llvm-project/lldb/source/Symbol/Symbol.cpp

740 lines
23 KiB
C++

//===-- Symbol.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/Symbol.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/Stream.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Symbol/SymbolVendor.h"
using namespace lldb;
using namespace lldb_private;
Symbol::Symbol() :
SymbolContextScope (),
m_uid (UINT32_MAX),
m_type_data (0),
m_type_data_resolved (false),
m_is_synthetic (false),
m_is_debug (false),
m_is_external (false),
m_size_is_sibling (false),
m_size_is_synthesized (false),
m_size_is_valid (false),
m_demangled_is_synthesized (false),
m_contains_linker_annotations (false),
m_type (eSymbolTypeInvalid),
m_mangled (),
m_addr_range (),
m_flags ()
{
}
Symbol::Symbol
(
uint32_t symID,
const char *name,
bool name_is_mangled,
SymbolType type,
bool external,
bool is_debug,
bool is_trampoline,
bool is_artificial,
const lldb::SectionSP &section_sp,
addr_t offset,
addr_t size,
bool size_is_valid,
bool contains_linker_annotations,
uint32_t flags
) :
SymbolContextScope (),
m_uid (symID),
m_type_data (0),
m_type_data_resolved (false),
m_is_synthetic (is_artificial),
m_is_debug (is_debug),
m_is_external (external),
m_size_is_sibling (false),
m_size_is_synthesized (false),
m_size_is_valid (size_is_valid || size > 0),
m_demangled_is_synthesized (false),
m_contains_linker_annotations (contains_linker_annotations),
m_type (type),
m_mangled (ConstString(name), name_is_mangled),
m_addr_range (section_sp, offset, size),
m_flags (flags)
{
}
Symbol::Symbol
(
uint32_t symID,
const Mangled &mangled,
SymbolType type,
bool external,
bool is_debug,
bool is_trampoline,
bool is_artificial,
const AddressRange &range,
bool size_is_valid,
bool contains_linker_annotations,
uint32_t flags
) :
SymbolContextScope (),
m_uid (symID),
m_type_data (0),
m_type_data_resolved (false),
m_is_synthetic (is_artificial),
m_is_debug (is_debug),
m_is_external (external),
m_size_is_sibling (false),
m_size_is_synthesized (false),
m_size_is_valid (size_is_valid || range.GetByteSize() > 0),
m_demangled_is_synthesized (false),
m_contains_linker_annotations (contains_linker_annotations),
m_type (type),
m_mangled (mangled),
m_addr_range (range),
m_flags (flags)
{
}
Symbol::Symbol(const Symbol& rhs):
SymbolContextScope (rhs),
m_uid (rhs.m_uid),
m_type_data (rhs.m_type_data),
m_type_data_resolved (rhs.m_type_data_resolved),
m_is_synthetic (rhs.m_is_synthetic),
m_is_debug (rhs.m_is_debug),
m_is_external (rhs.m_is_external),
m_size_is_sibling (rhs.m_size_is_sibling),
m_size_is_synthesized (false),
m_size_is_valid (rhs.m_size_is_valid),
m_demangled_is_synthesized (rhs.m_demangled_is_synthesized),
m_contains_linker_annotations (rhs.m_contains_linker_annotations),
m_type (rhs.m_type),
m_mangled (rhs.m_mangled),
m_addr_range (rhs.m_addr_range),
m_flags (rhs.m_flags)
{
}
const Symbol&
Symbol::operator= (const Symbol& rhs)
{
if (this != &rhs)
{
SymbolContextScope::operator= (rhs);
m_uid = rhs.m_uid;
m_type_data = rhs.m_type_data;
m_type_data_resolved = rhs.m_type_data_resolved;
m_is_synthetic = rhs.m_is_synthetic;
m_is_debug = rhs.m_is_debug;
m_is_external = rhs.m_is_external;
m_size_is_sibling = rhs.m_size_is_sibling;
m_size_is_synthesized = rhs.m_size_is_sibling;
m_size_is_valid = rhs.m_size_is_valid;
m_demangled_is_synthesized = rhs.m_demangled_is_synthesized;
m_contains_linker_annotations = rhs.m_contains_linker_annotations;
m_type = rhs.m_type;
m_mangled = rhs.m_mangled;
m_addr_range = rhs.m_addr_range;
m_flags = rhs.m_flags;
}
return *this;
}
void
Symbol::Clear()
{
m_uid = UINT32_MAX;
m_mangled.Clear();
m_type_data = 0;
m_type_data_resolved = false;
m_is_synthetic = false;
m_is_debug = false;
m_is_external = false;
m_size_is_sibling = false;
m_size_is_synthesized = false;
m_size_is_valid = false;
m_demangled_is_synthesized = false;
m_contains_linker_annotations = false;
m_type = eSymbolTypeInvalid;
m_flags = 0;
m_addr_range.Clear();
}
bool
Symbol::ValueIsAddress() const
{
return m_addr_range.GetBaseAddress().GetSection().get() != nullptr;
}
ConstString
Symbol::GetDisplayName () const
{
if (!m_mangled)
return ConstString();
return m_mangled.GetDisplayDemangledName(GetLanguage());
}
ConstString
Symbol::GetReExportedSymbolName() const
{
if (m_type == eSymbolTypeReExported)
{
// For eSymbolTypeReExported, the "const char *" from a ConstString
// is used as the offset in the address range base address. We can
// then make this back into a string that is the re-exported name.
