forked from OSchip/llvm-project
2464 lines
92 KiB
C++
2464 lines
92 KiB
C++
//===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that splits the constant pool up into 'islands'
|
|
// which are scattered through-out the function. This is required due to the
|
|
// limited pc-relative displacements that ARM has.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBasicBlockInfo.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMBaseInfo.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "Utils/ARMBaseInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-cp-islands"
|
|
|
|
#define ARM_CP_ISLANDS_OPT_NAME \
|
|
"ARM constant island placement and branch shortening pass"
|
|
STATISTIC(NumCPEs, "Number of constpool entries");
|
|
STATISTIC(NumSplit, "Number of uncond branches inserted");
|
|
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
|
|
STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
|
|
STATISTIC(NumTBs, "Number of table branches generated");
|
|
STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
|
|
STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
|
|
STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
|
|
STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
|
|
STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
|
|
STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
|
|
|
|
static cl::opt<bool>
|
|
AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
|
|
cl::desc("Adjust basic block layout to better use TB[BH]"));
|
|
|
|
static cl::opt<unsigned>
|
|
CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
|
|
cl::desc("The max number of iteration for converge"));
|
|
|
|
static cl::opt<bool> SynthesizeThumb1TBB(
|
|
"arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
|
|
cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
|
|
"equivalent to the TBB/TBH instructions"));
|
|
|
|
namespace {
|
|
|
|
/// ARMConstantIslands - Due to limited PC-relative displacements, ARM
|
|
/// requires constant pool entries to be scattered among the instructions
|
|
/// inside a function. To do this, it completely ignores the normal LLVM
|
|
/// constant pool; instead, it places constants wherever it feels like with
|
|
/// special instructions.
|
|
///
|
|
/// The terminology used in this pass includes:
|
|
/// Islands - Clumps of constants placed in the function.
|
|
/// Water - Potential places where an island could be formed.
|
|
/// CPE - A constant pool entry that has been placed somewhere, which
|
|
/// tracks a list of users.
|
|
class ARMConstantIslands : public MachineFunctionPass {
|
|
std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
|
|
|
|
/// WaterList - A sorted list of basic blocks where islands could be placed
|
|
/// (i.e. blocks that don't fall through to the following block, due
|
|
/// to a return, unreachable, or unconditional branch).
|
|
std::vector<MachineBasicBlock*> WaterList;
|
|
|
|
/// NewWaterList - The subset of WaterList that was created since the
|
|
/// previous iteration by inserting unconditional branches.
|
|
SmallSet<MachineBasicBlock*, 4> NewWaterList;
|
|
|
|
using water_iterator = std::vector<MachineBasicBlock *>::iterator;
|
|
|
|
/// CPUser - One user of a constant pool, keeping the machine instruction
|
|
/// pointer, the constant pool being referenced, and the max displacement
|
|
/// allowed from the instruction to the CP. The HighWaterMark records the
|
|
/// highest basic block where a new CPEntry can be placed. To ensure this
|
|
/// pass terminates, the CP entries are initially placed at the end of the
|
|
/// function and then move monotonically to lower addresses. The
|
|
/// exception to this rule is when the current CP entry for a particular
|
|
/// CPUser is out of range, but there is another CP entry for the same
|
|
/// constant value in range. We want to use the existing in-range CP
|
|
/// entry, but if it later moves out of range, the search for new water
|
|
/// should resume where it left off. The HighWaterMark is used to record
|
|
/// that point.
|
|
struct CPUser {
|
|
MachineInstr *MI;
|
|
MachineInstr *CPEMI;
|
|
MachineBasicBlock *HighWaterMark;
|
|
unsigned MaxDisp;
|
|
bool NegOk;
|
|
bool IsSoImm;
|
|
bool KnownAlignment = false;
|
|
|
|
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
|
|
bool neg, bool soimm)
|
|
: MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
|
|
HighWaterMark = CPEMI->getParent();
|
|
}
|
|
|
|
/// getMaxDisp - Returns the maximum displacement supported by MI.
|
|
/// Correct for unknown alignment.
|
|
/// Conservatively subtract 2 bytes to handle weird alignment effects.
|
|
unsigned getMaxDisp() const {
|
|
return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
|
|
}
|
|
};
|
|
|
|
/// CPUsers - Keep track of all of the machine instructions that use various
|
|
/// constant pools and their max displacement.
|
|
std::vector<CPUser> CPUsers;
|
|
|
|
/// CPEntry - One per constant pool entry, keeping the machine instruction
|
|
/// pointer, the constpool index, and the number of CPUser's which
|
|
/// reference this entry.
|
|
struct CPEntry {
|
|
MachineInstr *CPEMI;
|
|
unsigned CPI;
|
|
unsigned RefCount;
|
|
|
|
CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
|
|
: CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
|
|
};
|
|
|
|
/// CPEntries - Keep track of all of the constant pool entry machine
|
|
/// instructions. For each original constpool index (i.e. those that existed
|
|
/// upon entry to this pass), it keeps a vector of entries. Original
|
|
/// elements are cloned as we go along; the clones are put in the vector of
|
|
/// the original element, but have distinct CPIs.
|
|
///
|
|
/// The first half of CPEntries contains generic constants, the second half
|
|
/// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
|
|
/// which vector it will be in here.
|
|
std::vector<std::vector<CPEntry>> CPEntries;
|
|
|
|
/// Maps a JT index to the offset in CPEntries containing copies of that
|
|
/// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
|
|
DenseMap<int, int> JumpTableEntryIndices;
|
|
|
|
/// Maps a JT index to the LEA that actually uses the index to calculate its
|
|
/// base address.
|
|
DenseMap<int, int> JumpTableUserIndices;
|
|
|
|
/// ImmBranch - One per immediate branch, keeping the machine instruction
|
|
/// pointer, conditional or unconditional, the max displacement,
|
|
/// and (if isCond is true) the corresponding unconditional branch
|
|
/// opcode.
|
|
struct ImmBranch {
|
|
MachineInstr *MI;
|
|
unsigned MaxDisp : 31;
|
|
bool isCond : 1;
|
|
unsigned UncondBr;
|
|
|
|
ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
|
|
: MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
|
|
};
|
|
|
|
/// ImmBranches - Keep track of all the immediate branch instructions.
|
|
std::vector<ImmBranch> ImmBranches;
|
|
|
|
/// PushPopMIs - Keep track of all the Thumb push / pop instructions.
|
|
SmallVector<MachineInstr*, 4> PushPopMIs;
|
|
|
|
/// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
|
|
SmallVector<MachineInstr*, 4> T2JumpTables;
|
|
|
|
/// HasFarJump - True if any far jump instruction has been emitted during
|
|
/// the branch fix up pass.
|
|
bool HasFarJump;
|
|
|
|
MachineFunction *MF;
|
|
MachineConstantPool *MCP;
|
|
const ARMBaseInstrInfo *TII;
|
|
const ARMSubtarget *STI;
|
|
ARMFunctionInfo *AFI;
|
|
MachineDominatorTree *DT = nullptr;
|
|
bool isThumb;
|
|
bool isThumb1;
|
|
bool isThumb2;
|
|
bool isPositionIndependentOrROPI;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ARMConstantIslands() : MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return ARM_CP_ISLANDS_OPT_NAME;
|
|
}
|
|
|
|
private:
|
|
void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
|
|
void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
|
|
bool BBHasFallthrough(MachineBasicBlock *MBB);
|
|
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
|
|
Align getCPEAlign(const MachineInstr *CPEMI);
|
|
void scanFunctionJumpTables();
|
|
void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
|
|
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
|
|
void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
|
|
bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
|
|
unsigned getCombinedIndex(const MachineInstr *CPEMI);
|
|
int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
|
|
bool findAvailableWater(CPUser&U, unsigned UserOffset,
|
|
water_iterator &WaterIter, bool CloserWater);
|
|
void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
|
|
MachineBasicBlock *&NewMBB);
|
|
bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
|
|
void removeDeadCPEMI(MachineInstr *CPEMI);
|
|
bool removeUnusedCPEntries();
|
|
bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
|
|
MachineInstr *CPEMI, unsigned Disp, bool NegOk,
|
|
bool DoDump = false);
|
|
bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
|
|
CPUser &U, unsigned &Growth);
|
|
bool fixupImmediateBr(ImmBranch &Br);
|
|
bool fixupConditionalBr(ImmBranch &Br);
|
|
bool fixupUnconditionalBr(ImmBranch &Br);
|
|
bool undoLRSpillRestore();
|
|
bool optimizeThumb2Instructions();
|
|
bool optimizeThumb2Branches();
|
|
bool reorderThumb2JumpTables();
|
|
bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
|
|
unsigned &DeadSize, bool &CanDeleteLEA,
|
|
bool &BaseRegKill);
|
|
bool optimizeThumb2JumpTables();
|
|
MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
|
|
MachineBasicBlock *JTBB);
|
|
|
|
unsigned getUserOffset(CPUser&) const;
|
|
void dumpBBs();
|
|
void verify();
|
|
|
|
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
|
|
unsigned Disp, bool NegativeOK, bool IsSoImm = false);
|
|
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
|
|
const CPUser &U) {
|
|
return isOffsetInRange(UserOffset, TrialOffset,
|
|
U.getMaxDisp(), U.NegOk, U.IsSoImm);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ARMConstantIslands::ID = 0;
|
|
|
|
/// verify - check BBOffsets, BBSizes, alignment of islands
|
|
void ARMConstantIslands::verify() {
|
|
#ifndef NDEBUG
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
assert(std::is_sorted(MF->begin(), MF->end(),
|
|
[&BBInfo](const MachineBasicBlock &LHS,
|
|
const MachineBasicBlock &RHS) {
|
|
return BBInfo[LHS.getNumber()].postOffset() <
|
|
BBInfo[RHS.getNumber()].postOffset();
|
|
}));
|
|
LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
|
|
CPUser &U = CPUsers[i];
|
|
unsigned UserOffset = getUserOffset(U);
|
|
// Verify offset using the real max displacement without the safety
|
|
// adjustment.
|
|
if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
|
|
/* DoDump = */ true)) {
|
|
LLVM_DEBUG(dbgs() << "OK\n");
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Out of range.\n");
|
|
dumpBBs();
|
|
LLVM_DEBUG(MF->dump());
|
|
llvm_unreachable("Constant pool entry out of range!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// print block size and offset information - debugging
|
|
LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
|
|
LLVM_DEBUG({
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
|
|
const BasicBlockInfo &BBI = BBInfo[J];
|
|
dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
|
|
<< " kb=" << unsigned(BBI.KnownBits)
|
|
<< " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
|
|
<< format(" size=%#x\n", BBInfo[J].Size);
|
|
}
|
|
});
|
|
}
|
|
#endif
|
|
|
|
bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
|
|
MF = &mf;
|
|
MCP = mf.getConstantPool();
|
|
BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
|
|
|
|
LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
|
|
<< MCP->getConstants().size() << " CP entries, aligned to "
|
|
<< MCP->getConstantPoolAlignment() << " bytes *****\n");
|
|
|
|
STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
|
|
TII = STI->getInstrInfo();
|
|
isPositionIndependentOrROPI =
|
|
STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
|
|
AFI = MF->getInfo<ARMFunctionInfo>();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
|
|
isThumb = AFI->isThumbFunction();
|
|
isThumb1 = AFI->isThumb1OnlyFunction();
|
|
isThumb2 = AFI->isThumb2Function();
|
|
|
|
HasFarJump = false;
|
|
bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
|
|
|
|
// Renumber all of the machine basic blocks in the function, guaranteeing that
|
|
// the numbers agree with the position of the block in the function.
