llvm-project/llvm/lib/CodeGen/MIRParser/MIParser.cpp

3235 lines
106 KiB
C++

//===- MIParser.cpp - Machine instructions parser implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parsing of machine instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "MILexer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MIRFormatter.h"
#include "llvm/CodeGen/MIRPrinter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <string>
#include <utility>
using namespace llvm;
void PerTargetMIParsingState::setTarget(
const TargetSubtargetInfo &NewSubtarget) {
// If the subtarget changed, over conservatively assume everything is invalid.
if (&Subtarget == &NewSubtarget)
return;
Names2InstrOpCodes.clear();
Names2Regs.clear();
Names2RegMasks.clear();
Names2SubRegIndices.clear();
Names2TargetIndices.clear();
Names2DirectTargetFlags.clear();
Names2BitmaskTargetFlags.clear();
Names2MMOTargetFlags.clear();
initNames2RegClasses();
initNames2RegBanks();
}
void PerTargetMIParsingState::initNames2Regs() {
if (!Names2Regs.empty())
return;
// The '%noreg' register is the register 0.
Names2Regs.insert(std::make_pair("noreg", 0));
const auto *TRI = Subtarget.getRegisterInfo();
assert(TRI && "Expected target register info");
for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
bool WasInserted =
Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
.second;
(void)WasInserted;
assert(WasInserted && "Expected registers to be unique case-insensitively");
}
}
bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
unsigned &Reg) {
initNames2Regs();
auto RegInfo = Names2Regs.find(RegName);
if (RegInfo == Names2Regs.end())
return true;
Reg = RegInfo->getValue();
return false;
}
void PerTargetMIParsingState::initNames2InstrOpCodes() {
if (!Names2InstrOpCodes.empty())
return;
const auto *TII = Subtarget.getInstrInfo();
assert(TII && "Expected target instruction info");
for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
}
bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
unsigned &OpCode) {
initNames2InstrOpCodes();
auto InstrInfo = Names2InstrOpCodes.find(InstrName);
if (InstrInfo == Names2InstrOpCodes.end())
return true;
OpCode = InstrInfo->getValue();
return false;
}
void PerTargetMIParsingState::initNames2RegMasks() {
if (!Names2RegMasks.empty())
return;
const auto *TRI = Subtarget.getRegisterInfo();
assert(TRI && "Expected target register info");
ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
assert(RegMasks.size() == RegMaskNames.size());
for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
Names2RegMasks.insert(
std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
}
const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
initNames2RegMasks();
auto RegMaskInfo = Names2RegMasks.find(Identifier);
if (RegMaskInfo == Names2RegMasks.end())
return nullptr;
return RegMaskInfo->getValue();
}
void PerTargetMIParsingState::initNames2SubRegIndices() {
if (!Names2SubRegIndices.empty())
return;
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
Names2SubRegIndices.insert(
std::make_pair(TRI->getSubRegIndexName(I), I));
}
unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
initNames2SubRegIndices();
auto SubRegInfo = Names2SubRegIndices.find(Name);
if (SubRegInfo == Names2SubRegIndices.end())
return 0;
return SubRegInfo->getValue();
}
void PerTargetMIParsingState::initNames2TargetIndices() {
if (!Names2TargetIndices.empty())
return;
const auto *TII = Subtarget.getInstrInfo();
assert(TII && "Expected target instruction info");
auto Indices = TII->getSerializableTargetIndices();
for (const auto &I : Indices)
Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
}
bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
initNames2TargetIndices();
auto IndexInfo = Names2TargetIndices.find(Name);
if (IndexInfo == Names2TargetIndices.end())
return true;
Index = IndexInfo->second;
return false;
}
void PerTargetMIParsingState::initNames2DirectTargetFlags() {
if (!Names2DirectTargetFlags.empty())
return;
const auto *TII = Subtarget.getInstrInfo();
assert(TII && "Expected target instruction info");
auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
for (const auto &I : Flags)
Names2DirectTargetFlags.insert(
std::make_pair(StringRef(I.second), I.first));
}
bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
unsigned &Flag) {
initNames2DirectTargetFlags();
auto FlagInfo = Names2DirectTargetFlags.find(Name);
if (FlagInfo == Names2DirectTargetFlags.end())
return true;
Flag = FlagInfo->second;
return false;
}
void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
if (!Names2BitmaskTargetFlags.empty())
return;
const auto *TII = Subtarget.getInstrInfo();
assert(TII && "Expected target instruction info");
auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
for (const auto &I : Flags)
Names2BitmaskTargetFlags.insert(
std::make_pair(StringRef(I.second), I.first));
}
bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
unsigned &Flag) {
initNames2BitmaskTargetFlags();
auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
if (FlagInfo == Names2BitmaskTargetFlags.end())
return true;
Flag = FlagInfo->second;
return false;
}
void PerTargetMIParsingState::initNames2MMOTargetFlags() {
if (!Names2MMOTargetFlags.empty())
return;
const auto *TII = Subtarget.getInstrInfo();
assert(TII && "Expected target instruction info");
auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
for (const auto &I : Flags)
Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
}
bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
MachineMemOperand::Flags &Flag) {
initNames2MMOTargetFlags();
auto FlagInfo = Names2MMOTargetFlags.find(Name);
if (FlagInfo == Names2MMOTargetFlags.end())
return true;
Flag = FlagInfo->second;
return false;
}
void PerTargetMIParsingState::initNames2RegClasses() {
if (!Names2RegClasses.empty())
return;
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
const auto *RC = TRI->getRegClass(I);
Names2RegClasses.insert(
std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
}
}
void PerTargetMIParsingState::initNames2RegBanks() {
if (!Names2RegBanks.empty())
return;
const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
// If the target does not support GlobalISel, we may not have a
// register bank info.
if (!RBI)
return;
for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
const auto &RegBank = RBI->getRegBank(I);
Names2RegBanks.insert(
std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
}
}
const TargetRegisterClass *
PerTargetMIParsingState::getRegClass(StringRef Name) {
auto RegClassInfo = Names2RegClasses.find(Name);
if (RegClassInfo == Names2RegClasses.end())
return nullptr;
return RegClassInfo->getValue();
}
const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
auto RegBankInfo = Names2RegBanks.find(Name);
if (RegBankInfo == Names2RegBanks.end())
return nullptr;
return RegBankInfo->getValue();
}
PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
: MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
}
VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
if (I.second) {
MachineRegisterInfo &MRI = MF.getRegInfo();
VRegInfo *Info = new (Allocator) VRegInfo;
Info->VReg = MRI.createIncompleteVirtualRegister();
I.first->second = Info;
}
return *I.first->second;
}
VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
assert(RegName != "" && "Expected named reg.");
auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
if (I.second) {
VRegInfo *Info = new (Allocator) VRegInfo;
Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
I.first->second = Info;
}
return *I.first->second;
}
static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
DenseMap<unsigned, const Value *> &Slots2Values) {
int Slot = MST.getLocalSlot(V);
if (Slot == -1)
return;
Slots2Values.insert(std::make_pair(unsigned(Slot), V));
}
/// Creates the mapping from slot numbers to function's unnamed IR values.
static void initSlots2Values(const Function &F,
DenseMap<unsigned, const Value *> &Slots2Values) {
ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
MST.incorporateFunction(F);
for (const auto &Arg : F.args())
mapValueToSlot(&Arg, MST, Slots2Values);
for (const auto &BB : F) {
mapValueToSlot(&BB, MST, Slots2Values);
for (const auto &I : BB)
mapValueToSlot(&I, MST, Slots2Values);
}
}
const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
if (Slots2Values.empty())
initSlots2Values(MF.getFunction(), Slots2Values);
auto ValueInfo = Slots2Values.find(Slot);
if (ValueInfo == Slots2Values.end())
return nullptr;
return ValueInfo->second;
}
namespace {
/// A wrapper struct around the 'MachineOperand' struct that includes a source
/// range and other attributes.
struct ParsedMachineOperand {
MachineOperand Operand;
StringRef::iterator Begin;
StringRef::iterator End;
Optional<unsigned> TiedDefIdx;
ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
: Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
if (TiedDefIdx)
assert(Operand.isReg() && Operand.isUse() &&
"Only used register operands can be tied");
}
};
class MIParser {
MachineFunction &MF;
SMDiagnostic &Error;
StringRef Source, CurrentSource;
MIToken Token;
PerFunctionMIParsingState &PFS;
/// Maps from slot numbers to function's unnamed basic blocks.
DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
public:
MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
StringRef Source);
/// \p SkipChar gives the number of characters to skip before looking
/// for the next token.
void lex(unsigned SkipChar = 0);
/// Report an error at the current location with the given message.
///
/// This function always return true.
bool error(const Twine &Msg);
/// Report an error at the given location with the given message.
///
/// This function always return true.
