llvm-project/compiler-rt/lib/dfsan/dfsan_custom.cc

1126 lines
36 KiB
C++

//===-- dfsan.cc ----------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataFlowSanitizer.
//
// This file defines the custom functions listed in done_abilist.txt.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "dfsan/dfsan.h"
#include <arpa/inet.h>
#include <assert.h>
#include <ctype.h>
#include <dlfcn.h>
#include <link.h>
#include <poll.h>
#include <pthread.h>
#include <pwd.h>
#include <sched.h>
#include <signal.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
using namespace __dfsan;
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE int
__dfsw_stat(const char *path, struct stat *buf, dfsan_label path_label,
dfsan_label buf_label, dfsan_label *ret_label) {
int ret = stat(path, buf);
if (ret == 0)
dfsan_set_label(0, buf, sizeof(struct stat));
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_fstat(int fd, struct stat *buf,
dfsan_label fd_label,
dfsan_label buf_label,
dfsan_label *ret_label) {
int ret = fstat(fd, buf);
if (ret == 0)
dfsan_set_label(0, buf, sizeof(struct stat));
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE char *__dfsw_strchr(const char *s, int c,
dfsan_label s_label,
dfsan_label c_label,
dfsan_label *ret_label) {
for (size_t i = 0;; ++i) {
if (s[i] == c || s[i] == 0) {
if (flags().strict_data_dependencies) {
*ret_label = s_label;
} else {
*ret_label = dfsan_union(dfsan_read_label(s, i + 1),
dfsan_union(s_label, c_label));
}
return s[i] == 0 ? 0 : const_cast<char *>(s+i);
}
}
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_memcmp(const void *s1, const void *s2,
size_t n, dfsan_label s1_label,
dfsan_label s2_label,
dfsan_label n_label,
dfsan_label *ret_label) {
const char *cs1 = (const char *) s1, *cs2 = (const char *) s2;
for (size_t i = 0; i != n; ++i) {
if (cs1[i] != cs2[i]) {
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_union(dfsan_read_label(cs1, i + 1),
dfsan_read_label(cs2, i + 1));
}
return cs1[i] - cs2[i];
}
}
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_union(dfsan_read_label(cs1, n),
dfsan_read_label(cs2, n));
}
return 0;
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_strcmp(const char *s1, const char *s2,
dfsan_label s1_label,
dfsan_label s2_label,
dfsan_label *ret_label) {
for (size_t i = 0;; ++i) {
if (s1[i] != s2[i] || s1[i] == 0 || s2[i] == 0) {
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_union(dfsan_read_label(s1, i + 1),
dfsan_read_label(s2, i + 1));
}
return s1[i] - s2[i];
}
}
return 0;
}
SANITIZER_INTERFACE_ATTRIBUTE int
__dfsw_strcasecmp(const char *s1, const char *s2, dfsan_label s1_label,
dfsan_label s2_label, dfsan_label *ret_label) {
for (size_t i = 0;; ++i) {
if (tolower(s1[i]) != tolower(s2[i]) || s1[i] == 0 || s2[i] == 0) {
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_union(dfsan_read_label(s1, i + 1),
dfsan_read_label(s2, i + 1));
}
return s1[i] - s2[i];
}
}
return 0;
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_strncmp(const char *s1, const char *s2,
size_t n, dfsan_label s1_label,
dfsan_label s2_label,
dfsan_label n_label,
dfsan_label *ret_label) {
if (n == 0) {
*ret_label = 0;
return 0;
}
for (size_t i = 0;; ++i) {
if (s1[i] != s2[i] || s1[i] == 0 || s2[i] == 0 || i == n - 1) {
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_union(dfsan_read_label(s1, i + 1),
dfsan_read_label(s2, i + 1));
}
return s1[i] - s2[i];
}
}
return 0;
}
SANITIZER_INTERFACE_ATTRIBUTE int
__dfsw_strncasecmp(const char *s1, const char *s2, size_t n,
dfsan_label s1_label, dfsan_label s2_label,