|
|
MF->RenumberBlocks();
|
|
|
|
// Try to reorder and otherwise adjust the block layout to make good use
|
|
// of the TB[BH] instructions.
|
|
bool MadeChange = false;
|
|
if (GenerateTBB && AdjustJumpTableBlocks) {
|
|
scanFunctionJumpTables();
|
|
MadeChange |= reorderThumb2JumpTables();
|
|
// Data is out of date, so clear it. It'll be re-computed later.
|
|
T2JumpTables.clear();
|
|
// Blocks may have shifted around. Keep the numbering up to date.
|
|
MF->RenumberBlocks();
|
|
}
|
|
|
|
// Perform the initial placement of the constant pool entries. To start with,
|
|
// we put them all at the end of the function.
|
|
std::vector<MachineInstr*> CPEMIs;
|
|
if (!MCP->isEmpty())
|
|
doInitialConstPlacement(CPEMIs);
|
|
|
|
if (MF->getJumpTableInfo())
|
|
doInitialJumpTablePlacement(CPEMIs);
|
|
|
|
/// The next UID to take is the first unused one.
|
|
AFI->initPICLabelUId(CPEMIs.size());
|
|
|
|
// Do the initial scan of the function, building up information about the
|
|
// sizes of each block, the location of all the water, and finding all of the
|
|
// constant pool users.
|
|
initializeFunctionInfo(CPEMIs);
|
|
CPEMIs.clear();
|
|
LLVM_DEBUG(dumpBBs());
|
|
|
|
// Functions with jump tables need an alignment of 4 because they use the ADR
|
|
// instruction, which aligns the PC to 4 bytes before adding an offset.
|
|
if (!T2JumpTables.empty())
|
|
MF->ensureAlignment(Align(4));
|
|
|
|
/// Remove dead constant pool entries.
|
|
MadeChange |= removeUnusedCPEntries();
|
|
|
|
// Iteratively place constant pool entries and fix up branches until there
|
|
// is no change.
|
|
unsigned NoCPIters = 0, NoBRIters = 0;
|
|
while (true) {
|
|
LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
|
|
bool CPChange = false;
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
|
|
// For most inputs, it converges in no more than 5 iterations.
|
|
// If it doesn't end in 10, the input may have huge BB or many CPEs.
|
|
// In this case, we will try different heuristics.
|
|
CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
|
|
if (CPChange && ++NoCPIters > CPMaxIteration)
|
|
report_fatal_error("Constant Island pass failed to converge!");
|
|
LLVM_DEBUG(dumpBBs());
|
|
|
|
// Clear NewWaterList now. If we split a block for branches, it should
|
|
// appear as "new water" for the next iteration of constant pool placement.
|
|
NewWaterList.clear();
|
|
|
|
LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
|
|
bool BRChange = false;
|
|
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
|
|
BRChange |= fixupImmediateBr(ImmBranches[i]);
|
|
if (BRChange && ++NoBRIters > 30)
|
|
report_fatal_error("Branch Fix Up pass failed to converge!");
|
|
LLVM_DEBUG(dumpBBs());
|
|
|
|
if (!CPChange && !BRChange)
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
// Shrink 32-bit Thumb2 load and store instructions.
|
|
if (isThumb2 && !STI->prefers32BitThumb())
|
|
MadeChange |= optimizeThumb2Instructions();
|
|
|
|
// Shrink 32-bit branch instructions.
|
|
if (isThumb && STI->hasV8MBaselineOps())
|
|
MadeChange |= optimizeThumb2Branches();
|
|
|
|
// Optimize jump tables using TBB / TBH.
|
|
if (GenerateTBB && !STI->genExecuteOnly())
|
|
MadeChange |= optimizeThumb2JumpTables();
|
|
|
|
// After a while, this might be made debug-only, but it is not expensive.
|
|
verify();
|
|
|
|
// If LR has been forced spilled and no far jump (i.e. BL) has been issued,
|
|
// undo the spill / restore of LR if possible.
|
|
if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
|
|
MadeChange |= undoLRSpillRestore();
|
|
|
|
// Save the mapping between original and cloned constpool entries.
|
|
for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
|
|
for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
|
|
const CPEntry & CPE = CPEntries[i][j];
|
|
if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
|
|
AFI->recordCPEClone(i, CPE.CPI);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
|
|
|
|
BBUtils->clear();
|
|
WaterList.clear();
|
|
CPUsers.clear();
|
|
CPEntries.clear();
|
|
JumpTableEntryIndices.clear();
|
|
JumpTableUserIndices.clear();
|
|
ImmBranches.clear();
|
|
PushPopMIs.clear();
|
|
T2JumpTables.clear();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// Perform the initial placement of the regular constant pool entries.
|
|
/// To start with, we put them all at the end of the function.
|
|
void
|
|
ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
|
|
// Create the basic block to hold the CPE's.
|
|
MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
|
|
MF->push_back(BB);
|
|
|
|
// MachineConstantPool measures alignment in bytes.
|
|
const Align MaxAlign(MCP->getConstantPoolAlignment());
|
|
const unsigned MaxLogAlign = Log2(MaxAlign);
|
|
|
|
// Mark the basic block as required by the const-pool.
|
|
BB->setAlignment(MaxAlign);
|
|
|
|
// The function needs to be as aligned as the basic blocks. The linker may
|
|
// move functions around based on their alignment.
|
|
MF->ensureAlignment(BB->getAlignment());
|
|
|
|
// Order the entries in BB by descending alignment. That ensures correct
|
|
// alignment of all entries as long as BB is sufficiently aligned. Keep
|
|
// track of the insertion point for each alignment. We are going to bucket
|
|
// sort the entries as they are created.
|
|
SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
|
|
BB->end());
|
|
|
|
// Add all of the constants from the constant pool to the end block, use an
|
|
// identity mapping of CPI's to CPE's.
|
|
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
|
|
|
|
const DataLayout &TD = MF->getDataLayout();
|
|
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
|
|
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
|
|
unsigned Align = CPs[i].getAlignment();
|
|
assert(isPowerOf2_32(Align) && "Invalid alignment");
|
|
// Verify that all constant pool entries are a multiple of their alignment.
|
|
// If not, we would have to pad them out so that instructions stay aligned.
|
|
assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
|
|
|
|
// Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
|
|
unsigned LogAlign = Log2_32(Align);
|
|
MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
|
|
MachineInstr *CPEMI =
|
|
BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
|
|
.addImm(i).addConstantPoolIndex(i).addImm(Size);
|
|
CPEMIs.push_back(CPEMI);
|
|
|
|
// Ensure that future entries with higher alignment get inserted before
|
|
// CPEMI. This is bucket sort with iterators.
|
|
for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
|
|
if (InsPoint[a] == InsAt)
|
|
InsPoint[a] = CPEMI;
|
|
|
|
// Add a new CPEntry, but no corresponding CPUser yet.
|
|
CPEntries.emplace_back(1, CPEntry(CPEMI, i));
|
|
++NumCPEs;
|
|
LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
|
|
<< Size << ", align = " << Align << '\n');
|
|
}
|
|
LLVM_DEBUG(BB->dump());
|
|
}
|
|
|
|
/// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
|
|
/// instructions can be made more efficient if the jump table immediately
|
|
/// follows the instruction, it's best to place them immediately next to their
|
|
/// jumps to begin with. In almost all cases they'll never be moved from that
|
|
/// position.
|
|
void ARMConstantIslands::doInitialJumpTablePlacement(
|
|
std::vector<MachineInstr *> &CPEMIs) {
|
|
unsigned i = CPEntries.size();
|
|
auto MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
|
|
MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
auto MI = MBB.getLastNonDebugInstr();
|
|
if (MI == MBB.end())
|
|
continue;
|
|
|
|
unsigned JTOpcode;
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
continue;
|
|
case ARM::BR_JTadd:
|
|
case ARM::BR_JTr:
|
|
case ARM::tBR_JTr:
|
|
case ARM::BR_JTm_i12:
|
|
case ARM::BR_JTm_rs:
|
|
JTOpcode = ARM::JUMPTABLE_ADDRS;
|
|
break;
|
|
case ARM::t2BR_JT:
|
|
JTOpcode = ARM::JUMPTABLE_INSTS;
|
|
break;
|
|
case ARM::tTBB_JT:
|
|
case ARM::t2TBB_JT:
|
|
JTOpcode = ARM::JUMPTABLE_TBB;
|
|
break;
|
|
case ARM::tTBH_JT:
|
|
case ARM::t2TBH_JT:
|
|
JTOpcode = ARM::JUMPTABLE_TBH;
|
|
break;
|
|
}
|
|
|
|
unsigned NumOps = MI->getDesc().getNumOperands();
|
|
MachineOperand JTOp =
|
|
MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
|
|
unsigned JTI = JTOp.getIndex();
|
|
unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
|
|
MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
|
|
MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
|
|
MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
|
|
DebugLoc(), TII->get(JTOpcode))
|
|
.addImm(i++)
|
|
.addJumpTableIndex(JTI)
|
|
.addImm(Size);
|
|
CPEMIs.push_back(CPEMI);
|
|
CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
|
|
JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
|
|
if (!LastCorrectlyNumberedBB)
|
|
LastCorrectlyNumberedBB = &MBB;
|
|
}
|
|
|
|
// If we did anything then we need to renumber the subsequent blocks.
|
|
if (LastCorrectlyNumberedBB)
|
|
MF->RenumberBlocks(LastCorrectlyNumberedBB);
|
|
}
|
|
|
|
/// BBHasFallthrough - Return true if the specified basic block can fallthrough
|
|
/// into the block immediately after it.
|
|
bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
|
|
// Get the next machine basic block in the function.
|
|
MachineFunction::iterator MBBI = MBB->getIterator();
|
|
// Can't fall off end of function.
|
|
if (std::next(MBBI) == MBB->getParent()->end())
|
|
return false;
|
|
|
|
MachineBasicBlock *NextBB = &*std::next(MBBI);
|
|
if (!MBB->isSuccessor(NextBB))
|
|
return false;
|
|
|
|
// Try to analyze the end of the block. A potential fallthrough may already
|
|
// have an unconditional branch for whatever reason.
|
|
MachineBasicBlock *TBB, *FBB;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
|
|
return TooDifficult || FBB == nullptr;
|
|
}
|
|
|
|
/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
|
|
/// look up the corresponding CPEntry.
