llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.h

531 lines
25 KiB
C++

//===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/MachineValueType.h"
#include <cstdint>
#include <vector>
#define GET_INSTRINFO_HEADER
#include "HexagonGenInstrInfo.inc"
namespace llvm {
class HexagonSubtarget;
class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineInstr;
class MachineOperand;
class TargetRegisterInfo;
class HexagonInstrInfo : public HexagonGenInstrInfo {
const HexagonSubtarget &Subtarget;
enum BundleAttribute {
memShufDisabledMask = 0x4
};
virtual void anchor();
public:
explicit HexagonInstrInfo(HexagonSubtarget &ST);
/// TargetInstrInfo overrides.
/// If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
/// If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
/// Check if the instruction or the bundle of instructions has
/// load from stack slots. Return the frameindex and machine memory operand
/// if true.
bool hasLoadFromStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
/// Check if the instruction or the bundle of instructions has
/// store to stack slots. Return the frameindex and machine memory operand
/// if true.
bool hasStoreToStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
/// Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target). Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
/// just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
/// the destination block.
/// 3. If this block ends with a conditional branch and it falls through to a
/// successor block, it sets TBB to be the branch destination block and a
/// list of operands that evaluate the condition. These operands can be
/// passed to other TargetInstrInfo methods to create new branches.
/// 4. If this block ends with a conditional branch followed by an
/// unconditional branch, it returns the 'true' destination in TBB, the
/// 'false' destination in FBB, and a list of operands that evaluate the
/// condition. These operands can be passed to other TargetInstrInfo
/// methods to create new branches.
///
/// Note that removeBranch and insertBranch must be implemented to support
/// cases where this method returns success.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const override;
/// Remove the branching code at the end of the specific MBB.
/// This is only invoked in cases where analyzeBranch returns success. It
/// returns the number of instructions that were removed.
unsigned removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved = nullptr) const override;
/// Insert branch code into the end of the specified MachineBasicBlock.
/// The operands to this method are the same as those
/// returned by analyzeBranch. This is only invoked in cases where
/// analyzeBranch returns success. It returns the number of instructions
/// inserted.
///
/// It is also invoked by tail merging to add unconditional branches in
/// cases where analyzeBranch doesn't apply because there was no original
/// branch to analyze. At least this much must be implemented, else tail
/// merging needs to be disabled.
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded = nullptr) const override;
/// Analyze loop L, which must be a single-basic-block loop, and if the
/// conditions can be understood enough produce a PipelinerLoopInfo object.
std::unique_ptr<PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
/// Return true if it's profitable to predicate
/// instructions with accumulated instruction latency of "NumCycles"
/// of the specified basic block, where the probability of the instructions
/// being executed is given by Probability, and Confidence is a measure
/// of our confidence that it will be properly predicted.
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
unsigned ExtraPredCycles,
BranchProbability Probability) const override;
/// Second variant of isProfitableToIfCvt. This one
/// checks for the case where two basic blocks from true and false path
/// of a if-then-else (diamond) are predicated on mutally exclusive
/// predicates, where the probability of the true path being taken is given
/// by Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles, unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles, unsigned ExtraFCycles,
BranchProbability Probability) const override;
/// Return true if it's profitable for if-converter to duplicate instructions
/// of specified accumulated instruction latencies in the specified MBB to
/// enable if-conversion.
/// The probability of the instructions being executed is given by
/// Probability, and Confidence is a measure of our confidence that it
/// will be properly predicted.
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const override;
/// Emit instructions to copy a pair of physical registers.
///
/// This function should support copies within any legal register class as
/// well as any cross-class copies created during instruction selection.
///
/// The source and destination registers may overlap, which may require a
/// careful implementation when multiple copy instructions are required for
/// large registers. See for example the ARM target.
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
bool KillSrc) const override;
/// Store the specified register of the given register class to the specified
/// stack frame index. The store instruction is to be added to the given
/// machine basic block before the specified machine instruction. If isKill
/// is true, the register operand is the last use and must be marked kill.
