forked from OSchip/llvm-project
649 lines
23 KiB
C++
649 lines
23 KiB
C++
//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the VirtRegMap class.
|
|
//
|
|
// It also contains implementations of the Spiller interface, which, given a
|
|
// virtual register map and a machine function, eliminates all virtual
|
|
// references by replacing them with physical register references - adding spill
|
|
// code as necessary.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "LiveDebugVariables.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/LiveStacks.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
STATISTIC(NumSpillSlots, "Number of spill slots allocated");
|
|
STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VirtRegMap implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char VirtRegMap::ID = 0;
|
|
|
|
INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
|
|
|
|
bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
|
|
MRI = &mf.getRegInfo();
|
|
TII = mf.getSubtarget().getInstrInfo();
|
|
TRI = mf.getSubtarget().getRegisterInfo();
|
|
MF = &mf;
|
|
|
|
Virt2PhysMap.clear();
|
|
Virt2StackSlotMap.clear();
|
|
Virt2SplitMap.clear();
|
|
Virt2ShapeMap.clear();
|
|
|
|
grow();
|
|
return false;
|
|
}
|
|
|
|
void VirtRegMap::grow() {
|
|
unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
|
|
Virt2PhysMap.resize(NumRegs);
|
|
Virt2StackSlotMap.resize(NumRegs);
|
|
Virt2SplitMap.resize(NumRegs);
|
|
}
|
|
|
|
void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
|
|
assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
|
|
assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
|
|
"attempt to assign physical register to already mapped "
|
|
"virtual register");
|
|
assert(!getRegInfo().isReserved(physReg) &&
|
|
"Attempt to map virtReg to a reserved physReg");
|
|
Virt2PhysMap[virtReg.id()] = physReg;
|
|
}
|
|
|
|
unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
|
|
unsigned Size = TRI->getSpillSize(*RC);
|
|
Align Alignment = TRI->getSpillAlign(*RC);
|
|
// Set preferred alignment if we are still able to realign the stack
|
|
auto &ST = MF->getSubtarget();
|
|
Align CurrentAlign = ST.getFrameLowering()->getStackAlign();
|
|
if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) {
|
|
Alignment = CurrentAlign;
|
|
}
|
|
int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
|
|
++NumSpillSlots;
|
|
return SS;
|
|
}
|
|
|
|
bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
|
|
Register Hint = MRI->getSimpleHint(VirtReg);
|
|
if (!Hint.isValid())
|
|
return false;
|
|
if (Hint.isVirtual())
|
|
Hint = getPhys(Hint);
|
|
return Register(getPhys(VirtReg)) == Hint;
|
|
}
|
|
|
|
bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
|
|
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
|
|
if (Register::isPhysicalRegister(Hint.second))
|
|
return true;
|
|
if (Register::isVirtualRegister(Hint.second))
|
|
return hasPhys(Hint.second);
|
|
return false;
|
|
}
|
|
|
|
int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
|
|
assert(virtReg.isVirtual());
|
|
assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
|
|
"attempt to assign stack slot to already spilled register");
|
|
const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
|
|
return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
|
|
}
|
|
|
|
void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
|
|
assert(virtReg.isVirtual());
|
|
assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
|
|
"attempt to assign stack slot to already spilled register");
|
|
assert((SS >= 0 ||
|
|
(SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
|
|
"illegal fixed frame index");
|
|
Virt2StackSlotMap[virtReg.id()] = SS;
|
|
}
|
|
|
|
void VirtRegMap::print(raw_ostream &OS, const Module*) const {
|
|
OS << "********** REGISTER MAP **********\n";
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = Register::index2VirtReg(i);
|
|
if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
|
|
OS << '[' << printReg(Reg, TRI) << " -> "
|
|
<< printReg(Virt2PhysMap[Reg], TRI) << "] "
|
|
<< TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = Register::index2VirtReg(i);
|
|
if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
|
|
OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
|
|
<< "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
|
|
}
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void VirtRegMap::dump() const {
|
|
print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VirtRegRewriter
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The VirtRegRewriter is the last of the register allocator passes.
|
|
// It rewrites virtual registers to physical registers as specified in the
|
|
// VirtRegMap analysis. It also updates live-in information on basic blocks
|
|
// according to LiveIntervals.