|
|
ARMConstantIslands::CPEntry *
|
|
ARMConstantIslands::findConstPoolEntry(unsigned CPI,
|
|
const MachineInstr *CPEMI) {
|
|
std::vector<CPEntry> &CPEs = CPEntries[CPI];
|
|
// Number of entries per constpool index should be small, just do a
|
|
// linear search.
|
|
for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
|
|
if (CPEs[i].CPEMI == CPEMI)
|
|
return &CPEs[i];
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// getCPEAlign - Returns the required alignment of the constant pool entry
|
|
/// represented by CPEMI.
|
|
Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
|
|
switch (CPEMI->getOpcode()) {
|
|
case ARM::CONSTPOOL_ENTRY:
|
|
break;
|
|
case ARM::JUMPTABLE_TBB:
|
|
return isThumb1 ? Align(4) : Align(1);
|
|
case ARM::JUMPTABLE_TBH:
|
|
return isThumb1 ? Align(4) : Align(2);
|
|
case ARM::JUMPTABLE_INSTS:
|
|
return Align(2);
|
|
case ARM::JUMPTABLE_ADDRS:
|
|
return Align(4);
|
|
default:
|
|
llvm_unreachable("unknown constpool entry kind");
|
|
}
|
|
|
|
unsigned CPI = getCombinedIndex(CPEMI);
|
|
assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
|
|
return Align(MCP->getConstants()[CPI].getAlignment());
|
|
}
|
|
|
|
/// scanFunctionJumpTables - Do a scan of the function, building up
|
|
/// information about the sizes of each block and the locations of all
|
|
/// the jump tables.
|
|
void ARMConstantIslands::scanFunctionJumpTables() {
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &I : MBB)
|
|
if (I.isBranch() &&
|
|
(I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
|
|
T2JumpTables.push_back(&I);
|
|
}
|
|
}
|
|
|
|
/// initializeFunctionInfo - Do the initial scan of the function, building up
|
|
/// information about the sizes of each block, the location of all the water,
|
|
/// and finding all of the constant pool users.
|
|
void ARMConstantIslands::
|
|
initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
|
|
|
|
BBUtils->computeAllBlockSizes();
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
// The known bits of the entry block offset are determined by the function
|
|
// alignment.
|
|
BBInfo.front().KnownBits = Log2(MF->getAlignment());
|
|
|
|
// Compute block offsets and known bits.
|
|
BBUtils->adjustBBOffsetsAfter(&MF->front());
|
|
|
|
// Now go back through the instructions and build up our data structures.
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
// If this block doesn't fall through into the next MBB, then this is
|
|
// 'water' that a constant pool island could be placed.
|
|
if (!BBHasFallthrough(&MBB))
|
|
WaterList.push_back(&MBB);
|
|
|
|
for (MachineInstr &I : MBB) {
|
|
if (I.isDebugInstr())
|
|
continue;
|
|
|
|
unsigned Opc = I.getOpcode();
|
|
if (I.isBranch()) {
|
|
bool isCond = false;
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
int UOpc = Opc;
|
|
switch (Opc) {
|
|
default:
|
|
continue; // Ignore other JT branches
|
|
case ARM::t2BR_JT:
|
|
case ARM::tBR_JTr:
|
|
T2JumpTables.push_back(&I);
|
|
continue; // Does not get an entry in ImmBranches
|
|
case ARM::Bcc:
|
|
isCond = true;
|
|
UOpc = ARM::B;
|
|
LLVM_FALLTHROUGH;
|
|
case ARM::B:
|
|
Bits = 24;
|
|
Scale = 4;
|
|
break;
|
|
case ARM::tBcc:
|
|
isCond = true;
|
|
UOpc = ARM::tB;
|
|
Bits = 8;
|
|
Scale = 2;
|
|
break;
|
|
case ARM::tB:
|
|
Bits = 11;
|
|
Scale = 2;
|
|
break;
|
|
case ARM::t2Bcc:
|
|
isCond = true;
|
|
UOpc = ARM::t2B;
|
|
Bits = 20;
|
|
Scale = 2;
|
|
break;
|
|
case ARM::t2B:
|
|
Bits = 24;
|
|
Scale = 2;
|
|
break;
|
|
}
|
|
|
|
// Record this immediate branch.
|
|
unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
|
|
ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
|
|
}
|
|
|
|
if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
|
|
PushPopMIs.push_back(&I);
|
|
|
|
if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
|
|
Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
|
|
Opc == ARM::JUMPTABLE_TBH)
|
|
continue;
|
|
|
|
// Scan the instructions for constant pool operands.
|
|
for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
|
|
if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
|
|
// We found one. The addressing mode tells us the max displacement
|
|
// from the PC that this instruction permits.
|
|
|
|
// Basic size info comes from the TSFlags field.
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
bool NegOk = false;
|
|
bool IsSoImm = false;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unknown addressing mode for CP reference!");
|
|
|
|
// Taking the address of a CP entry.
|
|
case ARM::LEApcrel:
|
|
case ARM::LEApcrelJT:
|
|
// This takes a SoImm, which is 8 bit immediate rotated. We'll
|
|
// pretend the maximum offset is 255 * 4. Since each instruction
|
|
// 4 byte wide, this is always correct. We'll check for other
|
|
// displacements that fits in a SoImm as well.
|
|
Bits = 8;
|
|
Scale = 4;
|
|
NegOk = true;
|
|
IsSoImm = true;
|
|
break;
|
|
case ARM::t2LEApcrel:
|
|
case ARM::t2LEApcrelJT:
|
|
Bits = 12;
|
|
NegOk = true;
|
|
break;
|
|
case ARM::tLEApcrel:
|
|
case ARM::tLEApcrelJT:
|
|
Bits = 8;
|
|
Scale = 4;
|
|
break;
|
|
|
|
case ARM::LDRBi12:
|
|
case ARM::LDRi12:
|
|
case ARM::LDRcp:
|
|
case ARM::t2LDRpci:
|
|
case ARM::t2LDRHpci:
|
|
case ARM::t2LDRBpci:
|
|
Bits = 12; // +-offset_12
|
|
NegOk = true;
|
|
break;
|
|
|
|
case ARM::tLDRpci:
|
|
Bits = 8;
|
|
Scale = 4; // +(offset_8*4)
|
|
break;
|
|
|
|
case ARM::VLDRD:
|
|
case ARM::VLDRS:
|
|
Bits = 8;
|
|
Scale = 4; // +-(offset_8*4)
|
|
NegOk = true;
|
|
break;
|
|
case ARM::VLDRH:
|
|
Bits = 8;
|
|
Scale = 2; // +-(offset_8*2)
|
|
NegOk = true;
|
|
break;
|
|
}
|
|
|
|
// Remember that this is a user of a CP entry.
|
|
unsigned CPI = I.getOperand(op).getIndex();
|
|
if (I.getOperand(op).isJTI()) {
|
|
JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
|
|
CPI = JumpTableEntryIndices[CPI];
|
|
}
|
|
|
|
MachineInstr *CPEMI = CPEMIs[CPI];
|
|
unsigned MaxOffs = ((1 << Bits)-1) * Scale;
|
|
CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
|
|
|
|
// Increment corresponding CPEntry reference count.
|
|
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
|
|
assert(CPE && "Cannot find a corresponding CPEntry!");
|
|
CPE->RefCount++;
|
|
|
|
// Instructions can only use one CP entry, don't bother scanning the
|
|
// rest of the operands.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
|
|
/// ID.
|
|
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
|
|
const MachineBasicBlock *RHS) {
|
|
return LHS->getNumber() < RHS->getNumber();
|
|
}
|
|
|
|
/// updateForInsertedWaterBlock - When a block is newly inserted into the
|
|
/// machine function, it upsets all of the block numbers. Renumber the blocks
|
|
/// and update the arrays that parallel this numbering.
|
|
void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
|
|
// Renumber the MBB's to keep them consecutive.
|
|
NewBB->getParent()->RenumberBlocks(NewBB);
|
|
|
|
// Insert an entry into BBInfo to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
|
|
|
|
// Next, update WaterList. Specifically, we need to add NewMBB as having
|
|
// available water after it.
|
|
water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
|
|
WaterList.insert(IP, NewBB);
|
|
}
|
|
|
|
/// Split the basic block containing MI into two blocks, which are joined by
|
|
/// an unconditional branch. Update data structures and renumber blocks to
|
|
/// account for this change and returns the newly created block.
|
|
MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
|
|
MachineBasicBlock *OrigBB = MI->getParent();
|
|
|
|
// Collect liveness information at MI.
|
|
LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
|
|
LRs.addLiveOuts(*OrigBB);
|
|
auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
|
|
for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
|
|
LRs.stepBackward(LiveMI);
|
|
|
|
// Create a new MBB for the code after the OrigBB.
|
|
MachineBasicBlock *NewBB =
|
|
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
|
|
MachineFunction::iterator MBBI = ++OrigBB->getIterator();
|
|
MF->insert(MBBI, NewBB);
|
|
|
|
// Splice the instructions starting with MI over to NewBB.
|
|
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
|
|
|
|
// Add an unconditional branch from OrigBB to NewBB.
|
|
// Note the new unconditional branch is not being recorded.
|
|
// There doesn't seem to be meaningful DebugInfo available; this doesn't
|
|
// correspond to anything in the source.
|
|
unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
|
|
if (!isThumb)
|
|
BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
|
|
else
|
|
BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
|
|
.addMBB(NewBB)
|
|
.add(predOps(ARMCC::AL));
|
|
++NumSplit;
|
|
|
|
// Update the CFG. All succs of OrigBB are now succs of NewBB.
|
|
NewBB->transferSuccessors(OrigBB);
|
|
|
|
// OrigBB branches to NewBB.
|
|
OrigBB->addSuccessor(NewBB);
|
|
|
|
// Update live-in information in the new block.
