llvm-project/lldb/source/Symbol/Symtab.cpp

1217 lines
42 KiB
C++

//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <map>
#include "lldb/Core/Module.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/Timer.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Target/CPPLanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
using namespace lldb;
using namespace lldb_private;
Symtab::Symtab(ObjectFile *objfile) :
m_objfile (objfile),
m_symbols (),
m_file_addr_to_index (),
m_name_to_index (),
m_mutex (Mutex::eMutexTypeRecursive),
m_file_addr_to_index_computed (false),
m_name_indexes_computed (false)
{
}
Symtab::~Symtab()
{
}
void
Symtab::Reserve(size_t count)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
m_symbols.reserve (count);
}
Symbol *
Symtab::Resize(size_t count)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
m_symbols.resize (count);
return &m_symbols[0];
}
uint32_t
Symtab::AddSymbol(const Symbol& symbol)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
uint32_t symbol_idx = m_symbols.size();
m_name_to_index.Clear();
m_file_addr_to_index.Clear();
m_symbols.push_back(symbol);
m_file_addr_to_index_computed = false;
m_name_indexes_computed = false;
return symbol_idx;
}
size_t
Symtab::GetNumSymbols() const
{
Mutex::Locker locker (m_mutex);
return m_symbols.size();
}
void
Symtab::SectionFileAddressesChanged ()
{
m_name_to_index.Clear();
m_file_addr_to_index_computed = false;
}
void
Symtab::Dump (Stream *s, Target *target, SortOrder sort_order)
{
Mutex::Locker locker (m_mutex);
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
const FileSpec &file_spec = m_objfile->GetFileSpec();
const char * object_name = nullptr;
if (m_objfile->GetModule())
object_name = m_objfile->GetModule()->GetObjectName().GetCString();
if (file_spec)
s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
file_spec.GetPath().c_str(),
object_name ? "(" : "",
object_name ? object_name : "",
object_name ? ")" : "",
(uint64_t)m_symbols.size());
else
s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
if (!m_symbols.empty())
{
switch (sort_order)
{
case eSortOrderNone:
{
s->PutCString (":\n");
DumpSymbolHeader (s);
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos)
{
s->Indent();
pos->Dump(s, target, std::distance(begin, pos));
}
}
break;
case eSortOrderByName:
{
// Although we maintain a lookup by exact name map, the table
// isn't sorted by name. So we must make the ordered symbol list
// up ourselves.
s->PutCString (" (sorted by name):\n");
DumpSymbolHeader (s);
typedef std::multimap<const char*, const Symbol *, CStringCompareFunctionObject> CStringToSymbol;
CStringToSymbol name_map;
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); pos != end; ++pos)
{
const char *name = pos->GetName().AsCString();
if (name && name[0])
name_map.insert (std::make_pair(name, &(*pos)));
}
for (CStringToSymbol::const_iterator pos = name_map.begin(), end = name_map.end(); pos != end; ++pos)
{
s->Indent();
pos->second->Dump (s, target, pos->second - &m_symbols[0]);
}
}
break;
case eSortOrderByAddress:
s->PutCString (" (sorted by address):\n");
DumpSymbolHeader (s);
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const size_t num_entries = m_file_addr_to_index.GetSize();
for (size_t i=0; i<num_entries; ++i)
{
s->Indent();
const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
m_symbols[symbol_idx].Dump(s, target, symbol_idx);
}
break;
}
}
}
void
Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t>& indexes) const
{
Mutex::Locker locker (m_mutex);
const size_t num_symbols = GetNumSymbols();
//s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
s->IndentMore();
if (!indexes.empty())
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
DumpSymbolHeader (s);
for (pos = indexes.begin(); pos != end; ++pos)
{
size_t idx = *pos;
if (idx < num_symbols)
{
s->Indent();
m_symbols[idx].Dump(s, target, idx);
}
}
}
s->IndentLess ();
}
void
Symtab::DumpSymbolHeader (Stream *s)
{
s->Indent(" Debug symbol\n");
s->Indent(" |Synthetic symbol\n");
s->Indent(" ||Externally Visible\n");
s->Indent(" |||\n");
s->Indent("Index UserID DSX Type File Address/Value Load Address Size Flags Name\n");