bool error(StringRef::iterator Loc, const Twine &Msg);
bool
parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
bool parseBasicBlocks();
bool parse(MachineInstr *&MI);
bool parseStandaloneMBB(MachineBasicBlock *&MBB);
bool parseStandaloneNamedRegister(unsigned &Reg);
bool parseStandaloneVirtualRegister(VRegInfo *&Info);
bool parseStandaloneRegister(unsigned &Reg);
bool parseStandaloneStackObject(int &FI);
bool parseStandaloneMDNode(MDNode *&Node);
bool
parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
bool parseBasicBlock(MachineBasicBlock &MBB,
MachineBasicBlock *&AddFalthroughFrom);
bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
bool parseNamedRegister(unsigned &Reg);
bool parseVirtualRegister(VRegInfo *&Info);
bool parseNamedVirtualRegister(VRegInfo *&Info);
bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
bool parseRegisterFlag(unsigned &Flags);
bool parseRegisterClassOrBank(VRegInfo &RegInfo);
bool parseSubRegisterIndex(unsigned &SubReg);
bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
bool parseRegisterOperand(MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx, bool IsDef = false);
bool parseImmediateOperand(MachineOperand &Dest);
bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
const Constant *&C);
bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
bool parseTypedImmediateOperand(MachineOperand &Dest);
bool parseFPImmediateOperand(MachineOperand &Dest);
bool parseMBBReference(MachineBasicBlock *&MBB);
bool parseMBBOperand(MachineOperand &Dest);
bool parseStackFrameIndex(int &FI);
bool parseStackObjectOperand(MachineOperand &Dest);
bool parseFixedStackFrameIndex(int &FI);
bool parseFixedStackObjectOperand(MachineOperand &Dest);
bool parseGlobalValue(GlobalValue *&GV);
bool parseGlobalAddressOperand(MachineOperand &Dest);
bool parseConstantPoolIndexOperand(MachineOperand &Dest);
bool parseSubRegisterIndexOperand(MachineOperand &Dest);
bool parseJumpTableIndexOperand(MachineOperand &Dest);
bool parseExternalSymbolOperand(MachineOperand &Dest);
bool parseMCSymbolOperand(MachineOperand &Dest);
bool parseMDNode(MDNode *&Node);
bool parseDIExpression(MDNode *&Expr);
bool parseDILocation(MDNode *&Expr);
bool parseMetadataOperand(MachineOperand &Dest);
bool parseCFIOffset(int &Offset);
bool parseCFIRegister(unsigned &Reg);
bool parseCFIEscapeValues(std::string& Values);
bool parseCFIOperand(MachineOperand &Dest);
bool parseIRBlock(BasicBlock *&BB, const Function &F);
bool parseBlockAddressOperand(MachineOperand &Dest);
bool parseIntrinsicOperand(MachineOperand &Dest);
bool parsePredicateOperand(MachineOperand &Dest);
bool parseShuffleMaskOperand(MachineOperand &Dest);
bool parseTargetIndexOperand(MachineOperand &Dest);
bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx);
bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
const unsigned OpIdx,
MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx);
bool parseOffset(int64_t &Offset);
bool parseAlignment(unsigned &Alignment);
bool parseAddrspace(unsigned &Addrspace);
bool parseOperandsOffset(MachineOperand &Op);
bool parseIRValue(const Value *&V);
bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
bool parseMachinePointerInfo(MachinePointerInfo &Dest);
bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
bool parseHeapAllocMarker(MDNode *&Node);
bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
MachineOperand &Dest, const MIRFormatter &MF);
private:
/// Convert the integer literal in the current token into an unsigned integer.
///
/// Return true if an error occurred.
bool getUnsigned(unsigned &Result);
/// Convert the integer literal in the current token into an uint64.
///
/// Return true if an error occurred.
bool getUint64(uint64_t &Result);
/// Convert the hexadecimal literal in the current token into an unsigned
/// APInt with a minimum bitwidth required to represent the value.
///
/// Return true if the literal does not represent an integer value.
bool getHexUint(APInt &Result);
/// If the current token is of the given kind, consume it and return false.
/// Otherwise report an error and return true.
bool expectAndConsume(MIToken::TokenKind TokenKind);
/// If the current token is of the given kind, consume it and return true.
/// Otherwise return false.
bool consumeIfPresent(MIToken::TokenKind TokenKind);
bool parseInstruction(unsigned &OpCode, unsigned &Flags);
bool assignRegisterTies(MachineInstr &MI,
ArrayRef<ParsedMachineOperand> Operands);
bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
const MCInstrDesc &MCID);
const BasicBlock *getIRBlock(unsigned Slot);
const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
const Value *getIRValue(unsigned Slot);
/// Get or create an MCSymbol for a given name.
MCSymbol *getOrCreateMCSymbol(StringRef Name);
/// parseStringConstant
/// ::= StringConstant
bool parseStringConstant(std::string &Result);
};
} // end anonymous namespace
MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
StringRef Source)
: MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
{}
void MIParser::lex(unsigned SkipChar) {
CurrentSource = lexMIToken(
CurrentSource.data() + SkipChar, Token,
[this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
}
bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
const SourceMgr &SM = *PFS.SM;
assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
// Create an ordinary diagnostic when the source manager's buffer is the
// source string.
Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
return true;
}
// Create a diagnostic for a YAML string literal.
Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
Source, None, None);
return true;
}
typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
ErrorCallbackType;
static const char *toString(MIToken::TokenKind TokenKind) {
switch (TokenKind) {
case MIToken::comma:
return "','";
case MIToken::equal:
return "'='";
case MIToken::colon:
return "':'";
case MIToken::lparen:
return "'('";
case MIToken::rparen:
return "')'";
default:
return "<unknown token>";
}
}
bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
if (Token.isNot(TokenKind))
return error(Twine("expected ") + toString(TokenKind));
lex();
return false;
}
bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
if (Token.isNot(TokenKind))
return false;
lex();
return true;
}
bool MIParser::parseBasicBlockDefinition(
DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
assert(Token.is(MIToken::MachineBasicBlockLabel));
unsigned ID = 0;
if (getUnsigned(ID))
return true;
auto Loc = Token.location();
auto Name = Token.stringValue();
lex();
bool HasAddressTaken = false;
bool IsLandingPad = false;
unsigned Alignment = 0;
BasicBlock *BB = nullptr;
if (consumeIfPresent(MIToken::lparen)) {
do {
// TODO: Report an error when multiple same attributes are specified.
switch (Token.kind()) {
case MIToken::kw_address_taken:
HasAddressTaken = true;
lex();
break;
case MIToken::kw_landing_pad:
IsLandingPad = true;
lex();
break;
case MIToken::kw_align:
if (parseAlignment(Alignment))
return true;
break;
case MIToken::IRBlock:
// TODO: Report an error when both name and ir block are specified.
if (parseIRBlock(BB, MF.getFunction()))
return true;
lex();
break;
default:
break;
}
} while (consumeIfPresent(MIToken::comma));
if (expectAndConsume(MIToken::rparen))
return true;
}
if (expectAndConsume(MIToken::colon))
return true;
if (!Name.empty()) {
BB = dyn_cast_or_null<BasicBlock>(
MF.getFunction().getValueSymbolTable()->lookup(Name));
if (!BB)
return error(Loc, Twine("basic block '") + Name +
"' is not defined in the function '" +
MF.getName() + "'");
}
auto *MBB = MF.CreateMachineBasicBlock(BB);
MF.insert(MF.end(), MBB);
bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
if (!WasInserted)
return error(Loc, Twine("redefinition of machine basic block with id #") +
Twine(ID));
if (Alignment)
MBB->setAlignment(Align(Alignment));
if (HasAddressTaken)
MBB->setHasAddressTaken();
MBB->setIsEHPad(IsLandingPad);
return false;
}
bool MIParser::parseBasicBlockDefinitions(
DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
lex();
// Skip until the first machine basic block.
while (Token.is(MIToken::Newline))
lex();
if (Token.isErrorOrEOF())
return Token.isError();
if (Token.isNot(MIToken::MachineBasicBlockLabel))
return error("expected a basic block definition before instructions");
unsigned BraceDepth = 0;
do {
if (parseBasicBlockDefinition(MBBSlots))
return true;
bool IsAfterNewline = false;
// Skip until the next machine basic block.
while (true) {
if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
Token.isErrorOrEOF())
break;
else if (Token.is(MIToken::MachineBasicBlockLabel))
return error("basic block definition should be located at the start of "
"the line");
else if (consumeIfPresent(MIToken::Newline)) {
IsAfterNewline = true;
continue;
}
IsAfterNewline = false;
if (Token.is(MIToken::lbrace))
++BraceDepth;
if (Token.is(MIToken::rbrace)) {
if (!BraceDepth)
return error("extraneous closing brace ('}')");
--BraceDepth;
}
lex();
}
// Verify that we closed all of the '{' at the end of a file or a block.
if (!Token.isError() && BraceDepth)
return error("expected '}'"); // FIXME: Report a note that shows '{'.
} while (!Token.isErrorOrEOF());
return Token.isError();
}
bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
assert(Token.is(MIToken::kw_liveins));
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
return false;
do {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
unsigned Reg = 0;
if (parseNamedRegister(Reg))
return true;
lex();
LaneBitmask Mask = LaneBitmask::getAll();
if (consumeIfPresent(MIToken::colon)) {
// Parse lane mask.
if (Token.isNot(MIToken::IntegerLiteral) &&
Token.isNot(MIToken::HexLiteral))
return error("expected a lane mask");
static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
"Use correct get-function for lane mask");
LaneBitmask::Type V;
if (getUnsigned(V))
return error("invalid lane mask value");
Mask = LaneBitmask(V);
lex();
}
MBB.addLiveIn(Reg, Mask);
} while (consumeIfPresent(MIToken::comma));
return false;
}
bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
assert(Token.is(MIToken::kw_successors));
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
return false;
do {
if (Token.isNot(MIToken::MachineBasicBlock))
return error("expected a machine basic block reference");
MachineBasicBlock *SuccMBB = nullptr;
if (parseMBBReference(SuccMBB))
return true;
lex();
unsigned Weight = 0;
if (consumeIfPresent(MIToken::lparen)) {
if (Token.isNot(MIToken::IntegerLiteral) &&
Token.isNot(MIToken::HexLiteral))
return error("expected an integer literal after '('");
if (getUnsigned(Weight))
return true;
lex();
if (expectAndConsume(MIToken::rparen))
return true;
}
MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
} while (consumeIfPresent(MIToken::comma));
MBB.normalizeSuccProbs();
return false;
}
bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
MachineBasicBlock *&AddFalthroughFrom) {
// Skip the definition.
assert(Token.is(MIToken::MachineBasicBlockLabel));
lex();
if (consumeIfPresent(MIToken::lparen)) {
while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
lex();
consumeIfPresent(MIToken::rparen);
}
consumeIfPresent(MIToken::colon);
// Parse the liveins and successors.
// N.B: Multiple lists of successors and liveins are allowed and they're
// merged into one.
// Example:
// liveins: %edi
// liveins: %esi
//
// is equivalent to
// liveins: %edi, %esi
bool ExplicitSuccessors = false;
while (true) {
if (Token.is(MIToken::kw_successors)) {
if (parseBasicBlockSuccessors(MBB))
return true;
ExplicitSuccessors = true;
} else if (Token.is(MIToken::kw_liveins)) {
if (parseBasicBlockLiveins(MBB))
return true;
} else if (consumeIfPresent(MIToken::Newline)) {
continue;
} else
break;
if (!Token.isNewlineOrEOF())
return error("expected line break at the end of a list");
lex();
}
// Parse the instructions.
bool IsInBundle = false;
MachineInstr *PrevMI = nullptr;
while (!Token.is(MIToken::MachineBasicBlockLabel) &&
!Token.is(MIToken::Eof)) {
if (consumeIfPresent(MIToken::Newline))
continue;
if (consumeIfPresent(MIToken::rbrace)) {
// The first parsing pass should verify that all closing '}' have an
// opening '{'.
assert(IsInBundle);
IsInBundle = false;
continue;
}
MachineInstr *MI = nullptr;
if (parse(MI))
return true;
MBB.insert(MBB.end(), MI);
if (IsInBundle) {
PrevMI->setFlag(MachineInstr::BundledSucc);
MI->setFlag(MachineInstr::BundledPred);
}
PrevMI = MI;
if (Token.is(MIToken::lbrace)) {
if (IsInBundle)
return error("nested instruction bundles are not allowed");
lex();
// This instruction is the start of the bundle.