|
|
//
|
|
namespace {
|
|
|
|
class VirtRegRewriter : public MachineFunctionPass {
|
|
MachineFunction *MF;
|
|
const TargetRegisterInfo *TRI;
|
|
const TargetInstrInfo *TII;
|
|
MachineRegisterInfo *MRI;
|
|
SlotIndexes *Indexes;
|
|
LiveIntervals *LIS;
|
|
VirtRegMap *VRM;
|
|
LiveDebugVariables *DebugVars;
|
|
DenseSet<Register> RewriteRegs;
|
|
bool ClearVirtRegs;
|
|
|
|
void rewrite();
|
|
void addMBBLiveIns();
|
|
bool readsUndefSubreg(const MachineOperand &MO) const;
|
|
void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
|
|
void handleIdentityCopy(MachineInstr &MI);
|
|
void expandCopyBundle(MachineInstr &MI) const;
|
|
bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
|
|
|
|
public:
|
|
static char ID;
|
|
VirtRegRewriter(bool ClearVirtRegs_ = true) :
|
|
MachineFunctionPass(ID),
|
|
ClearVirtRegs(ClearVirtRegs_) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
bool runOnMachineFunction(MachineFunction&) override;
|
|
|
|
MachineFunctionProperties getSetProperties() const override {
|
|
if (ClearVirtRegs) {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
return MachineFunctionProperties();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char VirtRegRewriter::ID = 0;
|
|
|
|
char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
|
|
"Virtual Register Rewriter", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
|
|
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
|
|
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
|
|
"Virtual Register Rewriter", false, false)
|
|
|
|
void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addRequired<SlotIndexes>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequired<LiveDebugVariables>();
|
|
AU.addRequired<LiveStacks>();
|
|
AU.addPreserved<LiveStacks>();
|
|
AU.addRequired<VirtRegMap>();
|
|
|
|
if (!ClearVirtRegs)
|
|
AU.addPreserved<LiveDebugVariables>();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
|
|
MF = &fn;
|
|
TRI = MF->getSubtarget().getRegisterInfo();
|
|
TII = MF->getSubtarget().getInstrInfo();
|
|
MRI = &MF->getRegInfo();
|
|
Indexes = &getAnalysis<SlotIndexes>();
|
|
LIS = &getAnalysis<LiveIntervals>();
|
|
VRM = &getAnalysis<VirtRegMap>();
|
|
DebugVars = getAnalysisIfAvailable<LiveDebugVariables>();
|
|
LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
|
|
<< "********** Function: " << MF->getName() << '\n');
|
|
LLVM_DEBUG(VRM->dump());
|
|
|
|
// Add kill flags while we still have virtual registers.
|
|
LIS->addKillFlags(VRM);
|
|
|
|
// Live-in lists on basic blocks are required for physregs.
|
|
addMBBLiveIns();
|
|
|
|
// Rewrite virtual registers.
|
|
rewrite();
|
|
|
|
if (DebugVars && ClearVirtRegs) {
|
|
// Write out new DBG_VALUE instructions.
|
|
|
|
// We only do this if ClearVirtRegs is specified since this should be the
|
|
// final run of the pass and we don't want to emit them multiple times.
|
|
DebugVars->emitDebugValues(VRM);
|
|
|
|
// All machine operands and other references to virtual registers have been
|
|
// replaced. Remove the virtual registers and release all the transient data.
|
|
VRM->clearAllVirt();
|
|
MRI->clearVirtRegs();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
|
|
MCRegister PhysReg) const {
|
|
assert(!LI.empty());
|
|
assert(LI.hasSubRanges());
|
|
|
|
using SubRangeIteratorPair =
|
|
std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
|
|
|
|
SmallVector<SubRangeIteratorPair, 4> SubRanges;
|
|
SlotIndex First;
|
|
SlotIndex Last;
|
|
for (const LiveInterval::SubRange &SR : LI.subranges()) {
|
|
SubRanges.push_back(std::make_pair(&SR, SR.begin()));
|
|
if (!First.isValid() || SR.segments.front().start < First)
|
|
First = SR.segments.front().start;
|
|
if (!Last.isValid() || SR.segments.back().end > Last)
|
|
Last = SR.segments.back().end;
|
|
}
|
|
|
|
// Check all mbb start positions between First and Last while
|
|
// simulatenously advancing an iterator for each subrange.