s->Indent("------- ------ --- --------------- ------------------ ------------------ ------------------ ---------- ----------------------------------\n");
}
static int
CompareSymbolID (const void *key, const void *p)
{
const user_id_t match_uid = *(const user_id_t*) key;
const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
if (match_uid < symbol_uid)
return -1;
if (match_uid > symbol_uid)
return 1;
return 0;
}
Symbol *
Symtab::FindSymbolByID (lldb::user_id_t symbol_uid) const
{
Mutex::Locker locker (m_mutex);
Symbol *symbol = (Symbol*)::bsearch (&symbol_uid,
&m_symbols[0],
m_symbols.size(),
sizeof(m_symbols[0]),
CompareSymbolID);
return symbol;
}
Symbol *
Symtab::SymbolAtIndex(size_t idx)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
if (idx < m_symbols.size())
return &m_symbols[idx];
return nullptr;
}
const Symbol *
Symtab::SymbolAtIndex(size_t idx) const
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
if (idx < m_symbols.size())
return &m_symbols[idx];
return nullptr;
}
//----------------------------------------------------------------------
// InitNameIndexes
//----------------------------------------------------------------------
void
Symtab::InitNameIndexes()
{
// Protected function, no need to lock mutex...
if (!m_name_indexes_computed)
{
m_name_indexes_computed = true;
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Create the name index vector to be able to quickly search by name
const size_t num_symbols = m_symbols.size();
#if 1
m_name_to_index.Reserve (num_symbols);
#else
// TODO: benchmark this to see if we save any memory. Otherwise we
// will always keep the memory reserved in the vector unless we pull
// some STL swap magic and then recopy...
uint32_t actual_count = 0;
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
pos != end;
++pos)
{
const Mangled &mangled = pos->GetMangled();
if (mangled.GetMangledName())
++actual_count;
if (mangled.GetDemangledName())
++actual_count;
}
m_name_to_index.Reserve (actual_count);
#endif
NameToIndexMap::Entry entry;
// The "const char *" in "class_contexts" must come from a ConstString::GetCString()
std::set<const char *> class_contexts;
UniqueCStringMap<uint32_t> mangled_name_to_index;
std::vector<const char *> symbol_contexts(num_symbols, nullptr);
for (entry.value = 0; entry.value<num_symbols; ++entry.value)
{
const Symbol *symbol = &m_symbols[entry.value];
// Don't let trampolines get into the lookup by name map
// If we ever need the trampoline symbols to be searchable by name
// we can remove this and then possibly add a new bool to any of the
// Symtab functions that lookup symbols by name to indicate if they
// want trampolines.
if (symbol->IsTrampoline())
continue;
const Mangled &mangled = symbol->GetMangled();
entry.cstring = mangled.GetMangledName().GetCString();
if (entry.cstring && entry.cstring[0])
{
m_name_to_index.Append (entry);
if (symbol->ContainsLinkerAnnotations()) {
// If the symbol has linker annotations, also add the version without the
// annotations.
entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(entry.cstring)).GetCString();
m_name_to_index.Append (entry);
}
const SymbolType symbol_type = symbol->GetType();
if (symbol_type == eSymbolTypeCode || symbol_type == eSymbolTypeResolver)
{
if (entry.cstring[0] == '_' && entry.cstring[1] == 'Z' &&
(entry.cstring[2] != 'T' && // avoid virtual table, VTT structure, typeinfo structure, and typeinfo name
entry.cstring[2] != 'G' && // avoid guard variables
entry.cstring[2] != 'Z')) // named local entities (if we eventually handle eSymbolTypeData, we will want this back)
{
CPPLanguageRuntime::MethodName cxx_method (mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus));
entry.cstring = ConstString(cxx_method.GetBasename()).GetCString();
if (entry.cstring && entry.cstring[0])
{
// ConstString objects permanently store the string in the pool so calling
// GetCString() on the value gets us a const char * that will never go away
const char *const_context = ConstString(cxx_method.GetContext()).GetCString();
if (entry.cstring[0] == '~' || !cxx_method.GetQualifiers().empty())
{
// The first character of the demangled basename is '~' which
// means we have a class destructor. We can use this information
// to help us know what is a class and what isn't.
