forked from OSchip/llvm-project
2515 lines
104 KiB
C++
2515 lines
104 KiB
C++
//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides a class for OpenMP runtime code generation specialized to NVPTX
|
|
// targets.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGOpenMPRuntimeNVPTX.h"
|
|
#include "clang/AST/DeclOpenMP.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
enum OpenMPRTLFunctionNVPTX {
|
|
/// \brief Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
|
|
/// int16_t RequiresOMPRuntime);
|
|
OMPRTL_NVPTX__kmpc_kernel_init,
|
|
/// \brief Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
|
|
OMPRTL_NVPTX__kmpc_kernel_deinit,
|
|
/// \brief Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
|
|
/// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
|
|
OMPRTL_NVPTX__kmpc_spmd_kernel_init,
|
|
/// \brief Call to void __kmpc_spmd_kernel_deinit();
|
|
OMPRTL_NVPTX__kmpc_spmd_kernel_deinit,
|
|
/// \brief Call to void __kmpc_kernel_prepare_parallel(void
|
|
/// *outlined_function, void ***args, kmp_int32 nArgs, int16_t
|
|
/// IsOMPRuntimeInitialized);
|
|
OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
|
|
/// \brief Call to bool __kmpc_kernel_parallel(void **outlined_function, void
|
|
/// ***args, int16_t IsOMPRuntimeInitialized);
|
|
OMPRTL_NVPTX__kmpc_kernel_parallel,
|
|
/// \brief Call to void __kmpc_kernel_end_parallel();
|
|
OMPRTL_NVPTX__kmpc_kernel_end_parallel,
|
|
/// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
|
|
/// global_tid);
|
|
OMPRTL_NVPTX__kmpc_serialized_parallel,
|
|
/// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
|
|
/// global_tid);
|
|
OMPRTL_NVPTX__kmpc_end_serialized_parallel,
|
|
/// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element,
|
|
/// int16_t lane_offset, int16_t warp_size);
|
|
OMPRTL_NVPTX__kmpc_shuffle_int32,
|
|
/// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element,
|
|
/// int16_t lane_offset, int16_t warp_size);
|
|
OMPRTL_NVPTX__kmpc_shuffle_int64,
|
|
/// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32
|
|
/// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
|
|
/// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
|
|
/// lane_offset, int16_t shortCircuit),
|
|
/// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
|
|
OMPRTL_NVPTX__kmpc_parallel_reduce_nowait,
|
|
/// \brief Call to __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid,
|
|
/// int32_t num_vars, size_t reduce_size, void *reduce_data,
|
|
/// void (*kmp_ShuffleReductFctPtr)(void *rhs, int16_t lane_id, int16_t
|
|
/// lane_offset, int16_t shortCircuit),
|
|
/// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num),
|
|
/// void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad,
|
|
/// int32_t index, int32_t width),
|
|
/// void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, int32_t
|
|
/// index, int32_t width, int32_t reduce))
|
|
OMPRTL_NVPTX__kmpc_teams_reduce_nowait,
|
|
/// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
|
|
OMPRTL_NVPTX__kmpc_end_reduce_nowait
|
|
};
|
|
|
|
/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
|
|
class NVPTXActionTy final : public PrePostActionTy {
|
|
llvm::Value *EnterCallee;
|
|
ArrayRef<llvm::Value *> EnterArgs;
|
|
llvm::Value *ExitCallee;
|
|
ArrayRef<llvm::Value *> ExitArgs;
|
|
bool Conditional;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
public:
|
|
NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
|
|
llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
|
|
bool Conditional = false)
|
|
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
|
|
ExitArgs(ExitArgs), Conditional(Conditional) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
|
|
if (Conditional) {
|
|
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
|
|
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
|
|
ContBlock = CGF.createBasicBlock("omp_if.end");
|
|
// Generate the branch (If-stmt)
|
|
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
|
|
CGF.EmitBlock(ThenBlock);
|
|
}
|
|
}
|
|
void Done(CodeGenFunction &CGF) {
|
|
// Emit the rest of blocks/branches
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
|
|
}
|
|
};
|
|
|
|
// A class to track the execution mode when codegening directives within
|
|
// a target region. The appropriate mode (generic/spmd) is set on entry
|
|
// to the target region and used by containing directives such as 'parallel'
|
|
// to emit optimized code.
|
|
class ExecutionModeRAII {
|
|
private:
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode SavedMode;
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode &Mode;
|
|
|
|
public:
|
|
ExecutionModeRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &Mode,
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode NewMode)
|
|
: Mode(Mode) {
|
|
SavedMode = Mode;
|
|
Mode = NewMode;
|
|
}
|
|
~ExecutionModeRAII() { Mode = SavedMode; }
|
|
};
|
|
|
|
/// GPU Configuration: This information can be derived from cuda registers,
|
|
/// however, providing compile time constants helps generate more efficient
|
|
/// code. For all practical purposes this is fine because the configuration
|
|
/// is the same for all known NVPTX architectures.
|
|
enum MachineConfiguration : unsigned {
|
|
WarpSize = 32,
|
|
/// Number of bits required to represent a lane identifier, which is
|
|
/// computed as log_2(WarpSize).
|
|
LaneIDBits = 5,
|
|
LaneIDMask = WarpSize - 1,
|
|
|
|
/// Global memory alignment for performance.
|
|
GlobalMemoryAlignment = 256,
|
|
};
|
|
|
|
enum NamedBarrier : unsigned {
|
|
/// Synchronize on this barrier #ID using a named barrier primitive.
|
|
/// Only the subset of active threads in a parallel region arrive at the
|
|
/// barrier.
|
|
NB_Parallel = 1,
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Get the GPU warp size.
|
|
static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
|
|
return CGF.EmitRuntimeCall(
|
|
llvm::Intrinsic::getDeclaration(
|
|
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
|
|
"nvptx_warp_size");
|
|
}
|
|
|
|
/// Get the id of the current thread on the GPU.
|
|
static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
|
|
return CGF.EmitRuntimeCall(
|
|
llvm::Intrinsic::getDeclaration(
|
|
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
|
|
"nvptx_tid");
|
|
}
|
|
|
|
/// Get the id of the warp in the block.
|
|
/// We assume that the warp size is 32, which is always the case
|
|
/// on the NVPTX device, to generate more efficient code.
|
|
static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
|
|
}
|
|
|
|
/// Get the id of the current lane in the Warp.
|
|
/// We assume that the warp size is 32, which is always the case
|
|
/// on the NVPTX device, to generate more efficient code.
|
|
static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
|
|
"nvptx_lane_id");
|
|
}
|
|
|
|
/// Get the maximum number of threads in a block of the GPU.
|
|
static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
|
|
return CGF.EmitRuntimeCall(
|
|
llvm::Intrinsic::getDeclaration(
|
|
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
|
|
"nvptx_num_threads");
|
|
}
|
|
|
|
/// Get barrier to synchronize all threads in a block.
|
|
static void getNVPTXCTABarrier(CodeGenFunction &CGF) {
|
|
CGF.EmitRuntimeCall(llvm::Intrinsic::getDeclaration(
|
|
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0));
|
|
}
|
|
|
|
/// Get barrier #ID to synchronize selected (multiple of warp size) threads in
|
|
/// a CTA.
|
|
static void getNVPTXBarrier(CodeGenFunction &CGF, int ID,
|
|
llvm::Value *NumThreads) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads};
|
|
CGF.EmitRuntimeCall(llvm::Intrinsic::getDeclaration(
|
|
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier),
|
|
Args);
|
|
}
|
|
|
|
/// Synchronize all GPU threads in a block.
|
|
static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); }
|
|
|
|
/// Synchronize worker threads in a parallel region.
|
|
static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) {
|
|
return getNVPTXBarrier(CGF, NB_Parallel, NumThreads);
|
|
}
|
|
|
|
/// Get the value of the thread_limit clause in the teams directive.
|
|
/// For the 'generic' execution mode, the runtime encodes thread_limit in
|
|
/// the launch parameters, always starting thread_limit+warpSize threads per
|
|
/// CTA. The threads in the last warp are reserved for master execution.
|
|
/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
|
|
static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
|
|
bool IsInSpmdExecutionMode = false) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
return IsInSpmdExecutionMode
|
|
? getNVPTXNumThreads(CGF)
|
|
: Bld.CreateSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
|
|
"thread_limit");
|
|
}
|
|
|
|
/// Get the thread id of the OMP master thread.
|
|
/// The master thread id is the first thread (lane) of the last warp in the
|
|
/// GPU block. Warp size is assumed to be some power of 2.
|
|
/// Thread id is 0 indexed.
|
|
/// E.g: If NumThreads is 33, master id is 32.
|
|
/// If NumThreads is 64, master id is 32.
|
|
/// If NumThreads is 1024, master id is 992.
|
|
static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
|
|
|
|
// We assume that the warp size is a power of 2.
|
|
llvm::Value *Mask = Bld.CreateSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
|
|
|
|
return Bld.CreateAnd(Bld.CreateSub(NumThreads, Bld.getInt32(1)),
|
|
Bld.CreateNot(Mask), "master_tid");
|
|
}
|
|
|
|
CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
|
|
CodeGenModule &CGM, SourceLocation Loc)
|
|
: WorkerFn(nullptr), CGFI(nullptr), Loc(Loc) {
|
|
createWorkerFunction(CGM);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
|
|
CodeGenModule &CGM) {
|
|
// Create an worker function with no arguments.
|
|
CGFI = &CGM.getTypes().arrangeNullaryFunction();
|
|
|
|
WorkerFn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(*CGFI), llvm::GlobalValue::InternalLinkage,
|
|
/*placeholder=*/"_worker", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, WorkerFn, *CGFI);
|
|
}
|
|
|
|
bool CGOpenMPRuntimeNVPTX::isInSpmdExecutionMode() const {
|
|
return CurrentExecutionMode == CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd;
|
|
}
|
|
|
|
static CGOpenMPRuntimeNVPTX::ExecutionMode
|
|
getExecutionModeForDirective(CodeGenModule &CGM,
|
|
const OMPExecutableDirective &D) {
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
switch (DirectiveKind) {
|
|
case OMPD_target:
|
|
case OMPD_target_teams:
|
|
return CGOpenMPRuntimeNVPTX::ExecutionMode::Generic;
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
return CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd;
|
|
default:
|
|
llvm_unreachable("Unsupported directive on NVPTX device.");
|
|
}
|
|
llvm_unreachable("Unsupported directive on NVPTX device.");
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitGenericKernel(const OMPExecutableDirective &D,
|
|
StringRef ParentName,
|
|
llvm::Function *&OutlinedFn,
|
|
llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
ExecutionModeRAII ModeRAII(CurrentExecutionMode,
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode::Generic);
|
|
EntryFunctionState EST;
|
|
WorkerFunctionState WST(CGM, D.getLocStart());
|
|
Work.clear();
|
|
WrapperFunctionsMap.clear();
|
|
|
|
// Emit target region as a standalone region.