dfsan_label n_label, dfsan_label *ret_label) {
if (n == 0) {
*ret_label = 0;
return 0;
}
for (size_t i = 0;; ++i) {
if (tolower(s1[i]) != tolower(s2[i]) || s1[i] == 0 || s2[i] == 0 ||
i == n - 1) {
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_union(dfsan_read_label(s1, i + 1),
dfsan_read_label(s2, i + 1));
}
return s1[i] - s2[i];
}
}
return 0;
}
SANITIZER_INTERFACE_ATTRIBUTE void *__dfsw_calloc(size_t nmemb, size_t size,
dfsan_label nmemb_label,
dfsan_label size_label,
dfsan_label *ret_label) {
void *p = calloc(nmemb, size);
dfsan_set_label(0, p, nmemb * size);
*ret_label = 0;
return p;
}
SANITIZER_INTERFACE_ATTRIBUTE size_t
__dfsw_strlen(const char *s, dfsan_label s_label, dfsan_label *ret_label) {
size_t ret = strlen(s);
if (flags().strict_data_dependencies) {
*ret_label = 0;
} else {
*ret_label = dfsan_read_label(s, ret + 1);
}
return ret;
}
static void *dfsan_memcpy(void *dest, const void *src, size_t n) {
dfsan_label *sdest = shadow_for(dest);
const dfsan_label *ssrc = shadow_for(src);
internal_memcpy((void *)sdest, (const void *)ssrc, n * sizeof(dfsan_label));
return internal_memcpy(dest, src, n);
}
static void dfsan_memset(void *s, int c, dfsan_label c_label, size_t n) {
internal_memset(s, c, n);
dfsan_set_label(c_label, s, n);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *__dfsw_memcpy(void *dest, const void *src, size_t n,
dfsan_label dest_label, dfsan_label src_label,
dfsan_label n_label, dfsan_label *ret_label) {
*ret_label = dest_label;
return dfsan_memcpy(dest, src, n);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *__dfsw_memset(void *s, int c, size_t n,
dfsan_label s_label, dfsan_label c_label,
dfsan_label n_label, dfsan_label *ret_label) {
dfsan_memset(s, c, c_label, n);
*ret_label = s_label;
return s;
}
SANITIZER_INTERFACE_ATTRIBUTE char *
__dfsw_strdup(const char *s, dfsan_label s_label, dfsan_label *ret_label) {
size_t len = strlen(s);
void *p = malloc(len+1);
dfsan_memcpy(p, s, len+1);
*ret_label = 0;
return static_cast<char *>(p);
}
SANITIZER_INTERFACE_ATTRIBUTE char *
__dfsw_strncpy(char *s1, const char *s2, size_t n, dfsan_label s1_label,
dfsan_label s2_label, dfsan_label n_label,
dfsan_label *ret_label) {
size_t len = strlen(s2);
if (len < n) {
dfsan_memcpy(s1, s2, len+1);
dfsan_memset(s1+len+1, 0, 0, n-len-1);
} else {
dfsan_memcpy(s1, s2, n);
}
*ret_label = s1_label;
return s1;
}
SANITIZER_INTERFACE_ATTRIBUTE ssize_t
__dfsw_pread(int fd, void *buf, size_t count, off_t offset,
dfsan_label fd_label, dfsan_label buf_label,
dfsan_label count_label, dfsan_label offset_label,
dfsan_label *ret_label) {
ssize_t ret = pread(fd, buf, count, offset);
if (ret > 0)
dfsan_set_label(0, buf, ret);
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE ssize_t
__dfsw_read(int fd, void *buf, size_t count,
dfsan_label fd_label, dfsan_label buf_label,
dfsan_label count_label,
dfsan_label *ret_label) {
ssize_t ret = read(fd, buf, count);
if (ret > 0)
dfsan_set_label(0, buf, ret);
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_clock_gettime(clockid_t clk_id,
struct timespec *tp,
dfsan_label clk_id_label,
dfsan_label tp_label,
dfsan_label *ret_label) {
int ret = clock_gettime(clk_id, tp);
if (ret == 0)
dfsan_set_label(0, tp, sizeof(struct timespec));
*ret_label = 0;
return ret;
}
static void unpoison(const void *ptr, uptr size) {
dfsan_set_label(0, const_cast<void *>(ptr), size);
}
// dlopen() ultimately calls mmap() down inside the loader, which generally
// doesn't participate in dynamic symbol resolution. Therefore we won't
// intercept its calls to mmap, and we have to hook it here.
