forked from OSchip/llvm-project
5954 lines
234 KiB
C++
5954 lines
234 KiB
C++
//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===/
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//===----------------------------------------------------------------------===/
|
|
//
|
|
// This file implements a semantic tree transformation that takes a given
|
|
// AST and rebuilds it, possibly transforming some nodes in the process.
|
|
//
|
|
//===----------------------------------------------------------------------===/
|
|
#ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
|
|
#define LLVM_CLANG_SEMA_TREETRANSFORM_H
|
|
|
|
#include "Sema.h"
|
|
#include "Lookup.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/TypeLocBuilder.h"
|
|
#include "clang/Parse/Ownership.h"
|
|
#include "clang/Parse/Designator.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
|
|
namespace clang {
|
|
|
|
/// \brief A semantic tree transformation that allows one to transform one
|
|
/// abstract syntax tree into another.
|
|
///
|
|
/// A new tree transformation is defined by creating a new subclass \c X of
|
|
/// \c TreeTransform<X> and then overriding certain operations to provide
|
|
/// behavior specific to that transformation. For example, template
|
|
/// instantiation is implemented as a tree transformation where the
|
|
/// transformation of TemplateTypeParmType nodes involves substituting the
|
|
/// template arguments for their corresponding template parameters; a similar
|
|
/// transformation is performed for non-type template parameters and
|
|
/// template template parameters.
|
|
///
|
|
/// This tree-transformation template uses static polymorphism to allow
|
|
/// subclasses to customize any of its operations. Thus, a subclass can
|
|
/// override any of the transformation or rebuild operators by providing an
|
|
/// operation with the same signature as the default implementation. The
|
|
/// overridding function should not be virtual.
|
|
///
|
|
/// Semantic tree transformations are split into two stages, either of which
|
|
/// can be replaced by a subclass. The "transform" step transforms an AST node
|
|
/// or the parts of an AST node using the various transformation functions,
|
|
/// then passes the pieces on to the "rebuild" step, which constructs a new AST
|
|
/// node of the appropriate kind from the pieces. The default transformation
|
|
/// routines recursively transform the operands to composite AST nodes (e.g.,
|
|
/// the pointee type of a PointerType node) and, if any of those operand nodes
|
|
/// were changed by the transformation, invokes the rebuild operation to create
|
|
/// a new AST node.
|
|
///
|
|
/// Subclasses can customize the transformation at various levels. The
|
|
/// most coarse-grained transformations involve replacing TransformType(),
|
|
/// TransformExpr(), TransformDecl(), TransformNestedNameSpecifier(),
|
|
/// TransformTemplateName(), or TransformTemplateArgument() with entirely
|
|
/// new implementations.
|
|
///
|
|
/// For more fine-grained transformations, subclasses can replace any of the
|
|
/// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
|
|
/// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
|
|
/// replacing TransformTemplateTypeParmType() allows template instantiation
|
|
/// to substitute template arguments for their corresponding template
|
|
/// parameters. Additionally, subclasses can override the \c RebuildXXX
|
|
/// functions to control how AST nodes are rebuilt when their operands change.
|
|
/// By default, \c TreeTransform will invoke semantic analysis to rebuild
|
|
/// AST nodes. However, certain other tree transformations (e.g, cloning) may
|
|
/// be able to use more efficient rebuild steps.
|
|
///
|
|
/// There are a handful of other functions that can be overridden, allowing one
|
|
/// to avoid traversing nodes that don't need any transformation
|
|
/// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
|
|
/// operands have not changed (\c AlwaysRebuild()), and customize the
|
|
/// default locations and entity names used for type-checking
|
|
/// (\c getBaseLocation(), \c getBaseEntity()).
|
|
template<typename Derived>
|
|
class TreeTransform {
|
|
protected:
|
|
Sema &SemaRef;
|
|
|
|
public:
|
|
typedef Sema::OwningStmtResult OwningStmtResult;
|
|
typedef Sema::OwningExprResult OwningExprResult;
|
|
typedef Sema::StmtArg StmtArg;
|
|
typedef Sema::ExprArg ExprArg;
|
|
typedef Sema::MultiExprArg MultiExprArg;
|
|
typedef Sema::MultiStmtArg MultiStmtArg;
|
|
typedef Sema::DeclPtrTy DeclPtrTy;
|
|
|
|
/// \brief Initializes a new tree transformer.
|
|
TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
|
|
|
|
/// \brief Retrieves a reference to the derived class.
|
|
Derived &getDerived() { return static_cast<Derived&>(*this); }
|
|
|
|
/// \brief Retrieves a reference to the derived class.
|
|
const Derived &getDerived() const {
|
|
return static_cast<const Derived&>(*this);
|
|
}
|
|
|
|
/// \brief Retrieves a reference to the semantic analysis object used for
|
|
/// this tree transform.
|
|
Sema &getSema() const { return SemaRef; }
|
|
|
|
/// \brief Whether the transformation should always rebuild AST nodes, even
|
|
/// if none of the children have changed.
|
|
///
|
|
/// Subclasses may override this function to specify when the transformation
|
|
/// should rebuild all AST nodes.
|
|
bool AlwaysRebuild() { return false; }
|
|
|
|
/// \brief Returns the location of the entity being transformed, if that
|
|
/// information was not available elsewhere in the AST.
|
|
///
|
|
/// By default, returns no source-location information. Subclasses can
|
|
/// provide an alternative implementation that provides better location
|
|
/// information.
|
|
SourceLocation getBaseLocation() { return SourceLocation(); }
|
|
|
|
/// \brief Returns the name of the entity being transformed, if that
|
|
/// information was not available elsewhere in the AST.
|
|
///
|
|
/// By default, returns an empty name. Subclasses can provide an alternative
|
|
/// implementation with a more precise name.
|
|
DeclarationName getBaseEntity() { return DeclarationName(); }
|
|
|
|
/// \brief Sets the "base" location and entity when that
|
|
/// information is known based on another transformation.
|
|
///
|
|
/// By default, the source location and entity are ignored. Subclasses can
|
|
/// override this function to provide a customized implementation.
|
|
void setBase(SourceLocation Loc, DeclarationName Entity) { }
|
|
|
|
/// \brief RAII object that temporarily sets the base location and entity
|
|
/// used for reporting diagnostics in types.
|
|
class TemporaryBase {
|
|
TreeTransform &Self;
|
|
SourceLocation OldLocation;
|
|
DeclarationName OldEntity;
|
|
|
|
public:
|
|
TemporaryBase(TreeTransform &Self, SourceLocation Location,
|
|
DeclarationName Entity) : Self(Self) {
|
|
OldLocation = Self.getDerived().getBaseLocation();
|
|
OldEntity = Self.getDerived().getBaseEntity();
|
|
Self.getDerived().setBase(Location, Entity);
|
|
}
|
|
|
|
~TemporaryBase() {
|
|
Self.getDerived().setBase(OldLocation, OldEntity);
|
|
}
|
|
};
|
|
|
|
/// \brief Determine whether the given type \p T has already been
|
|
/// transformed.
|
|
///
|
|
/// Subclasses can provide an alternative implementation of this routine
|
|
/// to short-circuit evaluation when it is known that a given type will
|
|
/// not change. For example, template instantiation need not traverse
|
|
/// non-dependent types.
|
|
bool AlreadyTransformed(QualType T) {
|
|
return T.isNull();
|
|
}
|
|
|
|
/// \brief Determine whether the given call argument should be dropped, e.g.,
|
|
/// because it is a default argument.
|
|
///
|
|
/// Subclasses can provide an alternative implementation of this routine to
|
|
/// determine which kinds of call arguments get dropped. By default,
|
|
/// CXXDefaultArgument nodes are dropped (prior to transformation).
|
|
bool DropCallArgument(Expr *E) {
|
|
return E->isDefaultArgument();
|
|
}
|
|
|
|
/// \brief Transforms the given type into another type.
|
|
///
|
|
/// By default, this routine transforms a type by creating a
|
|
/// TypeSourceInfo for it and delegating to the appropriate
|
|
/// function. This is expensive, but we don't mind, because
|
|
/// this method is deprecated anyway; all users should be
|
|
/// switched to storing TypeSourceInfos.
|
|
///
|
|
/// \returns the transformed type.
|
|
QualType TransformType(QualType T, QualType ObjectType = QualType());
|
|
|
|
/// \brief Transforms the given type-with-location into a new
|
|
/// type-with-location.
