llvm-project/lldb/source/Plugins/UnwindAssembly/InstEmulation/UnwindAssemblyInstEmulation...

657 lines
26 KiB
C++

//===-- UnwindAssemblyInstEmulation.cpp --------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UnwindAssemblyInstEmulation.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Core/DumpRegisterValue.h"
#include "lldb/Core/FormatEntity.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/StreamString.h"
using namespace lldb;
using namespace lldb_private;
// UnwindAssemblyInstEmulation method definitions
bool UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly(
AddressRange &range, Thread &thread, UnwindPlan &unwind_plan) {
std::vector<uint8_t> function_text(range.GetByteSize());
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
Status error;
const bool prefer_file_cache = true;
if (process_sp->GetTarget().ReadMemory(
range.GetBaseAddress(), prefer_file_cache, function_text.data(),
range.GetByteSize(), error) != range.GetByteSize()) {
return false;
}
}
return GetNonCallSiteUnwindPlanFromAssembly(
range, function_text.data(), function_text.size(), unwind_plan);
}
bool UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly(
AddressRange &range, uint8_t *opcode_data, size_t opcode_size,
UnwindPlan &unwind_plan) {
if (opcode_data == nullptr || opcode_size == 0)
return false;
if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid() &&
m_inst_emulator_up.get()) {
// The instruction emulation subclass setup the unwind plan for the first
// instruction.
m_inst_emulator_up->CreateFunctionEntryUnwind(unwind_plan);
// CreateFunctionEntryUnwind should have created the first row. If it
// doesn't, then we are done.
if (unwind_plan.GetRowCount() == 0)
return false;
const bool prefer_file_cache = true;
DisassemblerSP disasm_sp(Disassembler::DisassembleBytes(
m_arch, nullptr, nullptr, range.GetBaseAddress(), opcode_data,
opcode_size, 99999, prefer_file_cache));
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
if (disasm_sp) {
m_range_ptr = &range;
m_unwind_plan_ptr = &unwind_plan;
const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
const bool show_address = true;
const bool show_bytes = true;
m_inst_emulator_up->GetRegisterInfo(unwind_plan.GetRegisterKind(),
unwind_plan.GetInitialCFARegister(),
m_cfa_reg_info);
m_fp_is_cfa = false;
m_register_values.clear();
m_pushed_regs.clear();
// Initialize the CFA with a known value. In the 32 bit case it will be
// 0x80000000, and in the 64 bit case 0x8000000000000000. We use the
// address byte size to be safe for any future address sizes
m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
RegisterValue cfa_reg_value;
cfa_reg_value.SetUInt(m_initial_sp, m_cfa_reg_info.byte_size);
SetRegisterValue(m_cfa_reg_info, cfa_reg_value);
const InstructionList &inst_list = disasm_sp->GetInstructionList();
const size_t num_instructions = inst_list.GetSize();
if (num_instructions > 0) {
Instruction *inst = inst_list.GetInstructionAtIndex(0).get();
const lldb::addr_t base_addr = inst->GetAddress().GetFileAddress();
// Map for storing the unwind plan row and the value of the registers
// at a given offset. When we see a forward branch we add a new entry
// to this map with the actual unwind plan row and register context for
// the target address of the branch as the current data have to be
// valid for the target address of the branch too if we are in the same
// function.
std::map<lldb::addr_t, std::pair<UnwindPlan::RowSP, RegisterValueMap>>
saved_unwind_states;
// Make a copy of the current instruction Row and save it in m_curr_row
// so we can add updates as we process the instructions.
UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
UnwindPlan::Row *newrow = new UnwindPlan::Row;
if (last_row.get())
*newrow = *last_row.get();
m_curr_row.reset(newrow);
// Add the initial state to the save list with offset 0.
saved_unwind_states.insert({0, {last_row, m_register_values}});
// cache the pc register number (in whatever register numbering this
// UnwindPlan uses) for quick reference during instruction parsing.