if (class_contexts.find(const_context) == class_contexts.end())
class_contexts.insert(const_context);
m_method_to_index.Append (entry);
}
else
{
if (const_context && const_context[0])
{
if (class_contexts.find(const_context) != class_contexts.end())
{
// The current decl context is in our "class_contexts" which means
// this is a method on a class
m_method_to_index.Append (entry);
}
else
{
// We don't know if this is a function basename or a method,
// so put it into a temporary collection so once we are done
// we can look in class_contexts to see if each entry is a class
// or just a function and will put any remaining items into
// m_method_to_index or m_basename_to_index as needed
mangled_name_to_index.Append (entry);
symbol_contexts[entry.value] = const_context;
}
}
else
{
// No context for this function so this has to be a basename
m_basename_to_index.Append(entry);
}
}
}
}
}
}
entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()).GetCString();
if (entry.cstring && entry.cstring[0]) {
m_name_to_index.Append (entry);
if (symbol->ContainsLinkerAnnotations()) {
// If the symbol has linker annotations, also add the version without the
// annotations.
entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(entry.cstring)).GetCString();
m_name_to_index.Append (entry);
}
}
// If the demangled name turns out to be an ObjC name, and
// is a category name, add the version without categories to the index too.
ObjCLanguageRuntime::MethodName objc_method (entry.cstring, true);
if (objc_method.IsValid(true))
{
entry.cstring = objc_method.GetSelector().GetCString();
m_selector_to_index.Append (entry);
ConstString objc_method_no_category (objc_method.GetFullNameWithoutCategory(true));
if (objc_method_no_category)
{
entry.cstring = objc_method_no_category.GetCString();
m_name_to_index.Append (entry);
}
}
}
size_t count;
if (!mangled_name_to_index.IsEmpty())
{
count = mangled_name_to_index.GetSize();
for (size_t i=0; i<count; ++i)
{
if (mangled_name_to_index.GetValueAtIndex(i, entry.value))
{
entry.cstring = mangled_name_to_index.GetCStringAtIndex(i);
if (symbol_contexts[entry.value] && class_contexts.find(symbol_contexts[entry.value]) != class_contexts.end())
{
m_method_to_index.Append (entry);
}
else
{
// If we got here, we have something that had a context (was inside a namespace or class)
// yet we don't know if the entry
m_method_to_index.Append (entry);
m_basename_to_index.Append (entry);
}
}
}
}
m_name_to_index.Sort();
m_name_to_index.SizeToFit();
m_selector_to_index.Sort();
m_selector_to_index.SizeToFit();
m_basename_to_index.Sort();
m_basename_to_index.SizeToFit();
m_method_to_index.Sort();
m_method_to_index.SizeToFit();
// static StreamFile a ("/tmp/a.txt");
//
// count = m_basename_to_index.GetSize();
// if (count)
// {
// for (size_t i=0; i<count; ++i)
// {
// if (m_basename_to_index.GetValueAtIndex(i, entry.value))
// a.Printf ("%s BASENAME\n", m_symbols[entry.value].GetMangled().GetName().GetCString());
// }
// }
// count = m_method_to_index.GetSize();
// if (count)
// {
// for (size_t i=0; i<count; ++i)
// {
// if (m_method_to_index.GetValueAtIndex(i, entry.value))
// a.Printf ("%s METHOD\n", m_symbols[entry.value].GetMangled().GetName().GetCString());
// }
// }
}
}
void
Symtab::AppendSymbolNamesToMap (const IndexCollection &indexes,
bool add_demangled,
bool add_mangled,
NameToIndexMap &name_to_index_map) const
{
if (add_demangled || add_mangled)
{
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
Mutex::Locker locker (m_mutex);
// Create the name index vector to be able to quickly search by name
NameToIndexMap::Entry entry;