|
|
for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
|
|
MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
|
|
SlotIndex MBBBegin = MBBI->first;
|
|
// Advance all subrange iterators so that their end position is just
|
|
// behind MBBBegin (or the iterator is at the end).
|
|
LaneBitmask LaneMask;
|
|
for (auto &RangeIterPair : SubRanges) {
|
|
const LiveInterval::SubRange *SR = RangeIterPair.first;
|
|
LiveInterval::const_iterator &SRI = RangeIterPair.second;
|
|
while (SRI != SR->end() && SRI->end <= MBBBegin)
|
|
++SRI;
|
|
if (SRI == SR->end())
|
|
continue;
|
|
if (SRI->start <= MBBBegin)
|
|
LaneMask |= SR->LaneMask;
|
|
}
|
|
if (LaneMask.none())
|
|
continue;
|
|
MachineBasicBlock *MBB = MBBI->second;
|
|
MBB->addLiveIn(PhysReg, LaneMask);
|
|
}
|
|
}
|
|
|
|
// Compute MBB live-in lists from virtual register live ranges and their
|
|
// assignments.
|
|
void VirtRegRewriter::addMBBLiveIns() {
|
|
for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
|
|
Register VirtReg = Register::index2VirtReg(Idx);
|
|
if (MRI->reg_nodbg_empty(VirtReg))
|
|
continue;
|
|
LiveInterval &LI = LIS->getInterval(VirtReg);
|
|
if (LI.empty() || LIS->intervalIsInOneMBB(LI))
|
|
continue;
|
|
// This is a virtual register that is live across basic blocks. Its
|
|
// assigned PhysReg must be marked as live-in to those blocks.
|
|
Register PhysReg = VRM->getPhys(VirtReg);
|
|
if (PhysReg == VirtRegMap::NO_PHYS_REG) {
|
|
// There may be no physical register assigned if only some register
|
|
// classes were already allocated.
|
|
assert(!ClearVirtRegs && "Unmapped virtual register");
|
|
continue;
|
|
}
|
|
|
|
if (LI.hasSubRanges()) {
|
|
addLiveInsForSubRanges(LI, PhysReg);
|
|
} else {
|
|
// Go over MBB begin positions and see if we have segments covering them.
|
|
// The following works because segments and the MBBIndex list are both
|
|
// sorted by slot indexes.
|
|
SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
|
|
for (const auto &Seg : LI) {
|
|
I = Indexes->advanceMBBIndex(I, Seg.start);
|
|
for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
|
|
MachineBasicBlock *MBB = I->second;
|
|
MBB->addLiveIn(PhysReg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
|
|
// each MBB's LiveIns set before calling addLiveIn on them.
|
|
for (MachineBasicBlock &MBB : *MF)
|
|
MBB.sortUniqueLiveIns();
|
|
}
|
|
|
|
/// Returns true if the given machine operand \p MO only reads undefined lanes.
|
|
/// The function only works for use operands with a subregister set.
|
|
bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
|
|
// Shortcut if the operand is already marked undef.
|
|
if (MO.isUndef())
|
|
return true;
|
|
|
|
Register Reg = MO.getReg();
|
|
const LiveInterval &LI = LIS->getInterval(Reg);
|
|
const MachineInstr &MI = *MO.getParent();
|
|
SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
|
|
// This code is only meant to handle reading undefined subregisters which
|
|
// we couldn't properly detect before.
|
|
assert(LI.liveAt(BaseIndex) &&
|
|
"Reads of completely dead register should be marked undef already");
|
|
unsigned SubRegIdx = MO.getSubReg();
|
|
assert(SubRegIdx != 0 && LI.hasSubRanges());
|
|
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
|
|
// See if any of the relevant subregister liveranges is defined at this point.
|
|
for (const LiveInterval::SubRange &SR : LI.subranges()) {
|
|
if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
|
|
if (!MI.isIdentityCopy())
|
|
return;
|
|
LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
|
|
++NumIdCopies;
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
|
|
// We may have deferred allocation of the virtual register, and the rewrite
|
|
// regs code doesn't handle the liveness update.
|
|
if (DstReg.isVirtual())
|
|
return;
|
|
|
|
RewriteRegs.insert(DstReg);
|
|
|
|
// Copies like:
|
|
// %r0 = COPY undef %r0
|
|
// %al = COPY %al, implicit-def %eax
|
|
// give us additional liveness information: The target (super-)register
|
|
// must not be valid before this point. Replace the COPY with a KILL
|
|
// instruction to maintain this information.