|
|
class NVPTXPrePostActionTy : public PrePostActionTy {
|
|
CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
|
|
CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
|
|
|
|
public:
|
|
NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
|
|
CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
|
|
: EST(EST), WST(WST) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
|
|
.emitGenericEntryHeader(CGF, EST, WST);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
|
|
.emitGenericEntryFooter(CGF, EST);
|
|
}
|
|
} Action(EST, WST);
|
|
CodeGen.setAction(Action);
|
|
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
|
|
IsOffloadEntry, CodeGen);
|
|
|
|
// Now change the name of the worker function to correspond to this target
|
|
// region's entry function.
|
|
WST.WorkerFn->setName(OutlinedFn->getName() + "_worker");
|
|
|
|
// Create the worker function
|
|
emitWorkerFunction(WST);
|
|
}
|
|
|
|
// Setup NVPTX threads for master-worker OpenMP scheme.
|
|
void CGOpenMPRuntimeNVPTX::emitGenericEntryHeader(CodeGenFunction &CGF,
|
|
EntryFunctionState &EST,
|
|
WorkerFunctionState &WST) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
|
|
llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
|
|
llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
|
|
EST.ExitBB = CGF.createBasicBlock(".exit");
|
|
|
|
auto *IsWorker =
|
|
Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
|
|
Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
|
|
|
|
CGF.EmitBlock(WorkerBB);
|
|
emitOutlinedFunctionCall(CGF, WST.Loc, WST.WorkerFn);
|
|
CGF.EmitBranch(EST.ExitBB);
|
|
|
|
CGF.EmitBlock(MasterCheckBB);
|
|
auto *IsMaster =
|
|
Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
|
|
Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
|
|
|
|
CGF.EmitBlock(MasterBB);
|
|
// First action in sequential region:
|
|
// Initialize the state of the OpenMP runtime library on the GPU.
|
|
// TODO: Optimize runtime initialization and pass in correct value.
|
|
llvm::Value *Args[] = {getThreadLimit(CGF),
|
|
Bld.getInt16(/*RequiresOMPRuntime=*/1)};
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitGenericEntryFooter(CodeGenFunction &CGF,
|
|
EntryFunctionState &EST) {
|
|
if (!EST.ExitBB)
|
|
EST.ExitBB = CGF.createBasicBlock(".exit");
|
|
|
|
llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
|
|
CGF.EmitBranch(TerminateBB);
|
|
|
|
CGF.EmitBlock(TerminateBB);
|
|
// Signal termination condition.
|
|
// TODO: Optimize runtime initialization and pass in correct value.
|
|
llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
|
|
// Barrier to terminate worker threads.
|
|
syncCTAThreads(CGF);
|
|
// Master thread jumps to exit point.
|
|
CGF.EmitBranch(EST.ExitBB);
|
|
|
|
CGF.EmitBlock(EST.ExitBB);
|
|
EST.ExitBB = nullptr;
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitSpmdKernel(const OMPExecutableDirective &D,
|
|
StringRef ParentName,
|
|
llvm::Function *&OutlinedFn,
|
|
llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
ExecutionModeRAII ModeRAII(CurrentExecutionMode,
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd);
|
|
EntryFunctionState EST;
|
|
|
|
// Emit target region as a standalone region.
|
|
class NVPTXPrePostActionTy : public PrePostActionTy {
|
|
CGOpenMPRuntimeNVPTX &RT;
|
|
CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
|
|
const OMPExecutableDirective &D;
|
|
|
|
public:
|
|
NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
|
|
CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
|
|
const OMPExecutableDirective &D)
|
|
: RT(RT), EST(EST), D(D) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
RT.emitSpmdEntryHeader(CGF, EST, D);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
RT.emitSpmdEntryFooter(CGF, EST);
|
|
}
|
|
} Action(*this, EST, D);
|
|
CodeGen.setAction(Action);
|
|
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
|
|
IsOffloadEntry, CodeGen);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitSpmdEntryHeader(
|
|
CodeGenFunction &CGF, EntryFunctionState &EST,
|
|
const OMPExecutableDirective &D) {
|
|
auto &Bld = CGF.Builder;
|
|
|
|
// Setup BBs in entry function.
|
|
llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
|
|
EST.ExitBB = CGF.createBasicBlock(".exit");
|
|
|
|
// Initialize the OMP state in the runtime; called by all active threads.
|
|
// TODO: Set RequiresOMPRuntime and RequiresDataSharing parameters
|
|
// based on code analysis of the target region.
|
|
llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSpmdExecutionMode=*/true),
|
|
/*RequiresOMPRuntime=*/Bld.getInt16(1),
|
|
/*RequiresDataSharing=*/Bld.getInt16(1)};
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
|
|
CGF.EmitBranch(ExecuteBB);
|
|
|
|
CGF.EmitBlock(ExecuteBB);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitSpmdEntryFooter(CodeGenFunction &CGF,
|
|
EntryFunctionState &EST) {
|
|
if (!EST.ExitBB)
|
|
EST.ExitBB = CGF.createBasicBlock(".exit");
|
|
|
|
llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
|
|
CGF.EmitBranch(OMPDeInitBB);
|
|
|
|
CGF.EmitBlock(OMPDeInitBB);
|
|
// DeInitialize the OMP state in the runtime; called by all active threads.
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_deinit), None);
|
|
CGF.EmitBranch(EST.ExitBB);
|
|
|
|
CGF.EmitBlock(EST.ExitBB);
|
|
EST.ExitBB = nullptr;
|
|
}
|
|
|
|
// Create a unique global variable to indicate the execution mode of this target
|
|
// region. The execution mode is either 'generic', or 'spmd' depending on the
|
|
// target directive. This variable is picked up by the offload library to setup
|
|
// the device appropriately before kernel launch. If the execution mode is
|
|
// 'generic', the runtime reserves one warp for the master, otherwise, all
|
|
// warps participate in parallel work.
|
|
static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode Mode) {
|
|
(void)new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::WeakAnyLinkage,
|
|
llvm::ConstantInt::get(CGM.Int8Ty, Mode), Name + Twine("_exec_mode"));
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
|
|
ASTContext &Ctx = CGM.getContext();
|
|
|
|
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
|
|
CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, *WST.CGFI, {},
|
|
WST.Loc, WST.Loc);
|
|
emitWorkerLoop(CGF, WST);
|
|
CGF.FinishFunction();
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
|
|
WorkerFunctionState &WST) {
|
|
//
|
|
// The workers enter this loop and wait for parallel work from the master.
|
|
// When the master encounters a parallel region it sets up the work + variable
|
|
// arguments, and wakes up the workers. The workers first check to see if
|
|
// they are required for the parallel region, i.e., within the # of requested
|
|
// parallel threads. The activated workers load the variable arguments and
|
|
// execute the parallel work.
|
|
//
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
|
|
llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
|
|
llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
|
|
llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
|
|
llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
|
|
|
|
CGF.EmitBranch(AwaitBB);
|
|
|
|
// Workers wait for work from master.
|
|
CGF.EmitBlock(AwaitBB);
|
|
// Wait for parallel work
|
|
syncCTAThreads(CGF);
|
|
|
|
Address WorkFn =
|
|
CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
|
|
Address ExecStatus =
|
|
CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
|
|
CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
|
|
CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
|
|
|
|
// Set up shared arguments
|
|
Address SharedArgs =
|
|
CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrPtrTy, "shared_args");
|
|
// TODO: Optimize runtime initialization and pass in correct value.
|
|
llvm::Value *Args[] = {WorkFn.getPointer(), SharedArgs.getPointer(),
|
|
/*RequiresOMPRuntime=*/Bld.getInt16(1)};
|
|
llvm::Value *Ret = CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
|
|
Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
|
|
|
|
// On termination condition (workid == 0), exit loop.
|
|
llvm::Value *ShouldTerminate =
|
|
Bld.CreateIsNull(Bld.CreateLoad(WorkFn), "should_terminate");
|
|
Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
|
|
|
|
// Activate requested workers.
|
|
CGF.EmitBlock(SelectWorkersBB);
|
|
llvm::Value *IsActive =
|
|
Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
|
|
Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
|
|
|
|
// Signal start of parallel region.
|
|
CGF.EmitBlock(ExecuteBB);
|
|
|
|
// Current context
|
|
ASTContext &Ctx = CGF.getContext();
|
|
|
|
// Process work items: outlined parallel functions.
|
|
for (auto *W : Work) {
|
|
// Try to match this outlined function.
|
|
auto *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
|
|
|
|
llvm::Value *WorkFnMatch =
|
|
Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
|
|
|
|
llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
|
|
llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
|
|
Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
|
|
|
|
// Execute this outlined function.
|
|
CGF.EmitBlock(ExecuteFNBB);
|
|
|
|
// Insert call to work function via shared wrapper. The shared
|
|
// wrapper takes exactly three arguments:
|
|
// - the parallelism level;
|
|
// - the master thread ID;
|
|
// - the list of references to shared arguments.
|
|
//
|
|
// TODO: Assert that the function is a wrapper function.s
|
|
Address Capture = CGF.EmitLoadOfPointer(SharedArgs,
|
|
Ctx.getPointerType(
|
|
Ctx.getPointerType(Ctx.VoidPtrTy)).castAs<PointerType>());
|
|
emitOutlinedFunctionCall(CGF, WST.Loc, W,
|
|
{Bld.getInt16(/*ParallelLevel=*/0),
|
|
getMasterThreadID(CGF), Capture.getPointer()});
|
|
|
|
// Go to end of parallel region.
|
|
CGF.EmitBranch(TerminateBB);
|
|
|
|
CGF.EmitBlock(CheckNextBB);
|
|
}
|
|
|
|
// Signal end of parallel region.
|
|
CGF.EmitBlock(TerminateBB);
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
|
|
llvm::None);
|
|
CGF.EmitBranch(BarrierBB);
|
|
|
|
// All active and inactive workers wait at a barrier after parallel region.
|
|
CGF.EmitBlock(BarrierBB);
|
|
// Barrier after parallel region.
|
|
syncCTAThreads(CGF);
|
|
CGF.EmitBranch(AwaitBB);
|
|
|
|
// Exit target region.
|
|
CGF.EmitBlock(ExitBB);
|
|
}
|
|
|
|
/// \brief Returns specified OpenMP runtime function for the current OpenMP
|
|
/// implementation. Specialized for the NVPTX device.
|
|
/// \param Function OpenMP runtime function.
|
|
/// \return Specified function.