MI->setFlag(MachineInstr::BundledSucc);
IsInBundle = true;
if (!Token.is(MIToken::Newline))
// The next instruction can be on the same line.
continue;
}
assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
lex();
}
// Construct successor list by searching for basic block machine operands.
if (!ExplicitSuccessors) {
SmallVector<MachineBasicBlock*,4> Successors;
bool IsFallthrough;
guessSuccessors(MBB, Successors, IsFallthrough);
for (MachineBasicBlock *Succ : Successors)
MBB.addSuccessor(Succ);
if (IsFallthrough) {
AddFalthroughFrom = &MBB;
} else {
MBB.normalizeSuccProbs();
}
}
return false;
}
bool MIParser::parseBasicBlocks() {
lex();
// Skip until the first machine basic block.
while (Token.is(MIToken::Newline))
lex();
if (Token.isErrorOrEOF())
return Token.isError();
// The first parsing pass should have verified that this token is a MBB label
// in the 'parseBasicBlockDefinitions' method.
assert(Token.is(MIToken::MachineBasicBlockLabel));
MachineBasicBlock *AddFalthroughFrom = nullptr;
do {
MachineBasicBlock *MBB = nullptr;
if (parseMBBReference(MBB))
return true;
if (AddFalthroughFrom) {
if (!AddFalthroughFrom->isSuccessor(MBB))
AddFalthroughFrom->addSuccessor(MBB);
AddFalthroughFrom->normalizeSuccProbs();
AddFalthroughFrom = nullptr;
}
if (parseBasicBlock(*MBB, AddFalthroughFrom))
return true;
// The method 'parseBasicBlock' should parse the whole block until the next
// block or the end of file.
assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
} while (Token.isNot(MIToken::Eof));
return false;
}
bool MIParser::parse(MachineInstr *&MI) {
// Parse any register operands before '='
MachineOperand MO = MachineOperand::CreateImm(0);
SmallVector<ParsedMachineOperand, 8> Operands;
while (Token.isRegister() || Token.isRegisterFlag()) {
auto Loc = Token.location();
Optional<unsigned> TiedDefIdx;
if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
return true;
Operands.push_back(
ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
if (Token.isNot(MIToken::comma))
break;
lex();
}
if (!Operands.empty() && expectAndConsume(MIToken::equal))
return true;
unsigned OpCode, Flags = 0;
if (Token.isError() || parseInstruction(OpCode, Flags))
return true;
// Parse the remaining machine operands.
while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
Token.isNot(MIToken::kw_post_instr_symbol) &&
Token.isNot(MIToken::kw_heap_alloc_marker) &&
Token.isNot(MIToken::kw_debug_location) &&
Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
auto Loc = Token.location();
Optional<unsigned> TiedDefIdx;
if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
return true;
if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
MO.setIsDebug();
Operands.push_back(
ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
Token.is(MIToken::lbrace))
break;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine operand");
lex();
}
MCSymbol *PreInstrSymbol = nullptr;
if (Token.is(MIToken::kw_pre_instr_symbol))
if (parsePreOrPostInstrSymbol(PreInstrSymbol))
return true;
MCSymbol *PostInstrSymbol = nullptr;
if (Token.is(MIToken::kw_post_instr_symbol))
if (parsePreOrPostInstrSymbol(PostInstrSymbol))
return true;
MDNode *HeapAllocMarker = nullptr;
if (Token.is(MIToken::kw_heap_alloc_marker))
if (parseHeapAllocMarker(HeapAllocMarker))
return true;
DebugLoc DebugLocation;
if (Token.is(MIToken::kw_debug_location)) {
lex();
MDNode *Node = nullptr;
if (Token.is(MIToken::exclaim)) {
if (parseMDNode(Node))
return true;
} else if (Token.is(MIToken::md_dilocation)) {
if (parseDILocation(Node))
return true;
} else
return error("expected a metadata node after 'debug-location'");
if (!isa<DILocation>(Node))
return error("referenced metadata is not a DILocation");
DebugLocation = DebugLoc(Node);
}
// Parse the machine memory operands.
SmallVector<MachineMemOperand *, 2> MemOperands;
if (Token.is(MIToken::coloncolon)) {
lex();
while (!Token.isNewlineOrEOF()) {
MachineMemOperand *MemOp = nullptr;
if (parseMachineMemoryOperand(MemOp))
return true;
MemOperands.push_back(MemOp);
if (Token.isNewlineOrEOF())
break;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine memory operand");
lex();
}
}
const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
if (!MCID.isVariadic()) {
// FIXME: Move the implicit operand verification to the machine verifier.
if (verifyImplicitOperands(Operands, MCID))
return true;
}
// TODO: Check for extraneous machine operands.
MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
MI->setFlags(Flags);
for (const auto &Operand : Operands)
MI->addOperand(MF, Operand.Operand);
if (assignRegisterTies(*MI, Operands))
return true;
if (PreInstrSymbol)
MI->setPreInstrSymbol(MF, PreInstrSymbol);
if (PostInstrSymbol)
MI->setPostInstrSymbol(MF, PostInstrSymbol);
if (HeapAllocMarker)
MI->setHeapAllocMarker(MF, HeapAllocMarker);
if (!MemOperands.empty())
MI->setMemRefs(MF, MemOperands);
return false;
}
bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
lex();
if (Token.isNot(MIToken::MachineBasicBlock))
return error("expected a machine basic block reference");
if (parseMBBReference(MBB))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error(
"expected end of string after the machine basic block reference");
return false;
}
bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
lex();
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
if (parseNamedRegister(Reg))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error("expected end of string after the register reference");
return false;
}
bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
lex();
if (Token.isNot(MIToken::VirtualRegister))
return error("expected a virtual register");
if (parseVirtualRegister(Info))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error("expected end of string after the register reference");
return false;
}
bool MIParser::parseStandaloneRegister(unsigned &Reg) {
lex();
if (Token.isNot(MIToken::NamedRegister) &&
Token.isNot(MIToken::VirtualRegister))
return error("expected either a named or virtual register");
VRegInfo *Info;
if (parseRegister(Reg, Info))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error("expected end of string after the register reference");
return false;
}
bool MIParser::parseStandaloneStackObject(int &FI) {
lex();
if (Token.isNot(MIToken::StackObject))
return error("expected a stack object");
if (parseStackFrameIndex(FI))
return true;
if (Token.isNot(MIToken::Eof))
return error("expected end of string after the stack object reference");
return false;
}
bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
lex();
if (Token.is(MIToken::exclaim)) {
if (parseMDNode(Node))
return true;
} else if (Token.is(MIToken::md_diexpr)) {
if (parseDIExpression(Node))
return true;
} else if (Token.is(MIToken::md_dilocation)) {
if (parseDILocation(Node))
return true;
} else
return error("expected a metadata node");
if (Token.isNot(MIToken::Eof))
return error("expected end of string after the metadata node");
return false;
}
static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
assert(MO.isImplicit());
return MO.isDef() ? "implicit-def" : "implicit";
}
static std::string getRegisterName(const TargetRegisterInfo *TRI,
unsigned Reg) {
assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
return StringRef(TRI->getName(Reg)).lower();
}
/// Return true if the parsed machine operands contain a given machine operand.
static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
ArrayRef<ParsedMachineOperand> Operands) {
for (const auto &I : Operands) {
if (ImplicitOperand.isIdenticalTo(I.Operand))
return true;
}
return false;
}
bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
const MCInstrDesc &MCID) {
if (MCID.isCall())
// We can't verify call instructions as they can contain arbitrary implicit
// register and register mask operands.
return false;
// Gather all the expected implicit operands.
SmallVector<MachineOperand, 4> ImplicitOperands;
if (MCID.ImplicitDefs)
for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
ImplicitOperands.push_back(
MachineOperand::CreateReg(*ImpDefs, true, true));
if (MCID.ImplicitUses)
for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
ImplicitOperands.push_back(
MachineOperand::CreateReg(*ImpUses, false, true));
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
for (const auto &I : ImplicitOperands) {
if (isImplicitOperandIn(I, Operands))
continue;
return error(Operands.empty() ? Token.location() : Operands.back().End,
Twine("missing implicit register operand '") +
printImplicitRegisterFlag(I) + " $" +
getRegisterName(TRI, I.getReg()) + "'");
}
return false;
}
bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
// Allow frame and fast math flags for OPCODE
while (Token.is(MIToken::kw_frame_setup) ||
Token.is(MIToken::kw_frame_destroy) ||
Token.is(MIToken::kw_nnan) ||
Token.is(MIToken::kw_ninf) ||
Token.is(MIToken::kw_nsz) ||
Token.is(MIToken::kw_arcp) ||
Token.is(MIToken::kw_contract) ||
Token.is(MIToken::kw_afn) ||
Token.is(MIToken::kw_reassoc) ||
Token.is(MIToken::kw_nuw) ||
Token.is(MIToken::kw_nsw) ||
Token.is(MIToken::kw_exact) ||
Token.is(MIToken::kw_nofpexcept)) {
// Mine frame and fast math flags
if (Token.is(MIToken::kw_frame_setup))
Flags |= MachineInstr::FrameSetup;
if (Token.is(MIToken::kw_frame_destroy))
Flags |= MachineInstr::FrameDestroy;
if (Token.is(MIToken::kw_nnan))
Flags |= MachineInstr::FmNoNans;
if (Token.is(MIToken::kw_ninf))
Flags |= MachineInstr::FmNoInfs;
if (Token.is(MIToken::kw_nsz))
Flags |= MachineInstr::FmNsz;
if (Token.is(MIToken::kw_arcp))
Flags |= MachineInstr::FmArcp;
if (Token.is(MIToken::kw_contract))
Flags |= MachineInstr::FmContract;
if (Token.is(MIToken::kw_afn))
Flags |= MachineInstr::FmAfn;
if (Token.is(MIToken::kw_reassoc))
Flags |= MachineInstr::FmReassoc;
if (Token.is(MIToken::kw_nuw))
Flags |= MachineInstr::NoUWrap;
if (Token.is(MIToken::kw_nsw))
Flags |= MachineInstr::NoSWrap;
if (Token.is(MIToken::kw_exact))
Flags |= MachineInstr::IsExact;
if (Token.is(MIToken::kw_nofpexcept))
Flags |= MachineInstr::NoFPExcept;
lex();
}
if (Token.isNot(MIToken::Identifier))
return error("expected a machine instruction");
StringRef InstrName = Token.stringValue();
if (PFS.Target.parseInstrName(InstrName, OpCode))
return error(Twine("unknown machine instruction name '") + InstrName + "'");
lex();
return false;
}
bool MIParser::parseNamedRegister(unsigned &Reg) {
assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
StringRef Name = Token.stringValue();
if (PFS.Target.getRegisterByName(Name, Reg))
return error(Twine("unknown register name '") + Name + "'");
return false;
}
bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
StringRef Name = Token.stringValue();
// TODO: Check that the VReg name is not the same as a physical register name.