RegisterInfo pc_reg_info;
m_inst_emulator_up->GetRegisterInfo(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info);
// cache the return address register number (in whatever register
// numbering this UnwindPlan uses) for quick reference during
// instruction parsing.
RegisterInfo ra_reg_info;
m_inst_emulator_up->GetRegisterInfo(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info);
// The architecture dependent condition code of the last processed
// instruction.
EmulateInstruction::InstructionCondition last_condition =
EmulateInstruction::UnconditionalCondition;
lldb::addr_t condition_block_start_offset = 0;
for (size_t idx = 0; idx < num_instructions; ++idx) {
m_curr_row_modified = false;
m_forward_branch_offset = 0;
inst = inst_list.GetInstructionAtIndex(idx).get();
if (inst) {
lldb::addr_t current_offset =
inst->GetAddress().GetFileAddress() - base_addr;
auto it = saved_unwind_states.upper_bound(current_offset);
assert(it != saved_unwind_states.begin() &&
"Unwind row for the function entry missing");
--it; // Move it to the row corresponding to the current offset
// If the offset of m_curr_row don't match with the offset we see
// in saved_unwind_states then we have to update m_curr_row and
// m_register_values based on the saved values. It is happening
// after we processed an epilogue and a return to caller
// instruction.
if (it->second.first->GetOffset() != m_curr_row->GetOffset()) {
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *it->second.first;
m_curr_row.reset(newrow);
m_register_values = it->second.second;
}
m_inst_emulator_up->SetInstruction(inst->GetOpcode(),
inst->GetAddress(), nullptr);
if (last_condition !=
m_inst_emulator_up->GetInstructionCondition()) {
if (m_inst_emulator_up->GetInstructionCondition() !=
EmulateInstruction::UnconditionalCondition &&
saved_unwind_states.count(current_offset) == 0) {
// If we don't have a saved row for the current offset then
// save our current state because we will have to restore it
// after the conditional block.
auto new_row =
std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
saved_unwind_states.insert(
{current_offset, {new_row, m_register_values}});
}
// If the last instruction was conditional with a different
// condition then the then current condition then restore the
// condition.
if (last_condition !=
EmulateInstruction::UnconditionalCondition) {
const auto &saved_state =
saved_unwind_states.at(condition_block_start_offset);
m_curr_row =
std::make_shared<UnwindPlan::Row>(*saved_state.first);
m_curr_row->SetOffset(current_offset);
m_register_values = saved_state.second;
bool replace_existing =
true; // The last instruction might already
// created a row for this offset and
// we want to overwrite it.
unwind_plan.InsertRow(
std::make_shared<UnwindPlan::Row>(*m_curr_row),
replace_existing);
}
// We are starting a new conditional block at the actual offset
condition_block_start_offset = current_offset;
}
if (log && log->GetVerbose()) {
StreamString strm;
lldb_private::FormatEntity::Entry format;
FormatEntity::Parse("${frame.pc}: ", format);
inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize(), show_address,
show_bytes, nullptr, nullptr, nullptr, &format, 0);
log->PutString(strm.GetString());
}
last_condition = m_inst_emulator_up->GetInstructionCondition();
m_inst_emulator_up->EvaluateInstruction(
eEmulateInstructionOptionIgnoreConditions);
// If the current instruction is a branch forward then save the
// current CFI information for the offset where we are branching.
if (m_forward_branch_offset != 0 &&
range.ContainsFileAddress(inst->GetAddress().GetFileAddress() +
m_forward_branch_offset)) {
auto newrow =
std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
newrow->SetOffset(current_offset + m_forward_branch_offset);
saved_unwind_states.insert(
{current_offset + m_forward_branch_offset,
{newrow, m_register_values}});
unwind_plan.InsertRow(newrow);
}
// Were there any changes to the CFI while evaluating this
// instruction?