|
|
llvm::Constant *
|
|
CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
|
|
llvm::Constant *RTLFn = nullptr;
|
|
switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
|
|
case OMPRTL_NVPTX__kmpc_kernel_init: {
|
|
// Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
|
|
// RequiresOMPRuntime);
|
|
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_kernel_deinit: {
|
|
// Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
|
|
llvm::Type *TypeParams[] = {CGM.Int16Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
|
|
// Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
|
|
// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
|
|
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit: {
|
|
// Build void __kmpc_spmd_kernel_deinit();
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
|
|
/// Build void __kmpc_kernel_prepare_parallel(
|
|
/// void *outlined_function, void ***args, kmp_int32 nArgs, int16_t
|
|
/// IsOMPRuntimeInitialized);
|
|
llvm::Type *TypeParams[] = {CGM.Int8PtrTy,
|
|
CGM.Int8PtrPtrTy->getPointerTo(0), CGM.Int32Ty,
|
|
CGM.Int16Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_kernel_parallel: {
|
|
/// Build bool __kmpc_kernel_parallel(void **outlined_function, void
|
|
/// ***args, int16_t IsOMPRuntimeInitialized);
|
|
llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy,
|
|
CGM.Int8PtrPtrTy->getPointerTo(0), CGM.Int16Ty};
|
|
llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
|
|
/// Build void __kmpc_kernel_end_parallel();
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_serialized_parallel: {
|
|
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
|
|
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
|
|
// global_tid);
|
|
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_shuffle_int32: {
|
|
// Build int32_t __kmpc_shuffle_int32(int32_t element,
|
|
// int16_t lane_offset, int16_t warp_size);
|
|
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_shuffle_int64: {
|
|
// Build int64_t __kmpc_shuffle_int64(int64_t element,
|
|
// int16_t lane_offset, int16_t warp_size);
|
|
llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
|
|
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: {
|
|
// Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid,
|
|
// kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
|
|
// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
|
|
// lane_offset, int16_t Algorithm Version),
|
|
// void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
|
|
llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
|
|
CGM.Int16Ty, CGM.Int16Ty};
|
|
auto *ShuffleReduceFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
|
|
auto *InterWarpCopyFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {CGM.Int32Ty,
|
|
CGM.Int32Ty,
|
|
CGM.SizeTy,
|
|
CGM.VoidPtrTy,
|
|
ShuffleReduceFnTy->getPointerTo(),
|
|
InterWarpCopyFnTy->getPointerTo()};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(
|
|
FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_teams_reduce_nowait: {
|
|
// Build int32_t __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid,
|
|
// int32_t num_vars, size_t reduce_size, void *reduce_data,
|
|
// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
|
|
// lane_offset, int16_t shortCircuit),
|
|
// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num),
|
|
// void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad,
|
|
// int32_t index, int32_t width),
|
|
// void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad,
|
|
// int32_t index, int32_t width, int32_t reduce))
|
|
llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
|
|
CGM.Int16Ty, CGM.Int16Ty};
|
|
auto *ShuffleReduceFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
|
|
auto *InterWarpCopyFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *CopyToScratchpadTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy,
|
|
CGM.Int32Ty, CGM.Int32Ty};
|
|
auto *CopyToScratchpadFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, CopyToScratchpadTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *LoadReduceTypeParams[] = {
|
|
CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty};
|
|
auto *LoadReduceFnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, LoadReduceTypeParams,
|
|
/*isVarArg=*/false);
|
|
llvm::Type *TypeParams[] = {CGM.Int32Ty,
|
|
CGM.Int32Ty,
|
|
CGM.SizeTy,
|
|
CGM.VoidPtrTy,
|
|
ShuffleReduceFnTy->getPointerTo(),
|
|
InterWarpCopyFnTy->getPointerTo(),
|
|
CopyToScratchpadFnTy->getPointerTo(),
|
|
LoadReduceFnTy->getPointerTo()};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(
|
|
FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait");
|
|
break;
|
|
}
|
|
case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
|
|
// Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
|
|
llvm::Type *TypeParams[] = {CGM.Int32Ty};
|
|
llvm::FunctionType *FnTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
|
|
RTLFn = CGM.CreateRuntimeFunction(
|
|
FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
|
|
break;
|
|
}
|
|
}
|
|
return RTLFn;
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
|
|
llvm::Constant *Addr,
|
|
uint64_t Size, int32_t) {
|
|
auto *F = dyn_cast<llvm::Function>(Addr);
|
|
// TODO: Add support for global variables on the device after declare target
|
|
// support.
|
|
if (!F)
|
|
return;
|
|
llvm::Module *M = F->getParent();
|
|
llvm::LLVMContext &Ctx = M->getContext();
|
|
|
|
// Get "nvvm.annotations" metadata node
|
|
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
|
|
|
|
llvm::Metadata *MDVals[] = {
|
|
llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, "kernel"),
|
|
llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
|
|
// Append metadata to nvvm.annotations
|
|
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
if (!IsOffloadEntry) // Nothing to do.
|
|
return;
|
|
|
|
assert(!ParentName.empty() && "Invalid target region parent name!");
|
|
|
|
CGOpenMPRuntimeNVPTX::ExecutionMode Mode =
|
|
getExecutionModeForDirective(CGM, D);
|
|
switch (Mode) {
|
|
case CGOpenMPRuntimeNVPTX::ExecutionMode::Generic:
|
|
emitGenericKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
|
|
CodeGen);
|
|
break;
|
|
case CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd:
|
|
emitSpmdKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
|
|
CodeGen);
|
|
break;
|
|
case CGOpenMPRuntimeNVPTX::ExecutionMode::Unknown:
|
|
llvm_unreachable(
|
|
"Unknown programming model for OpenMP directive on NVPTX target.");
|
|
}
|
|
|
|
setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
|
|
}
|
|
|
|
CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
|
|
: CGOpenMPRuntime(CGM), CurrentExecutionMode(ExecutionMode::Unknown) {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
llvm_unreachable("OpenMP NVPTX can only handle device code.");
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
|
|
OpenMPProcBindClauseKind ProcBind,
|
|
SourceLocation Loc) {
|
|
// Do nothing in case of Spmd mode and L0 parallel.
|
|
// TODO: If in Spmd mode and L1 parallel emit the clause.
|
|
if (isInSpmdExecutionMode())
|
|
return;
|
|
|
|
CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
|
|
llvm::Value *NumThreads,
|
|
SourceLocation Loc) {
|
|
// Do nothing in case of Spmd mode and L0 parallel.
|
|
// TODO: If in Spmd mode and L1 parallel emit the clause.
|
|
if (isInSpmdExecutionMode())
|
|
return;
|
|
|
|
CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
|
|
const Expr *NumTeams,
|
|
const Expr *ThreadLimit,
|
|
SourceLocation Loc) {}
|
|
|
|
llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
|
|
auto *OutlinedFun = cast<llvm::Function>(
|
|
CGOpenMPRuntime::emitParallelOutlinedFunction(
|
|
D, ThreadIDVar, InnermostKind, CodeGen));
|
|
if (!isInSpmdExecutionMode()) {
|
|
llvm::Function *WrapperFun =
|
|
createDataSharingWrapper(OutlinedFun, D);
|
|
WrapperFunctionsMap[OutlinedFun] = WrapperFun;
|
|
}
|
|
|
|
return OutlinedFun;
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
|
|
llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction(
|
|
D, ThreadIDVar, InnermostKind, CodeGen);
|
|
llvm::Function *OutlinedFun = cast<llvm::Function>(OutlinedFunVal);
|
|
OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
|
|
OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
|
|
OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
|
|
return OutlinedFun;
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
SourceLocation Loc,
|
|
llvm::Value *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
Address ZeroAddr =
|
|
CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
|
|
/*Name*/ ".zero.addr");
|
|
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
|
|
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
|
|
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
|
|
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
|
|
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitParallelCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
if (isInSpmdExecutionMode())
|
|
emitSpmdParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
|
|
else
|
|
emitGenericParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitGenericParallelCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
|
|
llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
|
|
llvm::Function *WFn = WrapperFunctionsMap[Fn];
|
|
assert(WFn && "Wrapper function does not exist!");
|
|
|
|
// Force inline this outlined function at its call site.
|
|
Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
|
|
auto &&L0ParallelGen = [this, WFn, &CapturedVars](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
|
|
|
|
if (!CapturedVars.empty()) {
|
|
// There's somehting to share, add the attribute
|
|
CGF.CurFn->addFnAttr("has-nvptx-shared-depot");
|
|
// Prepare for parallel region. Indicate the outlined function.
|
|
Address SharedArgs =
|
|
CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy,
|
|
"shared_args");
|
|
llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
|
|
// TODO: Optimize runtime initialization and pass in correct value.
|
|
llvm::Value *Args[] = {ID, SharedArgsPtr,
|
|
Bld.getInt32(CapturedVars.size()),
|
|
/*RequiresOMPRuntime=*/Bld.getInt16(1)};
|
|
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
|
|
Args);
|
|
|
|
unsigned Idx = 0;
|
|
ASTContext &Ctx = CGF.getContext();
|
|
for (llvm::Value *V : CapturedVars) {
|
|
Address Dst = Bld.CreateConstInBoundsGEP(
|
|
CGF.EmitLoadOfPointer(SharedArgs,
|
|
Ctx.getPointerType(
|
|
Ctx.getPointerType(Ctx.VoidPtrTy)).castAs<PointerType>()),
|
|
Idx, CGF.getPointerSize());
|
|
llvm::Value *PtrV = Bld.CreateBitCast(V, CGF.VoidPtrTy);
|
|
CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
|
|
Ctx.getPointerType(Ctx.VoidPtrTy));
|
|
Idx++;
|
|
}
|
|
} else {
|
|
// TODO: Optimize runtime initialization and pass in correct value.
|
|
llvm::Value *Args[] = {
|
|
ID, llvm::ConstantPointerNull::get(CGF.VoidPtrPtrTy->getPointerTo(0)),
|
|
/*nArgs=*/Bld.getInt32(0), /*RequiresOMPRuntime=*/Bld.getInt16(1)};
|
|
CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
|
|
Args);
|
|
}
|
|
|
|
// Activate workers. This barrier is used by the master to signal
|
|
// work for the workers.
|
|
syncCTAThreads(CGF);
|
|
|
|
// OpenMP [2.5, Parallel Construct, p.49]
|
|
// There is an implied barrier at the end of a parallel region. After the
|
|
// end of a parallel region, only the master thread of the team resumes
|
|
// execution of the enclosing task region.
|
|
//
|
|
// The master waits at this barrier until all workers are done.
|
|
syncCTAThreads(CGF);
|
|
|
|
// Remember for post-processing in worker loop.