// If it is, then print a warning (when warnings are implemented).
Info = &PFS.getVRegInfoNamed(Name);
return false;
}
bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
if (Token.is(MIToken::NamedVirtualRegister))
return parseNamedVirtualRegister(Info);
assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
unsigned ID;
if (getUnsigned(ID))
return true;
Info = &PFS.getVRegInfo(ID);
return false;
}
bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
switch (Token.kind()) {
case MIToken::underscore:
Reg = 0;
return false;
case MIToken::NamedRegister:
return parseNamedRegister(Reg);
case MIToken::NamedVirtualRegister:
case MIToken::VirtualRegister:
if (parseVirtualRegister(Info))
return true;
Reg = Info->VReg;
return false;
// TODO: Parse other register kinds.
default:
llvm_unreachable("The current token should be a register");
}
}
bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
return error("expected '_', register class, or register bank name");
StringRef::iterator Loc = Token.location();
StringRef Name = Token.stringValue();
// Was it a register class?
const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
if (RC) {
lex();
switch (RegInfo.Kind) {
case VRegInfo::UNKNOWN:
case VRegInfo::NORMAL:
RegInfo.Kind = VRegInfo::NORMAL;
if (RegInfo.Explicit && RegInfo.D.RC != RC) {
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
return error(Loc, Twine("conflicting register classes, previously: ") +
Twine(TRI.getRegClassName(RegInfo.D.RC)));
}
RegInfo.D.RC = RC;
RegInfo.Explicit = true;
return false;
case VRegInfo::GENERIC:
case VRegInfo::REGBANK:
return error(Loc, "register class specification on generic register");
}
llvm_unreachable("Unexpected register kind");
}
// Should be a register bank or a generic register.
const RegisterBank *RegBank = nullptr;
if (Name != "_") {
RegBank = PFS.Target.getRegBank(Name);
if (!RegBank)
return error(Loc, "expected '_', register class, or register bank name");
}
lex();
switch (RegInfo.Kind) {
case VRegInfo::UNKNOWN:
case VRegInfo::GENERIC:
case VRegInfo::REGBANK:
RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
return error(Loc, "conflicting generic register banks");
RegInfo.D.RegBank = RegBank;
RegInfo.Explicit = true;
return false;
case VRegInfo::NORMAL:
return error(Loc, "register bank specification on normal register");
}
llvm_unreachable("Unexpected register kind");
}
bool MIParser::parseRegisterFlag(unsigned &Flags) {
const unsigned OldFlags = Flags;
switch (Token.kind()) {
case MIToken::kw_implicit:
Flags |= RegState::Implicit;
break;
case MIToken::kw_implicit_define:
Flags |= RegState::ImplicitDefine;
break;
case MIToken::kw_def:
Flags |= RegState::Define;
break;
case MIToken::kw_dead:
Flags |= RegState::Dead;
break;
case MIToken::kw_killed:
Flags |= RegState::Kill;
break;
case MIToken::kw_undef:
Flags |= RegState::Undef;
break;
case MIToken::kw_internal:
Flags |= RegState::InternalRead;
break;
case MIToken::kw_early_clobber:
Flags |= RegState::EarlyClobber;
break;
case MIToken::kw_debug_use:
Flags |= RegState::Debug;
break;
case MIToken::kw_renamable:
Flags |= RegState::Renamable;
break;
default:
llvm_unreachable("The current token should be a register flag");
}
if (OldFlags == Flags)
// We know that the same flag is specified more than once when the flags
// weren't modified.
return error("duplicate '" + Token.stringValue() + "' register flag");
lex();
return false;
}
bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
assert(Token.is(MIToken::dot));
lex();
if (Token.isNot(MIToken::Identifier))
return error("expected a subregister index after '.'");
auto Name = Token.stringValue();
SubReg = PFS.Target.getSubRegIndex(Name);
if (!SubReg)
return error(Twine("use of unknown subregister index '") + Name + "'");
lex();
return false;
}
bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
if (!consumeIfPresent(MIToken::kw_tied_def))
return true;
if (Token.isNot(MIToken::IntegerLiteral))
return error("expected an integer literal after 'tied-def'");
if (getUnsigned(TiedDefIdx))
return true;
lex();
if (expectAndConsume(MIToken::rparen))
return true;
return false;
}
bool MIParser::assignRegisterTies(MachineInstr &MI,
ArrayRef<ParsedMachineOperand> Operands) {
SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
if (!Operands[I].TiedDefIdx)
continue;
// The parser ensures that this operand is a register use, so we just have
// to check the tied-def operand.
unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
if (DefIdx >= E)
return error(Operands[I].Begin,
Twine("use of invalid tied-def operand index '" +
Twine(DefIdx) + "'; instruction has only ") +
Twine(E) + " operands");
const auto &DefOperand = Operands[DefIdx].Operand;
if (!DefOperand.isReg() || !DefOperand.isDef())
// FIXME: add note with the def operand.
return error(Operands[I].Begin,
Twine("use of invalid tied-def operand index '") +
Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
" isn't a defined register");
// Check that the tied-def operand wasn't tied elsewhere.
for (const auto &TiedPair : TiedRegisterPairs) {
if (TiedPair.first == DefIdx)
return error(Operands[I].Begin,
Twine("the tied-def operand #") + Twine(DefIdx) +
" is already tied with another register operand");
}
TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
}
// FIXME: Verify that for non INLINEASM instructions, the def and use tied
// indices must be less than tied max.
for (const auto &TiedPair : TiedRegisterPairs)
MI.tieOperands(TiedPair.first, TiedPair.second);
return false;
}
bool MIParser::parseRegisterOperand(MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx,
bool IsDef) {
unsigned Flags = IsDef ? RegState::Define : 0;
while (Token.isRegisterFlag()) {
if (parseRegisterFlag(Flags))
return true;
}
if (!Token.isRegister())
return error("expected a register after register flags");
unsigned Reg;
VRegInfo *RegInfo;
if (parseRegister(Reg, RegInfo))
return true;
lex();
unsigned SubReg = 0;
if (Token.is(MIToken::dot)) {
if (parseSubRegisterIndex(SubReg))
return true;
if (!Register::isVirtualRegister(Reg))
return error("subregister index expects a virtual register");
}
if (Token.is(MIToken::colon)) {
if (!Register::isVirtualRegister(Reg))
return error("register class specification expects a virtual register");
lex();
if (parseRegisterClassOrBank(*RegInfo))
return true;
}
MachineRegisterInfo &MRI = MF.getRegInfo();
if ((Flags & RegState::Define) == 0) {
if (consumeIfPresent(MIToken::lparen)) {
unsigned Idx;
if (!parseRegisterTiedDefIndex(Idx))
TiedDefIdx = Idx;
else {
// Try a redundant low-level type.
LLT Ty;
if (parseLowLevelType(Token.location(), Ty))
return error("expected tied-def or low-level type after '('");
if (expectAndConsume(MIToken::rparen))
return true;
if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
return error("inconsistent type for generic virtual register");
MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
MRI.setType(Reg, Ty);
}
}
} else if (consumeIfPresent(MIToken::lparen)) {
// Virtual registers may have a tpe with GlobalISel.
if (!Register::isVirtualRegister(Reg))
return error("unexpected type on physical register");
LLT Ty;
if (parseLowLevelType(Token.location(), Ty))
return true;
if (expectAndConsume(MIToken::rparen))
return true;
if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
return error("inconsistent type for generic virtual register");
MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
MRI.setType(Reg, Ty);
} else if (Register::isVirtualRegister(Reg)) {
// Generic virtual registers must have a type.
// If we end up here this means the type hasn't been specified and
// this is bad!
if (RegInfo->Kind == VRegInfo::GENERIC ||
RegInfo->Kind == VRegInfo::REGBANK)
return error("generic virtual registers must have a type");
}
Dest = MachineOperand::CreateReg(
Reg, Flags & RegState::Define, Flags & RegState::Implicit,
Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
Flags & RegState::InternalRead, Flags & RegState::Renamable);
return false;
}
bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::IntegerLiteral));
const APSInt &Int = Token.integerValue();
if (Int.getMinSignedBits() > 64)
return error("integer literal is too large to be an immediate operand");
Dest = MachineOperand::CreateImm(Int.getExtValue());
lex();
return false;
}
bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
const unsigned OpIdx,
MachineOperand &Dest,
const MIRFormatter &MF) {
assert(Token.is(MIToken::dot));
auto Loc = Token.location(); // record start position
size_t Len = 1; // for "."
lex();
// Handle the case that mnemonic starts with number.
if (Token.is(MIToken::IntegerLiteral)) {
Len += Token.range().size();
lex();
}
StringRef Src;
if (Token.is(MIToken::comma))
Src = StringRef(Loc, Len);
else {
assert(Token.is(MIToken::Identifier));
Src = StringRef(Loc, Len + Token.stringValue().size());
}
int64_t Val;
if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
[this](StringRef::iterator Loc, const Twine &Msg)
-> bool { return error(Loc, Msg); }))
return true;
Dest = MachineOperand::CreateImm(Val);
if (!Token.is(MIToken::comma))
lex();
return false;
}
static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
PerFunctionMIParsingState &PFS, const Constant *&C,
ErrorCallbackType ErrCB) {
auto Source = StringValue.str(); // The source has to be null terminated.