intptr_t str_ptr = m_addr_range.GetBaseAddress().GetOffset();
if (str_ptr != 0)
return ConstString((const char *)str_ptr);
else
return GetName();
}
return ConstString();
}
FileSpec
Symbol::GetReExportedSymbolSharedLibrary() const
{
if (m_type == eSymbolTypeReExported)
{
// For eSymbolTypeReExported, the "const char *" from a ConstString
// is used as the offset in the address range base address. We can
// then make this back into a string that is the re-exported name.
intptr_t str_ptr = m_addr_range.GetByteSize();
if (str_ptr != 0)
return FileSpec((const char *)str_ptr, false);
}
return FileSpec();
}
void
Symbol::SetReExportedSymbolName(const ConstString &name)
{
SetType (eSymbolTypeReExported);
// For eSymbolTypeReExported, the "const char *" from a ConstString
// is used as the offset in the address range base address.
m_addr_range.GetBaseAddress().SetOffset((uintptr_t)name.GetCString());
}
bool
Symbol::SetReExportedSymbolSharedLibrary(const FileSpec &fspec)
{
if (m_type == eSymbolTypeReExported)
{
// For eSymbolTypeReExported, the "const char *" from a ConstString
// is used as the offset in the address range base address.
m_addr_range.SetByteSize((uintptr_t)ConstString(fspec.GetPath().c_str()).GetCString());
return true;
}
return false;
}
uint32_t
Symbol::GetSiblingIndex() const
{
return m_size_is_sibling ? m_addr_range.GetByteSize() : UINT32_MAX;
}
bool
Symbol::IsTrampoline () const
{
return m_type == eSymbolTypeTrampoline;
}
bool
Symbol::IsIndirect () const
{
return m_type == eSymbolTypeResolver;
}
void
Symbol::GetDescription (Stream *s, lldb::DescriptionLevel level, Target *target) const
{
s->Printf("id = {0x%8.8x}", m_uid);
if (m_addr_range.GetBaseAddress().GetSection())
{
if (ValueIsAddress())
{
const lldb::addr_t byte_size = GetByteSize();
if (byte_size > 0)
{
s->PutCString (", range = ");
m_addr_range.Dump(s, target, Address::DumpStyleLoadAddress, Address::DumpStyleFileAddress);
}
else
{
s->PutCString (", address = ");
m_addr_range.GetBaseAddress().Dump(s, target, Address::DumpStyleLoadAddress, Address::DumpStyleFileAddress);
}
}
else
s->Printf (", value = 0x%16.16" PRIx64, m_addr_range.GetBaseAddress().GetOffset());
}
else
{
if (m_size_is_sibling)
s->Printf (", sibling = %5" PRIu64, m_addr_range.GetBaseAddress().GetOffset());
else
s->Printf (", value = 0x%16.16" PRIx64, m_addr_range.GetBaseAddress().GetOffset());
}
ConstString demangled = m_mangled.GetDemangledName(GetLanguage());
if (demangled)
s->Printf(", name=\"%s\"", demangled.AsCString());
if (m_mangled.GetMangledName())
s->Printf(", mangled=\"%s\"", m_mangled.GetMangledName().AsCString());
}
void
Symbol::Dump(Stream *s, Target *target, uint32_t index) const
{
s->Printf("[%5u] %6u %c%c%c %-15s ",
index,
GetID(),
m_is_debug ? 'D' : ' ',
m_is_synthetic ? 'S' : ' ',
m_is_external ? 'X' : ' ',
GetTypeAsString());
// Make sure the size of the symbol is up to date before dumping
GetByteSize();
ConstString name = m_mangled.GetName(GetLanguage());
if (ValueIsAddress())
{
if (!m_addr_range.GetBaseAddress().Dump(s, nullptr, Address::DumpStyleFileAddress))
s->Printf("%*s", 18, "");
s->PutChar(' ');
if (!m_addr_range.GetBaseAddress().Dump(s, target, Address::DumpStyleLoadAddress))
s->Printf("%*s", 18, "");
const char *format = m_size_is_sibling ?