SANITIZER_INTERFACE_ATTRIBUTE void *
__dfsw_dlopen(const char *filename, int flag, dfsan_label filename_label,
dfsan_label flag_label, dfsan_label *ret_label) {
void *handle = dlopen(filename, flag);
link_map *map = GET_LINK_MAP_BY_DLOPEN_HANDLE(handle);
if (map)
ForEachMappedRegion(map, unpoison);
*ret_label = 0;
return handle;
}
struct pthread_create_info {
void *(*start_routine_trampoline)(void *, void *, dfsan_label, dfsan_label *);
void *start_routine;
void *arg;
};
static void *pthread_create_cb(void *p) {
pthread_create_info pci(*(pthread_create_info *)p);
free(p);
dfsan_label ret_label;
return pci.start_routine_trampoline(pci.start_routine, pci.arg, 0,
&ret_label);
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_pthread_create(
pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine_trampoline)(void *, void *, dfsan_label,
dfsan_label *),
void *start_routine, void *arg, dfsan_label thread_label,
dfsan_label attr_label, dfsan_label start_routine_label,
dfsan_label arg_label, dfsan_label *ret_label) {
pthread_create_info *pci =
(pthread_create_info *)malloc(sizeof(pthread_create_info));
pci->start_routine_trampoline = start_routine_trampoline;
pci->start_routine = start_routine;
pci->arg = arg;
int rv = pthread_create(thread, attr, pthread_create_cb, (void *)pci);
if (rv != 0)
free(pci);
*ret_label = 0;
return rv;
}
struct dl_iterate_phdr_info {
int (*callback_trampoline)(void *callback, struct dl_phdr_info *info,
size_t size, void *data, dfsan_label info_label,
dfsan_label size_label, dfsan_label data_label,
dfsan_label *ret_label);
void *callback;
void *data;
};
int dl_iterate_phdr_cb(struct dl_phdr_info *info, size_t size, void *data) {
dl_iterate_phdr_info *dipi = (dl_iterate_phdr_info *)data;
dfsan_set_label(0, *info);
dfsan_set_label(0, const_cast<char *>(info->dlpi_name),
strlen(info->dlpi_name) + 1);
dfsan_set_label(
0, const_cast<char *>(reinterpret_cast<const char *>(info->dlpi_phdr)),
sizeof(*info->dlpi_phdr) * info->dlpi_phnum);
dfsan_label ret_label;
return dipi->callback_trampoline(dipi->callback, info, size, dipi->data, 0, 0,
0, &ret_label);
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_dl_iterate_phdr(
int (*callback_trampoline)(void *callback, struct dl_phdr_info *info,
size_t size, void *data, dfsan_label info_label,
dfsan_label size_label, dfsan_label data_label,
dfsan_label *ret_label),
void *callback, void *data, dfsan_label callback_label,
dfsan_label data_label, dfsan_label *ret_label) {
dl_iterate_phdr_info dipi = { callback_trampoline, callback, data };
*ret_label = 0;
return dl_iterate_phdr(dl_iterate_phdr_cb, &dipi);
}
SANITIZER_INTERFACE_ATTRIBUTE
char *__dfsw_ctime_r(const time_t *timep, char *buf, dfsan_label timep_label,
dfsan_label buf_label, dfsan_label *ret_label) {
char *ret = ctime_r(timep, buf);
if (ret) {
dfsan_set_label(dfsan_read_label(timep, sizeof(time_t)), buf,
strlen(buf) + 1);
*ret_label = buf_label;
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
char *__dfsw_fgets(char *s, int size, FILE *stream, dfsan_label s_label,
dfsan_label size_label, dfsan_label stream_label,
dfsan_label *ret_label) {
char *ret = fgets(s, size, stream);
if (ret) {
dfsan_set_label(0, ret, strlen(ret) + 1);
*ret_label = s_label;
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
char *__dfsw_getcwd(char *buf, size_t size, dfsan_label buf_label,