SMDiagnostic Err;
C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
&PFS.IRSlots);
if (!C)
return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
return false;
}
bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
const Constant *&C) {
return ::parseIRConstant(
Loc, StringValue, PFS, C,
[this](StringRef::iterator Loc, const Twine &Msg) -> bool {
return error(Loc, Msg);
});
}
bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
return true;
lex();
return false;
}
// See LLT implemntation for bit size limits.
static bool verifyScalarSize(uint64_t Size) {
return Size != 0 && isUInt<16>(Size);
}
static bool verifyVectorElementCount(uint64_t NumElts) {
return NumElts != 0 && isUInt<16>(NumElts);
}
static bool verifyAddrSpace(uint64_t AddrSpace) {
return isUInt<24>(AddrSpace);
}
bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
if (Token.range().front() == 's' || Token.range().front() == 'p') {
StringRef SizeStr = Token.range().drop_front();
if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
return error("expected integers after 's'/'p' type character");
}
if (Token.range().front() == 's') {
auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
if (!verifyScalarSize(ScalarSize))
return error("invalid size for scalar type");
Ty = LLT::scalar(ScalarSize);
lex();
return false;
} else if (Token.range().front() == 'p') {
const DataLayout &DL = MF.getDataLayout();
uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
if (!verifyAddrSpace(AS))
return error("invalid address space number");
Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
lex();
return false;
}
// Now we're looking for a vector.
if (Token.isNot(MIToken::less))
return error(Loc,
"expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
lex();
if (Token.isNot(MIToken::IntegerLiteral))
return error(Loc, "expected <M x sN> or <M x pA> for vector type");
uint64_t NumElements = Token.integerValue().getZExtValue();
if (!verifyVectorElementCount(NumElements))
return error("invalid number of vector elements");
lex();
if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
return error(Loc, "expected <M x sN> or <M x pA> for vector type");
lex();
if (Token.range().front() != 's' && Token.range().front() != 'p')
return error(Loc, "expected <M x sN> or <M x pA> for vector type");
StringRef SizeStr = Token.range().drop_front();
if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
return error("expected integers after 's'/'p' type character");
if (Token.range().front() == 's') {
auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
if (!verifyScalarSize(ScalarSize))
return error("invalid size for scalar type");
Ty = LLT::scalar(ScalarSize);
} else if (Token.range().front() == 'p') {
const DataLayout &DL = MF.getDataLayout();
uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
if (!verifyAddrSpace(AS))
return error("invalid address space number");
Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
} else
return error(Loc, "expected <M x sN> or <M x pA> for vector type");
lex();
if (Token.isNot(MIToken::greater))
return error(Loc, "expected <M x sN> or <M x pA> for vector type");
lex();
Ty = LLT::vector(NumElements, Ty);
return false;
}
bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::Identifier));
StringRef TypeStr = Token.range();
if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
TypeStr.front() != 'p')
return error(
"a typed immediate operand should start with one of 'i', 's', or 'p'");
StringRef SizeStr = Token.range().drop_front();
if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
return error("expected integers after 'i'/'s'/'p' type character");
auto Loc = Token.location();
lex();
if (Token.isNot(MIToken::IntegerLiteral)) {
if (Token.isNot(MIToken::Identifier) ||
!(Token.range() == "true" || Token.range() == "false"))
return error("expected an integer literal");
}
const Constant *C = nullptr;
if (parseIRConstant(Loc, C))
return true;
Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
return false;
}
bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
auto Loc = Token.location();
lex();
if (Token.isNot(MIToken::FloatingPointLiteral) &&
Token.isNot(MIToken::HexLiteral))
return error("expected a floating point literal");
const Constant *C = nullptr;
if (parseIRConstant(Loc, C))
return true;
Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
return false;
}
static bool getHexUint(const MIToken &Token, APInt &Result) {
assert(Token.is(MIToken::HexLiteral));
StringRef S = Token.range();
assert(S[0] == '0' && tolower(S[1]) == 'x');
// This could be a floating point literal with a special prefix.
if (!isxdigit(S[2]))
return true;
StringRef V = S.substr(2);
APInt A(V.size()*4, V, 16);
// If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
// sure it isn't the case before constructing result.
unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
return false;
}
bool getUnsigned(const MIToken &Token, unsigned &Result,
ErrorCallbackType ErrCB) {
if (Token.hasIntegerValue()) {
const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
if (Val64 == Limit)
return ErrCB(Token.location(), "expected 32-bit integer (too large)");
Result = Val64;
return false;
}
if (Token.is(MIToken::HexLiteral)) {
APInt A;
if (getHexUint(Token, A))
return true;
if (A.getBitWidth() > 32)
return ErrCB(Token.location(), "expected 32-bit integer (too large)");
Result = A.getZExtValue();
return false;
}
return true;
}
bool MIParser::getUnsigned(unsigned &Result) {
return ::getUnsigned(
Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
return error(Loc, Msg);
});
}
bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
assert(Token.is(MIToken::MachineBasicBlock) ||
Token.is(MIToken::MachineBasicBlockLabel));
unsigned Number;
if (getUnsigned(Number))
return true;
auto MBBInfo = PFS.MBBSlots.find(Number);
if (MBBInfo == PFS.MBBSlots.end())
return error(Twine("use of undefined machine basic block #") +
Twine(Number));
MBB = MBBInfo->second;
// TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
// we drop the <irname> from the bb.<id>.<irname> format.
if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
return error(Twine("the name of machine basic block #") + Twine(Number) +
" isn't '" + Token.stringValue() + "'");
return false;
}
bool MIParser::parseMBBOperand(MachineOperand &Dest) {
MachineBasicBlock *MBB;
if (parseMBBReference(MBB))
return true;
Dest = MachineOperand::CreateMBB(MBB);
lex();
return false;
}
bool MIParser::parseStackFrameIndex(int &FI) {
assert(Token.is(MIToken::StackObject));
unsigned ID;
if (getUnsigned(ID))
return true;
auto ObjectInfo = PFS.StackObjectSlots.find(ID);
if (ObjectInfo == PFS.StackObjectSlots.end())
return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
"'");
StringRef Name;
if (const auto *Alloca =
MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
Name = Alloca->getName();
if (!Token.stringValue().empty() && Token.stringValue() != Name)
return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
"' isn't '" + Token.stringValue() + "'");
lex();
FI = ObjectInfo->second;
return false;
}
bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
int FI;
if (parseStackFrameIndex(FI))
return true;
Dest = MachineOperand::CreateFI(FI);
return false;
}
bool MIParser::parseFixedStackFrameIndex(int &FI) {
assert(Token.is(MIToken::FixedStackObject));
unsigned ID;
if (getUnsigned(ID))
return true;
auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
if (ObjectInfo == PFS.FixedStackObjectSlots.end())
return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
Twine(ID) + "'");
lex();
FI = ObjectInfo->second;
return false;
}
bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
int FI;
if (parseFixedStackFrameIndex(FI))
return true;
Dest = MachineOperand::CreateFI(FI);
return false;
}
static bool parseGlobalValue(const MIToken &Token,
PerFunctionMIParsingState &PFS, GlobalValue *&GV,
ErrorCallbackType ErrCB) {
switch (Token.kind()) {
case MIToken::NamedGlobalValue: {
const Module *M = PFS.MF.getFunction().getParent();
GV = M->getNamedValue(Token.stringValue());
if (!GV)
return ErrCB(Token.location(), Twine("use of undefined global value '") +
Token.range() + "'");
break;
}
case MIToken::GlobalValue: {
unsigned GVIdx;
if (getUnsigned(Token, GVIdx, ErrCB))
return true;
if (GVIdx >= PFS.IRSlots.GlobalValues.size())
return ErrCB(Token.location(), Twine("use of undefined global value '@") +
Twine(GVIdx) + "'");
GV = PFS.IRSlots.GlobalValues[GVIdx];
break;
}
default:
llvm_unreachable("The current token should be a global value");
}
return false;
}
bool MIParser::parseGlobalValue(GlobalValue *&GV) {
return ::parseGlobalValue(
Token, PFS, GV,
[this](StringRef::iterator Loc, const Twine &Msg) -> bool {
return error(Loc, Msg);
});
}
bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
GlobalValue *GV = nullptr;
if (parseGlobalValue(GV))
return true;
lex();
Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
if (parseOperandsOffset(Dest))
return true;
return false;
}
bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::ConstantPoolItem));
unsigned ID;
if (getUnsigned(ID))
return true;
auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
if (ConstantInfo == PFS.ConstantPoolSlots.end())
return error("use of undefined constant '%const." + Twine(ID) + "'");
lex();
Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
if (parseOperandsOffset(Dest))
return true;
return false;
}
bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::JumpTableIndex));
unsigned ID;
if (getUnsigned(ID))
return true;
auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
lex();
Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
return false;
}
bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::ExternalSymbol));
const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
lex();
Dest = MachineOperand::CreateES(Symbol);
if (parseOperandsOffset(Dest))
return true;
return false;
}
bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::MCSymbol));
MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
lex();
Dest = MachineOperand::CreateMCSymbol(Symbol);
if (parseOperandsOffset(Dest))
return true;
return false;
}
bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::SubRegisterIndex));
StringRef Name = Token.stringValue();
unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
if (SubRegIndex == 0)
return error(Twine("unknown subregister index '") + Name + "'");
lex();
Dest = MachineOperand::CreateImm(SubRegIndex);
return false;
}
bool MIParser::parseMDNode(MDNode *&Node) {
assert(Token.is(MIToken::exclaim));
auto Loc = Token.location();
lex();
if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
return error("expected metadata id after '!'");
unsigned ID;
if (getUnsigned(ID))
return true;
auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
lex();
Node = NodeInfo->second.get();
return false;
}
bool MIParser::parseDIExpression(MDNode *&Expr) {
assert(Token.is(MIToken::md_diexpr));
lex();
// FIXME: Share this parsing with the IL parser.