|
|
///
|
|
/// By default, this routine transforms a type by delegating to the
|
|
/// appropriate TransformXXXType to build a new type. Subclasses
|
|
/// may override this function (to take over all type
|
|
/// transformations) or some set of the TransformXXXType functions
|
|
/// to alter the transformation.
|
|
TypeSourceInfo *TransformType(TypeSourceInfo *DI,
|
|
QualType ObjectType = QualType());
|
|
|
|
/// \brief Transform the given type-with-location into a new
|
|
/// type, collecting location information in the given builder
|
|
/// as necessary.
|
|
///
|
|
QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL,
|
|
QualType ObjectType = QualType());
|
|
|
|
/// \brief Transform the given statement.
|
|
///
|
|
/// By default, this routine transforms a statement by delegating to the
|
|
/// appropriate TransformXXXStmt function to transform a specific kind of
|
|
/// statement or the TransformExpr() function to transform an expression.
|
|
/// Subclasses may override this function to transform statements using some
|
|
/// other mechanism.
|
|
///
|
|
/// \returns the transformed statement.
|
|
OwningStmtResult TransformStmt(Stmt *S);
|
|
|
|
/// \brief Transform the given expression.
|
|
///
|
|
/// By default, this routine transforms an expression by delegating to the
|
|
/// appropriate TransformXXXExpr function to build a new expression.
|
|
/// Subclasses may override this function to transform expressions using some
|
|
/// other mechanism.
|
|
///
|
|
/// \returns the transformed expression.
|
|
OwningExprResult TransformExpr(Expr *E);
|
|
|
|
/// \brief Transform the given declaration, which is referenced from a type
|
|
/// or expression.
|
|
///
|
|
/// By default, acts as the identity function on declarations. Subclasses
|
|
/// may override this function to provide alternate behavior.
|
|
Decl *TransformDecl(SourceLocation Loc, Decl *D) { return D; }
|
|
|
|
/// \brief Transform the definition of the given declaration.
|
|
///
|
|
/// By default, invokes TransformDecl() to transform the declaration.
|
|
/// Subclasses may override this function to provide alternate behavior.
|
|
Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
|
|
return getDerived().TransformDecl(Loc, D);
|
|
}
|
|
|
|
/// \brief Transform the given declaration, which was the first part of a
|
|
/// nested-name-specifier in a member access expression.
|
|
///
|
|
/// This specific declaration transformation only applies to the first
|
|
/// identifier in a nested-name-specifier of a member access expression, e.g.,
|
|
/// the \c T in \c x->T::member
|
|
///
|
|
/// By default, invokes TransformDecl() to transform the declaration.
|
|
/// Subclasses may override this function to provide alternate behavior.
|
|
NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
|
|
return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
|
|
}
|
|
|
|
/// \brief Transform the given nested-name-specifier.
|
|
///
|
|
/// By default, transforms all of the types and declarations within the
|
|
/// nested-name-specifier. Subclasses may override this function to provide
|
|
/// alternate behavior.
|
|
NestedNameSpecifier *TransformNestedNameSpecifier(NestedNameSpecifier *NNS,
|
|
SourceRange Range,
|
|
QualType ObjectType = QualType(),
|
|
NamedDecl *FirstQualifierInScope = 0);
|
|
|
|
/// \brief Transform the given declaration name.
|
|
///
|
|
/// By default, transforms the types of conversion function, constructor,
|
|
/// and destructor names and then (if needed) rebuilds the declaration name.
|
|
/// Identifiers and selectors are returned unmodified. Sublcasses may
|
|
/// override this function to provide alternate behavior.
|
|
DeclarationName TransformDeclarationName(DeclarationName Name,
|
|
SourceLocation Loc,
|
|
QualType ObjectType = QualType());
|
|
|
|
/// \brief Transform the given template name.
|
|
///
|
|
/// By default, transforms the template name by transforming the declarations
|
|
/// and nested-name-specifiers that occur within the template name.
|
|
/// Subclasses may override this function to provide alternate behavior.
|
|
TemplateName TransformTemplateName(TemplateName Name,
|
|
QualType ObjectType = QualType());
|
|
|
|
/// \brief Transform the given template argument.
|
|
///
|
|
/// By default, this operation transforms the type, expression, or
|
|
/// declaration stored within the template argument and constructs a
|
|
/// new template argument from the transformed result. Subclasses may
|
|
/// override this function to provide alternate behavior.
|
|
///
|
|
/// Returns true if there was an error.
|
|
bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
|
|
TemplateArgumentLoc &Output);
|
|
|
|
/// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
|
|
void InventTemplateArgumentLoc(const TemplateArgument &Arg,
|
|
TemplateArgumentLoc &ArgLoc);
|
|
|
|
/// \brief Fakes up a TypeSourceInfo for a type.
|
|
TypeSourceInfo *InventTypeSourceInfo(QualType T) {
|
|
return SemaRef.Context.getTrivialTypeSourceInfo(T,
|
|
getDerived().getBaseLocation());
|
|
}
|
|
|
|
#define ABSTRACT_TYPELOC(CLASS, PARENT)
|
|
#define TYPELOC(CLASS, PARENT) \
|
|
QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T, \
|
|
QualType ObjectType = QualType());
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
|
|
/// \brief Transforms the parameters of a function type into the
|
|
/// given vectors.
|
|
///
|
|
/// The result vectors should be kept in sync; null entries in the
|
|
/// variables vector are acceptable.
|
|
///
|
|
/// Return true on error.
|
|
bool TransformFunctionTypeParams(FunctionProtoTypeLoc TL,
|
|
llvm::SmallVectorImpl<QualType> &PTypes,
|
|
llvm::SmallVectorImpl<ParmVarDecl*> &PVars);
|
|
|
|
/// \brief Transforms a single function-type parameter. Return null
|
|
/// on error.
|
|
ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm);
|
|
|
|
QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL,
|
|
QualType ObjectType);
|
|
|
|
QualType
|
|
TransformTemplateSpecializationType(const TemplateSpecializationType *T,
|
|
QualType ObjectType);
|
|
|
|
OwningStmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
|
|
|
|
#define STMT(Node, Parent) \
|
|
OwningStmtResult Transform##Node(Node *S);
|
|
#define EXPR(Node, Parent) \
|
|
OwningExprResult Transform##Node(Node *E);
|
|
#define ABSTRACT_EXPR(Node, Parent)
|
|
#include "clang/AST/StmtNodes.def"
|
|
|
|
/// \brief Build a new pointer type given its pointee type.
|
|
///
|
|
/// By default, performs semantic analysis when building the pointer type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
|
|
|
|
/// \brief Build a new block pointer type given its pointee type.
|
|
///
|
|
/// By default, performs semantic analysis when building the block pointer
|
|
/// type. Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
|
|
|
|
/// \brief Build a new reference type given the type it references.
|
|
///
|
|
/// By default, performs semantic analysis when building the
|
|
/// reference type. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
///
|
|
/// \param LValue whether the type was written with an lvalue sigil
|
|
/// or an rvalue sigil.
|
|
QualType RebuildReferenceType(QualType ReferentType,
|
|
bool LValue,
|
|
SourceLocation Sigil);
|
|
|
|
/// \brief Build a new member pointer type given the pointee type and the
|
|
/// class type it refers into.
|
|
///
|
|
/// By default, performs semantic analysis when building the member pointer
|
|
/// type. Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
|
|
SourceLocation Sigil);
|
|
|
|
/// \brief Build a new Objective C object pointer type.
|
|
QualType RebuildObjCObjectPointerType(QualType PointeeType,
|
|
SourceLocation Sigil);
|
|
|
|
/// \brief Build a new array type given the element type, size
|
|
/// modifier, size of the array (if known), size expression, and index type
|
|
/// qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
/// Also by default, all of the other Rebuild*Array
|
|
QualType RebuildArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt *Size,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new constant array type given the element type, size
|
|
/// modifier, (known) size of the array, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildConstantArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt &Size,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new incomplete array type given the element type, size
|
|
/// modifier, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildIncompleteArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new variable-length array type given the element type,
|
|
/// size modifier, size expression, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildVariableArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
ExprArg SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new dependent-sized array type given the element type,
|
|
/// size modifier, size expression, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildDependentSizedArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
ExprArg SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new vector type given the element type and
|
|
/// number of elements.
|
|
///
|
|
/// By default, performs semantic analysis when building the vector type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
|
|
bool IsAltiVec, bool IsPixel);
|
|
|
|
/// \brief Build a new extended vector type given the element type and
|
|
/// number of elements.