|
|
if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
|
|
MI.setDesc(TII->get(TargetOpcode::KILL));
|
|
LLVM_DEBUG(dbgs() << " replace by: " << MI);
|
|
return;
|
|
}
|
|
|
|
if (Indexes)
|
|
Indexes->removeSingleMachineInstrFromMaps(MI);
|
|
MI.eraseFromBundle();
|
|
LLVM_DEBUG(dbgs() << " deleted.\n");
|
|
}
|
|
|
|
/// The liverange splitting logic sometimes produces bundles of copies when
|
|
/// subregisters are involved. Expand these into a sequence of copy instructions
|
|
/// after processing the last in the bundle. Does not update LiveIntervals
|
|
/// which we shouldn't need for this instruction anymore.
|
|
void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
|
|
if (!MI.isCopy() && !MI.isKill())
|
|
return;
|
|
|
|
if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
|
|
SmallVector<MachineInstr *, 2> MIs({&MI});
|
|
|
|
// Only do this when the complete bundle is made out of COPYs and KILLs.
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
for (MachineBasicBlock::reverse_instr_iterator I =
|
|
std::next(MI.getReverseIterator()), E = MBB.instr_rend();
|
|
I != E && I->isBundledWithSucc(); ++I) {
|
|
if (!I->isCopy() && !I->isKill())
|
|
return;
|
|
MIs.push_back(&*I);
|
|
}
|
|
MachineInstr *FirstMI = MIs.back();
|
|
|
|
auto anyRegsAlias = [](const MachineInstr *Dst,
|
|
ArrayRef<MachineInstr *> Srcs,
|
|
const TargetRegisterInfo *TRI) {
|
|
for (const MachineInstr *Src : Srcs)
|
|
if (Src != Dst)
|
|
if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
|
|
Src->getOperand(1).getReg()))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
// If any of the destination registers in the bundle of copies alias any of
|
|
// the source registers, try to schedule the instructions to avoid any
|
|
// clobbering.
|
|
for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
|
|
for (int I = E; I--; )
|
|
if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
|
|
if (I + 1 != E)
|
|
std::swap(MIs[I], MIs[E - 1]);
|
|
--E;
|
|
}
|
|
if (PrevE == E) {
|
|
MF->getFunction().getContext().emitError(
|
|
"register rewriting failed: cycle in copy bundle");
|
|
break;
|
|
}
|
|
}
|
|
|
|
MachineInstr *BundleStart = FirstMI;
|
|
for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
|
|
// If instruction is in the middle of the bundle, move it before the
|
|
// bundle starts, otherwise, just unbundle it. When we get to the last
|
|
// instruction, the bundle will have been completely undone.
|
|
if (BundledMI != BundleStart) {
|
|
BundledMI->removeFromBundle();
|
|
MBB.insert(BundleStart, BundledMI);
|
|
} else if (BundledMI->isBundledWithSucc()) {
|
|
BundledMI->unbundleFromSucc();
|
|
BundleStart = &*std::next(BundledMI->getIterator());
|
|
}
|
|
|
|
if (Indexes && BundledMI != FirstMI)
|
|
Indexes->insertMachineInstrInMaps(*BundledMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check whether (part of) \p SuperPhysReg is live through \p MI.
|
|
/// \pre \p MI defines a subregister of a virtual register that
|
|
/// has been assigned to \p SuperPhysReg.
|
|
bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
|
|
MCRegister SuperPhysReg) const {
|
|
SlotIndex MIIndex = LIS->getInstructionIndex(MI);
|
|
SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
|
|
SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
|
|
for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
|
|
const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
|
|
// If the regunit is live both before and after MI,
|
|
// we assume it is live through.
|
|
// Generally speaking, this is not true, because something like
|
|
// "RU = op RU" would match that description.
|
|
// However, we know that we are trying to assess whether
|
|
// a def of a virtual reg, vreg, is live at the same time of RU.
|
|
// If we are in the "RU = op RU" situation, that means that vreg
|
|
// is defined at the same time as RU (i.e., "vreg, RU = op RU").