const size_t num_indexes = indexes.size();
for (size_t i=0; i<num_indexes; ++i)
{
entry.value = indexes[i];
assert (i < m_symbols.size());
const Symbol *symbol = &m_symbols[entry.value];
const Mangled &mangled = symbol->GetMangled();
if (add_demangled)
{
entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()).GetCString();
if (entry.cstring && entry.cstring[0])
name_to_index_map.Append (entry);
}
if (add_mangled)
{
entry.cstring = mangled.GetMangledName().GetCString();
if (entry.cstring && entry.cstring[0])
name_to_index_map.Append (entry);
}
}
}
}
uint32_t
Symtab::AppendSymbolIndexesWithType (SymbolType symbol_type, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::AppendSymbolIndexesWithTypeAndFlagsValue (SymbolType symbol_type, uint32_t flags_value, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if ((symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) && m_symbols[i].GetFlags() == flags_value)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::AppendSymbolIndexesWithType (SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
indexes.push_back(i);
}
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::GetIndexForSymbol (const Symbol *symbol) const
{
if (!m_symbols.empty())
{
const Symbol *first_symbol = &m_symbols[0];
if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
return symbol - first_symbol;
}
return UINT32_MAX;
}
struct SymbolSortInfo
{
const bool sort_by_load_addr;
const Symbol *symbols;
};
namespace {
struct SymbolIndexComparator {
const std::vector<Symbol>& symbols;
std::vector<lldb::addr_t> &addr_cache;
// Getting from the symbol to the Address to the File Address involves some work.
// Since there are potentially many symbols here, and we're using this for sorting so
// we're going to be computing the address many times, cache that in addr_cache.
// The array passed in has to be the same size as the symbols array passed into the
// member variable symbols, and should be initialized with LLDB_INVALID_ADDRESS.
// NOTE: You have to make addr_cache externally and pass it in because std::stable_sort
// makes copies of the comparator it is initially passed in, and you end up spending
// huge amounts of time copying this array...
SymbolIndexComparator(const std::vector<Symbol>& s, std::vector<lldb::addr_t> &a) : symbols(s), addr_cache(a) {
assert (symbols.size() == addr_cache.size());
}
bool operator()(uint32_t index_a, uint32_t index_b) {
addr_t value_a = addr_cache[index_a];
if (value_a == LLDB_INVALID_ADDRESS)
{
value_a = symbols[index_a].GetAddressRef().GetFileAddress();
addr_cache[index_a] = value_a;
}
addr_t value_b = addr_cache[index_b];
if (value_b == LLDB_INVALID_ADDRESS)
{
value_b = symbols[index_b].GetAddressRef().GetFileAddress();
addr_cache[index_b] = value_b;
}
if (value_a == value_b) {
// The if the values are equal, use the original symbol user ID
lldb::user_id_t uid_a = symbols[index_a].GetID();
lldb::user_id_t uid_b = symbols[index_b].GetID();
if (uid_a < uid_b)
return true;
if (uid_a > uid_b)
return false;
return false;
} else if (value_a < value_b)
return true;
return false;
}
};
}
void
Symtab::SortSymbolIndexesByValue (std::vector<uint32_t>& indexes, bool remove_duplicates) const
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__,__PRETTY_FUNCTION__);
// No need to sort if we have zero or one items...
if (indexes.size() <= 1)
return;
// Sort the indexes in place using std::stable_sort.
// NOTE: The use of std::stable_sort instead of std::sort here is strictly for performance,
// not correctness. The indexes vector tends to be "close" to sorted, which the
// stable sort handles better.