|
|
///
|
|
/// By default, performs semantic analysis when building the vector type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
|
|
SourceLocation AttributeLoc);
|
|
|
|
/// \brief Build a new potentially dependently-sized extended vector type
|
|
/// given the element type and number of elements.
|
|
///
|
|
/// By default, performs semantic analysis when building the vector type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildDependentSizedExtVectorType(QualType ElementType,
|
|
ExprArg SizeExpr,
|
|
SourceLocation AttributeLoc);
|
|
|
|
/// \brief Build a new function type.
|
|
///
|
|
/// By default, performs semantic analysis when building the function type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildFunctionProtoType(QualType T,
|
|
QualType *ParamTypes,
|
|
unsigned NumParamTypes,
|
|
bool Variadic, unsigned Quals);
|
|
|
|
/// \brief Build a new unprototyped function type.
|
|
QualType RebuildFunctionNoProtoType(QualType ResultType);
|
|
|
|
/// \brief Rebuild an unresolved typename type, given the decl that
|
|
/// the UnresolvedUsingTypenameDecl was transformed to.
|
|
QualType RebuildUnresolvedUsingType(Decl *D);
|
|
|
|
/// \brief Build a new typedef type.
|
|
QualType RebuildTypedefType(TypedefDecl *Typedef) {
|
|
return SemaRef.Context.getTypeDeclType(Typedef);
|
|
}
|
|
|
|
/// \brief Build a new class/struct/union type.
|
|
QualType RebuildRecordType(RecordDecl *Record) {
|
|
return SemaRef.Context.getTypeDeclType(Record);
|
|
}
|
|
|
|
/// \brief Build a new Enum type.
|
|
QualType RebuildEnumType(EnumDecl *Enum) {
|
|
return SemaRef.Context.getTypeDeclType(Enum);
|
|
}
|
|
|
|
/// \brief Build a new elaborated type.
|
|
QualType RebuildElaboratedType(QualType T, ElaboratedType::TagKind Tag) {
|
|
return SemaRef.Context.getElaboratedType(T, Tag);
|
|
}
|
|
|
|
/// \brief Build a new typeof(expr) type.
|
|
///
|
|
/// By default, performs semantic analysis when building the typeof type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildTypeOfExprType(ExprArg Underlying);
|
|
|
|
/// \brief Build a new typeof(type) type.
|
|
///
|
|
/// By default, builds a new TypeOfType with the given underlying type.
|
|
QualType RebuildTypeOfType(QualType Underlying);
|
|
|
|
/// \brief Build a new C++0x decltype type.
|
|
///
|
|
/// By default, performs semantic analysis when building the decltype type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildDecltypeType(ExprArg Underlying);
|
|
|
|
/// \brief Build a new template specialization type.
|
|
///
|
|
/// By default, performs semantic analysis when building the template
|
|
/// specialization type. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
QualType RebuildTemplateSpecializationType(TemplateName Template,
|
|
SourceLocation TemplateLoc,
|
|
const TemplateArgumentListInfo &Args);
|
|
|
|
/// \brief Build a new qualified name type.
|
|
///
|
|
/// By default, builds a new QualifiedNameType type from the
|
|
/// nested-name-specifier and the named type. Subclasses may override
|
|
/// this routine to provide different behavior.
|
|
QualType RebuildQualifiedNameType(NestedNameSpecifier *NNS, QualType Named) {
|
|
return SemaRef.Context.getQualifiedNameType(NNS, Named);
|
|
}
|
|
|
|
/// \brief Build a new typename type that refers to a template-id.
|
|
///
|
|
/// By default, builds a new TypenameType type from the nested-name-specifier
|
|
/// and the given type. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
QualType RebuildTypenameType(NestedNameSpecifier *NNS, QualType T) {
|
|
if (NNS->isDependent()) {
|
|
CXXScopeSpec SS;
|
|
SS.setScopeRep(NNS);
|
|
if (!SemaRef.computeDeclContext(SS))
|
|
return SemaRef.Context.getTypenameType(NNS,
|
|
cast<TemplateSpecializationType>(T));
|
|
}
|
|
|
|
return SemaRef.Context.getQualifiedNameType(NNS, T);
|
|
}
|
|
|
|
/// \brief Build a new typename type that refers to an identifier.
|
|
///
|
|
/// By default, performs semantic analysis when building the typename type
|
|
/// (or qualified name type). Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
QualType RebuildTypenameType(NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Id,
|
|
SourceRange SR) {
|
|
return SemaRef.CheckTypenameType(NNS, *Id, SR);
|
|
}
|
|
|
|
/// \brief Build a new nested-name-specifier given the prefix and an
|
|
/// identifier that names the next step in the nested-name-specifier.
|
|
///
|
|
/// By default, performs semantic analysis when building the new
|
|
/// nested-name-specifier. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
|
|
SourceRange Range,
|
|
IdentifierInfo &II,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope);
|
|
|
|
/// \brief Build a new nested-name-specifier given the prefix and the
|
|
/// namespace named in the next step in the nested-name-specifier.
|
|
///
|
|
/// By default, performs semantic analysis when building the new
|
|
/// nested-name-specifier. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
|
|
SourceRange Range,
|
|
NamespaceDecl *NS);
|
|
|
|
/// \brief Build a new nested-name-specifier given the prefix and the
|
|
/// type named in the next step in the nested-name-specifier.
|
|
///
|
|
/// By default, performs semantic analysis when building the new
|
|
/// nested-name-specifier. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
|
|
SourceRange Range,
|
|
bool TemplateKW,
|
|
QualType T);
|
|
|
|
/// \brief Build a new template name given a nested name specifier, a flag
|
|
/// indicating whether the "template" keyword was provided, and the template
|
|
/// that the template name refers to.
|
|
///
|
|
/// By default, builds the new template name directly. Subclasses may override
|
|
/// this routine to provide different behavior.
|
|
TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier,
|
|
bool TemplateKW,
|
|
TemplateDecl *Template);
|
|
|
|
/// \brief Build a new template name given a nested name specifier and the
|
|
/// name that is referred to as a template.
|
|
///
|
|
/// By default, performs semantic analysis to determine whether the name can
|
|
/// be resolved to a specific template, then builds the appropriate kind of
|
|
/// template name. Subclasses may override this routine to provide different
|
|
/// behavior.
|
|
TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier,
|
|
const IdentifierInfo &II,
|
|
QualType ObjectType);
|
|
|
|
/// \brief Build a new template name given a nested name specifier and the
|
|
/// overloaded operator name that is referred to as a template.
|
|
///
|
|
/// By default, performs semantic analysis to determine whether the name can
|
|
/// be resolved to a specific template, then builds the appropriate kind of
|
|
/// template name. Subclasses may override this routine to provide different
|
|
/// behavior.