dfsan_label size_label, dfsan_label *ret_label) {
char *ret = getcwd(buf, size);
if (ret) {
dfsan_set_label(0, ret, strlen(ret) + 1);
*ret_label = buf_label;
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
char *__dfsw_get_current_dir_name(dfsan_label *ret_label) {
char *ret = get_current_dir_name();
if (ret) {
dfsan_set_label(0, ret, strlen(ret) + 1);
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_gethostname(char *name, size_t len, dfsan_label name_label,
dfsan_label len_label, dfsan_label *ret_label) {
int ret = gethostname(name, len);
if (ret == 0) {
dfsan_set_label(0, name, strlen(name) + 1);
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_getrlimit(int resource, struct rlimit *rlim,
dfsan_label resource_label, dfsan_label rlim_label,
dfsan_label *ret_label) {
int ret = getrlimit(resource, rlim);
if (ret == 0) {
dfsan_set_label(0, rlim, sizeof(struct rlimit));
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_getrusage(int who, struct rusage *usage, dfsan_label who_label,
dfsan_label usage_label, dfsan_label *ret_label) {
int ret = getrusage(who, usage);
if (ret == 0) {
dfsan_set_label(0, usage, sizeof(struct rusage));
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
char *__dfsw_strcpy(char *dest, const char *src, dfsan_label dst_label,
dfsan_label src_label, dfsan_label *ret_label) {
char *ret = strcpy(dest, src);
if (ret) {
internal_memcpy(shadow_for(dest), shadow_for(src),
sizeof(dfsan_label) * (strlen(src) + 1));
}
*ret_label = dst_label;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
long int __dfsw_strtol(const char *nptr, char **endptr, int base,
dfsan_label nptr_label, dfsan_label endptr_label,
dfsan_label base_label, dfsan_label *ret_label) {
char *tmp_endptr;
long int ret = strtol(nptr, &tmp_endptr, base);
if (endptr) {
*endptr = tmp_endptr;
}
if (tmp_endptr > nptr) {
// If *tmp_endptr is '\0' include its label as well.
*ret_label = dfsan_union(
base_label,
dfsan_read_label(nptr, tmp_endptr - nptr + (*tmp_endptr ? 0 : 1)));
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
double __dfsw_strtod(const char *nptr, char **endptr,
dfsan_label nptr_label, dfsan_label endptr_label,
dfsan_label *ret_label) {
char *tmp_endptr;
double ret = strtod(nptr, &tmp_endptr);
if (endptr) {
*endptr = tmp_endptr;
}
if (tmp_endptr > nptr) {
// If *tmp_endptr is '\0' include its label as well.
*ret_label = dfsan_read_label(
nptr,
tmp_endptr - nptr + (*tmp_endptr ? 0 : 1));
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
long long int __dfsw_strtoll(const char *nptr, char **endptr, int base,
dfsan_label nptr_label, dfsan_label endptr_label,
dfsan_label base_label, dfsan_label *ret_label) {
char *tmp_endptr;
long long int ret = strtoll(nptr, &tmp_endptr, base);
if (endptr) {
*endptr = tmp_endptr;
}
if (tmp_endptr > nptr) {
// If *tmp_endptr is '\0' include its label as well.
*ret_label = dfsan_union(
base_label,
dfsan_read_label(nptr, tmp_endptr - nptr + (*tmp_endptr ? 0 : 1)));
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
unsigned long int __dfsw_strtoul(const char *nptr, char **endptr, int base,
dfsan_label nptr_label, dfsan_label endptr_label,
dfsan_label base_label, dfsan_label *ret_label) {
char *tmp_endptr;
unsigned long int ret = strtoul(nptr, &tmp_endptr, base);
if (endptr) {
*endptr = tmp_endptr;
}
if (tmp_endptr > nptr) {
// If *tmp_endptr is '\0' include its label as well.