std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
SymbolIndexComparator comparator(m_symbols, addr_cache);
std::stable_sort(indexes.begin(), indexes.end(), comparator);
// Remove any duplicates if requested
if (remove_duplicates)
std::unique(indexes.begin(), indexes.end());
}
uint32_t
Symtab::AppendSymbolIndexesWithName (const ConstString& symbol_name, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (symbol_name)
{
const char *symbol_cstr = symbol_name.GetCString();
if (!m_name_indexes_computed)
InitNameIndexes();
return m_name_to_index.GetValues (symbol_cstr, indexes);
}
return 0;
}
uint32_t
Symtab::AppendSymbolIndexesWithName (const ConstString& symbol_name, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (symbol_name)
{
const size_t old_size = indexes.size();
if (!m_name_indexes_computed)
InitNameIndexes();
const char *symbol_cstr = symbol_name.GetCString();
std::vector<uint32_t> all_name_indexes;
const size_t name_match_count = m_name_to_index.GetValues (symbol_cstr, all_name_indexes);
for (size_t i=0; i<name_match_count; ++i)
{
if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, symbol_visibility))
indexes.push_back (all_name_indexes[i]);
}
return indexes.size() - old_size;
}
return 0;
}
uint32_t
Symtab::AppendSymbolIndexesWithNameAndType (const ConstString& symbol_name, SymbolType symbol_type, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0)
{
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end())
{
if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type)
++pos;
else
pos = indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t
Symtab::AppendSymbolIndexesWithNameAndType (const ConstString& symbol_name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, symbol_visibility, indexes) > 0)
{
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end())
{
if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type)
++pos;
else
pos = indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t
Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression &regexp, SymbolType symbol_type, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (uint32_t i = 0; i < sym_end; i++)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
const char *name = m_symbols[i].GetName().AsCString();
if (name)
{
if (regexp.Execute (name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression &regexp, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (uint32_t i = 0; i < sym_end; i++)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false)
continue;
const char *name = m_symbols[i].GetName().AsCString();
if (name)
{
if (regexp.Execute (name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
Symbol *
Symtab::FindSymbolWithType (SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, uint32_t& start_idx)
{
Mutex::Locker locker (m_mutex);
const size_t count = m_symbols.size();
for (size_t idx = start_idx; idx < count; ++idx)
{
if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type)
{
if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility))
{
start_idx = idx;
return &m_symbols[idx];
}
}
}
return nullptr;
}
size_t
Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, std::vector<uint32_t>& symbol_indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Initialize all of the lookup by name indexes before converting NAME
// to a uniqued string NAME_STR below.
if (!m_name_indexes_computed)
InitNameIndexes();
if (name)
{
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_indexes);
}
return symbol_indexes.size();
}
size_t
Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& symbol_indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Initialize all of the lookup by name indexes before converting NAME
// to a uniqued string NAME_STR below.
if (!m_name_indexes_computed)
InitNameIndexes();
if (name)
{
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes);
}
return symbol_indexes.size();
}
size_t
Symtab::FindAllSymbolsMatchingRexExAndType (const RegularExpression &regex, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& symbol_indexes)
{
Mutex::Locker locker (m_mutex);
AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes);
return symbol_indexes.size();
}
Symbol *
Symtab::FindFirstSymbolWithNameAndType (const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (!m_name_indexes_computed)
InitNameIndexes();
if (name)
{
std::vector<uint32_t> matching_indexes;
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
if (AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_debug_type, symbol_visibility, matching_indexes))
{
std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
for (pos = matching_indexes.begin(); pos != end; ++pos)
{
Symbol *symbol = SymbolAtIndex(*pos);
if (symbol->Compare(name, symbol_type))
return symbol;
}
}
}
return nullptr;
}
typedef struct
{
const Symtab *symtab;
const addr_t file_addr;
Symbol *match_symbol;
const uint32_t *match_index_ptr;
addr_t match_offset;
} SymbolSearchInfo;
static int
SymbolWithClosestFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr)
{
const Symbol *symbol = info->symtab->SymbolAtIndex (index_ptr[0]);
if (symbol == nullptr)
return -1;
const addr_t info_file_addr = info->file_addr;
if (symbol->ValueIsAddress())
{
const addr_t curr_file_addr = symbol->GetAddressRef().GetFileAddress();
if (info_file_addr < curr_file_addr)
return -1;
// Since we are finding the closest symbol that is greater than or equal
// to 'info->file_addr' we set the symbol here. This will get set
// multiple times, but after the search is done it will contain the best
// symbol match
info->match_symbol = const_cast<Symbol *>(symbol);
info->match_index_ptr = index_ptr;
info->match_offset = info_file_addr - curr_file_addr;
if (info_file_addr > curr_file_addr)
return +1;
return 0;
}
return -1;
}
void
Symtab::InitAddressIndexes()
{
// Protected function, no need to lock mutex...
