llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp

299 lines
11 KiB
C++

//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86SelectionDAGInfo.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
#define DEBUG_TYPE "x86-selectiondag-info"
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
// blocks. Legalization may introduce new stack temporaries with large
// alignment requirements. Fall back to generic code if there are any
// dynamic stack adjustments (hopefully rare) and the base pointer would
// conflict if we had to use it.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
return false;
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
DAG.getSubtarget().getRegisterInfo());
unsigned BaseReg = TRI->getBaseRegister();
for (unsigned R : ClobberSet)
if (BaseReg == R)
return true;
return false;
}
namespace {
// Represents a cover of a buffer of Size bytes with Count() blocks of type AVT
// (of size UBytes() bytes), as well as how many bytes remain (BytesLeft() is
// always smaller than the block size).
struct RepMovsRepeats {
RepMovsRepeats(uint64_t Size) : Size(Size) {}
uint64_t Count() const { return Size / UBytes(); }
uint64_t BytesLeft() const { return Size % UBytes(); }
uint64_t UBytes() const { return AVT.getSizeInBits() / 8; }
const uint64_t Size;
MVT AVT = MVT::i8;
};
} // namespace
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
SDValue Size, unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
#ifndef NDEBUG
// If the base register might conflict with our physical registers, bail out.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
X86::ECX, X86::EAX, X86::EDI};
assert(!isBaseRegConflictPossible(DAG, ClobberSet));
#endif
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if ((Align & 3) != 0 || !ConstantSize ||
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
if (const char *bzeroName = (ValC && ValC->isNullValue())
? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
: nullptr) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(bzeroName, IntPtr),
std::move(Args))
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag;
EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
unsigned BytesLeft = 0;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal, dl);
break;
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal, dl);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
InFlag = Chain.getValue(1);
}
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
Val,
DAG.getConstant(BytesLeft, dl, SizeVT),
Align, isVolatile, false,
DstPtrInfo.getWithOffset(Offset));
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
if (!ConstantSize)
return SDValue();
RepMovsRepeats Repeats(ConstantSize->getZExtValue());
if (!AlwaysInline && Repeats.Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
/// If not DWORD aligned, it is more efficient to call the library. However
/// if calling the library is not allowed (AlwaysInline), then soldier on as
/// the code generated here is better than the long load-store sequence we
/// would otherwise get.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 ||
SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base register might conflict with our physical registers, bail out.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
X86::ECX, X86::ESI, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
// If the target has enhanced REPMOVSB, then it's at least as fast to use
// REP MOVSB instead of REP MOVS{W,D,Q}, and it avoids having to handle
// BytesLeft.
if (!Subtarget.hasERMSB() && !(Align & 1)) {
if (Align & 2)
// WORD aligned
Repeats.AVT = MVT::i16;
else if (Align & 4)
// DWORD aligned
Repeats.AVT = MVT::i32;
else
// QWORD aligned
Repeats.AVT = Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
if (Repeats.BytesLeft() > 0 &&
DAG.getMachineFunction().getFunction().optForMinSize()) {
// When agressively optimizing for size, avoid generating the code to
// handle BytesLeft.
Repeats.AVT = MVT::i8;
}
}
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
SDValue InFlag;
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
DAG.getIntPtrConstant(Repeats.Count(), dl), InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RSI : X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(Repeats.AVT), InFlag };
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
if (Repeats.BytesLeft()) {
// Handle the last 1 - 7 bytes.
unsigned Offset = Repeats.Size - Repeats.BytesLeft();
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
EVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, dl,
DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
DAG.getConstant(Offset, dl,
SrcVT)),
DAG.getConstant(Repeats.BytesLeft(), dl,
SizeVT),
Align, isVolatile, AlwaysInline, false,
DstPtrInfo.getWithOffset(Offset),
SrcPtrInfo.getWithOffset(Offset)));
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}