|
|
Work.emplace_back(WFn);
|
|
};
|
|
|
|
auto *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
auto *ThreadID = getThreadID(CGF, Loc);
|
|
llvm::Value *Args[] = {RTLoc, ThreadID};
|
|
|
|
auto &&SeqGen = [this, Fn, &CapturedVars, &Args, Loc](CodeGenFunction &CGF,
|
|
PrePostActionTy &) {
|
|
auto &&CodeGen = [this, Fn, &CapturedVars, Loc](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
Action.Enter(CGF);
|
|
|
|
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
|
|
OutlinedFnArgs.push_back(
|
|
llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
|
|
OutlinedFnArgs.push_back(
|
|
llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
|
|
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
|
|
};
|
|
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
NVPTXActionTy Action(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
|
|
Args,
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
|
|
Args);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
};
|
|
|
|
if (IfCond)
|
|
emitOMPIfClause(CGF, IfCond, L0ParallelGen, SeqGen);
|
|
else {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
RegionCodeGenTy ThenRCG(L0ParallelGen);
|
|
ThenRCG(CGF);
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
|
|
// Just call the outlined function to execute the parallel region.
|
|
// OutlinedFn(>id, &zero, CapturedStruct);
|
|
//
|
|
// TODO: Do something with IfCond when support for the 'if' clause
|
|
// is added on Spmd target directives.
|
|
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
|
|
OutlinedFnArgs.push_back(
|
|
llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
|
|
OutlinedFnArgs.push_back(
|
|
llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()));
|
|
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
|
|
}
|
|
|
|
/// Cast value to the specified type.
|
|
static llvm::Value *
|
|
castValueToType(CodeGenFunction &CGF, llvm::Value *Val, llvm::Type *CastTy,
|
|
llvm::Optional<bool> IsSigned = llvm::None) {
|
|
if (Val->getType() == CastTy)
|
|
return Val;
|
|
if (Val->getType()->getPrimitiveSizeInBits() > 0 &&
|
|
CastTy->getPrimitiveSizeInBits() > 0 &&
|
|
Val->getType()->getPrimitiveSizeInBits() ==
|
|
CastTy->getPrimitiveSizeInBits())
|
|
return CGF.Builder.CreateBitCast(Val, CastTy);
|
|
if (IsSigned.hasValue() && CastTy->isIntegerTy() &&
|
|
Val->getType()->isIntegerTy())
|
|
return CGF.Builder.CreateIntCast(Val, CastTy, *IsSigned);
|
|
Address CastItem = CGF.CreateTempAlloca(
|
|
CastTy,
|
|
CharUnits::fromQuantity(
|
|
CGF.CGM.getDataLayout().getPrefTypeAlignment(Val->getType())));
|
|
Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
|
|
CGF.Builder.CreateStore(Val, ValCastItem);
|
|
return CGF.Builder.CreateLoad(CastItem);
|
|
}
|
|
|
|
/// This function creates calls to one of two shuffle functions to copy
|
|
/// variables between lanes in a warp.
|
|
static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
|
|
llvm::Value *Elem,
|
|
llvm::Value *Offset) {
|
|
auto &CGM = CGF.CGM;
|
|
auto &Bld = CGF.Builder;
|
|
CGOpenMPRuntimeNVPTX &RT =
|
|
*(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
|
|
|
|
unsigned Size = CGM.getDataLayout().getTypeStoreSize(Elem->getType());
|
|
assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction.");
|
|
|
|
OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4
|
|
? OMPRTL_NVPTX__kmpc_shuffle_int32
|
|
: OMPRTL_NVPTX__kmpc_shuffle_int64;
|
|
|
|
// Cast all types to 32- or 64-bit values before calling shuffle routines.
|
|
llvm::Type *CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty;
|
|
llvm::Value *ElemCast = castValueToType(CGF, Elem, CastTy, /*isSigned=*/true);
|
|
auto *WarpSize =
|
|
Bld.CreateIntCast(getNVPTXWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
|
|
|
|
auto *ShuffledVal =
|
|
CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn),
|
|
{ElemCast, Offset, WarpSize});
|
|
|
|
return castValueToType(CGF, ShuffledVal, Elem->getType(), /*isSigned=*/true);
|
|
}
|
|
|
|
namespace {
|
|
enum CopyAction : unsigned {
|
|
// RemoteLaneToThread: Copy over a Reduce list from a remote lane in
|
|
// the warp using shuffle instructions.
|
|
RemoteLaneToThread,
|
|
// ThreadCopy: Make a copy of a Reduce list on the thread's stack.
|
|
ThreadCopy,
|
|
// ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
|
|
ThreadToScratchpad,
|
|
// ScratchpadToThread: Copy from a scratchpad array in global memory
|
|
// containing team-reduced data to a thread's stack.
|
|
ScratchpadToThread,
|
|
};
|
|
} // namespace
|
|
|
|
struct CopyOptionsTy {
|
|
llvm::Value *RemoteLaneOffset;
|
|
llvm::Value *ScratchpadIndex;
|
|
llvm::Value *ScratchpadWidth;
|
|
};
|
|
|
|
/// Emit instructions to copy a Reduce list, which contains partially
|
|
/// aggregated values, in the specified direction.
|
|
static void emitReductionListCopy(
|
|
CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
|
|
ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
|
|
CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
|
|
|
|
auto &CGM = CGF.CGM;
|
|
auto &C = CGM.getContext();
|
|
auto &Bld = CGF.Builder;
|
|
|
|
auto *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
|
|
auto *ScratchpadIndex = CopyOptions.ScratchpadIndex;
|
|
auto *ScratchpadWidth = CopyOptions.ScratchpadWidth;
|
|
|
|
// Iterates, element-by-element, through the source Reduce list and
|
|
// make a copy.
|
|
unsigned Idx = 0;
|
|
unsigned Size = Privates.size();
|
|
for (auto &Private : Privates) {
|
|
Address SrcElementAddr = Address::invalid();
|
|
Address DestElementAddr = Address::invalid();
|
|
Address DestElementPtrAddr = Address::invalid();
|
|
// Should we shuffle in an element from a remote lane?
|
|
bool ShuffleInElement = false;
|
|
// Set to true to update the pointer in the dest Reduce list to a
|
|
// newly created element.
|
|
bool UpdateDestListPtr = false;
|
|
// Increment the src or dest pointer to the scratchpad, for each
|
|
// new element.
|
|
bool IncrScratchpadSrc = false;
|
|
bool IncrScratchpadDest = false;
|
|
|
|
switch (Action) {
|
|
case RemoteLaneToThread: {
|
|
// Step 1.1: Get the address for the src element in the Reduce list.
|
|
Address SrcElementPtrAddr =
|
|
Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
|
|
SrcElementAddr = CGF.EmitLoadOfPointer(
|
|
SrcElementPtrAddr,
|
|
C.getPointerType(Private->getType())->castAs<PointerType>());
|
|
|
|
// Step 1.2: Create a temporary to store the element in the destination
|
|
// Reduce list.
|
|
DestElementPtrAddr =
|
|
Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
|
|
DestElementAddr =
|
|
CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
|
|
ShuffleInElement = true;
|
|
UpdateDestListPtr = true;
|
|
break;
|
|
}
|
|
case ThreadCopy: {
|
|
// Step 1.1: Get the address for the src element in the Reduce list.
|
|
Address SrcElementPtrAddr =
|
|
Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
|
|
SrcElementAddr = CGF.EmitLoadOfPointer(
|
|
SrcElementPtrAddr,
|
|
C.getPointerType(Private->getType())->castAs<PointerType>());
|
|
|
|
// Step 1.2: Get the address for dest element. The destination
|
|
// element has already been created on the thread's stack.
|
|
DestElementPtrAddr =
|
|
Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
|
|
DestElementAddr = CGF.EmitLoadOfPointer(
|
|
DestElementPtrAddr,
|
|
C.getPointerType(Private->getType())->castAs<PointerType>());
|
|
break;
|
|
}
|
|
case ThreadToScratchpad: {
|
|
// Step 1.1: Get the address for the src element in the Reduce list.
|
|
Address SrcElementPtrAddr =
|
|
Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
|
|
SrcElementAddr = CGF.EmitLoadOfPointer(
|
|
SrcElementPtrAddr,
|
|
C.getPointerType(Private->getType())->castAs<PointerType>());
|
|
|
|
// Step 1.2: Get the address for dest element:
|
|
// address = base + index * ElementSizeInChars.
|
|
unsigned ElementSizeInChars =
|
|
C.getTypeSizeInChars(Private->getType()).getQuantity();
|
|
auto *CurrentOffset =
|
|
Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars),
|
|
ScratchpadIndex);
|
|
auto *ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateAdd(DestBase.getPointer(), CurrentOffset);
|
|
ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
|
|
DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
|
|
C.getTypeAlignInChars(Private->getType()));
|
|
IncrScratchpadDest = true;
|
|
break;
|
|
}
|
|
case ScratchpadToThread: {
|
|
// Step 1.1: Get the address for the src element in the scratchpad.
|
|
// address = base + index * ElementSizeInChars.
|
|
unsigned ElementSizeInChars =
|
|
C.getTypeSizeInChars(Private->getType()).getQuantity();
|
|
auto *CurrentOffset =
|
|
Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars),
|
|
ScratchpadIndex);
|
|
auto *ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateAdd(SrcBase.getPointer(), CurrentOffset);
|
|
ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
|
|
SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
|
|
C.getTypeAlignInChars(Private->getType()));
|
|
IncrScratchpadSrc = true;
|
|
|
|
// Step 1.2: Create a temporary to store the element in the destination
|
|
// Reduce list.
|
|
DestElementPtrAddr =
|
|
Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
|
|
DestElementAddr =
|
|
CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
|
|
UpdateDestListPtr = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Regardless of src and dest of copy, we emit the load of src
|
|
// element as this is required in all directions
|
|
SrcElementAddr = Bld.CreateElementBitCast(
|
|
SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
|
|
llvm::Value *Elem =
|
|
CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
|
|
Private->getType(), Private->getExprLoc());
|
|
|
|
// Now that all active lanes have read the element in the
|
|
// Reduce list, shuffle over the value from the remote lane.
|
|
if (ShuffleInElement)
|
|
Elem = createRuntimeShuffleFunction(CGF, Elem, RemoteLaneOffset);
|
|
|
|
DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
|
|
SrcElementAddr.getElementType());
|
|
|
|
// Store the source element value to the dest element address.
|
|
CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
|
|
Private->getType());
|
|
|
|
// Step 3.1: Modify reference in dest Reduce list as needed.
|
|
// Modifying the reference in Reduce list to point to the newly
|
|
// created element. The element is live in the current function
|
|
// scope and that of functions it invokes (i.e., reduce_function).
|
|
// RemoteReduceData[i] = (void*)&RemoteElem
|
|
if (UpdateDestListPtr) {
|
|
CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
DestElementAddr.getPointer(), CGF.VoidPtrTy),
|
|
DestElementPtrAddr, /*Volatile=*/false,
|
|
C.VoidPtrTy);
|
|
}
|
|
|
|
// Step 4.1: Increment SrcBase/DestBase so that it points to the starting
|
|
// address of the next element in scratchpad memory, unless we're currently
|
|
// processing the last one. Memory alignment is also taken care of here.