|
|
TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier,
|
|
OverloadedOperatorKind Operator,
|
|
QualType ObjectType);
|
|
|
|
/// \brief Build a new compound statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
|
|
MultiStmtArg Statements,
|
|
SourceLocation RBraceLoc,
|
|
bool IsStmtExpr) {
|
|
return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, move(Statements),
|
|
IsStmtExpr);
|
|
}
|
|
|
|
/// \brief Build a new case statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildCaseStmt(SourceLocation CaseLoc,
|
|
ExprArg LHS,
|
|
SourceLocation EllipsisLoc,
|
|
ExprArg RHS,
|
|
SourceLocation ColonLoc) {
|
|
return getSema().ActOnCaseStmt(CaseLoc, move(LHS), EllipsisLoc, move(RHS),
|
|
ColonLoc);
|
|
}
|
|
|
|
/// \brief Attach the body to a new case statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildCaseStmtBody(StmtArg S, StmtArg Body) {
|
|
getSema().ActOnCaseStmtBody(S.get(), move(Body));
|
|
return move(S);
|
|
}
|
|
|
|
/// \brief Build a new default statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
|
|
SourceLocation ColonLoc,
|
|
StmtArg SubStmt) {
|
|
return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, move(SubStmt),
|
|
/*CurScope=*/0);
|
|
}
|
|
|
|
/// \brief Build a new label statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildLabelStmt(SourceLocation IdentLoc,
|
|
IdentifierInfo *Id,
|
|
SourceLocation ColonLoc,
|
|
StmtArg SubStmt) {
|
|
return SemaRef.ActOnLabelStmt(IdentLoc, Id, ColonLoc, move(SubStmt));
|
|
}
|
|
|
|
/// \brief Build a new "if" statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
|
|
VarDecl *CondVar, StmtArg Then,
|
|
SourceLocation ElseLoc, StmtArg Else) {
|
|
return getSema().ActOnIfStmt(IfLoc, Cond, DeclPtrTy::make(CondVar),
|
|
move(Then), ElseLoc, move(Else));
|
|
}
|
|
|
|
/// \brief Start building a new switch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildSwitchStmtStart(Sema::FullExprArg Cond,
|
|
VarDecl *CondVar) {
|
|
return getSema().ActOnStartOfSwitchStmt(Cond, DeclPtrTy::make(CondVar));
|
|
}
|
|
|
|
/// \brief Attach the body to the switch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
|
|
StmtArg Switch, StmtArg Body) {
|
|
return getSema().ActOnFinishSwitchStmt(SwitchLoc, move(Switch),
|
|
move(Body));
|
|
}
|
|
|
|
/// \brief Build a new while statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildWhileStmt(SourceLocation WhileLoc,
|
|
Sema::FullExprArg Cond,
|
|
VarDecl *CondVar,
|
|
StmtArg Body) {
|
|
return getSema().ActOnWhileStmt(WhileLoc, Cond, DeclPtrTy::make(CondVar),
|
|
move(Body));
|
|
}
|
|
|
|
/// \brief Build a new do-while statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildDoStmt(SourceLocation DoLoc, StmtArg Body,
|
|
SourceLocation WhileLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg Cond,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnDoStmt(DoLoc, move(Body), WhileLoc, LParenLoc,
|
|
move(Cond), RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new for statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildForStmt(SourceLocation ForLoc,
|
|
SourceLocation LParenLoc,
|
|
StmtArg Init, Sema::FullExprArg Cond,
|
|
VarDecl *CondVar, Sema::FullExprArg Inc,
|
|
SourceLocation RParenLoc, StmtArg Body) {
|
|
return getSema().ActOnForStmt(ForLoc, LParenLoc, move(Init), Cond,
|
|
DeclPtrTy::make(CondVar),
|
|
Inc, RParenLoc, move(Body));
|
|
}
|
|
|
|
/// \brief Build a new goto statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation LabelLoc,
|
|
LabelStmt *Label) {
|
|
return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label->getID());
|
|
}
|
|
|
|
/// \brief Build a new indirect goto statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation StarLoc,
|
|
ExprArg Target) {
|
|
return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, move(Target));
|
|
}
|
|
|
|
/// \brief Build a new return statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildReturnStmt(SourceLocation ReturnLoc,
|
|
ExprArg Result) {
|
|
|
|
return getSema().ActOnReturnStmt(ReturnLoc, move(Result));
|
|
}
|
|
|
|
/// \brief Build a new declaration statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildDeclStmt(Decl **Decls, unsigned NumDecls,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc) {
|
|
return getSema().Owned(
|
|
new (getSema().Context) DeclStmt(
|
|
DeclGroupRef::Create(getSema().Context,
|
|
Decls, NumDecls),
|
|
StartLoc, EndLoc));
|
|
}
|
|
|
|
/// \brief Build a new inline asm statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildAsmStmt(SourceLocation AsmLoc,
|
|
bool IsSimple,
|
|
bool IsVolatile,
|
|
unsigned NumOutputs,
|
|
unsigned NumInputs,
|
|
IdentifierInfo **Names,
|
|
MultiExprArg Constraints,
|
|
MultiExprArg Exprs,
|
|
ExprArg AsmString,
|
|
MultiExprArg Clobbers,
|
|
SourceLocation RParenLoc,
|
|
bool MSAsm) {
|
|
return getSema().ActOnAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
|
|
NumInputs, Names, move(Constraints),
|
|
move(Exprs), move(AsmString), move(Clobbers),
|
|
RParenLoc, MSAsm);
|
|
}
|
|
|
|
/// \brief Build a new C++ exception declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new decaration.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, QualType T,
|
|
TypeSourceInfo *Declarator,
|
|
IdentifierInfo *Name,
|
|
SourceLocation Loc,
|
|
SourceRange TypeRange) {
|
|
return getSema().BuildExceptionDeclaration(0, T, Declarator, Name, Loc,
|
|
TypeRange);
|
|
}
|
|
|
|
/// \brief Build a new C++ catch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
|
|
VarDecl *ExceptionDecl,
|
|
StmtArg Handler) {
|
|
return getSema().Owned(
|
|
new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
|
|
Handler.takeAs<Stmt>()));
|
|
}
|
|
|
|
/// \brief Build a new C++ try statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningStmtResult RebuildCXXTryStmt(SourceLocation TryLoc,
|
|
StmtArg TryBlock,
|
|
MultiStmtArg Handlers) {
|
|
return getSema().ActOnCXXTryBlock(TryLoc, move(TryBlock), move(Handlers));
|
|
}
|
|
|
|
/// \brief Build a new expression that references a declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
bool RequiresADL) {
|
|
return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
|
|
}
|
|
|
|
|
|
/// \brief Build a new expression that references a declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildDeclRefExpr(NestedNameSpecifier *Qualifier,
|
|
SourceRange QualifierRange,
|
|
ValueDecl *VD, SourceLocation Loc,
|
|
TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.setScopeRep(Qualifier);
|
|
SS.setRange(QualifierRange);
|
|
|
|
// FIXME: loses template args.
|
|
|
|
return getSema().BuildDeclarationNameExpr(SS, Loc, VD);
|
|
}
|
|
|
|
/// \brief Build a new expression in parentheses.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildParenExpr(ExprArg SubExpr, SourceLocation LParen,
|
|
SourceLocation RParen) {
|
|
return getSema().ActOnParenExpr(LParen, RParen, move(SubExpr));
|
|
}
|
|
|
|
/// \brief Build a new pseudo-destructor expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXPseudoDestructorExpr(ExprArg Base,
|
|
SourceLocation OperatorLoc,
|
|
bool isArrow,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceRange QualifierRange,
|
|
TypeSourceInfo *ScopeType,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage Destroyed);
|
|
|
|
/// \brief Build a new unary operator expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildUnaryOperator(SourceLocation OpLoc,
|
|
UnaryOperator::Opcode Opc,
|
|
ExprArg SubExpr) {
|
|
return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, move(SubExpr));
|
|
}
|
|
|
|
/// \brief Build a new sizeof or alignof expression with a type argument.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildSizeOfAlignOf(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
bool isSizeOf, SourceRange R) {
|
|
return getSema().CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeOf, R);
|
|
}
|
|
|
|
/// \brief Build a new sizeof or alignof expression with an expression
|
|
/// argument.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildSizeOfAlignOf(ExprArg SubExpr, SourceLocation OpLoc,
|
|
bool isSizeOf, SourceRange R) {
|
|
OwningExprResult Result
|
|
= getSema().CreateSizeOfAlignOfExpr((Expr *)SubExpr.get(),
|
|
OpLoc, isSizeOf, R);
|
|
if (Result.isInvalid())
|
|
return getSema().ExprError();
|
|
|
|
SubExpr.release();
|
|
return move(Result);
|
|
}
|
|
|
|
/// \brief Build a new array subscript expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildArraySubscriptExpr(ExprArg LHS,
|
|
SourceLocation LBracketLoc,
|
|
ExprArg RHS,
|
|
SourceLocation RBracketLoc) {
|
|
return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, move(LHS),
|
|
LBracketLoc, move(RHS),
|
|
RBracketLoc);
|
|
}
|
|
|
|
/// \brief Build a new call expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCallExpr(ExprArg Callee, SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation *CommaLocs,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnCallExpr(/*Scope=*/0, move(Callee), LParenLoc,
|
|
move(Args), CommaLocs, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new member access expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildMemberExpr(ExprArg Base, SourceLocation OpLoc,
|
|
bool isArrow,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceRange QualifierRange,
|
|
SourceLocation MemberLoc,
|
|
ValueDecl *Member,
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
if (!Member->getDeclName()) {
|
|
// We have a reference to an unnamed field.
