forked from OSchip/llvm-project
299 lines
11 KiB
C++
299 lines
11 KiB
C++
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the X86SelectionDAGInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86SelectionDAGInfo.h"
|
|
#include "X86ISelLowering.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-selectiondag-info"
|
|
|
|
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
|
|
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
|
|
// We cannot use TRI->hasBasePointer() until *after* we select all basic
|
|
// blocks. Legalization may introduce new stack temporaries with large
|
|
// alignment requirements. Fall back to generic code if there are any
|
|
// dynamic stack adjustments (hopefully rare) and the base pointer would
|
|
// conflict if we had to use it.
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
|
|
return false;
|
|
|
|
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
unsigned BaseReg = TRI->getBaseRegister();
|
|
for (unsigned R : ClobberSet)
|
|
if (BaseReg == R)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Represents a cover of a buffer of Size bytes with Count() blocks of type AVT
|
|
// (of size UBytes() bytes), as well as how many bytes remain (BytesLeft() is
|
|
// always smaller than the block size).
|
|
struct RepMovsRepeats {
|
|
RepMovsRepeats(uint64_t Size) : Size(Size) {}
|
|
|
|
uint64_t Count() const { return Size / UBytes(); }
|
|
uint64_t BytesLeft() const { return Size % UBytes(); }
|
|
uint64_t UBytes() const { return AVT.getSizeInBits() / 8; }
|
|
|
|
const uint64_t Size;
|
|
MVT AVT = MVT::i8;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
|
|
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
|
|
SDValue Size, unsigned Align, bool isVolatile,
|
|
MachinePointerInfo DstPtrInfo) const {
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
const X86Subtarget &Subtarget =
|
|
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
|
|
|
|
#ifndef NDEBUG
|
|
// If the base register might conflict with our physical registers, bail out.
|
|
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
|
|
X86::ECX, X86::EAX, X86::EDI};
|
|
assert(!isBaseRegConflictPossible(DAG, ClobberSet));
|
|
#endif
|
|
|
|
// If to a segment-relative address space, use the default lowering.
|
|
if (DstPtrInfo.getAddrSpace() >= 256)
|
|
return SDValue();
|
|
|
|
// If not DWORD aligned or size is more than the threshold, call the library.
|
|
// The libc version is likely to be faster for these cases. It can use the
|
|
// address value and run time information about the CPU.
|
|
if ((Align & 3) != 0 || !ConstantSize ||
|
|
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
|
|
// Check to see if there is a specialized entry-point for memory zeroing.
|
|
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
|
|
|
|
if (const char *bzeroName = (ValC && ValC->isNullValue())
|
|
? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
|
|
: nullptr) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
|
|
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Entry.Node = Dst;
|
|
Entry.Ty = IntPtrTy;
|
|
Args.push_back(Entry);
|
|
Entry.Node = Size;
|
|
Args.push_back(Entry);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(Chain)
|
|
.setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
|
|
DAG.getExternalSymbol(bzeroName, IntPtr),
|
|
std::move(Args))
|
|
.setDiscardResult();
|
|
|
|
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
|
|
return CallResult.second;
|
|
}
|
|
|
|
// Otherwise have the target-independent code call memset.
|
|
return SDValue();
|
|
}
|
|
|
|
uint64_t SizeVal = ConstantSize->getZExtValue();
|
|
SDValue InFlag;
|
|
EVT AVT;
|
|
SDValue Count;
|
|
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
|
|
unsigned BytesLeft = 0;
|
|
if (ValC) {
|
|
unsigned ValReg;
|
|
uint64_t Val = ValC->getZExtValue() & 255;
|
|
|
|
// If the value is a constant, then we can potentially use larger sets.
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
AVT = MVT::i16;
|
|
ValReg = X86::AX;
|
|
Val = (Val << 8) | Val;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
AVT = MVT::i32;
|
|
ValReg = X86::EAX;
|
|
Val = (Val << 8) | Val;
|
|
Val = (Val << 16) | Val;
|
|
if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
|
|
AVT = MVT::i64;
|
|
ValReg = X86::RAX;
|
|
Val = (Val << 32) | Val;
|
|
}
|
|
break;
|
|
default: // Byte aligned
|
|
AVT = MVT::i8;
|
|
ValReg = X86::AL;
|
|
Count = DAG.getIntPtrConstant(SizeVal, dl);
|
|
break;
|
|
}
|
|
|
|
if (AVT.bitsGT(MVT::i8)) {
|
|
unsigned UBytes = AVT.getSizeInBits() / 8;
|
|
Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
|
|
BytesLeft = SizeVal % UBytes;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
AVT = MVT::i8;
|
|
Count = DAG.getIntPtrConstant(SizeVal, dl);
|
|
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
|
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
|
|
Count, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
|
|
Dst, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
|
|
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
|
|
|
|
if (BytesLeft) {
|
|
// Handle the last 1 - 7 bytes.