|
|
if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
|
|
llvm::Value *ScratchpadBasePtr =
|
|
IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
|
|
unsigned ElementSizeInChars =
|
|
C.getTypeSizeInChars(Private->getType()).getQuantity();
|
|
ScratchpadBasePtr = Bld.CreateAdd(
|
|
ScratchpadBasePtr,
|
|
Bld.CreateMul(ScratchpadWidth, llvm::ConstantInt::get(
|
|
CGM.SizeTy, ElementSizeInChars)));
|
|
|
|
// Take care of global memory alignment for performance
|
|
ScratchpadBasePtr = Bld.CreateSub(ScratchpadBasePtr,
|
|
llvm::ConstantInt::get(CGM.SizeTy, 1));
|
|
ScratchpadBasePtr = Bld.CreateSDiv(
|
|
ScratchpadBasePtr,
|
|
llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
|
|
ScratchpadBasePtr = Bld.CreateAdd(ScratchpadBasePtr,
|
|
llvm::ConstantInt::get(CGM.SizeTy, 1));
|
|
ScratchpadBasePtr = Bld.CreateMul(
|
|
ScratchpadBasePtr,
|
|
llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
|
|
|
|
if (IncrScratchpadDest)
|
|
DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
|
|
else /* IncrScratchpadSrc = true */
|
|
SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
|
|
}
|
|
|
|
Idx++;
|
|
}
|
|
}
|
|
|
|
/// This function emits a helper that loads data from the scratchpad array
|
|
/// and (optionally) reduces it with the input operand.
|
|
///
|
|
/// load_and_reduce(local, scratchpad, index, width, should_reduce)
|
|
/// reduce_data remote;
|
|
/// for elem in remote:
|
|
/// remote.elem = Scratchpad[elem_id][index]
|
|
/// if (should_reduce)
|
|
/// local = local @ remote
|
|
/// else
|
|
/// local = remote
|
|
static llvm::Value *emitReduceScratchpadFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, llvm::Value *ReduceFn, SourceLocation Loc) {
|
|
auto &C = CGM.getContext();
|
|
auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true);
|
|
|
|
// Destination of the copy.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Base address of the scratchpad array, with each element storing a
|
|
// Reduce list per team.
|
|
ImplicitParamDecl ScratchPadArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// A source index into the scratchpad array.
|
|
ImplicitParamDecl IndexArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int32Ty,
|
|
ImplicitParamDecl::Other);
|
|
// Row width of an element in the scratchpad array, typically
|
|
// the number of teams.
|
|
ImplicitParamDecl WidthArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int32Ty,
|
|
ImplicitParamDecl::Other);
|
|
// If should_reduce == 1, then it's load AND reduce,
|
|
// If should_reduce == 0 (or otherwise), then it only loads (+ copy).
|
|
// The latter case is used for initialization.
|
|
ImplicitParamDecl ShouldReduceArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
Int32Ty, ImplicitParamDecl::Other);
|
|
|
|
FunctionArgList Args;
|
|
Args.push_back(&ReduceListArg);
|
|
Args.push_back(&ScratchPadArg);
|
|
Args.push_back(&IndexArg);
|
|
Args.push_back(&WidthArg);
|
|
Args.push_back(&ShouldReduceArg);
|
|
|
|
auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_load_and_reduce", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
auto &Bld = CGF.Builder;
|
|
|
|
// Get local Reduce list pointer.
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
Address ReduceListAddr(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, Loc),
|
|
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
|
|
CGF.getPointerAlign());
|
|
|
|
Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg);
|
|
llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar(
|
|
AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
|
|
|
|
Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg);
|
|
llvm::Value *IndexVal = Bld.CreateIntCast(
|
|
CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false, Int32Ty, Loc),
|
|
CGM.SizeTy, /*isSigned=*/true);
|
|
|
|
Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg);
|
|
llvm::Value *WidthVal = Bld.CreateIntCast(
|
|
CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false, Int32Ty, Loc),
|
|
CGM.SizeTy, /*isSigned=*/true);
|
|
|
|
Address AddrShouldReduceArg = CGF.GetAddrOfLocalVar(&ShouldReduceArg);
|
|
llvm::Value *ShouldReduceVal = CGF.EmitLoadOfScalar(
|
|
AddrShouldReduceArg, /*Volatile=*/false, Int32Ty, Loc);
|
|
|
|
// The absolute ptr address to the base addr of the next element to copy.
|
|
llvm::Value *CumulativeElemBasePtr =
|
|
Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy);
|
|
Address SrcDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign());
|
|
|
|
// Create a Remote Reduce list to store the elements read from the
|
|
// scratchpad array.
|
|
Address RemoteReduceList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_red_list");
|
|
|
|
// Assemble remote Reduce list from scratchpad array.
|
|
emitReductionListCopy(ScratchpadToThread, CGF, ReductionArrayTy, Privates,
|
|
SrcDataAddr, RemoteReduceList,
|
|
{/*RemoteLaneOffset=*/nullptr,
|
|
/*ScratchpadIndex=*/IndexVal,
|
|
/*ScratchpadWidth=*/WidthVal});
|
|
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
|
|
|
|
auto CondReduce = Bld.CreateICmpEQ(ShouldReduceVal, Bld.getInt32(1));
|
|
Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
|
|
|
|
CGF.EmitBlock(ThenBB);
|
|
// We should reduce with the local Reduce list.
|
|
// reduce_function(LocalReduceList, RemoteReduceList)
|
|
llvm::Value *LocalDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
ReduceListAddr.getPointer(), CGF.VoidPtrTy);
|
|
llvm::Value *RemoteDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
RemoteReduceList.getPointer(), CGF.VoidPtrTy);
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, Loc, ReduceFn, {LocalDataPtr, RemoteDataPtr});
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(ElseBB);
|
|
// No reduction; just copy:
|
|
// Local Reduce list = Remote Reduce list.
|
|
emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
|
|
RemoteReduceList, ReduceListAddr);
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(MergeBB);
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// This function emits a helper that stores reduced data from the team
|
|
/// master to a scratchpad array in global memory.
|
|
///
|
|
/// for elem in Reduce List:
|
|
/// scratchpad[elem_id][index] = elem
|
|
///
|
|
static llvm::Value *emitCopyToScratchpad(CodeGenModule &CGM,
|
|
ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy,
|
|
SourceLocation Loc) {
|
|
|
|
auto &C = CGM.getContext();
|
|
auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true);
|
|
|
|
// Source of the copy.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Base address of the scratchpad array, with each element storing a
|
|
// Reduce list per team.
|
|
ImplicitParamDecl ScratchPadArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// A destination index into the scratchpad array, typically the team
|
|
// identifier.
|
|
ImplicitParamDecl IndexArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int32Ty,
|
|
ImplicitParamDecl::Other);
|
|
// Row width of an element in the scratchpad array, typically
|
|
// the number of teams.
|
|
ImplicitParamDecl WidthArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int32Ty,
|
|
ImplicitParamDecl::Other);
|
|
|
|
FunctionArgList Args;
|
|
Args.push_back(&ReduceListArg);
|
|
Args.push_back(&ScratchPadArg);
|
|
Args.push_back(&IndexArg);
|
|
Args.push_back(&WidthArg);
|
|
|
|
auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_copy_to_scratchpad", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
auto &Bld = CGF.Builder;
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
Address SrcDataAddr(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, Loc),
|
|
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
|
|
CGF.getPointerAlign());
|
|
|
|
Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg);
|
|
llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar(
|
|
AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
|
|
|
|
Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg);
|
|
llvm::Value *IndexVal = Bld.CreateIntCast(
|
|
CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false, Int32Ty, Loc),
|
|
CGF.SizeTy, /*isSigned=*/true);
|
|
|
|
Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg);
|
|
llvm::Value *WidthVal =
|
|
Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false,
|
|
Int32Ty, SourceLocation()),
|
|
CGF.SizeTy, /*isSigned=*/true);
|
|
|
|
// The absolute ptr address to the base addr of the next element to copy.
|
|
llvm::Value *CumulativeElemBasePtr =
|
|
Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy);
|
|
Address DestDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign());
|
|
|
|
emitReductionListCopy(ThreadToScratchpad, CGF, ReductionArrayTy, Privates,
|
|
SrcDataAddr, DestDataAddr,
|
|
{/*RemoteLaneOffset=*/nullptr,
|
|
/*ScratchpadIndex=*/IndexVal,
|
|
/*ScratchpadWidth=*/WidthVal});
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// This function emits a helper that gathers Reduce lists from the first
|
|
/// lane of every active warp to lanes in the first warp.
|
|
///
|
|
/// void inter_warp_copy_func(void* reduce_data, num_warps)
|
|
/// shared smem[warp_size];
|
|
/// For all data entries D in reduce_data:
|
|
/// If (I am the first lane in each warp)
|
|
/// Copy my local D to smem[warp_id]
|
|
/// sync
|
|
/// if (I am the first warp)
|
|
/// Copy smem[thread_id] to my local D
|
|
/// sync
|
|
static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
|
|
ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy,
|
|
SourceLocation Loc) {
|
|
auto &C = CGM.getContext();
|
|
auto &M = CGM.getModule();
|
|
|
|
// ReduceList: thread local Reduce list.
|
|
// At the stage of the computation when this function is called, partially
|
|
// aggregated values reside in the first lane of every active warp.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// NumWarps: number of warps active in the parallel region. This could
|
|
// be smaller than 32 (max warps in a CTA) for partial block reduction.
|
|
ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getIntTypeForBitwidth(32, /* Signed */ true),
|
|
ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&ReduceListArg);
|
|
Args.push_back(&NumWarpsArg);
|
|
|
|
auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_inter_warp_copy_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI);
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
auto &Bld = CGF.Builder;
|
|
|
|
// This array is used as a medium to transfer, one reduce element at a time,
|
|
// the data from the first lane of every warp to lanes in the first warp
|
|
// in order to perform the final step of a reduction in a parallel region
|
|
// (reduction across warps). The array is placed in NVPTX __shared__ memory
|
|
// for reduced latency, as well as to have a distinct copy for concurrently
|
|
// executing target regions. The array is declared with common linkage so
|
|
// as to be shared across compilation units.
|
|
const char *TransferMediumName =
|
|
"__openmp_nvptx_data_transfer_temporary_storage";
|
|
llvm::GlobalVariable *TransferMedium =
|
|
M.getGlobalVariable(TransferMediumName);
|
|
if (!TransferMedium) {
|
|
auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize);
|
|
unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
|
|
TransferMedium = new llvm::GlobalVariable(
|
|
M, Ty,
|
|
/*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
|
|
llvm::Constant::getNullValue(Ty), TransferMediumName,
|
|
/*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
|
|
SharedAddressSpace);
|
|
}
|
|
|
|
// Get the CUDA thread id of the current OpenMP thread on the GPU.