*ret_label = dfsan_union(
base_label,
dfsan_read_label(nptr, tmp_endptr - nptr + (*tmp_endptr ? 0 : 1)));
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
long long unsigned int __dfsw_strtoull(const char *nptr, char **endptr,
dfsan_label nptr_label,
int base, dfsan_label endptr_label,
dfsan_label base_label,
dfsan_label *ret_label) {
char *tmp_endptr;
long long unsigned int ret = strtoull(nptr, &tmp_endptr, base);
if (endptr) {
*endptr = tmp_endptr;
}
if (tmp_endptr > nptr) {
// If *tmp_endptr is '\0' include its label as well.
*ret_label = dfsan_union(
base_label,
dfsan_read_label(nptr, tmp_endptr - nptr + (*tmp_endptr ? 0 : 1)));
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
time_t __dfsw_time(time_t *t, dfsan_label t_label, dfsan_label *ret_label) {
time_t ret = time(t);
if (ret != (time_t) -1 && t) {
dfsan_set_label(0, t, sizeof(time_t));
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_inet_pton(int af, const char *src, void *dst, dfsan_label af_label,
dfsan_label src_label, dfsan_label dst_label,
dfsan_label *ret_label) {
int ret = inet_pton(af, src, dst);
if (ret == 1) {
dfsan_set_label(dfsan_read_label(src, strlen(src) + 1), dst,
af == AF_INET ? sizeof(struct in_addr) : sizeof(in6_addr));
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
struct tm *__dfsw_localtime_r(const time_t *timep, struct tm *result,
dfsan_label timep_label, dfsan_label result_label,
dfsan_label *ret_label) {
struct tm *ret = localtime_r(timep, result);
if (ret) {
dfsan_set_label(dfsan_read_label(timep, sizeof(time_t)), result,
sizeof(struct tm));
*ret_label = result_label;
} else {
*ret_label = 0;
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_getpwuid_r(id_t uid, struct passwd *pwd,
char *buf, size_t buflen, struct passwd **result,
dfsan_label uid_label, dfsan_label pwd_label,
dfsan_label buf_label, dfsan_label buflen_label,
dfsan_label result_label, dfsan_label *ret_label) {
// Store the data in pwd, the strings referenced from pwd in buf, and the
// address of pwd in *result. On failure, NULL is stored in *result.
int ret = getpwuid_r(uid, pwd, buf, buflen, result);
if (ret == 0) {
dfsan_set_label(0, pwd, sizeof(struct passwd));
dfsan_set_label(0, buf, strlen(buf) + 1);
}
*ret_label = 0;
dfsan_set_label(0, result, sizeof(struct passwd*));
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_poll(struct pollfd *fds, nfds_t nfds, int timeout,
dfsan_label dfs_label, dfsan_label nfds_label,
dfsan_label timeout_label, dfsan_label *ret_label) {
int ret = poll(fds, nfds, timeout);
if (ret >= 0) {
for (; nfds > 0; --nfds) {
dfsan_set_label(0, &fds[nfds - 1].revents, sizeof(fds[nfds - 1].revents));
}
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout,
dfsan_label nfds_label, dfsan_label readfds_label,
dfsan_label writefds_label, dfsan_label exceptfds_label,
dfsan_label timeout_label, dfsan_label *ret_label) {
int ret = select(nfds, readfds, writefds, exceptfds, timeout);
// Clear everything (also on error) since their content is either set or
// undefined.