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
Register SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
/// Load the specified register of the given register class from the specified
/// stack frame index. The load instruction is to be added to the given
/// machine basic block before the specified machine instruction.
void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
Register DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
/// This function is called for all pseudo instructions
/// that remain after register allocation. Many pseudo instructions are
/// created to help register allocation. This is the place to convert them
/// into real instructions. The target can edit MI in place, or it can insert
/// new instructions and erase MI. The function should return true if
/// anything was changed.
bool expandPostRAPseudo(MachineInstr &MI) const override;
/// Get the base register and byte offset of a load/store instr.
bool getMemOperandsWithOffsetWidth(
const MachineInstr &LdSt,
SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
bool &OffsetIsScalable, unsigned &Width,
const TargetRegisterInfo *TRI) const override;
/// Reverses the branch condition of the specified condition list,
/// returning false on success and true if it cannot be reversed.
bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
const override;
/// Insert a noop into the instruction stream at the specified point.
void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const override;
/// Returns true if the instruction is already predicated.
bool isPredicated(const MachineInstr &MI) const override;
/// Return true for post-incremented instructions.
bool isPostIncrement(const MachineInstr &MI) const override;
/// Convert the instruction into a predicated instruction.
/// It returns true if the operation was successful.
bool PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Cond) const override;
/// Returns true if the first specified predicate
/// subsumes the second, e.g. GE subsumes GT.
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const override;
/// If the specified instruction defines any predicate
/// or condition code register(s) used for predication, returns true as well
/// as the definition predicate(s) by reference.
bool DefinesPredicate(MachineInstr &MI,
std::vector<MachineOperand> &Pred) const override;
/// Return true if the specified instruction can be predicated.
/// By default, this returns true for every instruction with a
/// PredicateOperand.
bool isPredicable(const MachineInstr &MI) const override;
/// Test if the given instruction should be considered a scheduling boundary.
/// This primarily includes labels and terminators.
bool isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const override;
/// Measure the specified inline asm to determine an approximation of its
/// length.
unsigned getInlineAsmLength(
const char *Str,
const MCAsmInfo &MAI,
const TargetSubtargetInfo *STI = nullptr) const override;
/// Allocate and return a hazard recognizer to use for this target when
/// scheduling the machine instructions after register allocation.
ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const override;
/// For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int &Mask, int &Value) const override;
/// Compute the instruction latency of a given instruction.
/// If the instruction has higher cost when predicated, it's returned via
/// PredCost.
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost = nullptr) const override;
/// Create machine specific model for scheduling.
DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
// Sometimes, it is possible for the target
// to tell, even without aliasing information, that two MIs access different
// memory addresses. This function returns true if two MIs access different
// memory addresses and false otherwise.
bool
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
const MachineInstr &MIb) const override;
/// For instructions with a base and offset, return the position of the
/// base register and offset operands.
bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
unsigned &OffsetPos) const override;
/// If the instruction is an increment of a constant value, return the amount.
bool getIncrementValue(const MachineInstr &MI, int &Value) const override;
/// getOperandLatency - Compute and return the use operand latency of a given
/// pair of def and use.
/// In most cases, the static scheduling itinerary was enough to determine the
/// operand latency. But it may not be possible for instructions with variable
/// number of defs / uses.
///
/// This is a raw interface to the itinerary that may be directly overriden by
/// a target. Use computeOperandLatency to get the best estimate of latency.
int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI, unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const override;
/// Decompose the machine operand's target flags into two values - the direct
/// target flag value and any of bit flags that are applied.
std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
/// Return an array that contains the direct target flag values and their
/// names.
///
/// MIR Serialization is able to serialize only the target flags that are
/// defined by this method.
ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const override;
/// Return an array that contains the bitmask target flag values and their
/// names.
///
/// MIR Serialization is able to serialize only the target flags that are
/// defined by this method.
ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const override;
bool isTailCall(const MachineInstr &MI) const override;
/// HexagonInstrInfo specifics.
unsigned createVR(MachineFunction *MF, MVT VT) const;
MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
MachineBasicBlock *TargetBB,
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
bool isAbsoluteSet(const MachineInstr &MI) const;
bool isAccumulator(const MachineInstr &MI) const;
bool isAddrModeWithOffset(const MachineInstr &MI) const;
bool isBaseImmOffset(const MachineInstr &MI) const;
bool isComplex(const MachineInstr &MI) const;
bool isCompoundBranchInstr(const MachineInstr &MI) const;
bool isConstExtended(const MachineInstr &MI) const;
bool isDeallocRet(const MachineInstr &MI) const;
bool isDependent(const MachineInstr &ProdMI,
const MachineInstr &ConsMI) const;
bool isDotCurInst(const MachineInstr &MI) const;
bool isDotNewInst(const MachineInstr &MI) const;
bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
bool isEarlySourceInstr(const MachineInstr &MI) const;
bool isEndLoopN(unsigned Opcode) const;
bool isExpr(unsigned OpType) const;
bool isExtendable(const MachineInstr &MI) const;
bool isExtended(const MachineInstr &MI) const;
bool isFloat(const MachineInstr &MI) const;
bool isHVXMemWithAIndirect(const MachineInstr &I,
const MachineInstr &J) const;
bool isIndirectCall(const MachineInstr &MI) const;
bool isIndirectL4Return(const MachineInstr &MI) const;
bool isJumpR(const MachineInstr &MI) const;
bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
const MachineInstr &ESMI) const;
bool isLateResultInstr(const MachineInstr &MI) const;
bool isLateSourceInstr(const MachineInstr &MI) const;
bool isLoopN(const MachineInstr &MI) const;
bool isMemOp(const MachineInstr &MI) const;
bool isNewValue(const MachineInstr &MI) const;
bool isNewValue(unsigned Opcode) const;
bool isNewValueInst(const MachineInstr &MI) const;
bool isNewValueJump(const MachineInstr &MI) const;
bool isNewValueJump(unsigned Opcode) const;
bool isNewValueStore(const MachineInstr &MI) const;
bool isNewValueStore(unsigned Opcode) const;
bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
bool isPredicatedNew(const MachineInstr &MI) const;
bool isPredicatedNew(unsigned Opcode) const;
bool isPredicatedTrue(const MachineInstr &MI) const;
bool isPredicatedTrue(unsigned Opcode) const;
bool isPredicated(unsigned Opcode) const;
bool isPredicateLate(unsigned Opcode) const;
bool isPredictedTaken(unsigned Opcode) const;
bool isPureSlot0(const MachineInstr &MI) const;
bool isRestrictNoSlot1Store(const MachineInstr &MI) const;
bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
bool isSignExtendingLoad(const MachineInstr &MI) const;
bool isSolo(const MachineInstr &MI) const;
bool isSpillPredRegOp(const MachineInstr &MI) const;
bool isTC1(const MachineInstr &MI) const;
bool isTC2(const MachineInstr &MI) const;
bool isTC2Early(const MachineInstr &MI) const;
bool isTC4x(const MachineInstr &MI) const;
bool isToBeScheduledASAP(const MachineInstr &MI1,
const MachineInstr &MI2) const;
bool isHVXVec(const MachineInstr &MI) const;
bool isValidAutoIncImm(const EVT VT, const int Offset) const;
bool isValidOffset(unsigned Opcode, int Offset,
const TargetRegisterInfo *TRI, bool Extend = true) const;
bool isVecAcc(const MachineInstr &MI) const;
bool isVecALU(const MachineInstr &MI) const;
bool isVecUsableNextPacket(const MachineInstr &ProdMI,
const MachineInstr &ConsMI) const;
bool isZeroExtendingLoad(const MachineInstr &MI) const;
bool addLatencyToSchedule(const MachineInstr &MI1,
const MachineInstr &MI2) const;
bool canExecuteInBundle(const MachineInstr &First,
const MachineInstr &Second) const;
bool doesNotReturn(const MachineInstr &CallMI) const;
bool hasEHLabel(const MachineBasicBlock *B) const;
bool hasNonExtEquivalent(const MachineInstr &MI) const;
bool hasPseudoInstrPair(const MachineInstr &MI) const;
bool hasUncondBranch(const MachineBasicBlock *B) const;
bool mayBeCurLoad(const MachineInstr &MI) const;
bool mayBeNewStore(const MachineInstr &MI) const;
bool producesStall(const MachineInstr &ProdMI,
const MachineInstr &ConsMI) const;
bool producesStall(const MachineInstr &MI,