|
|
auto *ThreadID = getNVPTXThreadID(CGF);
|
|
// nvptx_lane_id = nvptx_id % warpsize
|
|
auto *LaneID = getNVPTXLaneID(CGF);
|
|
// nvptx_warp_id = nvptx_id / warpsize
|
|
auto *WarpID = getNVPTXWarpID(CGF);
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
Address LocalReduceList(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, SourceLocation()),
|
|
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
|
|
CGF.getPointerAlign());
|
|
|
|
unsigned Idx = 0;
|
|
for (auto &Private : Privates) {
|
|
//
|
|
// Warp master copies reduce element to transfer medium in __shared__
|
|
// memory.
|
|
//
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
|
|
|
|
// if (lane_id == 0)
|
|
auto IsWarpMaster =
|
|
Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master");
|
|
Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
|
|
CGF.EmitBlock(ThenBB);
|
|
|
|
// Reduce element = LocalReduceList[i]
|
|
Address ElemPtrPtrAddr =
|
|
Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
|
|
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
|
|
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
|
|
// elemptr = (type[i]*)(elemptrptr)
|
|
Address ElemPtr =
|
|
Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
|
|
ElemPtr = Bld.CreateElementBitCast(
|
|
ElemPtr, CGF.ConvertTypeForMem(Private->getType()));
|
|
// elem = *elemptr
|
|
llvm::Value *Elem = CGF.EmitLoadOfScalar(
|
|
ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
|
|
|
|
// Get pointer to location in transfer medium.
|
|
// MediumPtr = &medium[warp_id]
|
|
llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
|
|
TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
|
|
Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType()));
|
|
// Casting to actual data type.
|
|
// MediumPtr = (type[i]*)MediumPtrAddr;
|
|
MediumPtr = Bld.CreateElementBitCast(
|
|
MediumPtr, CGF.ConvertTypeForMem(Private->getType()));
|
|
|
|
//*MediumPtr = elem
|
|
Bld.CreateStore(Elem, MediumPtr);
|
|
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(ElseBB);
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(MergeBB);
|
|
|
|
Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
|
|
llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
|
|
AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation());
|
|
|
|
auto *NumActiveThreads = Bld.CreateNSWMul(
|
|
NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads");
|
|
// named_barrier_sync(ParallelBarrierID, num_active_threads)
|
|
syncParallelThreads(CGF, NumActiveThreads);
|
|
|
|
//
|
|
// Warp 0 copies reduce element from transfer medium.
|
|
//
|
|
llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
|
|
|
|
// Up to 32 threads in warp 0 are active.
|
|
auto IsActiveThread =
|
|
Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
|
|
Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
|
|
|
|
CGF.EmitBlock(W0ThenBB);
|
|
|
|
// SrcMediumPtr = &medium[tid]
|
|
llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
|
|
TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
|
|
Address SrcMediumPtr(SrcMediumPtrVal,
|
|
C.getTypeAlignInChars(Private->getType()));
|
|
// SrcMediumVal = *SrcMediumPtr;
|
|
SrcMediumPtr = Bld.CreateElementBitCast(
|
|
SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType()));
|
|
llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar(
|
|
SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation());
|
|
|
|
// TargetElemPtr = (type[i]*)(SrcDataAddr[i])
|
|
Address TargetElemPtrPtr =
|
|
Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
|
|
llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
|
|
TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
|
|
Address TargetElemPtr =
|
|
Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType()));
|
|
TargetElemPtr = Bld.CreateElementBitCast(
|
|
TargetElemPtr, CGF.ConvertTypeForMem(Private->getType()));
|
|
|
|
// *TargetElemPtr = SrcMediumVal;
|
|
CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
|
|
Private->getType());
|
|
Bld.CreateBr(W0MergeBB);
|
|
|
|
CGF.EmitBlock(W0ElseBB);
|
|
Bld.CreateBr(W0MergeBB);
|
|
|
|
CGF.EmitBlock(W0MergeBB);
|
|
|
|
// While warp 0 copies values from transfer medium, all other warps must
|
|
// wait.
|
|
syncParallelThreads(CGF, NumActiveThreads);
|
|
Idx++;
|
|
}
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// Emit a helper that reduces data across two OpenMP threads (lanes)
|
|
/// in the same warp. It uses shuffle instructions to copy over data from
|
|
/// a remote lane's stack. The reduction algorithm performed is specified
|
|
/// by the fourth parameter.
|
|
///
|
|
/// Algorithm Versions.
|
|
/// Full Warp Reduce (argument value 0):
|
|
/// This algorithm assumes that all 32 lanes are active and gathers
|
|
/// data from these 32 lanes, producing a single resultant value.
|
|
/// Contiguous Partial Warp Reduce (argument value 1):
|
|
/// This algorithm assumes that only a *contiguous* subset of lanes
|
|
/// are active. This happens for the last warp in a parallel region
|
|
/// when the user specified num_threads is not an integer multiple of
|
|
/// 32. This contiguous subset always starts with the zeroth lane.
|
|
/// Partial Warp Reduce (argument value 2):
|
|
/// This algorithm gathers data from any number of lanes at any position.
|
|
/// All reduced values are stored in the lowest possible lane. The set
|
|
/// of problems every algorithm addresses is a super set of those
|
|
/// addressable by algorithms with a lower version number. Overhead
|
|
/// increases as algorithm version increases.
|
|
///
|
|
/// Terminology
|
|
/// Reduce element:
|
|
/// Reduce element refers to the individual data field with primitive
|
|
/// data types to be combined and reduced across threads.
|
|
/// Reduce list:
|
|
/// Reduce list refers to a collection of local, thread-private
|
|
/// reduce elements.
|
|
/// Remote Reduce list:
|
|
/// Remote Reduce list refers to a collection of remote (relative to
|
|
/// the current thread) reduce elements.
|
|
///
|
|
/// We distinguish between three states of threads that are important to
|
|
/// the implementation of this function.
|
|
/// Alive threads:
|
|
/// Threads in a warp executing the SIMT instruction, as distinguished from
|
|
/// threads that are inactive due to divergent control flow.
|
|
/// Active threads:
|
|
/// The minimal set of threads that has to be alive upon entry to this
|
|
/// function. The computation is correct iff active threads are alive.
|
|
/// Some threads are alive but they are not active because they do not
|
|
/// contribute to the computation in any useful manner. Turning them off
|
|
/// may introduce control flow overheads without any tangible benefits.
|
|
/// Effective threads:
|
|
/// In order to comply with the argument requirements of the shuffle
|
|
/// function, we must keep all lanes holding data alive. But at most
|
|
/// half of them perform value aggregation; we refer to this half of
|
|
/// threads as effective. The other half is simply handing off their
|
|
/// data.
|
|
///
|
|
/// Procedure
|
|
/// Value shuffle:
|
|
/// In this step active threads transfer data from higher lane positions
|
|
/// in the warp to lower lane positions, creating Remote Reduce list.
|
|
/// Value aggregation:
|
|
/// In this step, effective threads combine their thread local Reduce list
|
|
/// with Remote Reduce list and store the result in the thread local
|
|
/// Reduce list.
|
|
/// Value copy:
|
|
/// In this step, we deal with the assumption made by algorithm 2
|
|
/// (i.e. contiguity assumption). When we have an odd number of lanes
|
|
/// active, say 2k+1, only k threads will be effective and therefore k
|
|
/// new values will be produced. However, the Reduce list owned by the
|
|
/// (2k+1)th thread is ignored in the value aggregation. Therefore
|
|
/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
|
|
/// that the contiguity assumption still holds.
|
|
static llvm::Value *emitShuffleAndReduceFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, llvm::Value *ReduceFn, SourceLocation Loc) {
|
|
auto &C = CGM.getContext();
|
|
|
|
// Thread local Reduce list used to host the values of data to be reduced.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Current lane id; could be logical.
|
|
ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
|
|
ImplicitParamDecl::Other);
|
|
// Offset of the remote source lane relative to the current lane.
|
|
ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.ShortTy, ImplicitParamDecl::Other);
|
|
// Algorithm version. This is expected to be known at compile time.
|
|
ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.ShortTy, ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&ReduceListArg);
|
|
Args.push_back(&LaneIDArg);
|
|
Args.push_back(&RemoteLaneOffsetArg);
|
|
Args.push_back(&AlgoVerArg);
|
|
|
|
auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
auto &Bld = CGF.Builder;
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
Address LocalReduceList(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, SourceLocation()),
|
|
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
|
|
CGF.getPointerAlign());
|
|
|
|
Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
|
|
llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
|
|
AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
|
|
|
|
Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
|
|
llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
|
|
AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
|
|
|
|
Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
|
|
llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
|
|
AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
|
|
|
|
// Create a local thread-private variable to host the Reduce list
|
|
// from a remote lane.
|
|
Address RemoteReduceList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
|
|
|
|
// This loop iterates through the list of reduce elements and copies,
|
|
// element by element, from a remote lane in the warp to RemoteReduceList,
|
|
// hosted on the thread's stack.
|
|
emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
|
|
LocalReduceList, RemoteReduceList,
|
|
{/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
|
|
/*ScratchpadIndex=*/nullptr,
|
|
/*ScratchpadWidth=*/nullptr});
|
|
|
|
// The actions to be performed on the Remote Reduce list is dependent
|
|
// on the algorithm version.
|
|
//
|
|
// if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
|
|
// LaneId % 2 == 0 && Offset > 0):
|
|
// do the reduction value aggregation
|
|
//
|
|
// The thread local variable Reduce list is mutated in place to host the
|
|
// reduced data, which is the aggregated value produced from local and
|
|
// remote lanes.
|
|
//
|
|
// Note that AlgoVer is expected to be a constant integer known at compile
|
|
// time.
|
|
// When AlgoVer==0, the first conjunction evaluates to true, making
|
|
// the entire predicate true during compile time.
|
|
// When AlgoVer==1, the second conjunction has only the second part to be
|
|
// evaluated during runtime. Other conjunctions evaluates to false
|
|
// during compile time.
|
|
// When AlgoVer==2, the third conjunction has only the second part to be
|
|
// evaluated during runtime. Other conjunctions evaluates to false
|
|
// during compile time.
|
|
auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0));
|
|
|
|
auto Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
|
|
auto CondAlgo1 = Bld.CreateAnd(
|
|
Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
|
|
|
|
auto Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
|
|
auto CondAlgo2 = Bld.CreateAnd(
|
|
Algo2,
|
|
Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)),
|
|
Bld.getInt16(0)));
|
|
CondAlgo2 = Bld.CreateAnd(
|
|
CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
|
|
|
|
auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
|
|
CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
|
|
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
|
|
Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
|
|
|
|
CGF.EmitBlock(ThenBB);
|
|
// reduce_function(LocalReduceList, RemoteReduceList)
|
|
llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
LocalReduceList.getPointer(), CGF.VoidPtrTy);
|
|
llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
RemoteReduceList.getPointer(), CGF.VoidPtrTy);
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(ElseBB);
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(MergeBB);
|
|
|
|
// if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
|
|
// Reduce list.