if (!m_file_addr_to_index_computed && !m_symbols.empty())
{
m_file_addr_to_index_computed = true;
FileRangeToIndexMap::Entry entry;
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos)
{
if (pos->ValueIsAddress())
{
entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
entry.SetByteSize(pos->GetByteSize());
entry.data = std::distance(begin, pos);
m_file_addr_to_index.Append(entry);
}
}
const size_t num_entries = m_file_addr_to_index.GetSize();
if (num_entries > 0)
{
m_file_addr_to_index.Sort();
m_file_addr_to_index.CalculateSizesOfZeroByteSizeRanges();
// Now our last symbols might not have had sizes because there
// was no subsequent symbol to calculate the size from. If this is
// the case, then calculate the size by capping it at the end of the
// section in which the symbol resides
for (int i = num_entries - 1; i >= 0; --i)
{
const FileRangeToIndexMap::Entry &entry = m_file_addr_to_index.GetEntryRef(i);
// As we iterate backwards, as soon as we find a symbol with a valid
// byte size, we are done
if (entry.GetByteSize() > 0)
break;
// Cap the size to the end of the section in which the symbol resides
SectionSP section_sp (m_objfile->GetSectionList()->FindSectionContainingFileAddress (entry.GetRangeBase()));
if (section_sp)
{
const lldb::addr_t end_section_file_addr = section_sp->GetFileAddress() + section_sp->GetByteSize();
const lldb::addr_t symbol_file_addr = entry.GetRangeBase();
if (end_section_file_addr > symbol_file_addr)
{
Symbol &symbol = m_symbols[entry.data];
symbol.SetByteSize(end_section_file_addr - symbol_file_addr);
symbol.SetSizeIsSynthesized(true);
}
}
}
// Sort again in case the range size changes the ordering
m_file_addr_to_index.Sort();
}
}
}
void
Symtab::CalculateSymbolSizes ()
{
Mutex::Locker locker (m_mutex);
if (!m_symbols.empty())
{
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const size_t num_entries = m_file_addr_to_index.GetSize();
for (size_t i = 0; i < num_entries; ++i)
{
// The entries in the m_file_addr_to_index have calculated the sizes already
// so we will use this size if we need to.
const FileRangeToIndexMap::Entry &entry = m_file_addr_to_index.GetEntryRef(i);
Symbol &symbol = m_symbols[entry.data];
// If the symbol size is already valid, no need to do anything
if (symbol.GetByteSizeIsValid())
continue;
const addr_t range_size = entry.GetByteSize();
if (range_size > 0)
{
symbol.SetByteSize(range_size);
symbol.SetSizeIsSynthesized(true);
}
}
}
}
Symbol *
Symtab::FindSymbolContainingFileAddress (addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes)
{
Mutex::Locker locker (m_mutex);
SymbolSearchInfo info = { this, file_addr, nullptr, nullptr, 0 };
::bsearch (&info,
indexes,
num_indexes,
sizeof(uint32_t),
(ComparisonFunction)SymbolWithClosestFileAddress);
if (info.match_symbol)
{
if (info.match_offset == 0)
{
// We found an exact match!
return info.match_symbol;
}
const size_t symbol_byte_size = info.match_symbol->GetByteSize();
if (symbol_byte_size == 0)
{
// We weren't able to find the size of the symbol so lets just go
// with that match we found in our search...
return info.match_symbol;
}
// We were able to figure out a symbol size so lets make sure our
// offset puts "file_addr" in the symbol's address range.
if (info.match_offset < symbol_byte_size)
return info.match_symbol;
}
return nullptr;
}
Symbol *
Symtab::FindSymbolContainingFileAddress (addr_t file_addr)
{
Mutex::Locker locker (m_mutex);
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.FindEntryThatContains(file_addr);
if (entry)
return SymbolAtIndex(entry->data);
return nullptr;
}
void
Symtab::SymbolIndicesToSymbolContextList (std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list)
{
// No need to protect this call using m_mutex all other method calls are
// already thread safe.
