llvm-project/lldb/source/Plugins/SymbolFile/DWARF/HashedNameToDIE.cpp

585 lines
20 KiB
C++

//===-- HashedNameToDIE.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "HashedNameToDIE.h"
#include "llvm/ADT/StringRef.h"
void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
DIEArray &die_offsets) {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i)
die_offsets.emplace_back(die_info_array[i]);
}
void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
const dw_tag_t tag,
DIEArray &die_offsets) {
if (tag == 0) {
ExtractDIEArray(die_info_array, die_offsets);
} else {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
const dw_tag_t die_tag = die_info_array[i].tag;
bool tag_matches = die_tag == 0 || tag == die_tag;
if (!tag_matches) {
if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
tag_matches =
tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
}
if (tag_matches)
die_offsets.emplace_back(die_info_array[i]);
}
}
}
void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
const dw_tag_t tag,
const uint32_t qualified_name_hash,
DIEArray &die_offsets) {
if (tag == 0) {
ExtractDIEArray(die_info_array, die_offsets);
} else {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
if (qualified_name_hash != die_info_array[i].qualified_name_hash)
continue;
const dw_tag_t die_tag = die_info_array[i].tag;
bool tag_matches = die_tag == 0 || tag == die_tag;
if (!tag_matches) {
if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
tag_matches =
tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
}
if (tag_matches)
die_offsets.emplace_back(die_info_array[i]);
}
}
}
void DWARFMappedHash::ExtractClassOrStructDIEArray(
const DIEInfoArray &die_info_array,
bool return_implementation_only_if_available, DIEArray &die_offsets) {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
const dw_tag_t die_tag = die_info_array[i].tag;
if (die_tag == 0 || die_tag == DW_TAG_class_type ||
die_tag == DW_TAG_structure_type) {
if (die_info_array[i].type_flags & eTypeFlagClassIsImplementation) {
if (return_implementation_only_if_available) {
// We found the one true definition for this class, so only return
// that
die_offsets.clear();
die_offsets.emplace_back(die_info_array[i]);
return;
} else {
// Put the one true definition as the first entry so it matches first
die_offsets.emplace(die_offsets.begin(), die_info_array[i]);
}
} else {
die_offsets.emplace_back(die_info_array[i]);
}
}
}
}
void DWARFMappedHash::ExtractTypesFromDIEArray(
const DIEInfoArray &die_info_array, uint32_t type_flag_mask,
uint32_t type_flag_value, DIEArray &die_offsets) {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
if ((die_info_array[i].type_flags & type_flag_mask) == type_flag_value)
die_offsets.emplace_back(die_info_array[i]);
}
}
const char *DWARFMappedHash::GetAtomTypeName(uint16_t atom) {
switch (atom) {
case eAtomTypeNULL:
return "NULL";
case eAtomTypeDIEOffset:
return "die-offset";
case eAtomTypeCUOffset:
return "cu-offset";
case eAtomTypeTag:
return "die-tag";
case eAtomTypeNameFlags:
return "name-flags";
case eAtomTypeTypeFlags:
return "type-flags";
case eAtomTypeQualNameHash:
return "qualified-name-hash";
}
return "<invalid>";
}
DWARFMappedHash::DIEInfo::DIEInfo(dw_offset_t o, dw_tag_t t, uint32_t f,
uint32_t h)
: die_offset(o), tag(t), type_flags(f), qualified_name_hash(h) {}
DWARFMappedHash::Prologue::Prologue(dw_offset_t _die_base_offset)
: die_base_offset(_die_base_offset), atoms(), atom_mask(0),
min_hash_data_byte_size(0), hash_data_has_fixed_byte_size(true) {
// Define an array of DIE offsets by first defining an array, and then define
// the atom type for the array, in this case we have an array of DIE offsets.
AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
}
void DWARFMappedHash::Prologue::ClearAtoms() {
hash_data_has_fixed_byte_size = true;
min_hash_data_byte_size = 0;
atom_mask = 0;
atoms.clear();
}
bool DWARFMappedHash::Prologue::ContainsAtom(AtomType atom_type) const {
return (atom_mask & (1u << atom_type)) != 0;
}
void DWARFMappedHash::Prologue::Clear() {
die_base_offset = 0;
ClearAtoms();
}
void DWARFMappedHash::Prologue::AppendAtom(AtomType type, dw_form_t form) {
atoms.push_back({type, form});
atom_mask |= 1u << type;
switch (form) {
case DW_FORM_indirect:
case DW_FORM_exprloc:
case DW_FORM_flag_present:
case DW_FORM_ref_sig8:
llvm_unreachable("Unhandled atom form");
case DW_FORM_addrx:
case DW_FORM_string:
case DW_FORM_block:
case DW_FORM_block1:
case DW_FORM_sdata:
case DW_FORM_udata:
case DW_FORM_ref_udata:
case DW_FORM_GNU_addr_index:
case DW_FORM_GNU_str_index:
hash_data_has_fixed_byte_size = false;
LLVM_FALLTHROUGH;
case DW_FORM_flag:
case DW_FORM_data1:
case DW_FORM_ref1:
case DW_FORM_sec_offset:
min_hash_data_byte_size += 1;
break;
case DW_FORM_block2:
hash_data_has_fixed_byte_size = false;
LLVM_FALLTHROUGH;
case DW_FORM_data2:
case DW_FORM_ref2:
min_hash_data_byte_size += 2;
break;
case DW_FORM_block4:
hash_data_has_fixed_byte_size = false;
LLVM_FALLTHROUGH;
case DW_FORM_data4:
case DW_FORM_ref4:
case DW_FORM_addr:
case DW_FORM_ref_addr:
case DW_FORM_strp:
min_hash_data_byte_size += 4;
break;
case DW_FORM_data8:
case DW_FORM_ref8:
min_hash_data_byte_size += 8;
break;
}
}
lldb::offset_t
DWARFMappedHash::Prologue::Read(const lldb_private::DataExtractor &data,
lldb::offset_t offset) {
ClearAtoms();
die_base_offset = data.GetU32(&offset);
const uint32_t atom_count = data.GetU32(&offset);
if (atom_count == 0x00060003u) {
// Old format, deal with contents of old pre-release format.
while (data.GetU32(&offset)) {
/* do nothing */;
}
// Hardcode to the only known value for now.
AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
} else {
for (uint32_t i = 0; i < atom_count; ++i) {
AtomType type = (AtomType)data.GetU16(&offset);
dw_form_t form = (dw_form_t)data.GetU16(&offset);
AppendAtom(type, form);
}
}
return offset;
}
size_t DWARFMappedHash::Prologue::GetByteSize() const {
// Add an extra count to the atoms size for the zero termination Atom that
// gets written to disk.
return sizeof(die_base_offset) + sizeof(uint32_t) +
atoms.size() * sizeof(Atom);
}
size_t DWARFMappedHash::Prologue::GetMinimumHashDataByteSize() const {
return min_hash_data_byte_size;
}
bool DWARFMappedHash::Prologue::HashDataHasFixedByteSize() const {
return hash_data_has_fixed_byte_size;
}
size_t DWARFMappedHash::Header::GetByteSize(const HeaderData &header_data) {
return header_data.GetByteSize();
}
lldb::offset_t DWARFMappedHash::Header::Read(lldb_private::DataExtractor &data,
lldb::offset_t offset) {
offset = MappedHash::Header<Prologue>::Read(data, offset);
if (offset != UINT32_MAX) {
offset = header_data.Read(data, offset);
}
return offset;
}
bool DWARFMappedHash::Header::Read(const lldb_private::DWARFDataExtractor &data,
lldb::offset_t *offset_ptr,
DIEInfo &hash_data) const {
const size_t num_atoms = header_data.atoms.size();
if (num_atoms == 0)
return false;
for (size_t i = 0; i < num_atoms; ++i) {
DWARFFormValue form_value(nullptr, header_data.atoms[i].form);
if (!form_value.ExtractValue(data, offset_ptr))
return false;
switch (header_data.atoms[i].type) {
case eAtomTypeDIEOffset: // DIE offset, check form for encoding
hash_data.die_offset =
DWARFFormValue::IsDataForm(form_value.Form())
? form_value.Unsigned()
: form_value.Reference(header_data.die_base_offset);
break;
case eAtomTypeTag: // DW_TAG value for the DIE
hash_data.tag = (dw_tag_t)form_value.Unsigned();
break;
case eAtomTypeTypeFlags: // Flags from enum TypeFlags
hash_data.type_flags = (uint32_t)form_value.Unsigned();
break;
case eAtomTypeQualNameHash: // Flags from enum TypeFlags
hash_data.qualified_name_hash = form_value.Unsigned();
break;
default:
// We can always skip atoms we don't know about.