|
|
assert(!Qualifier && "Can't have an unnamed field with a qualifier!");
|
|
|
|
Expr *BaseExpr = Base.takeAs<Expr>();
|
|
if (getSema().PerformObjectMemberConversion(BaseExpr, Qualifier, Member))
|
|
return getSema().ExprError();
|
|
|
|
MemberExpr *ME =
|
|
new (getSema().Context) MemberExpr(BaseExpr, isArrow,
|
|
Member, MemberLoc,
|
|
cast<FieldDecl>(Member)->getType());
|
|
return getSema().Owned(ME);
|
|
}
|
|
|
|
CXXScopeSpec SS;
|
|
if (Qualifier) {
|
|
SS.setRange(QualifierRange);
|
|
SS.setScopeRep(Qualifier);
|
|
}
|
|
|
|
QualType BaseType = ((Expr*) Base.get())->getType();
|
|
|
|
LookupResult R(getSema(), Member->getDeclName(), MemberLoc,
|
|
Sema::LookupMemberName);
|
|
R.addDecl(Member);
|
|
R.resolveKind();
|
|
|
|
return getSema().BuildMemberReferenceExpr(move(Base), BaseType,
|
|
OpLoc, isArrow,
|
|
SS, FirstQualifierInScope,
|
|
R, ExplicitTemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new binary operator expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildBinaryOperator(SourceLocation OpLoc,
|
|
BinaryOperator::Opcode Opc,
|
|
ExprArg LHS, ExprArg RHS) {
|
|
return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc,
|
|
LHS.takeAs<Expr>(), RHS.takeAs<Expr>());
|
|
}
|
|
|
|
/// \brief Build a new conditional operator expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildConditionalOperator(ExprArg Cond,
|
|
SourceLocation QuestionLoc,
|
|
ExprArg LHS,
|
|
SourceLocation ColonLoc,
|
|
ExprArg RHS) {
|
|
return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, move(Cond),
|
|
move(LHS), move(RHS));
|
|
}
|
|
|
|
/// \brief Build a new C-style cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc,
|
|
ExprArg SubExpr) {
|
|
return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
|
|
move(SubExpr));
|
|
}
|
|
|
|
/// \brief Build a new compound literal expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc,
|
|
ExprArg Init) {
|
|
return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
|
|
move(Init));
|
|
}
|
|
|
|
/// \brief Build a new extended vector element access expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildExtVectorElementExpr(ExprArg Base,
|
|
SourceLocation OpLoc,
|
|
SourceLocation AccessorLoc,
|
|
IdentifierInfo &Accessor) {
|
|
|
|
CXXScopeSpec SS;
|
|
QualType BaseType = ((Expr*) Base.get())->getType();
|
|
return getSema().BuildMemberReferenceExpr(move(Base), BaseType,
|
|
OpLoc, /*IsArrow*/ false,
|
|
SS, /*FirstQualifierInScope*/ 0,
|
|
DeclarationName(&Accessor),
|
|
AccessorLoc,
|
|
/* TemplateArgs */ 0);
|
|
}
|
|
|
|
/// \brief Build a new initializer list expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildInitList(SourceLocation LBraceLoc,
|
|
MultiExprArg Inits,
|
|
SourceLocation RBraceLoc,
|
|
QualType ResultTy) {
|
|
OwningExprResult Result
|
|
= SemaRef.ActOnInitList(LBraceLoc, move(Inits), RBraceLoc);
|
|
if (Result.isInvalid() || ResultTy->isDependentType())
|
|
return move(Result);
|
|
|
|
// Patch in the result type we were given, which may have been computed
|
|
// when the initial InitListExpr was built.
|
|
InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
|
|
ILE->setType(ResultTy);
|
|
return move(Result);
|
|
}
|
|
|
|
/// \brief Build a new designated initializer expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildDesignatedInitExpr(Designation &Desig,
|
|
MultiExprArg ArrayExprs,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax,
|
|
ExprArg Init) {
|
|
OwningExprResult Result
|
|
= SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
|
|
move(Init));
|
|
if (Result.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArrayExprs.release();
|
|
return move(Result);
|
|
}
|
|
|
|
/// \brief Build a new value-initialized expression.
|
|
///
|
|
/// By default, builds the implicit value initialization without performing
|
|
/// any semantic analysis. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
OwningExprResult RebuildImplicitValueInitExpr(QualType T) {
|
|
return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T));
|
|
}
|
|
|
|
/// \brief Build a new \c va_arg expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, ExprArg SubExpr,
|
|
QualType T, SourceLocation RParenLoc) {
|
|
return getSema().ActOnVAArg(BuiltinLoc, move(SubExpr), T.getAsOpaquePtr(),
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new expression list in parentheses.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildParenListExpr(SourceLocation LParenLoc,
|
|
MultiExprArg SubExprs,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnParenOrParenListExpr(LParenLoc, RParenLoc,
|
|
move(SubExprs));
|
|
}
|
|
|
|
/// \brief Build a new address-of-label expression.
|
|
///
|
|
/// By default, performs semantic analysis, using the name of the label
|
|
/// rather than attempting to map the label statement itself.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
|
|
SourceLocation LabelLoc,
|
|
LabelStmt *Label) {
|
|
return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label->getID());
|
|
}
|
|
|
|
/// \brief Build a new GNU statement expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildStmtExpr(SourceLocation LParenLoc,
|
|
StmtArg SubStmt,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnStmtExpr(LParenLoc, move(SubStmt), RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new __builtin_types_compatible_p expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
|
|
QualType T1, QualType T2,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnTypesCompatibleExpr(BuiltinLoc,
|
|
T1.getAsOpaquePtr(),
|
|
T2.getAsOpaquePtr(),
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new __builtin_choose_expr expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
|
|
ExprArg Cond, ExprArg LHS, ExprArg RHS,
|
|
SourceLocation RParenLoc) {
|
|
return SemaRef.ActOnChooseExpr(BuiltinLoc,
|
|
move(Cond), move(LHS), move(RHS),
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new overloaded operator call expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// The semantic analysis provides the behavior of template instantiation,
|
|
/// copying with transformations that turn what looks like an overloaded
|
|
/// operator call into a use of a builtin operator, performing
|
|
/// argument-dependent lookup, etc. Subclasses may override this routine to
|
|
/// provide different behavior.
|
|
OwningExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
ExprArg Callee,
|
|
ExprArg First,
|
|
ExprArg Second);
|
|
|
|
/// \brief Build a new C++ "named" cast expression, such as static_cast or
|
|
/// reinterpret_cast.
|
|
///
|
|
/// By default, this routine dispatches to one of the more-specific routines
|
|
/// for a particular named case, e.g., RebuildCXXStaticCastExpr().
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
|
|
Stmt::StmtClass Class,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
switch (Class) {
|
|
case Stmt::CXXStaticCastExprClass:
|
|
return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
move(SubExpr), RParenLoc);
|
|
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
move(SubExpr), RParenLoc);
|
|
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
move(SubExpr),
|
|
RParenLoc);
|
|
|
|
case Stmt::CXXConstCastExprClass:
|
|
return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
move(SubExpr), RParenLoc);
|
|
|
|
default:
|
|
assert(false && "Invalid C++ named cast");
|
|
break;
|
|
}
|
|
|
|
return getSema().ExprError();
|
|
}
|
|
|
|
/// \brief Build a new C++ static_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
|
|
TInfo, move(SubExpr),
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ dynamic_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
|
|
TInfo, move(SubExpr),
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ reinterpret_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
|
|
TInfo, move(SubExpr),
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ const_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
|
|
TInfo, move(SubExpr),
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ functional-style cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXFunctionalCastExpr(SourceRange TypeRange,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation LParenLoc,
|
|
ExprArg SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
void *Sub = SubExpr.takeAs<Expr>();
|
|
return getSema().ActOnCXXTypeConstructExpr(TypeRange,
|
|
TInfo->getType().getAsOpaquePtr(),
|
|
LParenLoc,
|
|
Sema::MultiExprArg(getSema(), &Sub, 1),
|
|
/*CommaLocs=*/0,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ typeid(type) expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXTypeidExpr(SourceLocation TypeidLoc,
|
|
SourceLocation LParenLoc,
|
|
QualType T,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnCXXTypeid(TypeidLoc, LParenLoc, true,
|
|
T.getAsOpaquePtr(), RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ typeid(expr) expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXTypeidExpr(SourceLocation TypeidLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprArg Operand,
|
|
SourceLocation RParenLoc) {
|
|
OwningExprResult Result
|
|
= getSema().ActOnCXXTypeid(TypeidLoc, LParenLoc, false, Operand.get(),
|
|
RParenLoc);
|
|
if (Result.isInvalid())
|
|
return getSema().ExprError();
|
|
|
|
Operand.release(); // FIXME: since ActOnCXXTypeid silently took ownership
|
|
return move(Result);
|
|
}
|
|
|
|
/// \brief Build a new C++ "this" expression.