if (readfds) {
dfsan_set_label(0, readfds, sizeof(fd_set));
}
if (writefds) {
dfsan_set_label(0, writefds, sizeof(fd_set));
}
if (exceptfds) {
dfsan_set_label(0, exceptfds, sizeof(fd_set));
}
dfsan_set_label(0, timeout, sizeof(struct timeval));
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask,
dfsan_label pid_label,
dfsan_label cpusetsize_label,
dfsan_label mask_label, dfsan_label *ret_label) {
int ret = sched_getaffinity(pid, cpusetsize, mask);
if (ret == 0) {
dfsan_set_label(0, mask, cpusetsize);
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_sigemptyset(sigset_t *set, dfsan_label set_label,
dfsan_label *ret_label) {
int ret = sigemptyset(set);
dfsan_set_label(0, set, sizeof(sigset_t));
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact, dfsan_label signum_label,
dfsan_label act_label, dfsan_label oldact_label,
dfsan_label *ret_label) {
int ret = sigaction(signum, act, oldact);
if (oldact) {
dfsan_set_label(0, oldact, sizeof(struct sigaction));
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_gettimeofday(struct timeval *tv, struct timezone *tz,
dfsan_label tv_label, dfsan_label tz_label,
dfsan_label *ret_label) {
int ret = gettimeofday(tv, tz);
if (tv) {
dfsan_set_label(0, tv, sizeof(struct timeval));
}
if (tz) {
dfsan_set_label(0, tz, sizeof(struct timezone));
}
*ret_label = 0;
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE void *__dfsw_memchr(void *s, int c, size_t n,
dfsan_label s_label,
dfsan_label c_label,
dfsan_label n_label,
dfsan_label *ret_label) {
void *ret = memchr(s, c, n);
if (flags().strict_data_dependencies) {
*ret_label = ret ? s_label : 0;
} else {
size_t len =
ret ? reinterpret_cast<char *>(ret) - reinterpret_cast<char *>(s) + 1
: n;
*ret_label =
dfsan_union(dfsan_read_label(s, len), dfsan_union(s_label, c_label));
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE char *__dfsw_strrchr(char *s, int c,
dfsan_label s_label,
dfsan_label c_label,
dfsan_label *ret_label) {
char *ret = strrchr(s, c);
if (flags().strict_data_dependencies) {
*ret_label = ret ? s_label : 0;
} else {
*ret_label =
dfsan_union(dfsan_read_label(s, strlen(s) + 1),
dfsan_union(s_label, c_label));
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE char *__dfsw_strstr(char *haystack, char *needle,
dfsan_label haystack_label,
dfsan_label needle_label,
dfsan_label *ret_label) {
char *ret = strstr(haystack, needle);
if (flags().strict_data_dependencies) {
*ret_label = ret ? haystack_label : 0;
} else {
size_t len = ret ? ret + strlen(needle) - haystack : strlen(haystack) + 1;
*ret_label =
dfsan_union(dfsan_read_label(haystack, len),
dfsan_union(dfsan_read_label(needle, strlen(needle) + 1),
dfsan_union(haystack_label, needle_label)));
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE int __dfsw_nanosleep(const struct timespec *req,
struct timespec *rem,
dfsan_label req_label,
dfsan_label rem_label,
dfsan_label *ret_label) {
int ret = nanosleep(req, rem);
*ret_label = 0;
if (ret == -1) {
// Interrupted by a signal, rem is filled with the remaining time.
dfsan_set_label(0, rem, sizeof(struct timespec));
}
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE int
__dfsw_socketpair(int domain, int type, int protocol, int sv[2],
dfsan_label domain_label, dfsan_label type_label,
dfsan_label protocol_label, dfsan_label sv_label,
dfsan_label *ret_label) {
int ret = socketpair(domain, type, protocol, sv);
*ret_label = 0;
if (ret == 0) {
dfsan_set_label(0, sv, sizeof(*sv) * 2);
}
return ret;
}
// Type of the trampoline function passed to the custom version of
// dfsan_set_write_callback.
typedef void (*write_trampoline_t)(
void *callback,
int fd, const void *buf, ssize_t count,
dfsan_label fd_label, dfsan_label buf_label, dfsan_label count_label);
// Calls to dfsan_set_write_callback() set the values in this struct.