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
for (MCPhysReg L : LRs)
|
|
if (!MRI.isReserved(L))
|
|
NewBB->addLiveIn(L);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
// This is almost the same as updateForInsertedWaterBlock, except that
|
|
// the Water goes after OrigBB, not NewBB.
|
|
MF->RenumberBlocks(NewBB);
|
|
|
|
// Insert an entry into BBInfo to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
|
|
|
|
// Next, update WaterList. Specifically, we need to add OrigMBB as having
|
|
// available water after it (but not if it's already there, which happens
|
|
// when splitting before a conditional branch that is followed by an
|
|
// unconditional branch - in that case we want to insert NewBB).
|
|
water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
|
|
MachineBasicBlock* WaterBB = *IP;
|
|
if (WaterBB == OrigBB)
|
|
WaterList.insert(std::next(IP), NewBB);
|
|
else
|
|
WaterList.insert(IP, OrigBB);
|
|
NewWaterList.insert(OrigBB);
|
|
|
|
// Figure out how large the OrigBB is. As the first half of the original
|
|
// block, it cannot contain a tablejump. The size includes
|
|
// the new jump we added. (It should be possible to do this without
|
|
// recounting everything, but it's very confusing, and this is rarely
|
|
// executed.)
|
|
BBUtils->computeBlockSize(OrigBB);
|
|
|
|
// Figure out how large the NewMBB is. As the second half of the original
|
|
// block, it may contain a tablejump.
|
|
BBUtils->computeBlockSize(NewBB);
|
|
|
|
// All BBOffsets following these blocks must be modified.
|
|
BBUtils->adjustBBOffsetsAfter(OrigBB);
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
/// getUserOffset - Compute the offset of U.MI as seen by the hardware
|
|
/// displacement computation. Update U.KnownAlignment to match its current
|
|
/// basic block location.
|
|
unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
|
|
unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
|
|
|
|
SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
|
|
const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
|
|
unsigned KnownBits = BBI.internalKnownBits();
|
|
|
|
// The value read from PC is offset from the actual instruction address.
|
|
UserOffset += (isThumb ? 4 : 8);
|
|
|
|
// Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
|
|
// Make sure U.getMaxDisp() returns a constrained range.
|
|
U.KnownAlignment = (KnownBits >= 2);
|
|
|
|
// On Thumb, offsets==2 mod 4 are rounded down by the hardware for
|
|
// purposes of the displacement computation; compensate for that here.
|
|
// For unknown alignments, getMaxDisp() constrains the range instead.
|
|
if (isThumb && U.KnownAlignment)
|
|
UserOffset &= ~3u;
|
|
|
|
return UserOffset;
|
|
}
|
|
|
|
/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
|
|
/// reference) is within MaxDisp of TrialOffset (a proposed location of a
|
|
/// constant pool entry).
|
|
/// UserOffset is computed by getUserOffset above to include PC adjustments. If
|
|
/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
|
|
/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
|
|
bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
|
|
unsigned TrialOffset, unsigned MaxDisp,
|
|
bool NegativeOK, bool IsSoImm) {
|
|
if (UserOffset <= TrialOffset) {
|
|
// User before the Trial.
|
|
if (TrialOffset - UserOffset <= MaxDisp)
|
|
return true;
|
|
// FIXME: Make use full range of soimm values.
|
|
} else if (NegativeOK) {
|
|
if (UserOffset - TrialOffset <= MaxDisp)
|
|
return true;
|
|
// FIXME: Make use full range of soimm values.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isWaterInRange - Returns true if a CPE placed after the specified
|
|
/// Water (a basic block) will be in range for the specific MI.
|
|
///
|
|
/// Compute how much the function will grow by inserting a CPE after Water.
|
|
bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
|
|
MachineBasicBlock* Water, CPUser &U,
|
|
unsigned &Growth) {
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
const Align CPEAlign = getCPEAlign(U.CPEMI);
|
|
const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
|
|
unsigned NextBlockOffset;
|
|
Align NextBlockAlignment;
|
|
MachineFunction::const_iterator NextBlock = Water->getIterator();
|
|
if (++NextBlock == MF->end()) {
|
|
NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
|
|
} else {
|
|
NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
|
|
NextBlockAlignment = NextBlock->getAlignment();
|
|
}
|
|
unsigned Size = U.CPEMI->getOperand(2).getImm();
|
|
unsigned CPEEnd = CPEOffset + Size;
|
|
|
|
// The CPE may be able to hide in the alignment padding before the next
|
|
// block. It may also cause more padding to be required if it is more aligned
|
|
// that the next block.
|
|
if (CPEEnd > NextBlockOffset) {
|
|
Growth = CPEEnd - NextBlockOffset;
|
|
// Compute the padding that would go at the end of the CPE to align the next
|
|
// block.
|
|
Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
|
|
|
|
// If the CPE is to be inserted before the instruction, that will raise
|
|
// the offset of the instruction. Also account for unknown alignment padding
|
|
// in blocks between CPE and the user.
|
|
if (CPEOffset < UserOffset)
|
|
UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
|
|
} else
|
|
// CPE fits in existing padding.
|
|
Growth = 0;
|
|
|
|
return isOffsetInRange(UserOffset, CPEOffset, U);
|
|
}
|
|
|
|
/// isCPEntryInRange - Returns true if the distance between specific MI and
|
|
/// specific ConstPool entry instruction can fit in MI's displacement field.
|
|
bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
|
|
MachineInstr *CPEMI, unsigned MaxDisp,
|
|
bool NegOk, bool DoDump) {
|
|
unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
|
|
|
|
if (DoDump) {
|
|
LLVM_DEBUG({
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
unsigned Block = MI->getParent()->getNumber();
|
|
const BasicBlockInfo &BBI = BBInfo[Block];
|
|
dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
|
|
<< " max delta=" << MaxDisp
|
|
<< format(" insn address=%#x", UserOffset) << " in "
|
|
<< printMBBReference(*MI->getParent()) << ": "
|
|
<< format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
|
|
<< format("CPE address=%#x offset=%+d: ", CPEOffset,
|
|
int(CPEOffset - UserOffset));
|
|
});
|
|
}
|
|
|
|
return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
|
|
/// unconditionally branches to its only successor.
|
|
static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
|
|
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
|
|
return false;
|
|
|
|
MachineBasicBlock *Succ = *MBB->succ_begin();
|
|
MachineBasicBlock *Pred = *MBB->pred_begin();
|
|
MachineInstr *PredMI = &Pred->back();
|
|
if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
|
|
|| PredMI->getOpcode() == ARM::t2B)
|
|
return PredMI->getOperand(0).getMBB() == Succ;
|
|
return false;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
/// decrementCPEReferenceCount - find the constant pool entry with index CPI
|
|
/// and instruction CPEMI, and decrement its refcount. If the refcount
|
|
/// becomes 0 remove the entry and instruction. Returns true if we removed
|
|
/// the entry, false if we didn't.
|
|
bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
|
|
MachineInstr *CPEMI) {
|
|
// Find the old entry. Eliminate it if it is no longer used.
|
|
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
|
|
assert(CPE && "Unexpected!");
|
|
if (--CPE->RefCount == 0) {
|
|
removeDeadCPEMI(CPEMI);
|
|
CPE->CPEMI = nullptr;
|
|
--NumCPEs;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
|
|
if (CPEMI->getOperand(1).isCPI())
|
|
return CPEMI->getOperand(1).getIndex();
|
|
|
|
return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
|
|
}
|
|
|
|
/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
|
|
/// if not, see if an in-range clone of the CPE is in range, and if so,
|
|
/// change the data structures so the user references the clone. Returns:
|
|
/// 0 = no existing entry found
|
|
/// 1 = entry found, and there were no code insertions or deletions
|
|
/// 2 = entry found, and there were code insertions or deletions
|
|
int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
|
|
// Check to see if the CPE is already in-range.
|
|
if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
|
|
true)) {
|
|
LLVM_DEBUG(dbgs() << "In range\n");
|
|
return 1;
|
|
}
|
|
|
|
// No. Look for previously created clones of the CPE that are in range.
|
|
unsigned CPI = getCombinedIndex(CPEMI);
|
|
std::vector<CPEntry> &CPEs = CPEntries[CPI];
|
|
for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
|
|
// We already tried this one
|
|
if (CPEs[i].CPEMI == CPEMI)
|
|
continue;
|
|
// Removing CPEs can leave empty entries, skip
|
|
if (CPEs[i].CPEMI == nullptr)
|
|
continue;
|
|
if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
|
|
U.NegOk)) {
|
|
LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
|
|
<< CPEs[i].CPI << "\n");
|
|
// Point the CPUser node to the replacement
|
|
U.CPEMI = CPEs[i].CPEMI;
|
|
// Change the CPI in the instruction operand to refer to the clone.
|
|
for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
|
|
if (UserMI->getOperand(j).isCPI()) {
|
|
UserMI->getOperand(j).setIndex(CPEs[i].CPI);
|
|
break;
|
|
}
|
|
// Adjust the refcount of the clone...
|
|
CPEs[i].RefCount++;
|
|
// ...and the original. If we didn't remove the old entry, none of the
|
|
// addresses changed, so we don't need another pass.
|
|
return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
|
|
/// the specific unconditional branch instruction.
|
|
static inline unsigned getUnconditionalBrDisp(int Opc) {
|
|
switch (Opc) {
|
|
case ARM::tB:
|
|
return ((1<<10)-1)*2;
|
|
case ARM::t2B:
|
|
return ((1<<23)-1)*2;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ((1<<23)-1)*4;
|
|
}
|
|
|
|
/// findAvailableWater - Look for an existing entry in the WaterList in which
|
|
/// we can place the CPE referenced from U so it's within range of U's MI.
|
|
/// Returns true if found, false if not. If it returns true, WaterIter
|
|
/// is set to the WaterList entry. For Thumb, prefer water that will not
|
|
/// introduce padding to water that will. To ensure that this pass
|
|
/// terminates, the CPE location for a particular CPUser is only allowed to
|
|
/// move to a lower address, so search backward from the end of the list and
|
|
/// prefer the first water that is in range.
|
|
bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
|
|
water_iterator &WaterIter,
|
|
bool CloserWater) {
|
|
if (WaterList.empty())
|
|
return false;
|
|
|
|
unsigned BestGrowth = ~0u;
|
|
// The nearest water without splitting the UserBB is right after it.
|
|
// If the distance is still large (we have a big BB), then we need to split it
|
|
// if we don't converge after certain iterations. This helps the following
|
|
// situation to converge:
|
|
// BB0:
|
|
// Big BB
|
|
// BB1:
|
|
// Constant Pool
|
|
// When a CP access is out of range, BB0 may be used as water. However,
|
|
// inserting islands between BB0 and BB1 makes other accesses out of range.
|
|
MachineBasicBlock *UserBB = U.MI->getParent();
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
const Align CPEAlign = getCPEAlign(U.CPEMI);
|
|
unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
|
|
if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
|
|
return false;
|
|
for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
|
|
--IP) {
|
|
MachineBasicBlock* WaterBB = *IP;
|
|
// Check if water is in range and is either at a lower address than the
|
|
// current "high water mark" or a new water block that was created since
|
|
// the previous iteration by inserting an unconditional branch. In the
|
|
// latter case, we want to allow resetting the high water mark back to
|
|
// this new water since we haven't seen it before. Inserting branches
|
|
// should be relatively uncommon and when it does happen, we want to be
|
|
// sure to take advantage of it for all the CPEs near that block, so that
|
|
// we don't insert more branches than necessary.
|
|
// When CloserWater is true, we try to find the lowest address after (or
|
|
// equal to) user MI's BB no matter of padding growth.
|
|
unsigned Growth;
|
|
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
|
|
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
|
|
NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
|
|
Growth < BestGrowth) {
|
|
// This is the least amount of required padding seen so far.