SmallVector<uint64_t, 8> Elements;
if (expectAndConsume(MIToken::lparen))
return true;
if (Token.isNot(MIToken::rparen)) {
do {
if (Token.is(MIToken::Identifier)) {
if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
lex();
Elements.push_back(Op);
continue;
}
if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
lex();
Elements.push_back(Enc);
continue;
}
return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
}
if (Token.isNot(MIToken::IntegerLiteral) ||
Token.integerValue().isSigned())
return error("expected unsigned integer");
auto &U = Token.integerValue();
if (U.ugt(UINT64_MAX))
return error("element too large, limit is " + Twine(UINT64_MAX));
Elements.push_back(U.getZExtValue());
lex();
} while (consumeIfPresent(MIToken::comma));
}
if (expectAndConsume(MIToken::rparen))
return true;
Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
return false;
}
bool MIParser::parseDILocation(MDNode *&Loc) {
assert(Token.is(MIToken::md_dilocation));
lex();
bool HaveLine = false;
unsigned Line = 0;
unsigned Column = 0;
MDNode *Scope = nullptr;
MDNode *InlinedAt = nullptr;
bool ImplicitCode = false;
if (expectAndConsume(MIToken::lparen))
return true;
if (Token.isNot(MIToken::rparen)) {
do {
if (Token.is(MIToken::Identifier)) {
if (Token.stringValue() == "line") {
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (Token.isNot(MIToken::IntegerLiteral) ||
Token.integerValue().isSigned())
return error("expected unsigned integer");
Line = Token.integerValue().getZExtValue();
HaveLine = true;
lex();
continue;
}
if (Token.stringValue() == "column") {
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (Token.isNot(MIToken::IntegerLiteral) ||
Token.integerValue().isSigned())
return error("expected unsigned integer");
Column = Token.integerValue().getZExtValue();
lex();
continue;
}
if (Token.stringValue() == "scope") {
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (parseMDNode(Scope))
return error("expected metadata node");
if (!isa<DIScope>(Scope))
return error("expected DIScope node");
continue;
}
if (Token.stringValue() == "inlinedAt") {
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (Token.is(MIToken::exclaim)) {
if (parseMDNode(InlinedAt))
return true;
} else if (Token.is(MIToken::md_dilocation)) {
if (parseDILocation(InlinedAt))
return true;
} else
return error("expected metadata node");
if (!isa<DILocation>(InlinedAt))
return error("expected DILocation node");
continue;
}
if (Token.stringValue() == "isImplicitCode") {
lex();
if (expectAndConsume(MIToken::colon))
return true;
if (!Token.is(MIToken::Identifier))
return error("expected true/false");
// As far as I can see, we don't have any existing need for parsing
// true/false in MIR yet. Do it ad-hoc until there's something else
// that needs it.
if (Token.stringValue() == "true")
ImplicitCode = true;
else if (Token.stringValue() == "false")
ImplicitCode = false;
else
return error("expected true/false");
lex();
continue;
}
}
return error(Twine("invalid DILocation argument '") +
Token.stringValue() + "'");
} while (consumeIfPresent(MIToken::comma));
}
if (expectAndConsume(MIToken::rparen))
return true;
if (!HaveLine)
return error("DILocation requires line number");
if (!Scope)
return error("DILocation requires a scope");
Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
InlinedAt, ImplicitCode);
return false;
}
bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
MDNode *Node = nullptr;
if (Token.is(MIToken::exclaim)) {
if (parseMDNode(Node))
return true;
} else if (Token.is(MIToken::md_diexpr)) {
if (parseDIExpression(Node))
return true;
}
Dest = MachineOperand::CreateMetadata(Node);
return false;
}
bool MIParser::parseCFIOffset(int &Offset) {
if (Token.isNot(MIToken::IntegerLiteral))
return error("expected a cfi offset");
if (Token.integerValue().getMinSignedBits() > 32)
return error("expected a 32 bit integer (the cfi offset is too large)");
Offset = (int)Token.integerValue().getExtValue();
lex();
return false;
}
bool MIParser::parseCFIRegister(unsigned &Reg) {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a cfi register");
unsigned LLVMReg;
if (parseNamedRegister(LLVMReg))
return true;
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
if (DwarfReg < 0)
return error("invalid DWARF register");
Reg = (unsigned)DwarfReg;
lex();
return false;
}
bool MIParser::parseCFIEscapeValues(std::string &Values) {
do {
if (Token.isNot(MIToken::HexLiteral))
return error("expected a hexadecimal literal");
unsigned Value;
if (getUnsigned(Value))
return true;
if (Value > UINT8_MAX)
return error("expected a 8-bit integer (too large)");
Values.push_back(static_cast<uint8_t>(Value));
lex();
} while (consumeIfPresent(MIToken::comma));
return false;
}
bool MIParser::parseCFIOperand(MachineOperand &Dest) {
auto Kind = Token.kind();
lex();
int Offset;
unsigned Reg;
unsigned CFIIndex;
switch (Kind) {
case MIToken::kw_cfi_same_value:
if (parseCFIRegister(Reg))
return true;
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
break;
case MIToken::kw_cfi_offset:
if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
parseCFIOffset(Offset))
return true;
CFIIndex =
MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
break;
case MIToken::kw_cfi_rel_offset:
if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
parseCFIOffset(Offset))
return true;
CFIIndex = MF.addFrameInst(
MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
break;
case MIToken::kw_cfi_def_cfa_register:
if (parseCFIRegister(Reg))
return true;
CFIIndex =
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
break;
case MIToken::kw_cfi_def_cfa_offset:
if (parseCFIOffset(Offset))
return true;
// NB: MCCFIInstruction::createDefCfaOffset negates the offset.
CFIIndex = MF.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
break;
case MIToken::kw_cfi_adjust_cfa_offset:
if (parseCFIOffset(Offset))
return true;
CFIIndex = MF.addFrameInst(
MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
break;
case MIToken::kw_cfi_def_cfa:
if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
parseCFIOffset(Offset))
return true;
// NB: MCCFIInstruction::createDefCfa negates the offset.
CFIIndex =
MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
break;
case MIToken::kw_cfi_remember_state:
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
break;
case MIToken::kw_cfi_restore:
if (parseCFIRegister(Reg))
return true;
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
break;
case MIToken::kw_cfi_restore_state:
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
break;
case MIToken::kw_cfi_undefined:
if (parseCFIRegister(Reg))
return true;
CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
break;
case MIToken::kw_cfi_register: {
unsigned Reg2;
if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
parseCFIRegister(Reg2))
return true;
CFIIndex =
MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
break;
}
case MIToken::kw_cfi_window_save:
CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
break;
case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
break;
case MIToken::kw_cfi_escape: {
std::string Values;
if (parseCFIEscapeValues(Values))
return true;
CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
break;
}
default:
// TODO: Parse the other CFI operands.
llvm_unreachable("The current token should be a cfi operand");
}
Dest = MachineOperand::CreateCFIIndex(CFIIndex);
return false;
}
bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
switch (Token.kind()) {
case MIToken::NamedIRBlock: {
BB = dyn_cast_or_null<BasicBlock>(
F.getValueSymbolTable()->lookup(Token.stringValue()));
if (!BB)
return error(Twine("use of undefined IR block '") + Token.range() + "'");
break;
}
case MIToken::IRBlock: {
unsigned SlotNumber = 0;
if (getUnsigned(SlotNumber))
return true;
BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
if (!BB)
return error(Twine("use of undefined IR block '%ir-block.") +
Twine(SlotNumber) + "'");
break;
}
default:
llvm_unreachable("The current token should be an IR block reference");
}
return false;
}
bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_blockaddress));
lex();
if (expectAndConsume(MIToken::lparen))
return true;
if (Token.isNot(MIToken::GlobalValue) &&
Token.isNot(MIToken::NamedGlobalValue))
return error("expected a global value");
GlobalValue *GV = nullptr;
if (parseGlobalValue(GV))
return true;
auto *F = dyn_cast<Function>(GV);
if (!F)
return error("expected an IR function reference");
lex();
if (expectAndConsume(MIToken::comma))
return true;
BasicBlock *BB = nullptr;
if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
return error("expected an IR block reference");
if (parseIRBlock(BB, *F))
return true;
lex();
if (expectAndConsume(MIToken::rparen))
return true;
Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
if (parseOperandsOffset(Dest))
return true;
return false;
}
bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_intrinsic));
lex();
if (expectAndConsume(MIToken::lparen))
return error("expected syntax intrinsic(@llvm.whatever)");
if (Token.isNot(MIToken::NamedGlobalValue))
return error("expected syntax intrinsic(@llvm.whatever)");
std::string Name = Token.stringValue();
lex();
if (expectAndConsume(MIToken::rparen))
return error("expected ')' to terminate intrinsic name");
// Find out what intrinsic we're dealing with, first try the global namespace
// and then the target's private intrinsics if that fails.
const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
if (ID == Intrinsic::not_intrinsic && TII)
ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
if (ID == Intrinsic::not_intrinsic)
return error("unknown intrinsic name");
Dest = MachineOperand::CreateIntrinsicID(ID);
return false;
}
bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
bool IsFloat = Token.is(MIToken::kw_floatpred);
lex();
if (expectAndConsume(MIToken::lparen))
return error("expected syntax intpred(whatever) or floatpred(whatever");
if (Token.isNot(MIToken::Identifier))
return error("whatever");
CmpInst::Predicate Pred;
if (IsFloat) {
Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
.Case("false", CmpInst::FCMP_FALSE)
.Case("oeq", CmpInst::FCMP_OEQ)
.Case("ogt", CmpInst::FCMP_OGT)
.Case("oge", CmpInst::FCMP_OGE)
.Case("olt", CmpInst::FCMP_OLT)
.Case("ole", CmpInst::FCMP_OLE)
.Case("one", CmpInst::FCMP_ONE)
.Case("ord", CmpInst::FCMP_ORD)
.Case("uno", CmpInst::FCMP_UNO)
.Case("ueq", CmpInst::FCMP_UEQ)
.Case("ugt", CmpInst::FCMP_UGT)
.Case("uge", CmpInst::FCMP_UGE)
.Case("ult", CmpInst::FCMP_ULT)
.Case("ule", CmpInst::FCMP_ULE)
.Case("une", CmpInst::FCMP_UNE)
.Case("true", CmpInst::FCMP_TRUE)
.Default(CmpInst::BAD_FCMP_PREDICATE);
if (!CmpInst::isFPPredicate(Pred))
return error("invalid floating-point predicate");
} else {
Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
.Case("eq", CmpInst::ICMP_EQ)
.Case("ne", CmpInst::ICMP_NE)
.Case("sgt", CmpInst::ICMP_SGT)
.Case("sge", CmpInst::ICMP_SGE)
.Case("slt", CmpInst::ICMP_SLT)
.Case("sle", CmpInst::ICMP_SLE)
.Case("ugt", CmpInst::ICMP_UGT)
.Case("uge", CmpInst::ICMP_UGE)
.Case("ult", CmpInst::ICMP_ULT)
.Case("ule", CmpInst::ICMP_ULE)
.Default(CmpInst::BAD_ICMP_PREDICATE);
if (!CmpInst::isIntPredicate(Pred))
return error("invalid integer predicate");
}
lex();
Dest = MachineOperand::CreatePredicate(Pred);
if (expectAndConsume(MIToken::rparen))
return error("predicate should be terminated by ')'.");
return false;
}
bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_shufflemask));
lex();
if (expectAndConsume(MIToken::lparen))
return error("expected syntax shufflemask(<integer or undef>, ...)");
SmallVector<Constant *, 32> ShufMask;
LLVMContext &Ctx = MF.getFunction().getContext();
Type *I32Ty = Type::getInt32Ty(Ctx);
bool AllZero = true;
bool AllUndef = true;
do {
if (Token.is(MIToken::kw_undef)) {
ShufMask.push_back(UndefValue::get(I32Ty));
AllZero = false;
} else if (Token.is(MIToken::IntegerLiteral)) {
AllUndef = false;
const APSInt &Int = Token.integerValue();
if (!Int.isNullValue())
AllZero = false;
ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue()));
} else
return error("expected integer constant");
lex();
} while (consumeIfPresent(MIToken::comma));
if (expectAndConsume(MIToken::rparen))
return error("shufflemask should be terminated by ')'.");
if (AllZero || AllUndef) {
VectorType *VT = VectorType::get(I32Ty, ShufMask.size());
Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT);
Dest = MachineOperand::CreateShuffleMask(C);
} else
Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask));
return false;
}
bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_target_index));
lex();
if (expectAndConsume(MIToken::lparen))
return true;
if (Token.isNot(MIToken::Identifier))
return error("expected the name of the target index");
int Index = 0;
if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
return error("use of undefined target index '" + Token.stringValue() + "'");
lex();
if (expectAndConsume(MIToken::rparen))
return true;
Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
if (parseOperandsOffset(Dest))
return true;
return false;
}
bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
lex();
if (expectAndConsume(MIToken::lparen))
return true;
uint32_t *Mask = MF.allocateRegMask();
while (true) {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
unsigned Reg;
if (parseNamedRegister(Reg))
return true;
lex();
Mask[Reg / 32] |= 1U << (Reg % 32);
// TODO: Report an error if the same register is used more than once.