// Calls to the custom version of write() read (and invoke) them.
static struct {
write_trampoline_t write_callback_trampoline = NULL;
void *write_callback = NULL;
} write_callback_info;
SANITIZER_INTERFACE_ATTRIBUTE void
__dfsw_dfsan_set_write_callback(
write_trampoline_t write_callback_trampoline,
void *write_callback,
dfsan_label write_callback_label,
dfsan_label *ret_label) {
write_callback_info.write_callback_trampoline = write_callback_trampoline;
write_callback_info.write_callback = write_callback;
}
SANITIZER_INTERFACE_ATTRIBUTE int
__dfsw_write(int fd, const void *buf, size_t count,
dfsan_label fd_label, dfsan_label buf_label,
dfsan_label count_label, dfsan_label *ret_label) {
if (write_callback_info.write_callback != NULL) {
write_callback_info.write_callback_trampoline(
write_callback_info.write_callback,
fd, buf, count,
fd_label, buf_label, count_label);
}
*ret_label = 0;
return write(fd, buf, count);
}
// Type used to extract a dfsan_label with va_arg()
typedef int dfsan_label_va;
// A chunk of data representing the output of formatting either a constant
// string or a single format directive.
struct Chunk {
// Address of the beginning of the formatted string
const char *ptr;
// Size of the formatted string
size_t size;
// Type of DFSan label (depends on the format directive)
enum {
// Constant string, no argument and thus no label
NONE = 0,
// Label for an argument of '%n'
IGNORED,
// Label for a '%s' argument
STRING,
// Label for any other type of argument
NUMERIC,
} label_type;
// Value of the argument (if label_type == STRING)
const char *arg;
};
// Formats the input. The output is stored in 'str' starting from offset
// 'off'. The format directive is represented by the first 'format_size' bytes
// of 'format'. If 'has_size' is true, 'size' bounds the number of output
// bytes. Returns the return value of the vsnprintf call used to format the
// input.
static int format_chunk(char *str, size_t off, bool has_size, size_t size,
const char *format, size_t format_size, ...) {
char *chunk_format = (char *) malloc(format_size + 1);
assert(chunk_format);
internal_memcpy(chunk_format, format, format_size);
chunk_format[format_size] = '\0';
va_list ap;
va_start(ap, format_size);
int r = 0;
if (has_size) {
r = vsnprintf(str + off, off < size ? size - off : 0, chunk_format, ap);
} else {
r = vsprintf(str + off, chunk_format, ap);
}
va_end(ap);
free(chunk_format);
return r;
}
// Formats the input and propagates the input labels to the output. The output
// is stored in 'str'. If 'has_size' is true, 'size' bounds the number of
// output bytes. 'format' and 'ap' are the format string and the list of
// arguments for formatting. Returns the return value vsnprintf would return.
//
// The function tokenizes the format string in chunks representing either a
// constant string or a single format directive (e.g., '%.3f') and formats each
// chunk independently into the output string. This approach allows to figure
// out which bytes of the output string depends on which argument and thus to
// propagate labels more precisely.
static int format_buffer(char *str, bool has_size, size_t size,
const char *format, dfsan_label *va_labels,
dfsan_label *ret_label, va_list ap) {
InternalMmapVector<Chunk> chunks(8);
size_t off = 0;
while (*format) {
chunks.push_back(Chunk());
Chunk& chunk = chunks.back();
chunk.ptr = str + off;
chunk.arg = nullptr;
int status = 0;
if (*format != '%') {
// Ordinary character. Consume all the characters until a '%' or the end
// of the string.
size_t format_size = 0;
for (; *format && *format != '%'; ++format, ++format_size) {}
status = format_chunk(str, off, has_size, size, format - format_size,
format_size);
chunk.label_type = Chunk::NONE;
} else {
// Conversion directive. Consume all the characters until a conversion
// specifier or the end of the string.
bool end_format = false;
#define FORMAT_CHUNK(t) \
format_chunk(str, off, has_size, size, format - format_size, \
format_size + 1, va_arg(ap, t))
for (size_t format_size = 1; *++format && !end_format; ++format_size) {
switch (*format) {
case 'd':
case 'i':
case 'o':
case 'u':
case 'x':
case 'X':
switch (*(format - 1)) {
case 'h':
// Also covers the 'hh' case (since the size of the arg is still
// an int).