if (m_curr_row_modified) {
// Save the modified row if we don't already have a CFI row in
// the current address
if (saved_unwind_states.count(
current_offset + inst->GetOpcode().GetByteSize()) == 0) {
m_curr_row->SetOffset(current_offset +
inst->GetOpcode().GetByteSize());
unwind_plan.InsertRow(m_curr_row);
saved_unwind_states.insert(
{current_offset + inst->GetOpcode().GetByteSize(),
{m_curr_row, m_register_values}});
// Allocate a new Row for m_curr_row, copy the current state
// into it
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *m_curr_row.get();
m_curr_row.reset(newrow);
}
}
}
}
}
}
if (log && log->GetVerbose()) {
StreamString strm;
lldb::addr_t base_addr = range.GetBaseAddress().GetFileAddress();
strm.Printf("Resulting unwind rows for [0x%" PRIx64 " - 0x%" PRIx64 "):",
base_addr, base_addr + range.GetByteSize());
unwind_plan.Dump(strm, nullptr, base_addr);
log->PutString(strm.GetString());
}
return unwind_plan.GetRowCount() > 0;
}
return false;
}
bool UnwindAssemblyInstEmulation::AugmentUnwindPlanFromCallSite(
AddressRange &func, Thread &thread, UnwindPlan &unwind_plan) {
return false;
}
bool UnwindAssemblyInstEmulation::GetFastUnwindPlan(AddressRange &func,
Thread &thread,
UnwindPlan &unwind_plan) {
return false;
}
bool UnwindAssemblyInstEmulation::FirstNonPrologueInsn(
AddressRange &func, const ExecutionContext &exe_ctx,
Address &first_non_prologue_insn) {
return false;
}
UnwindAssembly *
UnwindAssemblyInstEmulation::CreateInstance(const ArchSpec &arch) {
std::unique_ptr<EmulateInstruction> inst_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypePrologueEpilogue,
nullptr));
// Make sure that all prologue instructions are handled
if (inst_emulator_up)
return new UnwindAssemblyInstEmulation(arch, inst_emulator_up.release());
return nullptr;
}
// PluginInterface protocol in UnwindAssemblyParser_x86
ConstString UnwindAssemblyInstEmulation::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t UnwindAssemblyInstEmulation::GetPluginVersion() { return 1; }
void UnwindAssemblyInstEmulation::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
}
void UnwindAssemblyInstEmulation::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
ConstString UnwindAssemblyInstEmulation::GetPluginNameStatic() {
static ConstString g_name("inst-emulation");
return g_name;
}
const char *UnwindAssemblyInstEmulation::GetPluginDescriptionStatic() {
return "Instruction emulation based unwind information.";
}
uint64_t UnwindAssemblyInstEmulation::MakeRegisterKindValuePair(
const RegisterInfo &reg_info) {
lldb::RegisterKind reg_kind;
uint32_t reg_num;
if (EmulateInstruction::GetBestRegisterKindAndNumber(&reg_info, reg_kind,
reg_num))
return (uint64_t)reg_kind << 24 | reg_num;
return 0ull;
}
void UnwindAssemblyInstEmulation::SetRegisterValue(
const RegisterInfo &reg_info, const RegisterValue &reg_value) {
m_register_values[MakeRegisterKindValuePair(reg_info)] = reg_value;
}
bool UnwindAssemblyInstEmulation::GetRegisterValue(const RegisterInfo &reg_info,
RegisterValue &reg_value) {
const uint64_t reg_id = MakeRegisterKindValuePair(reg_info);
RegisterValueMap::const_iterator pos = m_register_values.find(reg_id);
if (pos != m_register_values.end()) {
reg_value = pos->second;
return true; // We had a real value that comes from an opcode that wrote
// to it...