|
|
///
|
|
/// By default, builds a new "this" expression without performing any
|
|
/// semantic analysis. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
OwningExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
|
|
QualType ThisType,
|
|
bool isImplicit) {
|
|
return getSema().Owned(
|
|
new (getSema().Context) CXXThisExpr(ThisLoc, ThisType,
|
|
isImplicit));
|
|
}
|
|
|
|
/// \brief Build a new C++ throw expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, ExprArg Sub) {
|
|
return getSema().ActOnCXXThrow(ThrowLoc, move(Sub));
|
|
}
|
|
|
|
/// \brief Build a new C++ default-argument expression.
|
|
///
|
|
/// By default, builds a new default-argument expression, which does not
|
|
/// require any semantic analysis. Subclasses may override this routine to
|
|
/// provide different behavior.
|
|
OwningExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
|
|
ParmVarDecl *Param) {
|
|
return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc,
|
|
Param));
|
|
}
|
|
|
|
/// \brief Build a new C++ zero-initialization expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXZeroInitValueExpr(SourceLocation TypeStartLoc,
|
|
SourceLocation LParenLoc,
|
|
QualType T,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnCXXTypeConstructExpr(SourceRange(TypeStartLoc),
|
|
T.getAsOpaquePtr(), LParenLoc,
|
|
MultiExprArg(getSema(), 0, 0),
|
|
0, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ "new" expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
|
|
bool UseGlobal,
|
|
SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen,
|
|
bool ParenTypeId,
|
|
QualType AllocType,
|
|
SourceLocation TypeLoc,
|
|
SourceRange TypeRange,
|
|
ExprArg ArraySize,
|
|
SourceLocation ConstructorLParen,
|
|
MultiExprArg ConstructorArgs,
|
|
SourceLocation ConstructorRParen) {
|
|
return getSema().BuildCXXNew(StartLoc, UseGlobal,
|
|
PlacementLParen,
|
|
move(PlacementArgs),
|
|
PlacementRParen,
|
|
ParenTypeId,
|
|
AllocType,
|
|
TypeLoc,
|
|
TypeRange,
|
|
move(ArraySize),
|
|
ConstructorLParen,
|
|
move(ConstructorArgs),
|
|
ConstructorRParen);
|
|
}
|
|
|
|
/// \brief Build a new C++ "delete" expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
|
|
bool IsGlobalDelete,
|
|
bool IsArrayForm,
|
|
ExprArg Operand) {
|
|
return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
|
|
move(Operand));
|
|
}
|
|
|
|
/// \brief Build a new unary type trait expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
QualType T,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnUnaryTypeTrait(Trait, StartLoc, LParenLoc,
|
|
T.getAsOpaquePtr(), RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new (previously unresolved) declaration reference
|
|
/// expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildDependentScopeDeclRefExpr(NestedNameSpecifier *NNS,
|
|
SourceRange QualifierRange,
|
|
DeclarationName Name,
|
|
SourceLocation Location,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.setRange(QualifierRange);
|
|
SS.setScopeRep(NNS);
|
|
|
|
if (TemplateArgs)
|
|
return getSema().BuildQualifiedTemplateIdExpr(SS, Name, Location,
|
|
*TemplateArgs);
|
|
|
|
return getSema().BuildQualifiedDeclarationNameExpr(SS, Name, Location);
|
|
}
|
|
|
|
/// \brief Build a new template-id expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
bool RequiresADL,
|
|
const TemplateArgumentListInfo &TemplateArgs) {
|
|
return getSema().BuildTemplateIdExpr(SS, R, RequiresADL, TemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new object-construction expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXConstructExpr(QualType T,
|
|
SourceLocation Loc,
|
|
CXXConstructorDecl *Constructor,
|
|
bool IsElidable,
|
|
MultiExprArg Args) {
|
|
ASTOwningVector<&ActionBase::DeleteExpr> ConvertedArgs(SemaRef);
|
|
if (getSema().CompleteConstructorCall(Constructor, move(Args), Loc,
|
|
ConvertedArgs))
|
|
return getSema().ExprError();
|
|
|
|
return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
|
|
move_arg(ConvertedArgs));
|
|
}
|
|
|
|
/// \brief Build a new object-construction expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXTemporaryObjectExpr(SourceLocation TypeBeginLoc,
|
|
QualType T,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation *Commas,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnCXXTypeConstructExpr(SourceRange(TypeBeginLoc),
|
|
T.getAsOpaquePtr(),
|
|
LParenLoc,
|
|
move(Args),
|
|
Commas,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new object-construction expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXUnresolvedConstructExpr(SourceLocation TypeBeginLoc,
|
|
QualType T,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation *Commas,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnCXXTypeConstructExpr(SourceRange(TypeBeginLoc,
|
|
/*FIXME*/LParenLoc),
|
|
T.getAsOpaquePtr(),
|
|
LParenLoc,
|
|
move(Args),
|
|
Commas,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new member reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildCXXDependentScopeMemberExpr(ExprArg BaseE,
|
|
QualType BaseType,
|
|
bool IsArrow,
|
|
SourceLocation OperatorLoc,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceRange QualifierRange,
|
|
NamedDecl *FirstQualifierInScope,
|
|
DeclarationName Name,
|
|
SourceLocation MemberLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.setRange(QualifierRange);
|
|
SS.setScopeRep(Qualifier);
|
|
|
|
return SemaRef.BuildMemberReferenceExpr(move(BaseE), BaseType,
|
|
OperatorLoc, IsArrow,
|
|
SS, FirstQualifierInScope,
|
|
Name, MemberLoc, TemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new member reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildUnresolvedMemberExpr(ExprArg BaseE,
|
|
QualType BaseType,
|
|
SourceLocation OperatorLoc,
|
|
bool IsArrow,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceRange QualifierRange,
|
|
NamedDecl *FirstQualifierInScope,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.setRange(QualifierRange);
|
|
SS.setScopeRep(Qualifier);
|
|
|
|
return SemaRef.BuildMemberReferenceExpr(move(BaseE), BaseType,
|
|
OperatorLoc, IsArrow,
|
|
SS, FirstQualifierInScope,
|
|
R, TemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C @encode expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
|
|
QualType T,
|
|
SourceLocation RParenLoc) {
|
|
return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, T,
|
|
RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new Objective-C protocol expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildObjCProtocolExpr(ObjCProtocolDecl *Protocol,
|
|
SourceLocation AtLoc,
|
|
SourceLocation ProtoLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc) {
|
|
return SemaRef.Owned(SemaRef.ParseObjCProtocolExpression(
|
|
Protocol->getIdentifier(),
|
|
AtLoc,
|
|
ProtoLoc,
|
|
LParenLoc,
|
|
RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new shuffle vector expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OwningExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
|
|
MultiExprArg SubExprs,
|
|
SourceLocation RParenLoc) {
|
|
// Find the declaration for __builtin_shufflevector
|
|
const IdentifierInfo &Name
|
|
= SemaRef.Context.Idents.get("__builtin_shufflevector");
|
|
TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
|
|
DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
|
|
assert(Lookup.first != Lookup.second && "No __builtin_shufflevector?");
|
|
|
|
// Build a reference to the __builtin_shufflevector builtin
|
|
FunctionDecl *Builtin = cast<FunctionDecl>(*Lookup.first);
|
|
Expr *Callee
|
|
= new (SemaRef.Context) DeclRefExpr(Builtin, Builtin->getType(),
|
|
BuiltinLoc);
|
|
SemaRef.UsualUnaryConversions(Callee);
|
|
|
|
// Build the CallExpr
|
|
unsigned NumSubExprs = SubExprs.size();
|
|
Expr **Subs = (Expr **)SubExprs.release();
|
|
CallExpr *TheCall = new (SemaRef.Context) CallExpr(SemaRef.Context, Callee,
|
|
Subs, NumSubExprs,
|
|
Builtin->getResultType(),
|
|
RParenLoc);
|
|
OwningExprResult OwnedCall(SemaRef.Owned(TheCall));
|
|
|
|
// Type-check the __builtin_shufflevector expression.
|
|
OwningExprResult Result = SemaRef.SemaBuiltinShuffleVector(TheCall);
|
|
if (Result.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwnedCall.release();
|
|
return move(Result);
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
|
|
if (!S)
|
|
return SemaRef.Owned(S);
|
|
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::NoStmtClass: break;
|
|
|
|
// Transform individual statement nodes
|
|
#define STMT(Node, Parent) \
|
|
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
|
|
#define EXPR(Node, Parent)
|
|
#include "clang/AST/StmtNodes.def"
|
|
|
|
// Transform expressions by calling TransformExpr.