MachineBasicBlock::const_instr_iterator MII) const;
bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
bool PredOpcodeHasJMP_c(unsigned Opcode) const;
bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
unsigned getAddrMode(const MachineInstr &MI) const;
MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset,
unsigned &AccessSize) const;
SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
unsigned getCExtOpNum(const MachineInstr &MI) const;
HexagonII::CompoundGroup
getCompoundCandidateGroup(const MachineInstr &MI) const;
unsigned getCompoundOpcode(const MachineInstr &GA,
const MachineInstr &GB) const;
int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const;
int getCondOpcode(int Opc, bool sense) const;
int getDotCurOp(const MachineInstr &MI) const;
int getNonDotCurOp(const MachineInstr &MI) const;
int getDotNewOp(const MachineInstr &MI) const;
int getDotNewPredJumpOp(const MachineInstr &MI,
const MachineBranchProbabilityInfo *MBPI) const;
int getDotNewPredOp(const MachineInstr &MI,
const MachineBranchProbabilityInfo *MBPI) const;
int getDotOldOp(const MachineInstr &MI) const;
HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
const;
short getEquivalentHWInstr(const MachineInstr &MI) const;
unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI) const;
bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
unsigned getInvertedPredicatedOpcode(const int Opc) const;
int getMaxValue(const MachineInstr &MI) const;
unsigned getMemAccessSize(const MachineInstr &MI) const;
int getMinValue(const MachineInstr &MI) const;
short getNonExtOpcode(const MachineInstr &MI) const;
bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
unsigned &PredRegPos, unsigned &PredRegFlags) const;
short getPseudoInstrPair(const MachineInstr &MI) const;
short getRegForm(const MachineInstr &MI) const;
unsigned getSize(const MachineInstr &MI) const;
uint64_t getType(const MachineInstr &MI) const;
InstrStage::FuncUnits getUnits(const MachineInstr &MI) const;
MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const;
/// getInstrTimingClassLatency - Compute the instruction latency of a given
/// instruction using Timing Class information, if available.
unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
void immediateExtend(MachineInstr &MI) const;
bool invertAndChangeJumpTarget(MachineInstr &MI,
MachineBasicBlock *NewTarget) const;
void genAllInsnTimingClasses(MachineFunction &MF) const;
bool reversePredSense(MachineInstr &MI) const;
unsigned reversePrediction(unsigned Opcode) const;
bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const;
bool getBundleNoShuf(const MachineInstr &MIB) const;
// When TinyCore with Duplexes is enabled, this function is used to translate
// tiny-instructions to big-instructions and vice versa to get the slot
// consumption.
void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII,
bool ToBigInstrs) const;
void translateInstrsForDup(MachineFunction &MF,
bool ToBigInstrs = true) const;
void translateInstrsForDup(MachineBasicBlock::instr_iterator MII,
bool ToBigInstrs) const;
// Addressing mode relations.
short changeAddrMode_abs_io(short Opc) const;
short changeAddrMode_io_abs(short Opc) const;
short changeAddrMode_io_pi(short Opc) const;
short changeAddrMode_io_rr(short Opc) const;
short changeAddrMode_pi_io(short Opc) const;
short changeAddrMode_rr_io(short Opc) const;
short changeAddrMode_rr_ur(short Opc) const;
short changeAddrMode_ur_rr(short Opc) const;
short changeAddrMode_abs_io(const MachineInstr &MI) const {
return changeAddrMode_abs_io(MI.getOpcode());
}
short changeAddrMode_io_abs(const MachineInstr &MI) const {
return changeAddrMode_io_abs(MI.getOpcode());
}
short changeAddrMode_io_rr(const MachineInstr &MI) const {
return changeAddrMode_io_rr(MI.getOpcode());
}
short changeAddrMode_rr_io(const MachineInstr &MI) const {
return changeAddrMode_rr_io(MI.getOpcode());
}
short changeAddrMode_rr_ur(const MachineInstr &MI) const {
return changeAddrMode_rr_ur(MI.getOpcode());
}
short changeAddrMode_ur_rr(const MachineInstr &MI) const {
return changeAddrMode_ur_rr(MI.getOpcode());
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H