}
// We are making up a value that is recognizable...
reg_value.SetUInt(reg_id, reg_info.byte_size);
return false;
}
size_t UnwindAssemblyInstEmulation::ReadMemory(
EmulateInstruction *instruction, void *baton,
const EmulateInstruction::Context &context, lldb::addr_t addr, void *dst,
size_t dst_len) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose()) {
StreamString strm;
strm.Printf(
"UnwindAssemblyInstEmulation::ReadMemory (addr = 0x%16.16" PRIx64
", dst = %p, dst_len = %" PRIu64 ", context = ",
addr, dst, (uint64_t)dst_len);
context.Dump(strm, instruction);
log->PutString(strm.GetString());
}
memset(dst, 0, dst_len);
return dst_len;
}
size_t UnwindAssemblyInstEmulation::WriteMemory(
EmulateInstruction *instruction, void *baton,
const EmulateInstruction::Context &context, lldb::addr_t addr,
const void *dst, size_t dst_len) {
if (baton && dst && dst_len)
return ((UnwindAssemblyInstEmulation *)baton)
->WriteMemory(instruction, context, addr, dst, dst_len);
return 0;
}
size_t UnwindAssemblyInstEmulation::WriteMemory(
EmulateInstruction *instruction, const EmulateInstruction::Context &context,
lldb::addr_t addr, const void *dst, size_t dst_len) {
DataExtractor data(dst, dst_len,
instruction->GetArchitecture().GetByteOrder(),
instruction->GetArchitecture().GetAddressByteSize());
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose()) {
StreamString strm;
strm.PutCString("UnwindAssemblyInstEmulation::WriteMemory (");
DumpDataExtractor(data, &strm, 0, eFormatBytes, 1, dst_len, UINT32_MAX,
addr, 0, 0);
strm.PutCString(", context = ");
context.Dump(strm, instruction);
log->PutString(strm.GetString());
}
const bool cant_replace = false;
switch (context.type) {
default:
case EmulateInstruction::eContextInvalid:
case EmulateInstruction::eContextReadOpcode:
case EmulateInstruction::eContextImmediate:
case EmulateInstruction::eContextAdjustBaseRegister:
case EmulateInstruction::eContextRegisterPlusOffset:
case EmulateInstruction::eContextAdjustPC:
case EmulateInstruction::eContextRegisterStore:
case EmulateInstruction::eContextRegisterLoad:
case EmulateInstruction::eContextRelativeBranchImmediate:
case EmulateInstruction::eContextAbsoluteBranchRegister:
case EmulateInstruction::eContextSupervisorCall:
case EmulateInstruction::eContextTableBranchReadMemory:
case EmulateInstruction::eContextWriteRegisterRandomBits:
case EmulateInstruction::eContextWriteMemoryRandomBits:
case EmulateInstruction::eContextArithmetic:
case EmulateInstruction::eContextAdvancePC:
case EmulateInstruction::eContextReturnFromException:
case EmulateInstruction::eContextPopRegisterOffStack:
case EmulateInstruction::eContextAdjustStackPointer:
break;
case EmulateInstruction::eContextPushRegisterOnStack: {
uint32_t reg_num = LLDB_INVALID_REGNUM;
uint32_t generic_regnum = LLDB_INVALID_REGNUM;
assert(context.info_type ==
EmulateInstruction::eInfoTypeRegisterToRegisterPlusOffset &&
"unhandled case, add code to handle this!");
const uint32_t unwind_reg_kind = m_unwind_plan_ptr->GetRegisterKind();
reg_num = context.info.RegisterToRegisterPlusOffset.data_reg
.kinds[unwind_reg_kind];
generic_regnum = context.info.RegisterToRegisterPlusOffset.data_reg
.kinds[eRegisterKindGeneric];
if (reg_num != LLDB_INVALID_REGNUM &&
generic_regnum != LLDB_REGNUM_GENERIC_SP) {