const bool merge_symbol_into_function = true;
size_t num_indices = symbol_indexes.size();
if (num_indices > 0)
{
SymbolContext sc;
sc.module_sp = m_objfile->GetModule();
for (size_t i = 0; i < num_indices; i++)
{
sc.symbol = SymbolAtIndex (symbol_indexes[i]);
if (sc.symbol)
sc_list.AppendIfUnique(sc, merge_symbol_into_function);
}
}
}
size_t
Symtab::FindFunctionSymbols (const ConstString &name,
uint32_t name_type_mask,
SymbolContextList& sc_list)
{
size_t count = 0;
std::vector<uint32_t> symbol_indexes;
const char *name_cstr = name.GetCString();
// eFunctionNameTypeAuto should be pre-resolved by a call to Module::PrepareForFunctionNameLookup()
assert ((name_type_mask & eFunctionNameTypeAuto) == 0);
if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull))
{
std::vector<uint32_t> temp_symbol_indexes;
FindAllSymbolsWithNameAndType (name, eSymbolTypeAny, temp_symbol_indexes);
unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
if (temp_symbol_indexes_size > 0)
{
Mutex::Locker locker (m_mutex);
for (unsigned i = 0; i < temp_symbol_indexes_size; i++)
{
SymbolContext sym_ctx;
sym_ctx.symbol = SymbolAtIndex (temp_symbol_indexes[i]);
if (sym_ctx.symbol)
{
switch (sym_ctx.symbol->GetType())
{
case eSymbolTypeCode:
case eSymbolTypeResolver:
case eSymbolTypeReExported:
symbol_indexes.push_back(temp_symbol_indexes[i]);
break;
default:
break;
}
}
}
}
}
if (name_type_mask & eFunctionNameTypeBase)
{
// From mangled names we can't tell what is a basename and what
// is a method name, so we just treat them the same
if (!m_name_indexes_computed)
InitNameIndexes();
if (!m_basename_to_index.IsEmpty())
{
const UniqueCStringMap<uint32_t>::Entry *match;
for (match = m_basename_to_index.FindFirstValueForName(name_cstr);
match != nullptr;
match = m_basename_to_index.FindNextValueForName(match))
{
symbol_indexes.push_back(match->value);
}
}
}
if (name_type_mask & eFunctionNameTypeMethod)
{
if (!m_name_indexes_computed)
InitNameIndexes();
if (!m_method_to_index.IsEmpty())
{
const UniqueCStringMap<uint32_t>::Entry *match;
for (match = m_method_to_index.FindFirstValueForName(name_cstr);
match != nullptr;
match = m_method_to_index.FindNextValueForName(match))
{
symbol_indexes.push_back(match->value);
}
}
}
if (name_type_mask & eFunctionNameTypeSelector)
{
if (!m_name_indexes_computed)
InitNameIndexes();
if (!m_selector_to_index.IsEmpty())
{
const UniqueCStringMap<uint32_t>::Entry *match;
for (match = m_selector_to_index.FindFirstValueForName(name_cstr);
match != nullptr;
match = m_selector_to_index.FindNextValueForName(match))
{
symbol_indexes.push_back(match->value);
}
}
}
if (!symbol_indexes.empty())
{
std::sort(symbol_indexes.begin(), symbol_indexes.end());
symbol_indexes.erase(std::unique(symbol_indexes.begin(), symbol_indexes.end()), symbol_indexes.end());
count = symbol_indexes.size();
SymbolIndicesToSymbolContextList (symbol_indexes, sc_list);
}
return count;
}
const Symbol *
Symtab::GetParent (Symbol *child_symbol) const
{
uint32_t child_idx = GetIndexForSymbol(child_symbol);
if (child_idx != UINT32_MAX && child_idx > 0)
{
for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx)
{
const Symbol *symbol = SymbolAtIndex (idx);
const uint32_t sibling_idx = symbol->GetSiblingIndex();
if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
return symbol;
}
}
return NULL;
}