if (Token.isNot(MIToken::comma))
break;
lex();
}
if (expectAndConsume(MIToken::rparen))
return true;
Dest = MachineOperand::CreateRegMask(Mask);
return false;
}
bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_liveout));
uint32_t *Mask = MF.allocateRegMask();
lex();
if (expectAndConsume(MIToken::lparen))
return true;
while (true) {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
unsigned Reg;
if (parseNamedRegister(Reg))
return true;
lex();
Mask[Reg / 32] |= 1U << (Reg % 32);
// TODO: Report an error if the same register is used more than once.
if (Token.isNot(MIToken::comma))
break;
lex();
}
if (expectAndConsume(MIToken::rparen))
return true;
Dest = MachineOperand::CreateRegLiveOut(Mask);
return false;
}
bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx) {
switch (Token.kind()) {
case MIToken::kw_implicit:
case MIToken::kw_implicit_define:
case MIToken::kw_def:
case MIToken::kw_dead:
case MIToken::kw_killed:
case MIToken::kw_undef:
case MIToken::kw_internal:
case MIToken::kw_early_clobber:
case MIToken::kw_debug_use:
case MIToken::kw_renamable:
case MIToken::underscore:
case MIToken::NamedRegister:
case MIToken::VirtualRegister:
case MIToken::NamedVirtualRegister:
return parseRegisterOperand(Dest, TiedDefIdx);
case MIToken::IntegerLiteral:
return parseImmediateOperand(Dest);
case MIToken::kw_half:
case MIToken::kw_float:
case MIToken::kw_double:
case MIToken::kw_x86_fp80:
case MIToken::kw_fp128:
case MIToken::kw_ppc_fp128:
return parseFPImmediateOperand(Dest);
case MIToken::MachineBasicBlock:
return parseMBBOperand(Dest);
case MIToken::StackObject:
return parseStackObjectOperand(Dest);
case MIToken::FixedStackObject:
return parseFixedStackObjectOperand(Dest);
case MIToken::GlobalValue:
case MIToken::NamedGlobalValue:
return parseGlobalAddressOperand(Dest);
case MIToken::ConstantPoolItem:
return parseConstantPoolIndexOperand(Dest);
case MIToken::JumpTableIndex:
return parseJumpTableIndexOperand(Dest);
case MIToken::ExternalSymbol:
return parseExternalSymbolOperand(Dest);
case MIToken::MCSymbol:
return parseMCSymbolOperand(Dest);
case MIToken::SubRegisterIndex:
return parseSubRegisterIndexOperand(Dest);
case MIToken::md_diexpr:
case MIToken::exclaim:
return parseMetadataOperand(Dest);
case MIToken::kw_cfi_same_value:
case MIToken::kw_cfi_offset:
case MIToken::kw_cfi_rel_offset:
case MIToken::kw_cfi_def_cfa_register:
case MIToken::kw_cfi_def_cfa_offset:
case MIToken::kw_cfi_adjust_cfa_offset:
case MIToken::kw_cfi_escape:
case MIToken::kw_cfi_def_cfa:
case MIToken::kw_cfi_register:
case MIToken::kw_cfi_remember_state:
case MIToken::kw_cfi_restore:
case MIToken::kw_cfi_restore_state:
case MIToken::kw_cfi_undefined:
case MIToken::kw_cfi_window_save:
case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
return parseCFIOperand(Dest);
case MIToken::kw_blockaddress:
return parseBlockAddressOperand(Dest);
case MIToken::kw_intrinsic:
return parseIntrinsicOperand(Dest);
case MIToken::kw_target_index:
return parseTargetIndexOperand(Dest);
case MIToken::kw_liveout:
return parseLiveoutRegisterMaskOperand(Dest);
case MIToken::kw_floatpred:
case MIToken::kw_intpred:
return parsePredicateOperand(Dest);
case MIToken::kw_shufflemask:
return parseShuffleMaskOperand(Dest);
case MIToken::Error:
return true;
case MIToken::Identifier:
if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
Dest = MachineOperand::CreateRegMask(RegMask);
lex();
break;
} else if (Token.stringValue() == "CustomRegMask") {
return parseCustomRegisterMaskOperand(Dest);
} else
return parseTypedImmediateOperand(Dest);
case MIToken::dot: {
const auto *TII = MF.getSubtarget().getInstrInfo();
if (const auto *Formatter = TII->getMIRFormatter()) {
return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
}
LLVM_FALLTHROUGH;
}
default:
// FIXME: Parse the MCSymbol machine operand.
return error("expected a machine operand");
}
return false;
}
bool MIParser::parseMachineOperandAndTargetFlags(
const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx) {
unsigned TF = 0;
bool HasTargetFlags = false;
if (Token.is(MIToken::kw_target_flags)) {
HasTargetFlags = true;
lex();
if (expectAndConsume(MIToken::lparen))
return true;
if (Token.isNot(MIToken::Identifier))
return error("expected the name of the target flag");
if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
return error("use of undefined target flag '" + Token.stringValue() +
"'");
}
lex();
while (Token.is(MIToken::comma)) {
lex();
if (Token.isNot(MIToken::Identifier))
return error("expected the name of the target flag");
unsigned BitFlag = 0;
if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
return error("use of undefined target flag '" + Token.stringValue() +
"'");
// TODO: Report an error when using a duplicate bit target flag.
TF |= BitFlag;
lex();
}
if (expectAndConsume(MIToken::rparen))
return true;
}
auto Loc = Token.location();
if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
return true;
if (!HasTargetFlags)
return false;
if (Dest.isReg())
return error(Loc, "register operands can't have target flags");
Dest.setTargetFlags(TF);
return false;
}
bool MIParser::parseOffset(int64_t &Offset) {
if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
return false;
StringRef Sign = Token.range();
bool IsNegative = Token.is(MIToken::minus);
lex();
if (Token.isNot(MIToken::IntegerLiteral))
return error("expected an integer literal after '" + Sign + "'");
if (Token.integerValue().getMinSignedBits() > 64)
return error("expected 64-bit integer (too large)");
Offset = Token.integerValue().getExtValue();
if (IsNegative)
Offset = -Offset;
lex();
return false;
}
bool MIParser::parseAlignment(unsigned &Alignment) {
assert(Token.is(MIToken::kw_align));
lex();
if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
return error("expected an integer literal after 'align'");
if (getUnsigned(Alignment))
return true;
lex();
if (!isPowerOf2_32(Alignment))
return error("expected a power-of-2 literal after 'align'");
return false;
}
bool MIParser::parseAddrspace(unsigned &Addrspace) {
assert(Token.is(MIToken::kw_addrspace));
lex();
if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
return error("expected an integer literal after 'addrspace'");
if (getUnsigned(Addrspace))
return true;
lex();
return false;
}
bool MIParser::parseOperandsOffset(MachineOperand &Op) {
int64_t Offset = 0;
if (parseOffset(Offset))
return true;
Op.setOffset(Offset);
return false;
}
static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
const Value *&V, ErrorCallbackType ErrCB) {
switch (Token.kind()) {
case MIToken::NamedIRValue: {
V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
break;
}
case MIToken::IRValue: {
unsigned SlotNumber = 0;
if (getUnsigned(Token, SlotNumber, ErrCB))
return true;
V = PFS.getIRValue(SlotNumber);
break;
}
case MIToken::NamedGlobalValue:
case MIToken::GlobalValue: {
GlobalValue *GV = nullptr;
if (parseGlobalValue(Token, PFS, GV, ErrCB))
return true;
V = GV;
break;
}
case MIToken::QuotedIRValue: {
const Constant *C = nullptr;
if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
return true;
V = C;
break;
}
default:
llvm_unreachable("The current token should be an IR block reference");
}
if (!V)
return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
return false;
}
bool MIParser::parseIRValue(const Value *&V) {
return ::parseIRValue(
Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
return error(Loc, Msg);
});
}
bool MIParser::getUint64(uint64_t &Result) {
if (Token.hasIntegerValue()) {
if (Token.integerValue().getActiveBits() > 64)
return error("expected 64-bit integer (too large)");
Result = Token.integerValue().getZExtValue();
return false;
}
if (Token.is(MIToken::HexLiteral)) {
APInt A;
if (getHexUint(A))
return true;
if (A.getBitWidth() > 64)
return error("expected 64-bit integer (too large)");
Result = A.getZExtValue();
return false;
}
return true;
}
bool MIParser::getHexUint(APInt &Result) {
return ::getHexUint(Token, Result);
}
bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
const auto OldFlags = Flags;
switch (Token.kind()) {
case MIToken::kw_volatile:
Flags |= MachineMemOperand::MOVolatile;
break;
case MIToken::kw_non_temporal:
Flags |= MachineMemOperand::MONonTemporal;
break;
case MIToken::kw_dereferenceable:
Flags |= MachineMemOperand::MODereferenceable;
break;
case MIToken::kw_invariant:
Flags |= MachineMemOperand::MOInvariant;
break;
case MIToken::StringConstant: {
MachineMemOperand::Flags TF;
if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
return error("use of undefined target MMO flag '" + Token.stringValue() +
"'");
Flags |= TF;
break;
}
default:
llvm_unreachable("The current token should be a memory operand flag");
}
if (OldFlags == Flags)
// We know that the same flag is specified more than once when the flags
// weren't modified.