if (m_pushed_regs.find(reg_num) == m_pushed_regs.end()) {
m_pushed_regs[reg_num] = addr;
const int32_t offset = addr - m_initial_sp;
m_curr_row->SetRegisterLocationToAtCFAPlusOffset(reg_num, offset,
cant_replace);
m_curr_row_modified = true;
}
}
} break;
}
return dst_len;
}
bool UnwindAssemblyInstEmulation::ReadRegister(EmulateInstruction *instruction,
void *baton,
const RegisterInfo *reg_info,
RegisterValue &reg_value) {
if (baton && reg_info)
return ((UnwindAssemblyInstEmulation *)baton)
->ReadRegister(instruction, reg_info, reg_value);
return false;
}
bool UnwindAssemblyInstEmulation::ReadRegister(EmulateInstruction *instruction,
const RegisterInfo *reg_info,
RegisterValue &reg_value) {
bool synthetic = GetRegisterValue(*reg_info, reg_value);
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose()) {
StreamString strm;
strm.Printf("UnwindAssemblyInstEmulation::ReadRegister (name = \"%s\") => "
"synthetic_value = %i, value = ",
reg_info->name, synthetic);
DumpRegisterValue(reg_value, &strm, reg_info, false, false, eFormatDefault);
log->PutString(strm.GetString());
}
return true;
}
bool UnwindAssemblyInstEmulation::WriteRegister(
EmulateInstruction *instruction, void *baton,
const EmulateInstruction::Context &context, const RegisterInfo *reg_info,
const RegisterValue &reg_value) {
if (baton && reg_info)
return ((UnwindAssemblyInstEmulation *)baton)
->WriteRegister(instruction, context, reg_info, reg_value);
return false;
}
bool UnwindAssemblyInstEmulation::WriteRegister(
EmulateInstruction *instruction, const EmulateInstruction::Context &context,
const RegisterInfo *reg_info, const RegisterValue &reg_value) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose()) {
StreamString strm;
strm.Printf(
"UnwindAssemblyInstEmulation::WriteRegister (name = \"%s\", value = ",
reg_info->name);
DumpRegisterValue(reg_value, &strm, reg_info, false, false, eFormatDefault);
strm.PutCString(", context = ");
context.Dump(strm, instruction);
log->PutString(strm.GetString());
}
SetRegisterValue(*reg_info, reg_value);
switch (context.type) {
case EmulateInstruction::eContextInvalid:
case EmulateInstruction::eContextReadOpcode:
case EmulateInstruction::eContextImmediate:
case EmulateInstruction::eContextAdjustBaseRegister:
case EmulateInstruction::eContextRegisterPlusOffset:
case EmulateInstruction::eContextAdjustPC:
case EmulateInstruction::eContextRegisterStore:
case EmulateInstruction::eContextSupervisorCall:
case EmulateInstruction::eContextTableBranchReadMemory:
case EmulateInstruction::eContextWriteRegisterRandomBits:
case EmulateInstruction::eContextWriteMemoryRandomBits:
case EmulateInstruction::eContextAdvancePC:
case EmulateInstruction::eContextReturnFromException:
case EmulateInstruction::eContextPushRegisterOnStack:
case EmulateInstruction::eContextRegisterLoad:
// {
// const uint32_t reg_num =
// reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
// if (reg_num != LLDB_INVALID_REGNUM)
// {
// const bool can_replace_only_if_unspecified = true;
//
// m_curr_row.SetRegisterLocationToUndefined (reg_num,
// can_replace_only_if_unspecified,
// can_replace_only_if_unspecified);
// m_curr_row_modified = true;
// }
// }
break;
case EmulateInstruction::eContextArithmetic: {
// If we adjusted the current frame pointer by a constant then adjust the
// CFA offset
// with the same amount.