" Sibling -> [%5llu] 0x%8.8x %s\n":
" 0x%16.16" PRIx64 " 0x%8.8x %s\n";
s->Printf( format,
GetByteSize(),
m_flags,
name.AsCString(""));
}
else if (m_type == eSymbolTypeReExported)
{
s->Printf (" 0x%8.8x %s",
m_flags,
name.AsCString(""));
ConstString reexport_name = GetReExportedSymbolName();
intptr_t shlib = m_addr_range.GetByteSize();
if (shlib)
s->Printf(" -> %s`%s\n", (const char *)shlib, reexport_name.GetCString());
else
s->Printf(" -> %s\n", reexport_name.GetCString());
}
else
{
const char *format = m_size_is_sibling ?
"0x%16.16" PRIx64 " Sibling -> [%5llu] 0x%8.8x %s\n":
"0x%16.16" PRIx64 " 0x%16.16" PRIx64 " 0x%8.8x %s\n";
s->Printf( format,
m_addr_range.GetBaseAddress().GetOffset(),
GetByteSize(),
m_flags,
name.AsCString(""));
}
}
uint32_t
Symbol::GetPrologueByteSize ()
{
if (m_type == eSymbolTypeCode || m_type == eSymbolTypeResolver)
{
if (!m_type_data_resolved)
{
m_type_data_resolved = true;
const Address &base_address = m_addr_range.GetBaseAddress();
Function *function = base_address.CalculateSymbolContextFunction();
if (function)
{
// Functions have line entries which can also potentially have end of prologue information.
// So if this symbol points to a function, use the prologue information from there.
m_type_data = function->GetPrologueByteSize();
}
else
{
ModuleSP module_sp (base_address.GetModule());
SymbolContext sc;
if (module_sp)
{
uint32_t resolved_flags = module_sp->ResolveSymbolContextForAddress (base_address,
eSymbolContextLineEntry,
sc);
if (resolved_flags & eSymbolContextLineEntry)
{
// Default to the end of the first line entry.
m_type_data = sc.line_entry.range.GetByteSize();
// Set address for next line.
Address addr (base_address);
addr.Slide (m_type_data);
// Check the first few instructions and look for one that has a line number that is
// different than the first entry. This is also done in Function::GetPrologueByteSize().
uint16_t total_offset = m_type_data;
for (int idx = 0; idx < 6; ++idx)
{
SymbolContext sc_temp;
resolved_flags = module_sp->ResolveSymbolContextForAddress (addr, eSymbolContextLineEntry, sc_temp);
// Make sure we got line number information...
if (!(resolved_flags & eSymbolContextLineEntry))
break;
// If this line number is different than our first one, use it and we're done.
if (sc_temp.line_entry.line != sc.line_entry.line)
{
m_type_data = total_offset;
break;
}
// Slide addr up to the next line address.
addr.Slide (sc_temp.line_entry.range.GetByteSize());
total_offset += sc_temp.line_entry.range.GetByteSize();
// If we've gone too far, bail out.
if (total_offset >= m_addr_range.GetByteSize())
break;
}
// Sanity check - this may be a function in the middle of code that has debug information, but
// not for this symbol. So the line entries surrounding us won't lie inside our function.