|
|
BestGrowth = Growth;
|
|
WaterIter = IP;
|
|
LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
|
|
<< " Growth=" << Growth << '\n');
|
|
|
|
if (CloserWater && WaterBB == U.MI->getParent())
|
|
return true;
|
|
// Keep looking unless it is perfect and we're not looking for the lowest
|
|
// possible address.
|
|
if (!CloserWater && BestGrowth == 0)
|
|
return true;
|
|
}
|
|
if (IP == B)
|
|
break;
|
|
}
|
|
return BestGrowth != ~0u;
|
|
}
|
|
|
|
/// createNewWater - No existing WaterList entry will work for
|
|
/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
|
|
/// block is used if in range, and the conditional branch munged so control
|
|
/// flow is correct. Otherwise the block is split to create a hole with an
|
|
/// unconditional branch around it. In either case NewMBB is set to a
|
|
/// block following which the new island can be inserted (the WaterList
|
|
/// is not adjusted).
|
|
void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
|
|
unsigned UserOffset,
|
|
MachineBasicBlock *&NewMBB) {
|
|
CPUser &U = CPUsers[CPUserIndex];
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
const Align CPEAlign = getCPEAlign(CPEMI);
|
|
MachineBasicBlock *UserMBB = UserMI->getParent();
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
|
|
|
|
// If the block does not end in an unconditional branch already, and if the
|
|
// end of the block is within range, make new water there. (The addition
|
|
// below is for the unconditional branch we will be adding: 4 bytes on ARM +
|
|
// Thumb2, 2 on Thumb1.
|
|
if (BBHasFallthrough(UserMBB)) {
|
|
// Size of branch to insert.
|
|
unsigned Delta = isThumb1 ? 2 : 4;
|
|
// Compute the offset where the CPE will begin.
|
|
unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
|
|
|
|
if (isOffsetInRange(UserOffset, CPEOffset, U)) {
|
|
LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
|
|
<< format(", expected CPE offset %#x\n", CPEOffset));
|
|
NewMBB = &*++UserMBB->getIterator();
|
|
// Add an unconditional branch from UserMBB to fallthrough block. Record
|
|
// it for branch lengthening; this new branch will not get out of range,
|
|
// but if the preceding conditional branch is out of range, the targets
|
|
// will be exchanged, and the altered branch may be out of range, so the
|
|
// machinery has to know about it.
|
|
int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
|
|
if (!isThumb)
|
|
BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
|
|
else
|
|
BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
|
|
.addMBB(NewMBB)
|
|
.add(predOps(ARMCC::AL));
|
|
unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
|
|
ImmBranches.push_back(ImmBranch(&UserMBB->back(),
|
|
MaxDisp, false, UncondBr));
|
|
BBUtils->computeBlockSize(UserMBB);
|
|
BBUtils->adjustBBOffsetsAfter(UserMBB);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// What a big block. Find a place within the block to split it. This is a
|
|
// little tricky on Thumb1 since instructions are 2 bytes and constant pool
|
|
// entries are 4 bytes: if instruction I references island CPE, and
|
|
// instruction I+1 references CPE', it will not work well to put CPE as far
|
|
// forward as possible, since then CPE' cannot immediately follow it (that
|
|
// location is 2 bytes farther away from I+1 than CPE was from I) and we'd
|
|
// need to create a new island. So, we make a first guess, then walk through
|
|
// the instructions between the one currently being looked at and the
|
|
// possible insertion point, and make sure any other instructions that
|
|
// reference CPEs will be able to use the same island area; if not, we back
|
|
// up the insertion point.
|
|
|
|
// Try to split the block so it's fully aligned. Compute the latest split
|
|
// point where we can add a 4-byte branch instruction, and then align to
|
|
// Align which is the largest possible alignment in the function.
|
|
const Align Align = MF->getAlignment();
|
|
assert(Align >= CPEAlign && "Over-aligned constant pool entry");
|
|
unsigned KnownBits = UserBBI.internalKnownBits();
|
|
unsigned UPad = UnknownPadding(Align, KnownBits);
|
|
unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
|
|
LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
|
|
BaseInsertOffset));
|
|
|
|
// The 4 in the following is for the unconditional branch we'll be inserting
|
|
// (allows for long branch on Thumb1). Alignment of the island is handled
|
|
// inside isOffsetInRange.
|
|
BaseInsertOffset -= 4;
|
|
|
|
LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
|
|
<< " la=" << Log2(Align) << " kb=" << KnownBits
|
|
<< " up=" << UPad << '\n');
|
|
|
|
// This could point off the end of the block if we've already got constant
|
|
// pool entries following this block; only the last one is in the water list.
|
|
// Back past any possible branches (allow for a conditional and a maximally
|
|
// long unconditional).
|
|
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
|
|
// Ensure BaseInsertOffset is larger than the offset of the instruction
|
|
// following UserMI so that the loop which searches for the split point
|
|
// iterates at least once.
|
|
BaseInsertOffset =
|
|
std::max(UserBBI.postOffset() - UPad - 8,
|
|
UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
|
|
// If the CP is referenced(ie, UserOffset) is in first four instructions
|
|
// after IT, this recalculated BaseInsertOffset could be in the middle of
|
|
// an IT block. If it is, change the BaseInsertOffset to just after the
|
|
// IT block. This still make the CP Entry is in range becuase of the
|
|
// following reasons.
|
|
// 1. The initial BaseseInsertOffset calculated is (UserOffset +
|
|
// U.getMaxDisp() - UPad).
|
|
// 2. An IT block is only at most 4 instructions plus the "it" itself (18
|
|
// bytes).
|
|
// 3. All the relevant instructions support much larger Maximum
|
|
// displacement.
|
|
MachineBasicBlock::iterator I = UserMI;
|
|
++I;
|
|
for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI),
|
|
PredReg = 0;
|
|
I->getOpcode() != ARM::t2IT &&
|
|
getITInstrPredicate(*I, PredReg) != ARMCC::AL;
|
|
Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
|
|
BaseInsertOffset =
|
|
std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
|
|
assert(I != UserMBB->end() && "Fell off end of block");
|
|
}
|
|
LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
|
|
}
|
|
unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
|
|
CPEMI->getOperand(2).getImm();
|
|
MachineBasicBlock::iterator MI = UserMI;
|
|
++MI;
|
|
unsigned CPUIndex = CPUserIndex+1;
|
|
unsigned NumCPUsers = CPUsers.size();
|
|
MachineInstr *LastIT = nullptr;
|
|
for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
|
|
Offset < BaseInsertOffset;
|
|
Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
|
|
assert(MI != UserMBB->end() && "Fell off end of block");
|
|
if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
|
|
CPUser &U = CPUsers[CPUIndex];
|
|
if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
|
|
// Shift intertion point by one unit of alignment so it is within reach.
|
|
BaseInsertOffset -= Align.value();
|
|
EndInsertOffset -= Align.value();
|
|
}
|
|
// This is overly conservative, as we don't account for CPEMIs being
|
|
// reused within the block, but it doesn't matter much. Also assume CPEs
|
|
// are added in order with alignment padding. We may eventually be able
|
|
// to pack the aligned CPEs better.
|
|
EndInsertOffset += U.CPEMI->getOperand(2).getImm();
|
|
CPUIndex++;
|
|
}
|
|
|
|
// Remember the last IT instruction.
|
|
if (MI->getOpcode() == ARM::t2IT)
|
|
LastIT = &*MI;
|
|
}
|
|
|
|
--MI;
|
|
|
|
// Avoid splitting an IT block.
|
|
if (LastIT) {
|
|
unsigned PredReg = 0;
|
|
ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
|
|
if (CC != ARMCC::AL)
|
|
MI = LastIT;
|
|
}
|
|
|
|
// Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
|
|
// On Windows, this instruction pair is covered by one single
|
|
// IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
|
|
// constant island is injected inbetween them, the relocation will clobber
|
|
// the instruction and fail to update the MOVT instruction.
|
|
// (These instructions are bundled up until right before the ConstantIslands
|
|
// pass.)
|
|
if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
|
|
(MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
|
|
ARMII::MO_HI16) {
|
|
--MI;
|
|
assert(MI->getOpcode() == ARM::t2MOVi16 &&
|
|
(MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
|
|
ARMII::MO_LO16);
|
|
}
|
|
|
|
// We really must not split an IT block.
|
|
#ifndef NDEBUG
|
|
unsigned PredReg;
|
|
assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
|
|
#endif
|
|
NewMBB = splitBlockBeforeInstr(&*MI);
|
|
}
|
|
|
|
/// handleConstantPoolUser - Analyze the specified user, checking to see if it
|
|
/// is out-of-range. If so, pick up the constant pool value and move it some
|
|
/// place in-range. Return true if we changed any addresses (thus must run
|
|
/// another pass of branch lengthening), false otherwise.
|
|
bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
|
|
bool CloserWater) {
|
|
CPUser &U = CPUsers[CPUserIndex];
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
unsigned CPI = getCombinedIndex(CPEMI);
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
// Compute this only once, it's expensive.
|
|
unsigned UserOffset = getUserOffset(U);
|
|
|
|
// See if the current entry is within range, or there is a clone of it
|
|
// in range.
|
|
int result = findInRangeCPEntry(U, UserOffset);
|
|
if (result==1) return false;
|
|
else if (result==2) return true;
|
|
|
|
// No existing clone of this CPE is within range.
|
|
// We will be generating a new clone. Get a UID for it.
|
|
unsigned ID = AFI->createPICLabelUId();
|
|
|
|
// Look for water where we can place this CPE.
|
|
MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
|
|
MachineBasicBlock *NewMBB;
|
|
water_iterator IP;
|
|
if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
|
|
LLVM_DEBUG(dbgs() << "Found water in range\n");
|
|
MachineBasicBlock *WaterBB = *IP;
|
|
|
|
// If the original WaterList entry was "new water" on this iteration,
|
|
// propagate that to the new island. This is just keeping NewWaterList
|
|
// updated to match the WaterList, which will be updated below.
|
|
if (NewWaterList.erase(WaterBB))
|
|
NewWaterList.insert(NewIsland);
|
|
|
|
// The new CPE goes before the following block (NewMBB).
|
|
NewMBB = &*++WaterBB->getIterator();
|
|
} else {
|
|
// No water found.
|
|
LLVM_DEBUG(dbgs() << "No water found\n");
|
|
createNewWater(CPUserIndex, UserOffset, NewMBB);
|
|
|
|
// splitBlockBeforeInstr adds to WaterList, which is important when it is
|
|
// called while handling branches so that the water will be seen on the
|
|
// next iteration for constant pools, but in this context, we don't want
|
|
// it. Check for this so it will be removed from the WaterList.
|
|
// Also remove any entry from NewWaterList.
|
|
MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
|
|
IP = find(WaterList, WaterBB);
|
|
if (IP != WaterList.end())
|
|
NewWaterList.erase(WaterBB);
|
|
|
|
// We are adding new water. Update NewWaterList.
|
|
NewWaterList.insert(NewIsland);
|
|
}
|
|
// Always align the new block because CP entries can be smaller than 4
|
|
// bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
|
|
// be an already aligned constant pool block.