|
|
unsigned Offset = SizeVal - BytesLeft;
|
|
EVT AddrVT = Dst.getValueType();
|
|
EVT SizeVT = Size.getValueType();
|
|
|
|
Chain = DAG.getMemset(Chain, dl,
|
|
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
|
|
DAG.getConstant(Offset, dl, AddrVT)),
|
|
Val,
|
|
DAG.getConstant(BytesLeft, dl, SizeVT),
|
|
Align, isVolatile, false,
|
|
DstPtrInfo.getWithOffset(Offset));
|
|
}
|
|
|
|
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
|
|
return Chain;
|
|
}
|
|
|
|
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
|
|
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
|
|
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
|
|
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
|
|
// This requires the copy size to be a constant, preferably
|
|
// within a subtarget-specific limit.
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
const X86Subtarget &Subtarget =
|
|
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
|
|
if (!ConstantSize)
|
|
return SDValue();
|
|
RepMovsRepeats Repeats(ConstantSize->getZExtValue());
|
|
if (!AlwaysInline && Repeats.Size > Subtarget.getMaxInlineSizeThreshold())
|
|
return SDValue();
|
|
|
|
/// If not DWORD aligned, it is more efficient to call the library. However
|
|
/// if calling the library is not allowed (AlwaysInline), then soldier on as
|
|
/// the code generated here is better than the long load-store sequence we
|
|
/// would otherwise get.
|
|
if (!AlwaysInline && (Align & 3) != 0)
|
|
return SDValue();
|
|
|
|
// If to a segment-relative address space, use the default lowering.
|
|
if (DstPtrInfo.getAddrSpace() >= 256 ||
|
|
SrcPtrInfo.getAddrSpace() >= 256)
|
|
return SDValue();
|
|
|
|
// If the base register might conflict with our physical registers, bail out.
|
|
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
|
|
X86::ECX, X86::ESI, X86::EDI};
|
|
if (isBaseRegConflictPossible(DAG, ClobberSet))
|
|
return SDValue();
|
|
|
|
// If the target has enhanced REPMOVSB, then it's at least as fast to use
|
|
// REP MOVSB instead of REP MOVS{W,D,Q}, and it avoids having to handle
|
|
// BytesLeft.
|
|
if (!Subtarget.hasERMSB() && !(Align & 1)) {
|
|
if (Align & 2)
|
|
// WORD aligned
|
|
Repeats.AVT = MVT::i16;
|
|
else if (Align & 4)
|
|
// DWORD aligned
|
|
Repeats.AVT = MVT::i32;
|
|
else
|
|
// QWORD aligned
|
|
Repeats.AVT = Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
|
|
|
|
if (Repeats.BytesLeft() > 0 &&
|
|
DAG.getMachineFunction().getFunction().optForMinSize()) {
|
|
// When agressively optimizing for size, avoid generating the code to
|
|
// handle BytesLeft.
|
|
Repeats.AVT = MVT::i8;
|
|
}
|
|
}
|
|
|
|
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
|
|
SDValue InFlag;
|
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
|
|
DAG.getIntPtrConstant(Repeats.Count(), dl), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
|
|
Dst, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RSI : X86::ESI,
|
|
Src, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, DAG.getValueType(Repeats.AVT), InFlag };
|
|
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
|
|
|
|
SmallVector<SDValue, 4> Results;
|
|
Results.push_back(RepMovs);
|
|
if (Repeats.BytesLeft()) {
|
|
// Handle the last 1 - 7 bytes.
|
|
unsigned Offset = Repeats.Size - Repeats.BytesLeft();
|
|
EVT DstVT = Dst.getValueType();
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT SizeVT = Size.getValueType();
|
|
Results.push_back(DAG.getMemcpy(Chain, dl,
|
|
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
|
|
DAG.getConstant(Offset, dl,
|
|
DstVT)),
|
|
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
|
|
DAG.getConstant(Offset, dl,
|
|
SrcVT)),
|
|
DAG.getConstant(Repeats.BytesLeft(), dl,
|
|
SizeVT),
|
|
Align, isVolatile, AlwaysInline, false,
|
|
DstPtrInfo.getWithOffset(Offset),
|
|
SrcPtrInfo.getWithOffset(Offset)));
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
|
|
}
|