llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp

387 lines
12 KiB
C++

//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;
namespace {
class SIFoldOperands : public MachineFunctionPass {
public:
static char ID;
public:
SIFoldOperands() : MachineFunctionPass(ID) {
initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Fold Operands";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
struct FoldCandidate {
MachineInstr *UseMI;
unsigned UseOpNo;
MachineOperand *OpToFold;
uint64_t ImmToFold;
FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
UseMI(MI), UseOpNo(OpNo) {
if (FoldOp->isImm()) {
OpToFold = nullptr;
ImmToFold = FoldOp->getImm();
} else {
assert(FoldOp->isReg());
OpToFold = FoldOp;
}
}
bool isImm() const {
return !OpToFold;
}
};
} // End anonymous namespace.
INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
char SIFoldOperands::ID = 0;
char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
FunctionPass *llvm::createSIFoldOperandsPass() {
return new SIFoldOperands();
}
static bool isSafeToFold(unsigned Opcode) {
switch(Opcode) {
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
case AMDGPU::V_MOV_B64_PSEUDO:
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::COPY:
return true;
default:
return false;
}
}
static bool updateOperand(FoldCandidate &Fold,
const TargetRegisterInfo &TRI) {
MachineInstr *MI = Fold.UseMI;
MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
assert(Old.isReg());
if (Fold.isImm()) {
Old.ChangeToImmediate(Fold.ImmToFold);
return true;
}
MachineOperand *New = Fold.OpToFold;
if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
TargetRegisterInfo::isVirtualRegister(New->getReg())) {
Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
return true;
}
// FIXME: Handle physical registers.
return false;
}
static bool isUseMIInFoldList(const std::vector<FoldCandidate> &FoldList,
const MachineInstr *MI) {
for (auto Candidate : FoldList) {
if (Candidate.UseMI == MI)
return true;
}
return false;
}
static bool tryAddToFoldList(std::vector<FoldCandidate> &FoldList,
MachineInstr *MI, unsigned OpNo,
MachineOperand *OpToFold,
const SIInstrInfo *TII) {
if (!TII->isOperandLegal(MI, OpNo, OpToFold)) {
// Special case for v_mac_f32_e64 if we are trying to fold into src2
unsigned Opc = MI->getOpcode();
if (Opc == AMDGPU::V_MAC_F32_e64 &&
(int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
// Check if changing this to a v_mad_f32 instruction will allow us to
// fold the operand.
MI->setDesc(TII->get(AMDGPU::V_MAD_F32));
bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
if (FoldAsMAD) {
MI->untieRegOperand(OpNo);
return true;
}
MI->setDesc(TII->get(Opc));
}
// If we are already folding into another operand of MI, then
// we can't commute the instruction, otherwise we risk making the
// other fold illegal.
if (isUseMIInFoldList(FoldList, MI))
return false;
// Operand is not legal, so try to commute the instruction to
// see if this makes it possible to fold.
unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
bool CanCommute = TII->findCommutedOpIndices(MI, CommuteIdx0, CommuteIdx1);
if (CanCommute) {
if (CommuteIdx0 == OpNo)
OpNo = CommuteIdx1;
else if (CommuteIdx1 == OpNo)
OpNo = CommuteIdx0;
}
// One of operands might be an Imm operand, and OpNo may refer to it after
// the call of commuteInstruction() below. Such situations are avoided
// here explicitly as OpNo must be a register operand to be a candidate
// for memory folding.
if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
!MI->getOperand(CommuteIdx1).isReg()))
return false;
if (!CanCommute ||
!TII->commuteInstruction(MI, false, CommuteIdx0, CommuteIdx1))
return false;
if (!TII->isOperandLegal(MI, OpNo, OpToFold))
return false;
}
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
return true;
}
static void foldOperand(MachineOperand &OpToFold, MachineInstr *UseMI,
unsigned UseOpIdx,
std::vector<FoldCandidate> &FoldList,
SmallVectorImpl<MachineInstr *> &CopiesToReplace,
const SIInstrInfo *TII, const SIRegisterInfo &TRI,
MachineRegisterInfo &MRI) {
const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
// FIXME: Fold operands with subregs.
if (UseOp.isReg() && ((UseOp.getSubReg() && OpToFold.isReg()) ||
UseOp.isImplicit())) {
return;
}
bool FoldingImm = OpToFold.isImm();
APInt Imm;
if (FoldingImm) {
unsigned UseReg = UseOp.getReg();
const TargetRegisterClass *UseRC
= TargetRegisterInfo::isVirtualRegister(UseReg) ?