|
|
const Align Alignment = isThumb ? Align(2) : Align(4);
|
|
if (NewMBB->getAlignment() < Alignment)
|
|
NewMBB->setAlignment(Alignment);
|
|
|
|
// Remove the original WaterList entry; we want subsequent insertions in
|
|
// this vicinity to go after the one we're about to insert. This
|
|
// considerably reduces the number of times we have to move the same CPE
|
|
// more than once and is also important to ensure the algorithm terminates.
|
|
if (IP != WaterList.end())
|
|
WaterList.erase(IP);
|
|
|
|
// Okay, we know we can put an island before NewMBB now, do it!
|
|
MF->insert(NewMBB->getIterator(), NewIsland);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
updateForInsertedWaterBlock(NewIsland);
|
|
|
|
// Now that we have an island to add the CPE to, clone the original CPE and
|
|
// add it to the island.
|
|
U.HighWaterMark = NewIsland;
|
|
U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
|
|
.addImm(ID)
|
|
.add(CPEMI->getOperand(1))
|
|
.addImm(Size);
|
|
CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
|
|
++NumCPEs;
|
|
|
|
// Decrement the old entry, and remove it if refcount becomes 0.
|
|
decrementCPEReferenceCount(CPI, CPEMI);
|
|
|
|
// Mark the basic block as aligned as required by the const-pool entry.
|
|
NewIsland->setAlignment(getCPEAlign(U.CPEMI));
|
|
|
|
// Increase the size of the island block to account for the new entry.
|
|
BBUtils->adjustBBSize(NewIsland, Size);
|
|
BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
|
|
|
|
// Finally, change the CPI in the instruction operand to be ID.
|
|
for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
|
|
if (UserMI->getOperand(i).isCPI()) {
|
|
UserMI->getOperand(i).setIndex(ID);
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
|
|
<< format(" offset=%#x\n",
|
|
BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
|
|
|
|
return true;
|
|
}
|
|
|
|
/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
|
|
/// sizes and offsets of impacted basic blocks.
|
|
void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
|
|
MachineBasicBlock *CPEBB = CPEMI->getParent();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
CPEMI->eraseFromParent();
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
BBUtils->adjustBBSize(CPEBB, -Size);
|
|
// All succeeding offsets have the current size value added in, fix this.
|
|
if (CPEBB->empty()) {
|
|
BBInfo[CPEBB->getNumber()].Size = 0;
|
|
|
|
// This block no longer needs to be aligned.
|
|
CPEBB->setAlignment(Align(1));
|
|
} else {
|
|
// Entries are sorted by descending alignment, so realign from the front.
|
|
CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
|
|
}
|
|
|
|
BBUtils->adjustBBOffsetsAfter(CPEBB);
|
|
// An island has only one predecessor BB and one successor BB. Check if
|
|
// this BB's predecessor jumps directly to this BB's successor. This
|
|
// shouldn't happen currently.
|
|
assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
|
|
// FIXME: remove the empty blocks after all the work is done?
|
|
}
|
|
|
|
/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
|
|
/// are zero.
|
|
bool ARMConstantIslands::removeUnusedCPEntries() {
|
|
unsigned MadeChange = false;
|
|
for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
|
|
std::vector<CPEntry> &CPEs = CPEntries[i];
|
|
for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
|
|
if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
|
|
removeDeadCPEMI(CPEs[j].CPEMI);
|
|
CPEs[j].CPEMI = nullptr;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
|
|
/// away to fit in its displacement field.
|
|
bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
|
|
|
|
// Check to see if the DestBB is already in-range.
|
|
if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
|
|
return false;
|
|
|
|
if (!Br.isCond)
|
|
return fixupUnconditionalBr(Br);
|
|
return fixupConditionalBr(Br);
|
|
}
|
|
|
|
/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
|
|
/// too far away to fit in its displacement field. If the LR register has been
|
|
/// spilled in the epilogue, then we can use BL to implement a far jump.
|
|
/// Otherwise, add an intermediate branch instruction to a branch.
|
|
bool
|
|
ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
if (!isThumb1)
|
|
llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
|
|
|
|
if (!AFI->isLRSpilled())
|
|
report_fatal_error("underestimated function size");
|
|
|
|
// Use BL to implement far jump.
|
|
Br.MaxDisp = (1 << 21) * 2;
|
|
MI->setDesc(TII->get(ARM::tBfar));
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
BBInfo[MBB->getNumber()].Size += 2;
|
|
BBUtils->adjustBBOffsetsAfter(MBB);
|
|
HasFarJump = true;
|
|
++NumUBrFixed;
|
|
|
|
LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// fixupConditionalBr - Fix up a conditional branch whose destination is too
|
|
/// far away to fit in its displacement field. It is converted to an inverse
|
|
/// conditional branch + an unconditional branch to the destination.
|
|
bool
|
|
ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
|
|
|
|
// Add an unconditional branch to the destination and invert the branch
|
|
// condition to jump over it:
|
|
// blt L1
|
|
// =>
|
|
// bge L2
|
|
// b L1
|
|
// L2:
|
|
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
|
|
CC = ARMCC::getOppositeCondition(CC);
|
|
Register CCReg = MI->getOperand(2).getReg();
|
|
|
|
// If the branch is at the end of its MBB and that has a fall-through block,
|
|
// direct the updated conditional branch to the fall-through block. Otherwise,
|
|
// split the MBB before the next instruction.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *BMI = &MBB->back();
|
|
bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
|
|
|
|
++NumCBrFixed;
|
|
if (BMI != MI) {
|
|
if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
|
|
BMI->getOpcode() == Br.UncondBr) {
|
|
// Last MI in the BB is an unconditional branch. Can we simply invert the
|
|
// condition and swap destinations:
|
|
// beq L1
|
|
// b L2
|
|
// =>
|
|
// bne L2
|
|
// b L1
|
|
MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
|
|
if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << " Invert Bcc condition and swap its destination with "
|
|
<< *BMI);
|
|
BMI->getOperand(0).setMBB(DestBB);
|
|
MI->getOperand(0).setMBB(NewDest);
|
|
MI->getOperand(1).setImm(CC);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NeedSplit) {
|
|
splitBlockBeforeInstr(MI);
|
|
// No need for the branch to the next block. We're adding an unconditional
|
|
// branch to the destination.
|
|
int delta = TII->getInstSizeInBytes(MBB->back());
|
|
BBUtils->adjustBBSize(MBB, -delta);
|
|
MBB->back().eraseFromParent();
|
|
|
|
// The conditional successor will be swapped between the BBs after this, so
|
|
// update CFG.
|
|
MBB->addSuccessor(DestBB);
|
|
std::next(MBB->getIterator())->removeSuccessor(DestBB);
|
|
|
|
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
|
|
}
|
|
MachineBasicBlock *NextBB = &*++MBB->getIterator();
|
|
|
|
LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
|
|
<< " also invert condition and change dest. to "
|
|
<< printMBBReference(*NextBB) << "\n");
|
|
|
|
// Insert a new conditional branch and a new unconditional branch.
|
|
// Also update the ImmBranch as well as adding a new entry for the new branch.
|
|
BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
|
|
.addMBB(NextBB).addImm(CC).addReg(CCReg);
|
|
Br.MI = &MBB->back();
|
|
BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
|
|
if (isThumb)
|
|
BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
|
|
.addMBB(DestBB)
|
|
.add(predOps(ARMCC::AL));
|
|
else
|
|
BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
|
|
BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
|
|
unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
|
|
ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
|
|
|
|
// Remove the old conditional branch. It may or may not still be in MBB.
|
|
BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
|
|
MI->eraseFromParent();
|
|
BBUtils->adjustBBOffsetsAfter(MBB);
|
|
return true;
|
|
}
|
|
|
|
/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
|
|
/// LR / restores LR to pc. FIXME: This is done here because it's only possible
|
|
/// to do this if tBfar is not used.
|
|
bool ARMConstantIslands::undoLRSpillRestore() {
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
|
|
MachineInstr *MI = PushPopMIs[i];
|
|
// First two operands are predicates.
|
|
if (MI->getOpcode() == ARM::tPOP_RET &&
|
|
MI->getOperand(2).getReg() == ARM::PC &&
|
|
MI->getNumExplicitOperands() == 3) {
|
|
// Create the new insn and copy the predicate from the old.
|
|
BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
|
|
.add(MI->getOperand(0))
|
|
.add(MI->getOperand(1));
|
|
MI->eraseFromParent();
|
|
MadeChange = true;
|
|
} else if (MI->getOpcode() == ARM::tPUSH &&
|
|
MI->getOperand(2).getReg() == ARM::LR &&
|
|
MI->getNumExplicitOperands() == 3) {
|
|
// Just remove the push.
|
|
MI->eraseFromParent();
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool ARMConstantIslands::optimizeThumb2Instructions() {
|
|
bool MadeChange = false;
|
|
|
|
// Shrink ADR and LDR from constantpool.
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
|
|
CPUser &U = CPUsers[i];
|
|
unsigned Opcode = U.MI->getOpcode();
|
|
unsigned NewOpc = 0;
|
|
unsigned Scale = 1;
|
|
unsigned Bits = 0;
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ARM::t2LEApcrel:
|
|
if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
|
|
NewOpc = ARM::tLEApcrel;
|
|
Bits = 8;
|
|
Scale = 4;
|
|
}
|
|
break;
|
|
case ARM::t2LDRpci:
|
|
if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
|
|
NewOpc = ARM::tLDRpci;
|
|
Bits = 8;
|
|
Scale = 4;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!NewOpc)
|
|
continue;
|
|
|
|
unsigned UserOffset = getUserOffset(U);
|
|
unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
|
|
|
|
// Be conservative with inline asm.
|
|
if (!U.KnownAlignment)
|
|
MaxOffs -= 2;
|
|
|
|
// FIXME: Check if offset is multiple of scale if scale is not 4.
|
|
if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
|
|
LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
|
|
U.MI->setDesc(TII->get(NewOpc));
|
|
MachineBasicBlock *MBB = U.MI->getParent();
|
|
BBUtils->adjustBBSize(MBB, -2);
|
|
BBUtils->adjustBBOffsetsAfter(MBB);
|
|
++NumT2CPShrunk;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
bool ARMConstantIslands::optimizeThumb2Branches() {
|
|
|
|
auto TryShrinkBranch = [this](ImmBranch &Br) {
|
|
unsigned Opcode = Br.MI->getOpcode();
|
|
unsigned NewOpc = 0;
|
|
unsigned Scale = 1;
|
|
unsigned Bits = 0;
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ARM::t2B:
|
|
NewOpc = ARM::tB;
|
|
Bits = 11;
|
|
Scale = 2;
|
|
break;
|
|
case ARM::t2Bcc:
|
|
NewOpc = ARM::tBcc;
|
|
Bits = 8;
|
|
Scale = 2;
|
|
break;
|
|
}
|
|
if (NewOpc) {
|
|
unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
|
|
MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
|
|
if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
|
|
LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
|
|
Br.MI->setDesc(TII->get(NewOpc));
|
|
MachineBasicBlock *MBB = Br.MI->getParent();
|
|
BBUtils->adjustBBSize(MBB, -2);
|
|
BBUtils->adjustBBOffsetsAfter(MBB);
|
|
++NumT2BrShrunk;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
struct ImmCompare {
|
|
MachineInstr* MI = nullptr;
|
|
unsigned NewOpc = 0;
|
|
};
|
|
|
|
auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
|
|
MachineBasicBlock *DestBB) {
|
|
ImmCmp.MI = nullptr;
|
|
ImmCmp.NewOpc = 0;
|
|
|
|
// If the conditional branch doesn't kill CPSR, then CPSR can be liveout
|
|
// so this transformation is not safe.