|
|
Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
|
|
auto CondCopy = Bld.CreateAnd(
|
|
Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
|
|
|
|
llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
|
|
Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
|
|
|
|
CGF.EmitBlock(CpyThenBB);
|
|
emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
|
|
RemoteReduceList, LocalReduceList);
|
|
Bld.CreateBr(CpyMergeBB);
|
|
|
|
CGF.EmitBlock(CpyElseBB);
|
|
Bld.CreateBr(CpyMergeBB);
|
|
|
|
CGF.EmitBlock(CpyMergeBB);
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
///
|
|
/// Design of OpenMP reductions on the GPU
|
|
///
|
|
/// Consider a typical OpenMP program with one or more reduction
|
|
/// clauses:
|
|
///
|
|
/// float foo;
|
|
/// double bar;
|
|
/// #pragma omp target teams distribute parallel for \
|
|
/// reduction(+:foo) reduction(*:bar)
|
|
/// for (int i = 0; i < N; i++) {
|
|
/// foo += A[i]; bar *= B[i];
|
|
/// }
|
|
///
|
|
/// where 'foo' and 'bar' are reduced across all OpenMP threads in
|
|
/// all teams. In our OpenMP implementation on the NVPTX device an
|
|
/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
|
|
/// within a team are mapped to CUDA threads within a threadblock.
|
|
/// Our goal is to efficiently aggregate values across all OpenMP
|
|
/// threads such that:
|
|
///
|
|
/// - the compiler and runtime are logically concise, and
|
|
/// - the reduction is performed efficiently in a hierarchical
|
|
/// manner as follows: within OpenMP threads in the same warp,
|
|
/// across warps in a threadblock, and finally across teams on
|
|
/// the NVPTX device.
|
|
///
|
|
/// Introduction to Decoupling
|
|
///
|
|
/// We would like to decouple the compiler and the runtime so that the
|
|
/// latter is ignorant of the reduction variables (number, data types)
|
|
/// and the reduction operators. This allows a simpler interface
|
|
/// and implementation while still attaining good performance.
|
|
///
|
|
/// Pseudocode for the aforementioned OpenMP program generated by the
|
|
/// compiler is as follows:
|
|
///
|
|
/// 1. Create private copies of reduction variables on each OpenMP
|
|
/// thread: 'foo_private', 'bar_private'
|
|
/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
|
|
/// to it and writes the result in 'foo_private' and 'bar_private'
|
|
/// respectively.
|
|
/// 3. Call the OpenMP runtime on the GPU to reduce within a team
|
|
/// and store the result on the team master:
|
|
///
|
|
/// __kmpc_nvptx_parallel_reduce_nowait(...,
|
|
/// reduceData, shuffleReduceFn, interWarpCpyFn)
|
|
///
|
|
/// where:
|
|
/// struct ReduceData {
|
|
/// double *foo;
|
|
/// double *bar;
|
|
/// } reduceData
|
|
/// reduceData.foo = &foo_private
|
|
/// reduceData.bar = &bar_private
|
|
///
|
|
/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
|
|
/// auxiliary functions generated by the compiler that operate on
|
|
/// variables of type 'ReduceData'. They aid the runtime perform
|
|
/// algorithmic steps in a data agnostic manner.
|
|
///
|
|
/// 'shuffleReduceFn' is a pointer to a function that reduces data
|
|
/// of type 'ReduceData' across two OpenMP threads (lanes) in the
|
|
/// same warp. It takes the following arguments as input:
|
|
///
|
|
/// a. variable of type 'ReduceData' on the calling lane,
|
|
/// b. its lane_id,
|
|
/// c. an offset relative to the current lane_id to generate a
|
|
/// remote_lane_id. The remote lane contains the second
|
|
/// variable of type 'ReduceData' that is to be reduced.
|
|
/// d. an algorithm version parameter determining which reduction
|
|
/// algorithm to use.
|
|
///
|
|
/// 'shuffleReduceFn' retrieves data from the remote lane using
|
|
/// efficient GPU shuffle intrinsics and reduces, using the
|
|
/// algorithm specified by the 4th parameter, the two operands
|
|
/// element-wise. The result is written to the first operand.
|
|
///
|
|
/// Different reduction algorithms are implemented in different
|
|
/// runtime functions, all calling 'shuffleReduceFn' to perform
|
|
/// the essential reduction step. Therefore, based on the 4th
|
|
/// parameter, this function behaves slightly differently to
|
|
/// cooperate with the runtime to ensure correctness under
|
|
/// different circumstances.
|
|
///
|
|
/// 'InterWarpCpyFn' is a pointer to a function that transfers
|
|
/// reduced variables across warps. It tunnels, through CUDA
|
|
/// shared memory, the thread-private data of type 'ReduceData'
|
|
/// from lane 0 of each warp to a lane in the first warp.
|
|
/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
|
|
/// The last team writes the global reduced value to memory.
|
|
///
|
|
/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
|
|
/// reduceData, shuffleReduceFn, interWarpCpyFn,
|
|
/// scratchpadCopyFn, loadAndReduceFn)
|
|
///
|
|
/// 'scratchpadCopyFn' is a helper that stores reduced
|
|
/// data from the team master to a scratchpad array in
|
|
/// global memory.
|
|
///
|
|
/// 'loadAndReduceFn' is a helper that loads data from
|
|
/// the scratchpad array and reduces it with the input
|
|
/// operand.
|
|
///
|
|
/// These compiler generated functions hide address
|
|
/// calculation and alignment information from the runtime.
|
|
/// 5. if ret == 1:
|
|
/// The team master of the last team stores the reduced
|
|
/// result to the globals in memory.
|
|
/// foo += reduceData.foo; bar *= reduceData.bar
|
|
///
|
|
///
|
|
/// Warp Reduction Algorithms
|
|
///
|
|
/// On the warp level, we have three algorithms implemented in the
|
|
/// OpenMP runtime depending on the number of active lanes:
|
|
///
|
|
/// Full Warp Reduction
|
|
///
|
|
/// The reduce algorithm within a warp where all lanes are active
|
|
/// is implemented in the runtime as follows:
|
|
///
|
|
/// full_warp_reduce(void *reduce_data,
|
|
/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
|
|
/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
|
|
/// ShuffleReduceFn(reduce_data, 0, offset, 0);
|
|
/// }
|
|
///
|
|
/// The algorithm completes in log(2, WARPSIZE) steps.
|
|
///
|
|
/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
|
|
/// not used therefore we save instructions by not retrieving lane_id
|
|
/// from the corresponding special registers. The 4th parameter, which
|
|
/// represents the version of the algorithm being used, is set to 0 to
|
|
/// signify full warp reduction.
|
|
///
|
|
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
|
|
///
|
|
/// #reduce_elem refers to an element in the local lane's data structure
|
|
/// #remote_elem is retrieved from a remote lane
|
|
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
|
|
/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
|
|
///
|
|
/// Contiguous Partial Warp Reduction
|
|
///
|
|
/// This reduce algorithm is used within a warp where only the first
|
|
/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
|
|
/// number of OpenMP threads in a parallel region is not a multiple of
|
|
/// WARPSIZE. The algorithm is implemented in the runtime as follows:
|
|
///
|
|
/// void
|
|
/// contiguous_partial_reduce(void *reduce_data,
|
|
/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
|
|
/// int size, int lane_id) {
|
|
/// int curr_size;
|
|
/// int offset;
|
|
/// curr_size = size;
|
|
/// mask = curr_size/2;
|
|
/// while (offset>0) {
|
|
/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
|
|
/// curr_size = (curr_size+1)/2;
|
|
/// offset = curr_size/2;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
|
|
///
|
|
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
|
|
/// if (lane_id < offset)
|
|
/// reduce_elem = reduce_elem REDUCE_OP remote_elem
|
|
/// else
|
|
/// reduce_elem = remote_elem
|
|
///
|
|
/// This algorithm assumes that the data to be reduced are located in a
|
|
/// contiguous subset of lanes starting from the first. When there is
|
|
/// an odd number of active lanes, the data in the last lane is not
|
|
/// aggregated with any other lane's dat but is instead copied over.
|
|
///
|
|
/// Dispersed Partial Warp Reduction
|
|
///
|
|
/// This algorithm is used within a warp when any discontiguous subset of
|
|
/// lanes are active. It is used to implement the reduction operation
|
|
/// across lanes in an OpenMP simd region or in a nested parallel region.
|
|
///
|
|
/// void
|
|
/// dispersed_partial_reduce(void *reduce_data,
|
|
/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
|
|
/// int size, remote_id;
|
|
/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
|
|
/// do {
|
|
/// remote_id = next_active_lane_id_right_after_me();
|
|
/// # the above function returns 0 of no active lane
|
|
/// # is present right after the current lane.
|
|
/// size = number_of_active_lanes_in_this_warp();
|
|
/// logical_lane_id /= 2;
|
|
/// ShuffleReduceFn(reduce_data, logical_lane_id,
|
|
/// remote_id-1-threadIdx.x, 2);
|
|
/// } while (logical_lane_id % 2 == 0 && size > 1);
|
|
/// }
|
|
///
|
|
/// There is no assumption made about the initial state of the reduction.
|
|
/// Any number of lanes (>=1) could be active at any position. The reduction
|
|
/// result is returned in the first active lane.
|
|
///
|
|
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
|
|
///
|
|
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
|
|
/// if (lane_id % 2 == 0 && offset > 0)
|
|
/// reduce_elem = reduce_elem REDUCE_OP remote_elem
|
|
/// else
|
|
/// reduce_elem = remote_elem
|
|
///
|
|
///
|
|
/// Intra-Team Reduction
|
|
///
|
|
/// This function, as implemented in the runtime call
|
|
/// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP
|
|
/// threads in a team. It first reduces within a warp using the
|
|
/// aforementioned algorithms. We then proceed to gather all such
|
|
/// reduced values at the first warp.
|
|
///
|
|
/// The runtime makes use of the function 'InterWarpCpyFn', which copies
|
|
/// data from each of the "warp master" (zeroth lane of each warp, where
|
|
/// warp-reduced data is held) to the zeroth warp. This step reduces (in
|
|
/// a mathematical sense) the problem of reduction across warp masters in
|
|
/// a block to the problem of warp reduction.
|
|
///
|
|
///
|
|
/// Inter-Team Reduction
|
|
///
|
|
/// Once a team has reduced its data to a single value, it is stored in
|
|
/// a global scratchpad array. Since each team has a distinct slot, this
|
|
/// can be done without locking.
|
|
///
|
|
/// The last team to write to the scratchpad array proceeds to reduce the
|
|
/// scratchpad array. One or more workers in the last team use the helper
|
|
/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
|
|
/// the k'th worker reduces every k'th element.
|
|
///
|
|
/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait' to
|
|
/// reduce across workers and compute a globally reduced value.
|
|
///
|
|
void CGOpenMPRuntimeNVPTX::emitReduction(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
|
|
bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
|
|
// FIXME: Add support for simd reduction.
|
|
assert((TeamsReduction || ParallelReduction) &&
|
|
"Invalid reduction selection in emitReduction.");
|
|
|
|
auto &C = CGM.getContext();
|
|
|
|
// 1. Build a list of reduction variables.
