") + InstrName + "'");
lex();
return false;
}
bool MIParser::parseRegister(unsigned &Reg) {
switch (Token.kind()) {
case MIToken::underscore:
Reg = 0;
break;
case MIToken::NamedRegister: {
StringRef Name = Token.stringValue();
if (getRegisterByName(Name, Reg))
return error(Twine("unknown register name '") + Name + "'");
break;
}
// TODO: Parse other register kinds.
default:
llvm_unreachable("The current token should be a register");
}
return false;
}
bool MIParser::parseRegisterOperand(MachineOperand &Dest, bool IsDef) {
unsigned Reg;
// TODO: Parse register flags.
if (parseRegister(Reg))
return true;
lex();
// TODO: Parse subregister.
Dest = MachineOperand::CreateReg(Reg, IsDef);
return false;
}
bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::IntegerLiteral));
const APSInt &Int = Token.integerValue();
if (Int.getMinSignedBits() > 64)
// TODO: Replace this with an error when we can parse CIMM Machine Operands.
llvm_unreachable("Can't parse large integer literals yet!");
Dest = MachineOperand::CreateImm(Int.getExtValue());
lex();
return false;
}
bool MIParser::getUnsigned(unsigned &Result) {
assert(Token.hasIntegerValue() && "Expected a token with an integer value");
const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
if (Val64 == Limit)
return error("expected 32-bit integer (too large)");
Result = Val64;
return false;
}
bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
assert(Token.is(MIToken::MachineBasicBlock));
unsigned Number;
if (getUnsigned(Number))
return true;
auto MBBInfo = MBBSlots.find(Number);
if (MBBInfo == MBBSlots.end())
return error(Twine("use of undefined machine basic block #") +
Twine(Number));
MBB = MBBInfo->second;
if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
return error(Twine("the name of machine basic block #") + Twine(Number) +
" isn't '" + Token.stringValue() + "'");
return false;
}
bool MIParser::parseMBBOperand(MachineOperand &Dest) {
MachineBasicBlock *MBB;
if (parseMBBReference(MBB))
return true;
Dest = MachineOperand::CreateMBB(MBB);
lex();
return false;
}
bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
switch (Token.kind()) {
case MIToken::NamedGlobalValue: {
auto Name = Token.stringValue();
const Module *M = MF.getFunction()->getParent();
if (const auto *GV = M->getNamedValue(Name)) {
Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
break;
}
return error(Twine("use of undefined global value '@") + Name + "'");
}
case MIToken::GlobalValue: {
unsigned GVIdx;
if (getUnsigned(GVIdx))
return true;
if (GVIdx >= IRSlots.GlobalValues.size())
return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
"'");
Dest = MachineOperand::CreateGA(IRSlots.GlobalValues[GVIdx],
/*Offset=*/0);
break;
}
default:
llvm_unreachable("The current token should be a global value");
}
// TODO: Parse offset and target flags.
lex();
return false;
}
bool MIParser::parseMachineOperand(MachineOperand &Dest) {
switch (Token.kind()) {
case MIToken::underscore:
case MIToken::NamedRegister:
return parseRegisterOperand(Dest);
case MIToken::IntegerLiteral:
return parseImmediateOperand(Dest);
case MIToken::MachineBasicBlock:
return parseMBBOperand(Dest);
case MIToken::GlobalValue:
case MIToken::NamedGlobalValue:
return parseGlobalAddressOperand(Dest);
case MIToken::Error:
return true;
case MIToken::Identifier:
if (const auto *RegMask = getRegMask(Token.stringValue())) {
Dest = MachineOperand::CreateRegMask(RegMask);
lex();
break;
}
// fallthrough
default:
// TODO: parse the other machine operands.
return error("expected a machine operand");
}
return false;
}
void MIParser::initNames2InstrOpCodes() {
if (!Names2InstrOpCodes.empty())
return;
const auto *TII = MF.getSubtarget().getInstrInfo();
assert(TII && "Expected target instruction info");
for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
}
bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
initNames2InstrOpCodes();
auto InstrInfo = Names2InstrOpCodes.find(InstrName);
if (InstrInfo == Names2InstrOpCodes.end())
return true;
OpCode = InstrInfo->getValue();
return false;
}
void MIParser::initNames2Regs() {
if (!Names2Regs.empty())
return;
// The '%noreg' register is the register 0.
Names2Regs.insert(std::make_pair("noreg", 0));
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
bool WasInserted =
Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
.second;
(void)WasInserted;
assert(WasInserted && "Expected registers to be unique case-insensitively");
}
}
bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
initNames2Regs();
auto RegInfo = Names2Regs.find(RegName);
if (RegInfo == Names2Regs.end())
return true;
Reg = RegInfo->getValue();
return false;
}
void MIParser::initNames2RegMasks() {
if (!Names2RegMasks.empty())
return;
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
assert(RegMasks.size() == RegMaskNames.size());
for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
Names2RegMasks.insert(
std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
}
const uint32_t *MIParser::getRegMask(StringRef Identifier) {
initNames2RegMasks();
auto RegMaskInfo = Names2RegMasks.find(Identifier);
if (RegMaskInfo == Names2RegMasks.end())
return nullptr;
return RegMaskInfo->getValue();
}
bool llvm::parseMachineInstr(
MachineInstr *&MI, SourceMgr &SM, MachineFunction &MF, StringRef Src,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots, SMDiagnostic &Error) {
return MIParser(SM, MF, Error, Src, MBBSlots, IRSlots).parse(MI);
}
bool llvm::parseMBBReference(
MachineBasicBlock *&MBB, SourceMgr &SM, MachineFunction &MF, StringRef Src,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots, SMDiagnostic &Error) {
return MIParser(SM, MF, Error, Src, MBBSlots, IRSlots).parseMBB(MBB);
}