|
|
if (!Br.MI->killsRegister(ARM::CPSR))
|
|
return false;
|
|
|
|
unsigned PredReg = 0;
|
|
unsigned NewOpc = 0;
|
|
ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
|
|
if (Pred == ARMCC::EQ)
|
|
NewOpc = ARM::tCBZ;
|
|
else if (Pred == ARMCC::NE)
|
|
NewOpc = ARM::tCBNZ;
|
|
else
|
|
return false;
|
|
|
|
// Check if the distance is within 126. Subtract starting offset by 2
|
|
// because the cmp will be eliminated.
|
|
unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
|
|
if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
|
|
return false;
|
|
|
|
// Search backwards to find a tCMPi8
|
|
auto *TRI = STI->getRegisterInfo();
|
|
MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
|
|
if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
|
|
return false;
|
|
|
|
ImmCmp.MI = CmpMI;
|
|
ImmCmp.NewOpc = NewOpc;
|
|
return true;
|
|
};
|
|
|
|
auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
|
|
if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
|
|
STI->hasMinSize())
|
|
return false;
|
|
|
|
MachineBasicBlock *MBB = Br.MI->getParent();
|
|
MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
|
|
if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
|
|
!BBUtils->isBBInRange(Br.MI, DestBB, 4094))
|
|
return false;
|
|
|
|
if (!DT->dominates(DestBB, MBB))
|
|
return false;
|
|
|
|
// We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
|
|
// target of Br. So now we need to reverse the condition.
|
|
Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
|
|
TII->get(ARM::t2LE));
|
|
// Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
|
|
MIB.add(Br.MI->getOperand(0));
|
|
Br.MI->eraseFromParent();
|
|
Br.MI = MIB;
|
|
++NumLEInserted;
|
|
return true;
|
|
};
|
|
|
|
bool MadeChange = false;
|
|
|
|
// The order in which branches appear in ImmBranches is approximately their
|
|
// order within the function body. By visiting later branches first, we reduce
|
|
// the distance between earlier forward branches and their targets, making it
|
|
// more likely that the cbn?z optimization, which can only apply to forward
|
|
// branches, will succeed.
|
|
for (ImmBranch &Br : reverse(ImmBranches)) {
|
|
MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
|
|
MachineBasicBlock *MBB = Br.MI->getParent();
|
|
MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
|
|
MBB->getFallThrough() :
|
|
MBB->back().getOperand(0).getMBB();
|
|
|
|
ImmCompare Cmp;
|
|
if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
|
|
DestBB = ExitBB;
|
|
MadeChange = true;
|
|
} else {
|
|
FindCmpForCBZ(Br, Cmp, DestBB);
|
|
MadeChange |= TryShrinkBranch(Br);
|
|
}
|
|
|
|
unsigned Opcode = Br.MI->getOpcode();
|
|
if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
|
|
continue;
|
|
|
|
Register Reg = Cmp.MI->getOperand(0).getReg();
|
|
|
|
// Check for Kill flags on Reg. If they are present remove them and set kill
|
|
// on the new CBZ.
|
|
auto *TRI = STI->getRegisterInfo();
|
|
MachineBasicBlock::iterator KillMI = Br.MI;
|
|
bool RegKilled = false;
|
|
do {
|
|
--KillMI;
|
|
if (KillMI->killsRegister(Reg, TRI)) {
|
|
KillMI->clearRegisterKills(Reg, TRI);
|
|
RegKilled = true;
|
|
break;
|
|
}
|
|
} while (KillMI != Cmp.MI);
|
|
|
|
// Create the new CBZ/CBNZ
|
|
LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
|
|
MachineInstr *NewBR =
|
|
BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
|
|
.addReg(Reg, getKillRegState(RegKilled))
|
|
.addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
|
|
|
|
Cmp.MI->eraseFromParent();
|
|
|
|
if (Br.MI->getOpcode() == ARM::tBcc) {
|
|
Br.MI->eraseFromParent();
|
|
Br.MI = NewBR;
|
|
BBUtils->adjustBBSize(MBB, -2);
|
|
} else if (MBB->back().getOpcode() != ARM::t2LE) {
|
|
// An LE has been generated, but it's not the terminator - that is an
|
|
// unconditional branch. However, the logic has now been reversed with the
|
|
// CBN?Z being the conditional branch and the LE being the unconditional
|
|
// branch. So this means we can remove the redundant unconditional branch
|
|
// at the end of the block.
|
|
MachineInstr *LastMI = &MBB->back();
|
|
BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize());
|
|
LastMI->eraseFromParent();
|
|
}
|
|
BBUtils->adjustBBOffsetsAfter(MBB);
|
|
++NumCBZ;
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
|
|
unsigned BaseReg) {
|
|
if (I.getOpcode() != ARM::t2ADDrs)
|
|
return false;
|
|
|
|
if (I.getOperand(0).getReg() != EntryReg)
|
|
return false;
|
|
|
|
if (I.getOperand(1).getReg() != BaseReg)
|
|
return false;
|
|
|
|
// FIXME: what about CC and IdxReg?
|
|
return true;
|
|
}
|
|
|
|
/// While trying to form a TBB/TBH instruction, we may (if the table
|
|
/// doesn't immediately follow the BR_JT) need access to the start of the
|
|
/// jump-table. We know one instruction that produces such a register; this
|
|
/// function works out whether that definition can be preserved to the BR_JT,
|
|
/// possibly by removing an intervening addition (which is usually needed to
|
|
/// calculate the actual entry to jump to).
|
|
bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
|
|
MachineInstr *LEAMI,
|
|
unsigned &DeadSize,
|
|
bool &CanDeleteLEA,
|
|
bool &BaseRegKill) {
|
|
if (JumpMI->getParent() != LEAMI->getParent())
|
|
return false;
|
|
|
|
// Now we hope that we have at least these instructions in the basic block:
|
|
// BaseReg = t2LEA ...
|
|
// [...]
|
|
// EntryReg = t2ADDrs BaseReg, ...
|
|
// [...]
|
|
// t2BR_JT EntryReg
|
|
//
|
|
// We have to be very conservative about what we recognise here though. The
|
|
// main perturbing factors to watch out for are:
|
|
// + Spills at any point in the chain: not direct problems but we would
|
|
// expect a blocking Def of the spilled register so in practice what we
|
|
// can do is limited.
|
|
// + EntryReg == BaseReg: this is the one situation we should allow a Def
|
|
// of BaseReg, but only if the t2ADDrs can be removed.
|
|
// + Some instruction other than t2ADDrs computing the entry. Not seen in
|
|
// the wild, but we should be careful.
|
|
Register EntryReg = JumpMI->getOperand(0).getReg();
|
|
Register BaseReg = LEAMI->getOperand(0).getReg();
|
|
|
|
CanDeleteLEA = true;
|
|
BaseRegKill = false;
|
|
MachineInstr *RemovableAdd = nullptr;
|
|
MachineBasicBlock::iterator I(LEAMI);
|
|
for (++I; &*I != JumpMI; ++I) {
|
|
if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
|
|
RemovableAdd = &*I;
|
|
break;
|
|
}
|
|
|
|
for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
|
|
const MachineOperand &MO = I->getOperand(K);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (MO.isDef() && MO.getReg() == BaseReg)
|
|
return false;
|
|
if (MO.isUse() && MO.getReg() == BaseReg) {
|
|
BaseRegKill = BaseRegKill || MO.isKill();
|
|
CanDeleteLEA = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!RemovableAdd)
|
|
return true;
|
|
|
|
// Check the add really is removable, and that nothing else in the block
|
|
// clobbers BaseReg.
|
|
for (++I; &*I != JumpMI; ++I) {
|
|
for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
|
|
const MachineOperand &MO = I->getOperand(K);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (MO.isDef() && MO.getReg() == BaseReg)
|
|
return false;
|
|
if (MO.isUse() && MO.getReg() == EntryReg)
|
|
RemovableAdd = nullptr;
|
|
}
|
|
}
|
|
|
|
if (RemovableAdd) {
|
|
RemovableAdd->eraseFromParent();
|
|
DeadSize += isThumb2 ? 4 : 2;
|
|
} else if (BaseReg == EntryReg) {
|
|
// The add wasn't removable, but clobbered the base for the TBB. So we can't
|
|
// preserve it.
|
|
return false;
|
|
}
|
|
|
|
// We reached the end of the block without seeing another definition of
|
|
// BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
|
|
// used in the TBB/TBH if necessary.
|
|
return true;
|
|
}
|
|
|
|
/// Returns whether CPEMI is the first instruction in the block
|
|
/// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
|
|
/// we can switch the first register to PC and usually remove the address
|
|
/// calculation that preceded it.
|
|
static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
|
|
MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
|
|
MachineFunction *MF = MBB->getParent();
|
|
++MBB;
|
|
|
|
return MBB != MF->end() && MBB->begin() != MBB->end() &&
|
|
&*MBB->begin() == CPEMI;
|
|
}
|
|
|
|
static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
|
|
MachineInstr *JumpMI,
|
|
unsigned &DeadSize) {
|
|
// Remove a dead add between the LEA and JT, which used to compute EntryReg,
|
|
// but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
|
|
// and is not clobbered / used.
|
|
MachineInstr *RemovableAdd = nullptr;
|
|
Register EntryReg = JumpMI->getOperand(0).getReg();
|
|
|
|
// Find the last ADD to set EntryReg
|
|
MachineBasicBlock::iterator I(LEAMI);
|
|
for (++I; &*I != JumpMI; ++I) {
|
|
if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
|
|
RemovableAdd = &*I;
|
|
}
|
|
|
|
if (!RemovableAdd)
|
|
return;
|
|
|
|
// Ensure EntryReg is not clobbered or used.
|
|
MachineBasicBlock::iterator J(RemovableAdd);
|
|
for (++J; &*J != JumpMI; ++J) {
|
|
for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
|
|
const MachineOperand &MO = J->getOperand(K);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (MO.isDef() && MO.getReg() == EntryReg)
|
|
return;
|
|
if (MO.isUse() && MO.getReg() == EntryReg)
|
|
return;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
|
|
RemovableAdd->eraseFromParent();
|
|
DeadSize += 4;
|
|
}
|
|
|
|
/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
|
|
/// jumptables when it's possible.