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
auto Size = RHSExprs.size();
|
|
for (auto *E : Privates) {
|
|
if (E->getType()->isVariablyModifiedType())
|
|
// Reserve place for array size.
|
|
++Size;
|
|
}
|
|
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
|
|
QualType ReductionArrayTy =
|
|
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
Address ReductionList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
|
|
auto IPriv = Privates.begin();
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
|
|
CGF.getPointerSize());
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
|
|
Elem);
|
|
if ((*IPriv)->getType()->isVariablyModifiedType()) {
|
|
// Store array size.
|
|
++Idx;
|
|
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
|
|
CGF.getPointerSize());
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(
|
|
CGF.getVLASize(
|
|
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
|
|
.first,
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
}
|
|
|
|
// 2. Emit reduce_func().
|
|
auto *ReductionFn = emitReductionFunction(
|
|
CGM, Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(),
|
|
Privates, LHSExprs, RHSExprs, ReductionOps);
|
|
|
|
// 4. Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
|
|
// RedList, shuffle_reduce_func, interwarp_copy_func);
|
|
auto *ThreadId = getThreadID(CGF, Loc);
|
|
auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
|
|
auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
ReductionList.getPointer(), CGF.VoidPtrTy);
|
|
|
|
auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
|
|
CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
|
|
auto *InterWarpCopyFn =
|
|
emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
|
|
|
|
llvm::Value *Res = nullptr;
|
|
if (ParallelReduction) {
|
|
llvm::Value *Args[] = {ThreadId,
|
|
CGF.Builder.getInt32(RHSExprs.size()),
|
|
ReductionArrayTySize,
|
|
RL,
|
|
ShuffleAndReduceFn,
|
|
InterWarpCopyFn};
|
|
|
|
Res = CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait),
|
|
Args);
|
|
}
|
|
|
|
if (TeamsReduction) {
|
|
auto *ScratchPadCopyFn =
|
|
emitCopyToScratchpad(CGM, Privates, ReductionArrayTy, Loc);
|
|
auto *LoadAndReduceFn = emitReduceScratchpadFunction(
|
|
CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
|
|
|
|
llvm::Value *Args[] = {ThreadId,
|
|
CGF.Builder.getInt32(RHSExprs.size()),
|
|
ReductionArrayTySize,
|
|
RL,
|
|
ShuffleAndReduceFn,
|
|
InterWarpCopyFn,
|
|
ScratchPadCopyFn,
|
|
LoadAndReduceFn};
|
|
Res = CGF.EmitRuntimeCall(
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_teams_reduce_nowait),
|
|
Args);
|
|
}
|
|
|
|
// 5. Build switch(res)
|
|
auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
|
|
auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1);
|
|
|
|
// 6. Build case 1: where we have reduced values in the master
|
|
// thread in each team.
|
|
// __kmpc_end_reduce{_nowait}(<gtid>);
|
|
// break;
|
|
auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
|
|
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
|
|
CGF.EmitBlock(Case1BB);
|
|
|
|
// Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
|
|
llvm::Value *EndArgs[] = {ThreadId};
|
|
auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps,
|
|
this](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (auto *E : ReductionOps) {
|
|
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
|
|
cast<DeclRefExpr>(*IRHS));
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
};
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
NVPTXActionTy Action(
|
|
nullptr, llvm::None,
|
|
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
|
|
EndArgs);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
CGF.EmitBranch(DefaultBB);
|
|
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
const VarDecl *
|
|
CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD,
|
|
const VarDecl *NativeParam) const {
|
|
if (!NativeParam->getType()->isReferenceType())
|
|
return NativeParam;
|
|
QualType ArgType = NativeParam->getType();
|
|
QualifierCollector QC;
|
|
const Type *NonQualTy = QC.strip(ArgType);
|
|
QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
|
|
if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
|
|
if (Attr->getCaptureKind() == OMPC_map) {
|
|
PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
|
|
LangAS::opencl_global);
|
|
}
|
|
}
|
|
ArgType = CGM.getContext().getPointerType(PointeeTy);
|
|
QC.addRestrict();
|
|
enum { NVPTX_local_addr = 5 };
|
|
QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
|
|
ArgType = QC.apply(CGM.getContext(), ArgType);
|
|
if (isa<ImplicitParamDecl>(NativeParam)) {
|
|
return ImplicitParamDecl::Create(
|
|
CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
|
|
NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
|
|
}
|
|
return ParmVarDecl::Create(
|
|
CGM.getContext(),
|
|
const_cast<DeclContext *>(NativeParam->getDeclContext()),
|
|
NativeParam->getLocStart(), NativeParam->getLocation(),
|
|
NativeParam->getIdentifier(), ArgType,
|
|
/*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
|
|
}
|
|
|
|
Address
|
|
CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF,
|
|
const VarDecl *NativeParam,
|
|
const VarDecl *TargetParam) const {
|
|
assert(NativeParam != TargetParam &&
|
|
NativeParam->getType()->isReferenceType() &&
|
|
"Native arg must not be the same as target arg.");
|
|
Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
|
|
QualType NativeParamType = NativeParam->getType();
|
|
QualifierCollector QC;
|
|
const Type *NonQualTy = QC.strip(NativeParamType);
|
|
QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
|
|
unsigned NativePointeeAddrSpace =
|
|
CGF.getContext().getTargetAddressSpace(NativePointeeTy);
|
|
QualType TargetTy = TargetParam->getType();
|
|
llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
|
|
LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
|
|
// First cast to generic.
|
|
TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
|
|
/*AddrSpace=*/0));
|
|
// Cast from generic to native address space.
|
|
TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
|
|
NativePointeeAddrSpace));
|
|
Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
|
|
CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
|
|
NativeParamType);
|
|
return NativeParamAddr;
|
|
}
|
|
|
|
void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
|
|
ArrayRef<llvm::Value *> Args) const {
|
|
SmallVector<llvm::Value *, 4> TargetArgs;
|
|
TargetArgs.reserve(Args.size());
|
|
auto *FnType =
|
|
cast<llvm::FunctionType>(OutlinedFn->getType()->getPointerElementType());
|
|
for (unsigned I = 0, E = Args.size(); I < E; ++I) {
|
|
if (FnType->isVarArg() && FnType->getNumParams() <= I) {
|
|
TargetArgs.append(std::next(Args.begin(), I), Args.end());
|
|
break;
|
|
}
|
|
llvm::Type *TargetType = FnType->getParamType(I);
|
|
llvm::Value *NativeArg = Args[I];
|
|
if (!TargetType->isPointerTy()) {
|
|
TargetArgs.emplace_back(NativeArg);
|
|
continue;
|
|
}
|
|
llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
NativeArg, NativeArg->getType()->getPointerElementType()->getPointerTo(
|
|
/*AddrSpace=*/0));
|
|
TargetArgs.emplace_back(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
|
|
}
|
|
CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
|
|
}
|
|
|
|
/// Emit function which wraps the outline parallel region
|
|
/// and controls the arguments which are passed to this function.
|
|
/// The wrapper ensures that the outlined function is called
|
|
/// with the correct arguments when data is shared.
|
|
llvm::Function *CGOpenMPRuntimeNVPTX::createDataSharingWrapper(
|
|
llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
|
|
ASTContext &Ctx = CGM.getContext();
|
|
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_parallel);
|
|
|
|
// Create a function that takes as argument the source thread.
|
|
FunctionArgList WrapperArgs;
|
|
QualType Int16QTy =
|
|
Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
|
|
QualType Int32QTy =
|
|
Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
|
|
QualType Int32PtrQTy = Ctx.getPointerType(Int32QTy);
|
|
QualType VoidPtrPtrQTy = Ctx.getPointerType(Ctx.VoidPtrTy);
|
|
ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getLocStart(),
|
|
/*Id=*/nullptr, Int16QTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getLocStart(),
|
|
/*Id=*/nullptr, Int32QTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl SharedArgsList(Ctx, /*DC=*/nullptr, D.getLocStart(),
|
|
/*Id=*/nullptr, VoidPtrPtrQTy,
|
|
ImplicitParamDecl::Other);
|
|
WrapperArgs.emplace_back(&ParallelLevelArg);
|
|
WrapperArgs.emplace_back(&WrapperArg);
|
|
WrapperArgs.emplace_back(&SharedArgsList);
|
|
|
|
auto &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
|
|
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
OutlinedParallelFn->getName() + "_wrapper", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
|
|
Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
|
|
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
|
|
CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
|
|
D.getLocStart(), D.getLocStart());
|
|
|
|
const auto *RD = CS.getCapturedRecordDecl();
|
|
auto CurField = RD->field_begin();
|
|
|
|
// Get the array of arguments.
|
|
SmallVector<llvm::Value *, 8> Args;
|
|
|
|
// TODO: suppport SIMD and pass actual values
|
|
Args.emplace_back(llvm::ConstantPointerNull::get(
|
|
CGM.Int32Ty->getPointerTo()));
|
|
Args.emplace_back(llvm::ConstantPointerNull::get(
|
|
CGM.Int32Ty->getPointerTo()));
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
auto CI = CS.capture_begin();
|
|
|
|
// Load the start of the array
|
|
auto SharedArgs =
|
|
CGF.EmitLoadOfPointer(CGF.GetAddrOfLocalVar(&SharedArgsList),
|
|
VoidPtrPtrQTy->castAs<PointerType>());
|
|
|
|
// For each captured variable
|
|
for (unsigned I = 0; I < CS.capture_size(); ++I, ++CI, ++CurField) {
|
|
// Name of captured variable
|
|
StringRef Name;
|
|
if (CI->capturesThis())
|
|
Name = "this";
|
|
else
|
|
Name = CI->getCapturedVar()->getName();
|
|
|
|
// We retrieve the CLANG type of the argument. We use it to create
|
|
// an alloca which will give us the LLVM type.
|
|
QualType ElemTy = CurField->getType();
|
|
// If this is a capture by copy the element type has to be the pointer to
|
|
// the data.
|
|
if (CI->capturesVariableByCopy())
|
|
ElemTy = Ctx.getPointerType(ElemTy);
|
|
|
|
// Get shared address of the captured variable.
|
|
Address ArgAddress = Bld.CreateConstInBoundsGEP(
|
|
SharedArgs, I, CGF.getPointerSize());
|
|
Address TypedArgAddress = Bld.CreateBitCast(
|
|
ArgAddress, CGF.ConvertTypeForMem(Ctx.getPointerType(ElemTy)));
|
|
llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedArgAddress,
|
|
/*Volatile=*/false, Int32PtrQTy, SourceLocation());
|
|
Args.emplace_back(Arg);
|
|
}
|
|
|
|
emitOutlinedFunctionCall(CGF, D.getLocStart(), OutlinedParallelFn, Args);
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|