MRI.getRegClass(UseReg) :
TRI.getPhysRegClass(UseReg);
Imm = APInt(64, OpToFold.getImm());
const MCInstrDesc &FoldDesc = TII->get(OpToFold.getParent()->getOpcode());
const TargetRegisterClass *FoldRC =
TRI.getRegClass(FoldDesc.OpInfo[0].RegClass);
// Split 64-bit constants into 32-bits for folding.
if (FoldRC->getSize() == 8 && UseOp.getSubReg()) {
if (UseRC->getSize() != 8)
return;
if (UseOp.getSubReg() == AMDGPU::sub0) {
Imm = Imm.getLoBits(32);
} else {
assert(UseOp.getSubReg() == AMDGPU::sub1);
Imm = Imm.getHiBits(32);
}
}
// In order to fold immediates into copies, we need to change the
// copy to a MOV.
if (UseMI->getOpcode() == AMDGPU::COPY) {
unsigned DestReg = UseMI->getOperand(0).getReg();
const TargetRegisterClass *DestRC
= TargetRegisterInfo::isVirtualRegister(DestReg) ?
MRI.getRegClass(DestReg) :
TRI.getPhysRegClass(DestReg);
unsigned MovOp = TII->getMovOpcode(DestRC);
if (MovOp == AMDGPU::COPY)
return;
UseMI->setDesc(TII->get(MovOp));
CopiesToReplace.push_back(UseMI);
}
}
// Special case for REG_SEQUENCE: We can't fold literals into
// REG_SEQUENCE instructions, so we have to fold them into the
// uses of REG_SEQUENCE.
if (UseMI->getOpcode() == AMDGPU::REG_SEQUENCE) {
unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
for (MachineRegisterInfo::use_iterator
RSUse = MRI.use_begin(RegSeqDstReg),
RSE = MRI.use_end(); RSUse != RSE; ++RSUse) {
MachineInstr *RSUseMI = RSUse->getParent();
if (RSUse->getSubReg() != RegSeqDstSubReg)
continue;
foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
CopiesToReplace, TII, TRI, MRI);
}
return;
}
const MCInstrDesc &UseDesc = UseMI->getDesc();
// Don't fold into target independent nodes. Target independent opcodes
// don't have defined register classes.
if (UseDesc.isVariadic() ||
UseDesc.OpInfo[UseOpIdx].RegClass == -1)
return;
if (FoldingImm) {
MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
return;
}
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
// FIXME: We could try to change the instruction from 64-bit to 32-bit
// to enable more folding opportunites. The shrink operands pass
// already does this.
return;
}
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
if (!isSafeToFold(MI.getOpcode()))
continue;
unsigned OpSize = TII->getOpSize(MI, 1);
MachineOperand &OpToFold = MI.getOperand(1);
bool FoldingImm = OpToFold.isImm();
// FIXME: We could also be folding things like FrameIndexes and
// TargetIndexes.
if (!FoldingImm && !OpToFold.isReg())
continue;
// Folding immediates with more than one use will increase program size.
// FIXME: This will also reduce register usage, which may be better
// in some cases. A better heuristic is needed.
if (FoldingImm && !TII->isInlineConstant(OpToFold, OpSize) &&
!MRI.hasOneUse(MI.getOperand(0).getReg()))
continue;
if (OpToFold.isReg() &&
!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
continue;
// Prevent folding operands backwards in the function. For example,
// the COPY opcode must not be replaced by 1 in this example:
//
// %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3
// ...
// %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use>
MachineOperand &Dst = MI.getOperand(0);
if (Dst.isReg() &&
!TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
continue;
// We need mutate the operands of new mov instructions to add implicit
// uses of EXEC, but adding them invalidates the use_iterator, so defer
// this.
SmallVector<MachineInstr *, 4> CopiesToReplace;
std::vector<FoldCandidate> FoldList;
for (MachineRegisterInfo::use_iterator
Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
Use != E; ++Use) {
MachineInstr *UseMI = Use->getParent();
foldOperand(OpToFold, UseMI, Use.getOperandNo(), FoldList,
CopiesToReplace, TII, TRI, MRI);
}
// Make sure we add EXEC uses to any new v_mov instructions created.
for (MachineInstr *Copy : CopiesToReplace)
Copy->addImplicitDefUseOperands(MF);
for (FoldCandidate &Fold : FoldList) {
if (updateOperand(Fold, TRI)) {
// Clear kill flags.
if (!Fold.isImm()) {
assert(Fold.OpToFold && Fold.OpToFold->isReg());
// FIXME: Probably shouldn't bother trying to fold if not an
// SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
// copies.
MRI.clearKillFlags(Fold.OpToFold->getReg());
}
DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
Fold.UseOpNo << " of " << *Fold.UseMI << '\n');
}
}
}
}
return false;
}