break;
}
}
return hash_data.die_offset != DW_INVALID_OFFSET;
}
DWARFMappedHash::MemoryTable::MemoryTable(
lldb_private::DWARFDataExtractor &table_data,
const lldb_private::DWARFDataExtractor &string_table, const char *name)
: MappedHash::MemoryTable<uint32_t, Header, DIEInfoArray>(table_data),
m_data(table_data), m_string_table(string_table), m_name(name) {}
const char *
DWARFMappedHash::MemoryTable::GetStringForKeyType(KeyType key) const {
// The key in the DWARF table is the .debug_str offset for the string
return m_string_table.PeekCStr(key);
}
bool DWARFMappedHash::MemoryTable::ReadHashData(uint32_t hash_data_offset,
HashData &hash_data) const {
lldb::offset_t offset = hash_data_offset;
// Skip string table offset that contains offset of hash name in .debug_str.
offset += 4;
const uint32_t count = m_data.GetU32(&offset);
if (count > 0) {
hash_data.resize(count);
for (uint32_t i = 0; i < count; ++i) {
if (!m_header.Read(m_data, &offset, hash_data[i]))
return false;
}
} else
hash_data.clear();
return true;
}
DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::GetHashDataForName(
llvm::StringRef name, lldb::offset_t *hash_data_offset_ptr,
Pair &pair) const {
pair.key = m_data.GetU32(hash_data_offset_ptr);
pair.value.clear();
// If the key is zero, this terminates our chain of HashData objects for this
// hash value.
if (pair.key == 0)
return eResultEndOfHashData;
// There definitely should be a string for this string offset, if there
// isn't, there is something wrong, return and error.
const char *strp_cstr = m_string_table.PeekCStr(pair.key);
if (strp_cstr == nullptr) {
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
const size_t min_total_hash_data_size =
count * m_header.header_data.GetMinimumHashDataByteSize();
if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
min_total_hash_data_size)) {
// We have at least one HashData entry, and we have enough data to parse at
// least "count" HashData entries.
// First make sure the entire C string matches...
const bool match = name == strp_cstr;
if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
// If the string doesn't match and we have fixed size data, we can just
// add the total byte size of all HashData objects to the hash data
// offset and be done...
*hash_data_offset_ptr += min_total_hash_data_size;
} else {
// If the string does match, or we don't have fixed size data then we
// need to read the hash data as a stream. If the string matches we also
// append all HashData objects to the value array.
for (uint32_t i = 0; i < count; ++i) {
DIEInfo die_info;
if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
// Only happened if the HashData of the string matched...
if (match)
pair.value.push_back(die_info);
} else {
// Something went wrong while reading the data.
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
}
// Return the correct response depending on if the string matched or not...
if (match) {
// The key (cstring) matches and we have lookup results!
return eResultKeyMatch;
} else {
// The key doesn't match, this function will get called again for the
// next key/value or the key terminator which in our case is a zero
// .debug_str offset.
return eResultKeyMismatch;
}
} else {
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::AppendHashDataForRegularExpression(
const lldb_private::RegularExpression &regex,
lldb::offset_t *hash_data_offset_ptr, Pair &pair) const {
pair.key = m_data.GetU32(hash_data_offset_ptr);
// If the key is zero, this terminates our chain of HashData objects for this
// hash value.
if (pair.key == 0)
return eResultEndOfHashData;
// There definitely should be a string for this string offset, if there
// isn't, there is something wrong, return and error.
const char *strp_cstr = m_string_table.PeekCStr(pair.key);
if (strp_cstr == nullptr)
return eResultError;
const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
const size_t min_total_hash_data_size =
count * m_header.header_data.GetMinimumHashDataByteSize();
if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
min_total_hash_data_size)) {
const bool match = regex.Execute(llvm::StringRef(strp_cstr));
if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
// If the regex doesn't match and we have fixed size data, we can just
// add the total byte size of all HashData objects to the hash data
// offset and be done...