// In that case, the line entry will be bigger than we are, so we do that quick check and
// if that is true, we just return 0.
if (m_type_data >= m_addr_range.GetByteSize())
m_type_data = 0;
}
else
{
// TODO: expose something in Process to figure out the
// size of a function prologue.
m_type_data = 0;
}
}
}
}
return m_type_data;
}
return 0;
}
bool
Symbol::Compare(const ConstString& name, SymbolType type) const
{
if (type == eSymbolTypeAny || m_type == type)
return m_mangled.GetMangledName() == name || m_mangled.GetDemangledName(GetLanguage()) == name;
return false;
}
#define ENUM_TO_CSTRING(x) case eSymbolType##x: return #x;
const char *
Symbol::GetTypeAsString() const
{
switch (m_type)
{
ENUM_TO_CSTRING(Invalid);
ENUM_TO_CSTRING(Absolute);
ENUM_TO_CSTRING(Code);
ENUM_TO_CSTRING(Resolver);
ENUM_TO_CSTRING(Data);
ENUM_TO_CSTRING(Trampoline);
ENUM_TO_CSTRING(Runtime);
ENUM_TO_CSTRING(Exception);
ENUM_TO_CSTRING(SourceFile);
ENUM_TO_CSTRING(HeaderFile);
ENUM_TO_CSTRING(ObjectFile);
ENUM_TO_CSTRING(CommonBlock);
ENUM_TO_CSTRING(Block);
ENUM_TO_CSTRING(Local);
ENUM_TO_CSTRING(Param);
ENUM_TO_CSTRING(Variable);
ENUM_TO_CSTRING(VariableType);
ENUM_TO_CSTRING(LineEntry);
ENUM_TO_CSTRING(LineHeader);
ENUM_TO_CSTRING(ScopeBegin);
ENUM_TO_CSTRING(ScopeEnd);
ENUM_TO_CSTRING(Additional);
ENUM_TO_CSTRING(Compiler);
ENUM_TO_CSTRING(Instrumentation);
ENUM_TO_CSTRING(Undefined);
ENUM_TO_CSTRING(ObjCClass);
ENUM_TO_CSTRING(ObjCMetaClass);
ENUM_TO_CSTRING(ObjCIVar);
ENUM_TO_CSTRING(ReExported);
default:
break;
}
return "<unknown SymbolType>";
}
void
Symbol::CalculateSymbolContext (SymbolContext *sc)
{
// Symbols can reconstruct the symbol and the module in the symbol context
sc->symbol = this;
if (ValueIsAddress())
sc->module_sp = GetAddressRef().GetModule();
else
sc->module_sp.reset();
}
ModuleSP
Symbol::CalculateSymbolContextModule ()
{
if (ValueIsAddress())
return GetAddressRef().GetModule();
return ModuleSP();
}
Symbol *
Symbol::CalculateSymbolContextSymbol ()
{
return this;
}
void
Symbol::DumpSymbolContext (Stream *s)
{
bool dumped_module = false;
if (ValueIsAddress())
{
ModuleSP module_sp (GetAddressRef().GetModule());
if (module_sp)
{
dumped_module = true;
module_sp->DumpSymbolContext(s);
}
}
if (dumped_module)
s->PutCString(", ");
s->Printf("Symbol{0x%8.8x}", GetID());
}
lldb::addr_t
Symbol::GetByteSize () const
{
return m_addr_range.GetByteSize();
}
Symbol *
Symbol::ResolveReExportedSymbolInModuleSpec (Target &target,
ConstString &reexport_name,
ModuleSpec &module_spec,
ModuleList &seen_modules) const
{
ModuleSP module_sp;
if (module_spec.GetFileSpec())
{
// Try searching for the module file spec first using the full path
module_sp = target.GetImages().FindFirstModule(module_spec);
if (!module_sp)
{
// Next try and find the module by basename in case environment
// variables or other runtime trickery causes shared libraries
// to be loaded from alternate paths
module_spec.GetFileSpec().GetDirectory().Clear();
module_sp = target.GetImages().FindFirstModule(module_spec);
}
}
if (module_sp)
{
// There should not be cycles in the reexport list, but we don't want to crash if there are so make sure
// we haven't seen this before:
if (!seen_modules.AppendIfNeeded(module_sp))
return nullptr;
lldb_private::SymbolContextList sc_list;
module_sp->FindSymbolsWithNameAndType(reexport_name, eSymbolTypeAny, sc_list);
const size_t num_scs = sc_list.GetSize();
if (num_scs > 0)
{
for (size_t i=0; i<num_scs; ++i)