status = FORMAT_CHUNK(int);
break;
case 'l':
if (format_size >= 2 && *(format - 2) == 'l') {
status = FORMAT_CHUNK(long long int);
} else {
status = FORMAT_CHUNK(long int);
}
break;
case 'q':
status = FORMAT_CHUNK(long long int);
break;
case 'j':
status = FORMAT_CHUNK(intmax_t);
break;
case 'z':
status = FORMAT_CHUNK(size_t);
break;
case 't':
status = FORMAT_CHUNK(size_t);
break;
default:
status = FORMAT_CHUNK(int);
}
chunk.label_type = Chunk::NUMERIC;
end_format = true;
break;
case 'a':
case 'A':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
if (*(format - 1) == 'L') {
status = FORMAT_CHUNK(long double);
} else {
status = FORMAT_CHUNK(double);
}
chunk.label_type = Chunk::NUMERIC;
end_format = true;
break;
case 'c':
status = FORMAT_CHUNK(int);
chunk.label_type = Chunk::NUMERIC;
end_format = true;
break;
case 's':
chunk.arg = va_arg(ap, char *);
status =
format_chunk(str, off, has_size, size,
format - format_size, format_size + 1,
chunk.arg);
chunk.label_type = Chunk::STRING;
end_format = true;
break;
case 'p':
status = FORMAT_CHUNK(void *);
chunk.label_type = Chunk::NUMERIC;
end_format = true;
break;
case 'n':
*(va_arg(ap, int *)) = (int)off;
chunk.label_type = Chunk::IGNORED;
end_format = true;
break;
case '%':
status = format_chunk(str, off, has_size, size,
format - format_size, format_size + 1);
chunk.label_type = Chunk::NONE;
end_format = true;
break;
default:
break;
}
}
#undef FORMAT_CHUNK
}
if (status < 0) {
return status;
}
// A return value of {v,}snprintf of size or more means that the output was
// truncated.
if (has_size) {
if (off < size) {
size_t ustatus = (size_t) status;
chunk.size = ustatus >= (size - off) ?
ustatus - (size - off) : ustatus;
} else {
chunk.size = 0;
}
} else {
chunk.size = status;
}
off += status;
}
// TODO(martignlo): Decide how to combine labels (e.g., whether to ignore or
// not the label of the format string).
// Label each output chunk according to the label supplied as argument to the
// function. We need to go through all the chunks and arguments even if the
// string was only partially printed ({v,}snprintf case).
for (size_t i = 0; i < chunks.size(); ++i) {
const Chunk& chunk = chunks[i];
void *chunk_ptr = const_cast<char *>(chunk.ptr);
switch (chunk.label_type) {
case Chunk::NONE:
dfsan_set_label(0, chunk_ptr, chunk.size);
break;
case Chunk::IGNORED:
va_labels++;
dfsan_set_label(0, chunk_ptr, chunk.size);
break;
case Chunk::NUMERIC: {
dfsan_label label = *va_labels++;
dfsan_set_label(label, chunk_ptr, chunk.size);
break;
}
case Chunk::STRING: {
// Consume the label of the pointer to the string
va_labels++;
internal_memcpy(shadow_for(chunk_ptr),
shadow_for(chunk.arg),
sizeof(dfsan_label) * (strlen(chunk.arg)));
break;
}
}
}
*ret_label = 0;
// Number of bytes written in total.
return off;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_sprintf(char *str, const char *format, dfsan_label str_label,
dfsan_label format_label, dfsan_label *va_labels,
dfsan_label *ret_label, ...) {
va_list ap;
va_start(ap, ret_label);
int ret = format_buffer(str, false, 0, format, va_labels, ret_label, ap);
va_end(ap);
return ret;
}
SANITIZER_INTERFACE_ATTRIBUTE
int __dfsw_snprintf(char *str, size_t size, const char *format,
dfsan_label str_label, dfsan_label size_label,
dfsan_label format_label, dfsan_label *va_labels,
dfsan_label *ret_label, ...) {
va_list ap;
va_start(ap, ret_label);
int ret = format_buffer(str, true, size, format, va_labels, ret_label, ap);
va_end(ap);
return ret;
}
}