|
|
// Thus, vreg and RU interferes and vreg cannot be assigned to
|
|
// SuperPhysReg. Therefore, this situation cannot happen.
|
|
if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VirtRegRewriter::rewrite() {
|
|
bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
|
|
SmallVector<Register, 8> SuperDeads;
|
|
SmallVector<Register, 8> SuperDefs;
|
|
SmallVector<Register, 8> SuperKills;
|
|
|
|
for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
|
|
MBBI != MBBE; ++MBBI) {
|
|
LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
|
|
for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) {
|
|
for (MachineOperand &MO : MI.operands()) {
|
|
// Make sure MRI knows about registers clobbered by regmasks.
|
|
if (MO.isRegMask())
|
|
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
|
|
|
|
if (!MO.isReg() || !MO.getReg().isVirtual())
|
|
continue;
|
|
Register VirtReg = MO.getReg();
|
|
MCRegister PhysReg = VRM->getPhys(VirtReg);
|
|
if (PhysReg == VirtRegMap::NO_PHYS_REG)
|
|
continue;
|
|
|
|
assert(Register(PhysReg).isPhysical());
|
|
|
|
RewriteRegs.insert(PhysReg);
|
|
assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
|
|
|
|
// Preserve semantics of sub-register operands.
|
|
unsigned SubReg = MO.getSubReg();
|
|
if (SubReg != 0) {
|
|
if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
|
|
// A virtual register kill refers to the whole register, so we may
|
|
// have to add implicit killed operands for the super-register. A
|
|
// partial redef always kills and redefines the super-register.
|
|
if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
|
|
(MO.isDef() && subRegLiveThrough(MI, PhysReg)))
|
|
SuperKills.push_back(PhysReg);
|
|
|
|
if (MO.isDef()) {
|
|
// Also add implicit defs for the super-register.
|
|
if (MO.isDead())
|
|
SuperDeads.push_back(PhysReg);
|
|
else
|
|
SuperDefs.push_back(PhysReg);
|
|
}
|
|
} else {
|
|
if (MO.isUse()) {
|
|
if (readsUndefSubreg(MO))
|
|
// We need to add an <undef> flag if the subregister is
|
|
// completely undefined (and we are not adding super-register
|
|
// defs).
|
|
MO.setIsUndef(true);
|
|
} else if (!MO.isDead()) {
|
|
assert(MO.isDef());
|
|
}
|
|
}
|
|
|
|
// The def undef and def internal flags only make sense for
|
|
// sub-register defs, and we are substituting a full physreg. An
|
|
// implicit killed operand from the SuperKills list will represent the
|
|
// partial read of the super-register.
|
|
if (MO.isDef()) {
|
|
MO.setIsUndef(false);
|
|
MO.setIsInternalRead(false);
|
|
}
|
|
|
|
// PhysReg operands cannot have subregister indexes.
|
|
PhysReg = TRI->getSubReg(PhysReg, SubReg);
|
|
assert(PhysReg.isValid() && "Invalid SubReg for physical register");
|
|
MO.setSubReg(0);
|
|
}
|
|
// Rewrite. Note we could have used MachineOperand::substPhysReg(), but
|
|
// we need the inlining here.
|
|
MO.setReg(PhysReg);
|
|
MO.setIsRenamable(true);
|
|
}
|
|
|
|
// Add any missing super-register kills after rewriting the whole
|
|
// instruction.
|
|
while (!SuperKills.empty())
|
|
MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
|
|
|
|
while (!SuperDeads.empty())
|
|
MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
|
|
|
|
while (!SuperDefs.empty())
|
|
MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI);
|
|
|
|
LLVM_DEBUG(dbgs() << "> " << MI);
|
|
|
|
expandCopyBundle(MI);
|
|
|
|
// We can remove identity copies right now.
|
|
handleIdentityCopy(MI);
|
|
}
|
|
}
|
|
|
|
if (LIS) {
|
|
// Don't bother maintaining accurate LiveIntervals for registers which were
|
|
// already allocated.
|
|
for (Register PhysReg : RewriteRegs) {
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid();
|
|
++Units) {
|
|
LIS->removeRegUnit(*Units);
|
|
}
|
|
}
|
|
}
|
|
|
|
RewriteRegs.clear();
|
|
}
|
|
|
|
FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
|
|
return new VirtRegRewriter(ClearVirtRegs);
|
|
}
|