{
lldb_private::SymbolContext sc;
if (sc_list.GetContextAtIndex(i, sc))
{
if (sc.symbol->IsExternal())
return sc.symbol;
}
}
}
// If we didn't find the symbol in this module, it may be because this module re-exports some
// whole other library. We have to search those as well:
seen_modules.Append(module_sp);
FileSpecList reexported_libraries = module_sp->GetObjectFile()->GetReExportedLibraries();
size_t num_reexported_libraries = reexported_libraries.GetSize();
for (size_t idx = 0; idx < num_reexported_libraries; idx++)
{
ModuleSpec reexported_module_spec;
reexported_module_spec.GetFileSpec() = reexported_libraries.GetFileSpecAtIndex(idx);
Symbol *result_symbol = ResolveReExportedSymbolInModuleSpec(target,
reexport_name,
reexported_module_spec,
seen_modules);
if (result_symbol)
return result_symbol;
}
}
return nullptr;
}
Symbol *
Symbol::ResolveReExportedSymbol (Target &target) const
{
ConstString reexport_name (GetReExportedSymbolName());
if (reexport_name)
{
ModuleSpec module_spec;
ModuleList seen_modules;
module_spec.GetFileSpec() = GetReExportedSymbolSharedLibrary();
if (module_spec.GetFileSpec())
{
return ResolveReExportedSymbolInModuleSpec(target, reexport_name, module_spec, seen_modules);
}
}
return nullptr;
}
lldb::addr_t
Symbol::GetFileAddress () const
{
if (ValueIsAddress())
return GetAddressRef().GetFileAddress();
else
return LLDB_INVALID_ADDRESS;
}
lldb::addr_t
Symbol::GetLoadAddress (Target *target) const
{
if (ValueIsAddress())
return GetAddressRef().GetLoadAddress(target);
else
return LLDB_INVALID_ADDRESS;
}
ConstString
Symbol::GetName () const
{
return m_mangled.GetName(GetLanguage());
}
ConstString
Symbol::GetNameNoArguments () const
{
return m_mangled.GetName(GetLanguage(), Mangled::ePreferDemangledWithoutArguments);
}
lldb::addr_t
Symbol::ResolveCallableAddress(Target &target) const
{
if (GetType() == lldb::eSymbolTypeUndefined)
return LLDB_INVALID_ADDRESS;
Address func_so_addr;
bool is_indirect = IsIndirect();
if (GetType() == eSymbolTypeReExported)
{
Symbol *reexported_symbol = ResolveReExportedSymbol(target);
if (reexported_symbol)
{
func_so_addr = reexported_symbol->GetAddress();
is_indirect = reexported_symbol->IsIndirect();
}
}
else
{
func_so_addr = GetAddress();
is_indirect = IsIndirect();
}
if (func_so_addr.IsValid())
{
if (!target.GetProcessSP() && is_indirect)
{
// can't resolve indirect symbols without calling a function...
return LLDB_INVALID_ADDRESS;
}
lldb::addr_t load_addr = func_so_addr.GetCallableLoadAddress (&target, is_indirect);
if (load_addr != LLDB_INVALID_ADDRESS)
{
return load_addr;
}
}
return LLDB_INVALID_ADDRESS;
}
lldb::DisassemblerSP
Symbol::GetInstructions (const ExecutionContext &exe_ctx,
const char *flavor,
bool prefer_file_cache)
{
ModuleSP module_sp (m_addr_range.GetBaseAddress().GetModule());
if (module_sp)
{
const bool prefer_file_cache = false;
return Disassembler::DisassembleRange (module_sp->GetArchitecture(),
nullptr,
flavor,
exe_ctx,
m_addr_range,
prefer_file_cache);
}
return lldb::DisassemblerSP();
}
bool
Symbol::GetDisassembly (const ExecutionContext &exe_ctx,
const char *flavor,
bool prefer_file_cache,
Stream &strm)
{
lldb::DisassemblerSP disassembler_sp = GetInstructions (exe_ctx, flavor, prefer_file_cache);
if (disassembler_sp)
{
const bool show_address = true;
const bool show_bytes = false;
disassembler_sp->GetInstructionList().Dump (&strm, show_address, show_bytes, &exe_ctx);
return true;
}
return false;
}