|
|
#define STMT(Node, Parent)
|
|
#define ABSTRACT_EXPR(Node, Parent)
|
|
#define EXPR(Node, Parent) case Stmt::Node##Class:
|
|
#include "clang/AST/StmtNodes.def"
|
|
{
|
|
Sema::OwningExprResult E = getDerived().TransformExpr(cast<Expr>(S));
|
|
if (E.isInvalid())
|
|
return getSema().StmtError();
|
|
|
|
return getSema().ActOnExprStmt(getSema().MakeFullExpr(E));
|
|
}
|
|
}
|
|
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
|
|
if (!E)
|
|
return SemaRef.Owned(E);
|
|
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::NoStmtClass: break;
|
|
#define STMT(Node, Parent) case Stmt::Node##Class: break;
|
|
#define ABSTRACT_EXPR(Node, Parent)
|
|
#define EXPR(Node, Parent) \
|
|
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
|
|
#include "clang/AST/StmtNodes.def"
|
|
}
|
|
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
NestedNameSpecifier *
|
|
TreeTransform<Derived>::TransformNestedNameSpecifier(NestedNameSpecifier *NNS,
|
|
SourceRange Range,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
if (!NNS)
|
|
return 0;
|
|
|
|
// Transform the prefix of this nested name specifier.
|
|
NestedNameSpecifier *Prefix = NNS->getPrefix();
|
|
if (Prefix) {
|
|
Prefix = getDerived().TransformNestedNameSpecifier(Prefix, Range,
|
|
ObjectType,
|
|
FirstQualifierInScope);
|
|
if (!Prefix)
|
|
return 0;
|
|
|
|
// Clear out the object type and the first qualifier in scope; they only
|
|
// apply to the first element in the nested-name-specifier.
|
|
ObjectType = QualType();
|
|
FirstQualifierInScope = 0;
|
|
}
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
assert((Prefix || !ObjectType.isNull()) &&
|
|
"Identifier nested-name-specifier with no prefix or object type");
|
|
if (!getDerived().AlwaysRebuild() && Prefix == NNS->getPrefix() &&
|
|
ObjectType.isNull())
|
|
return NNS;
|
|
|
|
return getDerived().RebuildNestedNameSpecifier(Prefix, Range,
|
|
*NNS->getAsIdentifier(),
|
|
ObjectType,
|
|
FirstQualifierInScope);
|
|
|
|
case NestedNameSpecifier::Namespace: {
|
|
NamespaceDecl *NS
|
|
= cast_or_null<NamespaceDecl>(
|
|
getDerived().TransformDecl(Range.getBegin(),
|
|
NNS->getAsNamespace()));
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Prefix == NNS->getPrefix() &&
|
|
NS == NNS->getAsNamespace())
|
|
return NNS;
|
|
|
|
return getDerived().RebuildNestedNameSpecifier(Prefix, Range, NS);
|
|
}
|
|
|
|
case NestedNameSpecifier::Global:
|
|
// There is no meaningful transformation that one could perform on the
|
|
// global scope.
|
|
return NNS;
|
|
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
case NestedNameSpecifier::TypeSpec: {
|
|
TemporaryBase Rebase(*this, Range.getBegin(), DeclarationName());
|
|
QualType T = getDerived().TransformType(QualType(NNS->getAsType(), 0),
|
|
ObjectType);
|
|
if (T.isNull())
|
|
return 0;
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Prefix == NNS->getPrefix() &&
|
|
T == QualType(NNS->getAsType(), 0))
|
|
return NNS;
|
|
|
|
return getDerived().RebuildNestedNameSpecifier(Prefix, Range,
|
|
NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
|
|
T);
|
|
}
|
|
}
|
|
|
|
// Required to silence a GCC warning
|
|
return 0;
|
|
}
|
|
|
|
template<typename Derived>
|
|
DeclarationName
|
|
TreeTransform<Derived>::TransformDeclarationName(DeclarationName Name,
|
|
SourceLocation Loc,
|
|
QualType ObjectType) {
|
|
if (!Name)
|
|
return Name;
|
|
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier:
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
case DeclarationName::CXXOperatorName:
|
|
case DeclarationName::CXXLiteralOperatorName:
|
|
case DeclarationName::CXXUsingDirective:
|
|
return Name;
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
case DeclarationName::CXXDestructorName:
|
|
case DeclarationName::CXXConversionFunctionName: {
|
|
TemporaryBase Rebase(*this, Loc, Name);
|
|
QualType T = getDerived().TransformType(Name.getCXXNameType(),
|
|
ObjectType);
|
|
if (T.isNull())
|
|
return DeclarationName();
|
|
|
|
return SemaRef.Context.DeclarationNames.getCXXSpecialName(
|
|
Name.getNameKind(),
|
|
SemaRef.Context.getCanonicalType(T));
|
|
}
|
|
}
|
|
|
|
return DeclarationName();
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::TransformTemplateName(TemplateName Name,
|
|
QualType ObjectType) {
|
|
SourceLocation Loc = getDerived().getBaseLocation();
|
|
|
|
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
|
|
NestedNameSpecifier *NNS
|
|
= getDerived().TransformNestedNameSpecifier(QTN->getQualifier(),
|
|
/*FIXME:*/SourceRange(getDerived().getBaseLocation()),
|
|
ObjectType);
|
|
if (!NNS)
|
|
return TemplateName();
|
|
|
|
if (TemplateDecl *Template = QTN->getTemplateDecl()) {
|
|
TemplateDecl *TransTemplate
|
|
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(Loc, Template));
|
|
if (!TransTemplate)
|
|
return TemplateName();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
NNS == QTN->getQualifier() &&
|
|
TransTemplate == Template)
|
|
return Name;
|
|
|
|
return getDerived().RebuildTemplateName(NNS, QTN->hasTemplateKeyword(),
|
|
TransTemplate);
|
|
}
|
|
|
|
// These should be getting filtered out before they make it into the AST.
|
|
assert(false && "overloaded template name survived to here");
|
|
}
|
|
|
|
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
|
|
NestedNameSpecifier *NNS
|
|
= getDerived().TransformNestedNameSpecifier(DTN->getQualifier(),
|
|
/*FIXME:*/SourceRange(getDerived().getBaseLocation()),
|
|
ObjectType);
|
|
if (!NNS && DTN->getQualifier())
|
|
return TemplateName();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
NNS == DTN->getQualifier() &&
|
|
ObjectType.isNull())
|
|
return Name;
|
|
|
|
if (DTN->isIdentifier())
|
|
return getDerived().RebuildTemplateName(NNS, *DTN->getIdentifier(),
|
|
ObjectType);
|
|
|
|
return getDerived().RebuildTemplateName(NNS, DTN->getOperator(),
|
|
ObjectType);
|
|
}
|
|
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
TemplateDecl *TransTemplate
|
|
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(Loc, Template));
|
|
if (!TransTemplate)
|
|
return TemplateName();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TransTemplate == Template)
|
|
return Name;
|
|
|
|
return TemplateName(TransTemplate);
|
|
}
|
|
|
|
// These should be getting filtered out before they reach the AST.
|
|
assert(false && "overloaded function decl survived to here");
|
|
return TemplateName();
|
|
}
|
|
|
|
template<typename Derived>
|
|
void TreeTransform<Derived>::InventTemplateArgumentLoc(
|
|
const TemplateArgument &Arg,
|
|
TemplateArgumentLoc &Output) {
|
|
SourceLocation Loc = getDerived().getBaseLocation();
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("null template argument in TreeTransform");
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
Output = TemplateArgumentLoc(Arg,
|
|
SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
|
|
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
Output = TemplateArgumentLoc(Arg, SourceRange(), Loc);
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
|
|
break;
|
|
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Pack:
|
|
Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
|
|
break;
|
|
}
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool TreeTransform<Derived>::TransformTemplateArgument(
|
|
const TemplateArgumentLoc &Input,
|
|
TemplateArgumentLoc &Output) {
|
|
const TemplateArgument &Arg = Input.getArgument();
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
Output = Input;
|
|
return false;
|
|
|
|
case TemplateArgument::Type: {
|
|
TypeSourceInfo *DI = Input.getTypeSourceInfo();
|
|
if (DI == NULL)
|
|
DI = InventTypeSourceInfo(Input.getArgument().getAsType());
|
|
|
|
DI = getDerived().TransformType(DI);
|
|
if (!DI) return true;
|
|
|
|
Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
|
|
return false;
|
|
}
|
|
|
|
case TemplateArgument::Declaration: {
|
|
// FIXME: we should never have to transform one of these.