return error("duplicate '" + Token.stringValue() + "' memory operand flag");
lex();
return false;
}
bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
switch (Token.kind()) {
case MIToken::kw_stack:
PSV = MF.getPSVManager().getStack();
break;
case MIToken::kw_got:
PSV = MF.getPSVManager().getGOT();
break;
case MIToken::kw_jump_table:
PSV = MF.getPSVManager().getJumpTable();
break;
case MIToken::kw_constant_pool:
PSV = MF.getPSVManager().getConstantPool();
break;
case MIToken::FixedStackObject: {
int FI;
if (parseFixedStackFrameIndex(FI))
return true;
PSV = MF.getPSVManager().getFixedStack(FI);
// The token was already consumed, so use return here instead of break.
return false;
}
case MIToken::StackObject: {
int FI;
if (parseStackFrameIndex(FI))
return true;
PSV = MF.getPSVManager().getFixedStack(FI);
// The token was already consumed, so use return here instead of break.
return false;
}
case MIToken::kw_call_entry:
lex();
switch (Token.kind()) {
case MIToken::GlobalValue:
case MIToken::NamedGlobalValue: {
GlobalValue *GV = nullptr;
if (parseGlobalValue(GV))
return true;
PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
break;
}
case MIToken::ExternalSymbol:
PSV = MF.getPSVManager().getExternalSymbolCallEntry(
MF.createExternalSymbolName(Token.stringValue()));
break;
default:
return error(
"expected a global value or an external symbol after 'call-entry'");
}
break;
case MIToken::kw_custom: {
lex();
const auto *TII = MF.getSubtarget().getInstrInfo();
if (const auto *Formatter = TII->getMIRFormatter()) {
if (Formatter->parseCustomPseudoSourceValue(
Token.stringValue(), MF, PFS, PSV,
[this](StringRef::iterator Loc, const Twine &Msg) -> bool {
return error(Loc, Msg);
}))
return true;
} else
return error("unable to parse target custom pseudo source value");
break;
}
default:
llvm_unreachable("The current token should be pseudo source value");
}
lex();
return false;
}
bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
const PseudoSourceValue *PSV = nullptr;
if (parseMemoryPseudoSourceValue(PSV))
return true;
int64_t Offset = 0;
if (parseOffset(Offset))
return true;
Dest = MachinePointerInfo(PSV, Offset);
return false;
}
if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
Token.isNot(MIToken::GlobalValue) &&
Token.isNot(MIToken::NamedGlobalValue) &&
Token.isNot(MIToken::QuotedIRValue))
return error("expected an IR value reference");
const Value *V = nullptr;
if (parseIRValue(V))
return true;
if (!V->getType()->isPointerTy())
return error("expected a pointer IR value");
lex();
int64_t Offset = 0;
if (parseOffset(Offset))
return true;
Dest = MachinePointerInfo(V, Offset);
return false;
}
bool MIParser::parseOptionalScope(LLVMContext &Context,
SyncScope::ID &SSID) {
SSID = SyncScope::System;
if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
lex();
if (expectAndConsume(MIToken::lparen))
return error("expected '(' in syncscope");
std::string SSN;
if (parseStringConstant(SSN))
return true;
SSID = Context.getOrInsertSyncScopeID(SSN);
if (expectAndConsume(MIToken::rparen))
return error("expected ')' in syncscope");
}
return false;
}
bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
Order = AtomicOrdering::NotAtomic;
if (Token.isNot(MIToken::Identifier))
return false;
Order = StringSwitch<AtomicOrdering>(Token.stringValue())
.Case("unordered", AtomicOrdering::Unordered)
.Case("monotonic", AtomicOrdering::Monotonic)
.Case("acquire", AtomicOrdering::Acquire)
.Case("release", AtomicOrdering::Release)
.Case("acq_rel", AtomicOrdering::AcquireRelease)
.Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
.Default(AtomicOrdering::NotAtomic);
if (Order != AtomicOrdering::NotAtomic) {
lex();
return false;
}
return error("expected an atomic scope, ordering or a size specification");
}
bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
if (expectAndConsume(MIToken::lparen))
return true;
MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
while (Token.isMemoryOperandFlag()) {
if (parseMemoryOperandFlag(Flags))
return true;
}
if (Token.isNot(MIToken::Identifier) ||
(Token.stringValue() != "load" && Token.stringValue() != "store"))
return error("expected 'load' or 'store' memory operation");
if (Token.stringValue() == "load")
Flags |= MachineMemOperand::MOLoad;
else
Flags |= MachineMemOperand::MOStore;
lex();
// Optional 'store' for operands that both load and store.
if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
Flags |= MachineMemOperand::MOStore;
lex();
}
// Optional synchronization scope.
SyncScope::ID SSID;
if (parseOptionalScope(MF.getFunction().getContext(), SSID))
return true;
// Up to two atomic orderings (cmpxchg provides guarantees on failure).
AtomicOrdering Order, FailureOrder;
if (parseOptionalAtomicOrdering(Order))
return true;
if (parseOptionalAtomicOrdering(FailureOrder))
return true;
if (Token.isNot(MIToken::IntegerLiteral) &&
Token.isNot(MIToken::kw_unknown_size))
return error("expected the size integer literal or 'unknown-size' after "
"memory operation");
uint64_t Size;
if (Token.is(MIToken::IntegerLiteral)) {
if (getUint64(Size))
return true;
} else if (Token.is(MIToken::kw_unknown_size)) {
Size = MemoryLocation::UnknownSize;
}
lex();
MachinePointerInfo Ptr = MachinePointerInfo();
if (Token.is(MIToken::Identifier)) {
const char *Word =
((Flags & MachineMemOperand::MOLoad) &&
(Flags & MachineMemOperand::MOStore))
? "on"
: Flags & MachineMemOperand::MOLoad ? "from" : "into";
if (Token.stringValue() != Word)
return error(Twine("expected '") + Word + "'");
lex();
if (parseMachinePointerInfo(Ptr))
return true;
}
unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
AAMDNodes AAInfo;
MDNode *Range = nullptr;
while (consumeIfPresent(MIToken::comma)) {
switch (Token.kind()) {
case MIToken::kw_align:
if (parseAlignment(BaseAlignment))
return true;
break;
case MIToken::kw_addrspace:
if (parseAddrspace(Ptr.AddrSpace))
return true;
break;
case MIToken::md_tbaa:
lex();
if (parseMDNode(AAInfo.TBAA))
return true;
break;
case MIToken::md_alias_scope:
lex();
if (parseMDNode(AAInfo.Scope))
return true;
break;
case MIToken::md_noalias:
lex();
if (parseMDNode(AAInfo.NoAlias))
return true;
break;
case MIToken::md_range:
lex();
if (parseMDNode(Range))
return true;
break;
// TODO: Report an error on duplicate metadata nodes.
default:
return error("expected 'align' or '!tbaa' or '!alias.scope' or "
"'!noalias' or '!range'");
}
}
if (expectAndConsume(MIToken::rparen))
return true;
Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
SSID, Order, FailureOrder);
return false;
}
bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
assert((Token.is(MIToken::kw_pre_instr_symbol) ||
Token.is(MIToken::kw_post_instr_symbol)) &&
"Invalid token for a pre- post-instruction symbol!");
lex();
if (Token.isNot(MIToken::MCSymbol))
return error("expected a symbol after 'pre-instr-symbol'");
Symbol = getOrCreateMCSymbol(Token.stringValue());
lex();
if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
Token.is(MIToken::lbrace))
return false;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine operand");
lex();
return false;
}
bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
assert(Token.is(MIToken::kw_heap_alloc_marker) &&
"Invalid token for a heap alloc marker!");
lex();
parseMDNode(Node);
if (!Node)
return error("expected a MDNode after 'heap-alloc-marker'");
if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
Token.is(MIToken::lbrace))
return false;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine operand");
lex();
return false;
}
static void initSlots2BasicBlocks(
const Function &F,
DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
MST.incorporateFunction(F);
for (auto &BB : F) {
if (BB.hasName())
continue;
int Slot = MST.getLocalSlot(&BB);
if (Slot == -1)
continue;
Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
}
}
static const BasicBlock *getIRBlockFromSlot(
unsigned Slot,
const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
auto BlockInfo = Slots2BasicBlocks.find(Slot);
if (BlockInfo == Slots2BasicBlocks.end())
return nullptr;
return BlockInfo->second;
}
const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
if (Slots2BasicBlocks.empty())
initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
}
const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
if (&F == &MF.getFunction())
return getIRBlock(Slot);
DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
}
const Value *MIParser::getIRValue(unsigned Slot) {
return PFS.getIRValue(Slot);
}
MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
// FIXME: Currently we can't recognize temporary or local symbols and call all
// of the appropriate forms to create them. However, this handles basic cases
// well as most of the special aspects are recognized by a prefix on their
// name, and the input names should already be unique. For test cases, keeping
// the symbol name out of the symbol table isn't terribly important.
return MF.getContext().getOrCreateSymbol(Name);
}
bool MIParser::parseStringConstant(std::string &Result) {
if (Token.isNot(MIToken::StringConstant))
return error("expected string constant");
Result = Token.stringValue();
lex();
return false;
}
bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
}
bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
StringRef Src, SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseBasicBlocks();
}
bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
}
bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
unsigned &Reg, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
}
bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
unsigned &Reg, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
}
bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
VRegInfo *&Info, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
}
bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
int &FI, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
}
bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
}
bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
PerFunctionMIParsingState &PFS, const Value *&V,
ErrorCallbackType ErrorCallback) {
MIToken Token;
Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
ErrorCallback(Loc, Msg);
});
V = nullptr;
return ::parseIRValue(Token, PFS, V, ErrorCallback);
}