*hash_data_offset_ptr += min_total_hash_data_size;
} else {
// If the string does match, or we don't have fixed size data then we
// need to read the hash data as a stream. If the string matches we also
// append all HashData objects to the value array.
for (uint32_t i = 0; i < count; ++i) {
DIEInfo die_info;
if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
// Only happened if the HashData of the string matched...
if (match)
pair.value.push_back(die_info);
} else {
// Something went wrong while reading the data
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
}
// Return the correct response depending on if the string matched or not...
if (match) {
// The key (cstring) matches and we have lookup results!
return eResultKeyMatch;
} else {
// The key doesn't match, this function will get called again for the
// next key/value or the key terminator which in our case is a zero
// .debug_str offset.
return eResultKeyMismatch;
}
} else {
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
size_t DWARFMappedHash::MemoryTable::AppendAllDIEsThatMatchingRegex(
const lldb_private::RegularExpression &regex,
DIEInfoArray &die_info_array) const {
const uint32_t hash_count = m_header.hashes_count;
Pair pair;
for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
while (hash_data_offset != UINT32_MAX) {
const lldb::offset_t prev_hash_data_offset = hash_data_offset;
Result hash_result =
AppendHashDataForRegularExpression(regex, &hash_data_offset, pair);
if (prev_hash_data_offset == hash_data_offset)
break;
// Check the result of getting our hash data.
switch (hash_result) {
case eResultKeyMatch:
case eResultKeyMismatch:
// Whether we matches or not, it doesn't matter, we keep looking.
break;
case eResultEndOfHashData:
case eResultError:
hash_data_offset = UINT32_MAX;
break;
}
}
}
die_info_array.swap(pair.value);
return die_info_array.size();
}
size_t DWARFMappedHash::MemoryTable::AppendAllDIEsInRange(
const uint32_t die_offset_start, const uint32_t die_offset_end,
DIEInfoArray &die_info_array) const {
const uint32_t hash_count = m_header.hashes_count;
for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
bool done = false;
lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
while (!done && hash_data_offset != UINT32_MAX) {
KeyType key = m_data.GetU32(&hash_data_offset);
// If the key is zero, this terminates our chain of HashData objects for
// this hash value.
if (key == 0)
break;
const uint32_t count = m_data.GetU32(&hash_data_offset);
for (uint32_t i = 0; i < count; ++i) {
DIEInfo die_info;
if (m_header.Read(m_data, &hash_data_offset, die_info)) {
if (die_info.die_offset == 0)
done = true;
if (die_offset_start <= die_info.die_offset &&
die_info.die_offset < die_offset_end)
die_info_array.push_back(die_info);
}
}
}
}
return die_info_array.size();
}
size_t DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
DIEArray &die_offsets) {
if (name.empty())
return 0;
DIEInfoArray die_info_array;
if (FindByName(name, die_info_array))
DWARFMappedHash::ExtractDIEArray(die_info_array, die_offsets);
return die_info_array.size();
}
size_t DWARFMappedHash::MemoryTable::FindByNameAndTag(llvm::StringRef name,
const dw_tag_t tag,
DIEArray &die_offsets) {
DIEInfoArray die_info_array;
if (FindByName(name, die_info_array))
DWARFMappedHash::ExtractDIEArray(die_info_array, tag, die_offsets);
return die_info_array.size();
}
size_t DWARFMappedHash::MemoryTable::FindByNameAndTagAndQualifiedNameHash(
llvm::StringRef name, const dw_tag_t tag,
const uint32_t qualified_name_hash, DIEArray &die_offsets) {
DIEInfoArray die_info_array;
if (FindByName(name, die_info_array))
DWARFMappedHash::ExtractDIEArray(die_info_array, tag, qualified_name_hash,
die_offsets);
return die_info_array.size();
}
size_t DWARFMappedHash::MemoryTable::FindCompleteObjCClassByName(
llvm::StringRef name, DIEArray &die_offsets, bool must_be_implementation) {
DIEInfoArray die_info_array;
if (FindByName(name, die_info_array)) {
if (must_be_implementation &&
GetHeader().header_data.ContainsAtom(eAtomTypeTypeFlags)) {
// If we have two atoms, then we have the DIE offset and the type flags
// so we can find the objective C class efficiently.
DWARFMappedHash::ExtractTypesFromDIEArray(die_info_array, UINT32_MAX,
eTypeFlagClassIsImplementation,
die_offsets);
} else {
// We don't only want the one true definition, so try and see what we can
// find, and only return class or struct DIEs. If we do have the full
// implementation, then return it alone, else return all possible
// matches.
const bool return_implementation_only_if_available = true;
DWARFMappedHash::ExtractClassOrStructDIEArray(
die_info_array, return_implementation_only_if_available, die_offsets);
}
}
return die_offsets.size();
}
size_t DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
DIEInfoArray &die_info_array) {
if (name.empty())
return 0;
Pair kv_pair;
size_t old_size = die_info_array.size();
if (Find(name, kv_pair)) {
die_info_array.swap(kv_pair.value);
return die_info_array.size() - old_size;
}
return 0;
}