lldb::RegisterKind kind = m_unwind_plan_ptr->GetRegisterKind();
if (m_fp_is_cfa && reg_info->kinds[kind] == m_cfa_reg_info.kinds[kind] &&
context.info_type == EmulateInstruction::eInfoTypeRegisterPlusOffset &&
context.info.RegisterPlusOffset.reg.kinds[kind] ==
m_cfa_reg_info.kinds[kind]) {
const int64_t offset = context.info.RegisterPlusOffset.signed_offset;
m_curr_row->GetCFAValue().IncOffset(-1 * offset);
m_curr_row_modified = true;
}
} break;
case EmulateInstruction::eContextAbsoluteBranchRegister:
case EmulateInstruction::eContextRelativeBranchImmediate: {
if (context.info_type == EmulateInstruction::eInfoTypeISAAndImmediate &&
context.info.ISAAndImmediate.unsigned_data32 > 0) {
m_forward_branch_offset =
context.info.ISAAndImmediateSigned.signed_data32;
} else if (context.info_type ==
EmulateInstruction::eInfoTypeISAAndImmediateSigned &&
context.info.ISAAndImmediateSigned.signed_data32 > 0) {
m_forward_branch_offset = context.info.ISAAndImmediate.unsigned_data32;
} else if (context.info_type == EmulateInstruction::eInfoTypeImmediate &&
context.info.unsigned_immediate > 0) {
m_forward_branch_offset = context.info.unsigned_immediate;
} else if (context.info_type ==
EmulateInstruction::eInfoTypeImmediateSigned &&
context.info.signed_immediate > 0) {
m_forward_branch_offset = context.info.signed_immediate;
}
} break;
case EmulateInstruction::eContextPopRegisterOffStack: {
const uint32_t reg_num =
reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
const uint32_t generic_regnum = reg_info->kinds[eRegisterKindGeneric];
if (reg_num != LLDB_INVALID_REGNUM &&
generic_regnum != LLDB_REGNUM_GENERIC_SP) {
switch (context.info_type) {
case EmulateInstruction::eInfoTypeAddress:
if (m_pushed_regs.find(reg_num) != m_pushed_regs.end() &&
context.info.address == m_pushed_regs[reg_num]) {
m_curr_row->SetRegisterLocationToSame(reg_num,
false /*must_replace*/);
m_curr_row_modified = true;
}
break;
case EmulateInstruction::eInfoTypeISA:
assert(
(generic_regnum == LLDB_REGNUM_GENERIC_PC ||
generic_regnum == LLDB_REGNUM_GENERIC_FLAGS) &&
"eInfoTypeISA used for popping a register other the PC/FLAGS");
if (generic_regnum != LLDB_REGNUM_GENERIC_FLAGS) {
m_curr_row->SetRegisterLocationToSame(reg_num,
false /*must_replace*/);
m_curr_row_modified = true;
}
break;
default:
assert(false && "unhandled case, add code to handle this!");
break;
}
}
} break;
case EmulateInstruction::eContextSetFramePointer:
if (!m_fp_is_cfa) {
m_fp_is_cfa = true;
m_cfa_reg_info = *reg_info;
const uint32_t cfa_reg_num =
reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
assert(cfa_reg_num != LLDB_INVALID_REGNUM);
m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
cfa_reg_num, m_initial_sp - reg_value.GetAsUInt64());
m_curr_row_modified = true;
}
break;
case EmulateInstruction::eContextRestoreStackPointer:
if (m_fp_is_cfa) {
m_fp_is_cfa = false;
m_cfa_reg_info = *reg_info;
const uint32_t cfa_reg_num =
reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
assert(cfa_reg_num != LLDB_INVALID_REGNUM);
m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
cfa_reg_num, m_initial_sp - reg_value.GetAsUInt64());
m_curr_row_modified = true;
}
break;
case EmulateInstruction::eContextAdjustStackPointer:
// If we have created a frame using the frame pointer, don't follow
// subsequent adjustments to the stack pointer.
if (!m_fp_is_cfa) {
m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
m_curr_row->GetCFAValue().GetRegisterNumber(),
m_initial_sp - reg_value.GetAsUInt64());
m_curr_row_modified = true;
}
break;
}
return true;
}