|
|
bool ARMConstantIslands::optimizeThumb2JumpTables() {
|
|
bool MadeChange = false;
|
|
|
|
// FIXME: After the tables are shrunk, can we get rid some of the
|
|
// constantpool tables?
|
|
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
if (!MJTI) return false;
|
|
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
|
|
MachineInstr *MI = T2JumpTables[i];
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
unsigned NumOps = MCID.getNumOperands();
|
|
unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
|
|
MachineOperand JTOP = MI->getOperand(JTOpIdx);
|
|
unsigned JTI = JTOP.getIndex();
|
|
assert(JTI < JT.size());
|
|
|
|
bool ByteOk = true;
|
|
bool HalfWordOk = true;
|
|
unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
BBInfoVector &BBInfo = BBUtils->getBBInfo();
|
|
for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
|
|
MachineBasicBlock *MBB = JTBBs[j];
|
|
unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
|
|
// Negative offset is not ok. FIXME: We should change BB layout to make
|
|
// sure all the branches are forward.
|
|
if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
|
|
ByteOk = false;
|
|
unsigned TBHLimit = ((1<<16)-1)*2;
|
|
if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
|
|
HalfWordOk = false;
|
|
if (!ByteOk && !HalfWordOk)
|
|
break;
|
|
}
|
|
|
|
if (!ByteOk && !HalfWordOk)
|
|
continue;
|
|
|
|
CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
if (!MI->getOperand(0).isKill()) // FIXME: needed now?
|
|
continue;
|
|
|
|
unsigned DeadSize = 0;
|
|
bool CanDeleteLEA = false;
|
|
bool BaseRegKill = false;
|
|
|
|
unsigned IdxReg = ~0U;
|
|
bool IdxRegKill = true;
|
|
if (isThumb2) {
|
|
IdxReg = MI->getOperand(1).getReg();
|
|
IdxRegKill = MI->getOperand(1).isKill();
|
|
|
|
bool PreservedBaseReg =
|
|
preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
|
|
if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
|
|
continue;
|
|
} else {
|
|
// We're in thumb-1 mode, so we must have something like:
|
|
// %idx = tLSLri %idx, 2
|
|
// %base = tLEApcrelJT
|
|
// %t = tLDRr %base, %idx
|
|
Register BaseReg = User.MI->getOperand(0).getReg();
|
|
|
|
if (User.MI->getIterator() == User.MI->getParent()->begin())
|
|
continue;
|
|
MachineInstr *Shift = User.MI->getPrevNode();
|
|
if (Shift->getOpcode() != ARM::tLSLri ||
|
|
Shift->getOperand(3).getImm() != 2 ||
|
|
!Shift->getOperand(2).isKill())
|
|
continue;
|
|
IdxReg = Shift->getOperand(2).getReg();
|
|
Register ShiftedIdxReg = Shift->getOperand(0).getReg();
|
|
|
|
// It's important that IdxReg is live until the actual TBB/TBH. Most of
|
|
// the range is checked later, but the LEA might still clobber it and not
|
|
// actually get removed.
|
|
if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
|
|
continue;
|
|
|
|
MachineInstr *Load = User.MI->getNextNode();
|
|
if (Load->getOpcode() != ARM::tLDRr)
|
|
continue;
|
|
if (Load->getOperand(1).getReg() != BaseReg ||
|
|
Load->getOperand(2).getReg() != ShiftedIdxReg ||
|
|
!Load->getOperand(2).isKill())
|
|
continue;
|
|
|
|
// If we're in PIC mode, there should be another ADD following.
|
|
auto *TRI = STI->getRegisterInfo();
|
|
|
|
// %base cannot be redefined after the load as it will appear before
|
|
// TBB/TBH like:
|
|
// %base =
|
|
// %base =
|
|
// tBB %base, %idx
|
|
if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
|
|
continue;
|
|
|
|
if (isPositionIndependentOrROPI) {
|
|
MachineInstr *Add = Load->getNextNode();
|
|
if (Add->getOpcode() != ARM::tADDrr ||
|
|
Add->getOperand(2).getReg() != BaseReg ||
|
|
Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
|
|
!Add->getOperand(3).isKill())
|
|
continue;
|
|
if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
|
|
continue;
|
|
if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
|
|
// IdxReg gets redefined in the middle of the sequence.
|
|
continue;
|
|
Add->eraseFromParent();
|
|
DeadSize += 2;
|
|
} else {
|
|
if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
|
|
continue;
|
|
if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
|
|
// IdxReg gets redefined in the middle of the sequence.
|
|
continue;
|
|
}
|
|
|
|
// Now safe to delete the load and lsl. The LEA will be removed later.
|
|
CanDeleteLEA = true;
|
|
Shift->eraseFromParent();
|
|
Load->eraseFromParent();
|
|
DeadSize += 4;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
|
|
MachineInstr *CPEMI = User.CPEMI;
|
|
unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
|
|
if (!isThumb2)
|
|
Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
|
|
|
|
MachineBasicBlock::iterator MI_JT = MI;
|
|
MachineInstr *NewJTMI =
|
|
BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
|
|
.addReg(User.MI->getOperand(0).getReg(),
|
|
getKillRegState(BaseRegKill))
|
|
.addReg(IdxReg, getKillRegState(IdxRegKill))
|
|
.addJumpTableIndex(JTI, JTOP.getTargetFlags())
|
|
.addImm(CPEMI->getOperand(0).getImm());
|
|
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
|
|
|
|
unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
|
|
CPEMI->setDesc(TII->get(JTOpc));
|
|
|
|
if (jumpTableFollowsTB(MI, User.CPEMI)) {
|
|
NewJTMI->getOperand(0).setReg(ARM::PC);
|
|
NewJTMI->getOperand(0).setIsKill(false);
|
|
|
|
if (CanDeleteLEA) {
|
|
if (isThumb2)
|
|
RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
|
|
|
|
User.MI->eraseFromParent();
|
|
DeadSize += isThumb2 ? 4 : 2;
|
|
|
|
// The LEA was eliminated, the TBB instruction becomes the only new user
|
|
// of the jump table.
|
|
User.MI = NewJTMI;
|
|
User.MaxDisp = 4;
|
|
User.NegOk = false;
|
|
User.IsSoImm = false;
|
|
User.KnownAlignment = false;
|
|
} else {
|
|
// The LEA couldn't be eliminated, so we must add another CPUser to
|
|
// record the TBB or TBH use.
|
|
int CPEntryIdx = JumpTableEntryIndices[JTI];
|
|
auto &CPEs = CPEntries[CPEntryIdx];
|
|
auto Entry =
|
|
find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
|
|
++Entry->RefCount;
|
|
CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
|
|
}
|
|
}
|
|
|
|
unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
|
|
unsigned OrigSize = TII->getInstSizeInBytes(*MI);
|
|
MI->eraseFromParent();
|
|
|
|
int Delta = OrigSize - NewSize + DeadSize;
|
|
BBInfo[MBB->getNumber()].Size -= Delta;
|
|
BBUtils->adjustBBOffsetsAfter(MBB);
|
|
|
|
++NumTBs;
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
|
|
/// jump tables always branch forwards, since that's what tbb and tbh need.
|
|
bool ARMConstantIslands::reorderThumb2JumpTables() {
|
|
bool MadeChange = false;
|
|
|
|
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
if (!MJTI) return false;
|
|
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
|
|
MachineInstr *MI = T2JumpTables[i];
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
unsigned NumOps = MCID.getNumOperands();
|
|
unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
|
|
MachineOperand JTOP = MI->getOperand(JTOpIdx);
|
|
unsigned JTI = JTOP.getIndex();
|
|
assert(JTI < JT.size());
|
|
|
|
// We prefer if target blocks for the jump table come after the jump
|
|
// instruction so we can use TB[BH]. Loop through the target blocks
|
|
// and try to adjust them such that that's true.
|
|
int JTNumber = MI->getParent()->getNumber();
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
|
|
MachineBasicBlock *MBB = JTBBs[j];
|
|
int DTNumber = MBB->getNumber();
|
|
|
|
if (DTNumber < JTNumber) {
|
|
// The destination precedes the switch. Try to move the block forward
|
|
// so we have a positive offset.
|
|
MachineBasicBlock *NewBB =
|
|
adjustJTTargetBlockForward(MBB, MI->getParent());
|
|
if (NewBB)
|
|
MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
MachineBasicBlock *ARMConstantIslands::
|
|
adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
|
|
// If the destination block is terminated by an unconditional branch,
|
|
// try to move it; otherwise, create a new block following the jump
|
|
// table that branches back to the actual target. This is a very simple
|
|
// heuristic. FIXME: We can definitely improve it.
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
SmallVector<MachineOperand, 4> CondPrior;
|
|
MachineFunction::iterator BBi = BB->getIterator();
|
|
MachineFunction::iterator OldPrior = std::prev(BBi);
|
|
|
|
// If the block terminator isn't analyzable, don't try to move the block
|
|
bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
|
|
|
|
// If the block ends in an unconditional branch, move it. The prior block
|
|
// has to have an analyzable terminator for us to move this one. Be paranoid
|
|
// and make sure we're not trying to move the entry block of the function.
|
|
if (!B && Cond.empty() && BB != &MF->front() &&
|
|
!TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
|
|
BB->moveAfter(JTBB);
|
|
OldPrior->updateTerminator();
|
|
BB->updateTerminator();
|
|
// Update numbering to account for the block being moved.
|
|
MF->RenumberBlocks();
|
|
++NumJTMoved;
|
|
return nullptr;
|
|
}
|
|
|
|
// Create a new MBB for the code after the jump BB.
|
|
MachineBasicBlock *NewBB =
|
|
MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
|
|
MachineFunction::iterator MBBI = ++JTBB->getIterator();
|
|
MF->insert(MBBI, NewBB);
|
|
|
|
// Copy live-in information to new block.
|
|
for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
|
|
NewBB->addLiveIn(RegMaskPair);
|
|
|
|
// Add an unconditional branch from NewBB to BB.
|
|
// There doesn't seem to be meaningful DebugInfo available; this doesn't
|
|
// correspond directly to anything in the source.
|
|
if (isThumb2)
|
|
BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
|
|
.addMBB(BB)
|
|
.add(predOps(ARMCC::AL));
|
|
else
|
|
BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
|
|
.addMBB(BB)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
MF->RenumberBlocks(NewBB);
|
|
|
|
// Update the CFG.
|
|
NewBB->addSuccessor(BB);
|
|
JTBB->replaceSuccessor(BB, NewBB);
|
|
|
|
++NumJTInserted;
|
|
return NewBB;
|
|
}
|
|
|
|
/// createARMConstantIslandPass - returns an instance of the constpool
|
|
/// island pass.
|
|
FunctionPass *llvm::createARMConstantIslandPass() {
|
|
return new ARMConstantIslands();
|
|
}
|
|
|
|
INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
|
|
false, false)
|