|
|
DeclarationName Name;
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl()))
|
|
Name = ND->getDeclName();
|
|
TemporaryBase Rebase(*this, Input.getLocation(), Name);
|
|
Decl *D = getDerived().TransformDecl(Input.getLocation(), Arg.getAsDecl());
|
|
if (!D) return true;
|
|
|
|
Expr *SourceExpr = Input.getSourceDeclExpression();
|
|
if (SourceExpr) {
|
|
EnterExpressionEvaluationContext Unevaluated(getSema(),
|
|
Action::Unevaluated);
|
|
Sema::OwningExprResult E = getDerived().TransformExpr(SourceExpr);
|
|
if (E.isInvalid())
|
|
SourceExpr = NULL;
|
|
else {
|
|
SourceExpr = E.takeAs<Expr>();
|
|
SourceExpr->Retain();
|
|
}
|
|
}
|
|
|
|
Output = TemplateArgumentLoc(TemplateArgument(D), SourceExpr);
|
|
return false;
|
|
}
|
|
|
|
case TemplateArgument::Template: {
|
|
TemporaryBase Rebase(*this, Input.getLocation(), DeclarationName());
|
|
TemplateName Template
|
|
= getDerived().TransformTemplateName(Arg.getAsTemplate());
|
|
if (Template.isNull())
|
|
return true;
|
|
|
|
Output = TemplateArgumentLoc(TemplateArgument(Template),
|
|
Input.getTemplateQualifierRange(),
|
|
Input.getTemplateNameLoc());
|
|
return false;
|
|
}
|
|
|
|
case TemplateArgument::Expression: {
|
|
// Template argument expressions are not potentially evaluated.
|
|
EnterExpressionEvaluationContext Unevaluated(getSema(),
|
|
Action::Unevaluated);
|
|
|
|
Expr *InputExpr = Input.getSourceExpression();
|
|
if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
|
|
|
|
Sema::OwningExprResult E
|
|
= getDerived().TransformExpr(InputExpr);
|
|
if (E.isInvalid()) return true;
|
|
|
|
Expr *ETaken = E.takeAs<Expr>();
|
|
ETaken->Retain();
|
|
Output = TemplateArgumentLoc(TemplateArgument(ETaken), ETaken);
|
|
return false;
|
|
}
|
|
|
|
case TemplateArgument::Pack: {
|
|
llvm::SmallVector<TemplateArgument, 4> TransformedArgs;
|
|
TransformedArgs.reserve(Arg.pack_size());
|
|
for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
|
|
AEnd = Arg.pack_end();
|
|
A != AEnd; ++A) {
|
|
|
|
// FIXME: preserve source information here when we start
|
|
// caring about parameter packs.
|
|
|
|
TemplateArgumentLoc InputArg;
|
|
TemplateArgumentLoc OutputArg;
|
|
getDerived().InventTemplateArgumentLoc(*A, InputArg);
|
|
if (getDerived().TransformTemplateArgument(InputArg, OutputArg))
|
|
return true;
|
|
|
|
TransformedArgs.push_back(OutputArg.getArgument());
|
|
}
|
|
TemplateArgument Result;
|
|
Result.setArgumentPack(TransformedArgs.data(), TransformedArgs.size(),
|
|
true);
|
|
Output = TemplateArgumentLoc(Result, Input.getLocInfo());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Work around bogus GCC warning
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type transformation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformType(QualType T,
|
|
QualType ObjectType) {
|
|
if (getDerived().AlreadyTransformed(T))
|
|
return T;
|
|
|
|
// Temporary workaround. All of these transformations should
|
|
// eventually turn into transformations on TypeLocs.
|
|
TypeSourceInfo *DI = getSema().Context.CreateTypeSourceInfo(T);
|
|
DI->getTypeLoc().initialize(getDerived().getBaseLocation());
|
|
|
|
TypeSourceInfo *NewDI = getDerived().TransformType(DI, ObjectType);
|
|
|
|
if (!NewDI)
|
|
return QualType();
|
|
|
|
return NewDI->getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI,
|
|
QualType ObjectType) {
|
|
if (getDerived().AlreadyTransformed(DI->getType()))
|
|
return DI;
|
|
|
|
TypeLocBuilder TLB;
|
|
|
|
TypeLoc TL = DI->getTypeLoc();
|
|
TLB.reserve(TL.getFullDataSize());
|
|
|
|
QualType Result = getDerived().TransformType(TLB, TL, ObjectType);
|
|
if (Result.isNull())
|
|
return 0;
|
|
|
|
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T,
|
|
QualType ObjectType) {
|
|
switch (T.getTypeLocClass()) {
|
|
#define ABSTRACT_TYPELOC(CLASS, PARENT)
|
|
#define TYPELOC(CLASS, PARENT) \
|
|
case TypeLoc::CLASS: \
|
|
return getDerived().Transform##CLASS##Type(TLB, cast<CLASS##TypeLoc>(T), \
|
|
ObjectType);
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("unhandled type loc!");
|
|
return QualType();
|
|
}
|
|
|
|
/// FIXME: By default, this routine adds type qualifiers only to types
|
|
/// that can have qualifiers, and silently suppresses those qualifiers
|
|
/// that are not permitted (e.g., qualifiers on reference or function
|
|
/// types). This is the right thing for template instantiation, but
|
|
/// probably not for other clients.
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
|
|
QualifiedTypeLoc T,
|
|
QualType ObjectType) {
|
|
Qualifiers Quals = T.getType().getLocalQualifiers();
|
|
|
|
QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc(),
|
|
ObjectType);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
|
|
// Silently suppress qualifiers if the result type can't be qualified.
|
|
// FIXME: this is the right thing for template instantiation, but
|
|
// probably not for other clients.
|
|
if (Result->isFunctionType() || Result->isReferenceType())
|
|
return Result;
|
|
|
|
Result = SemaRef.Context.getQualifiedType(Result, Quals);
|
|
|
|
TLB.push<QualifiedTypeLoc>(Result);
|
|
|
|
// No location information to preserve.
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <class TyLoc> static inline
|
|
QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
|
|
TyLoc NewT = TLB.push<TyLoc>(T.getType());
|
|
NewT.setNameLoc(T.getNameLoc());
|
|
return T.getType();
|
|
}
|
|
|
|
// Ugly metaprogramming macros because I couldn't be bothered to make
|
|
// the equivalent template version work.
|
|
#define TransformPointerLikeType(TypeClass) do { \
|
|
QualType PointeeType \
|
|
= getDerived().TransformType(TLB, TL.getPointeeLoc()); \
|
|
if (PointeeType.isNull()) \
|
|
return QualType(); \
|
|
\
|
|
QualType Result = TL.getType(); \
|
|
if (getDerived().AlwaysRebuild() || \
|
|
PointeeType != TL.getPointeeLoc().getType()) { \
|
|
Result = getDerived().Rebuild##TypeClass(PointeeType, \
|
|
TL.getSigilLoc()); \
|
|
if (Result.isNull()) \
|
|
return QualType(); \
|
|
} \
|
|
\
|
|
TypeClass##Loc NewT = TLB.push<TypeClass##Loc>(Result); \
|
|
NewT.setSigilLoc(TL.getSigilLoc()); \
|
|
\
|
|
return Result; \
|
|
} while(0)
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
|
|
BuiltinTypeLoc T,
|
|
QualType ObjectType) {
|
|
BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
|
|
NewT.setBuiltinLoc(T.getBuiltinLoc());
|
|
if (T.needsExtraLocalData())
|
|
NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
|
|
return T.getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
|
|
ComplexTypeLoc T,
|
|
QualType ObjectType) {
|
|
// FIXME: recurse?
|
|
return TransformTypeSpecType(TLB, T);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
|
|
PointerTypeLoc TL,
|
|
QualType ObjectType) {
|
|
TransformPointerLikeType(PointerType);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
|
|
BlockPointerTypeLoc TL,
|
|
QualType ObjectType) {
|
|
TransformPointerLikeType(BlockPointerType);
|
|
}
|
|
|
|
/// Transforms a reference type. Note that somewhat paradoxically we
|
|
/// don't care whether the type itself is an l-value type or an r-value
|
|
/// type; we only care if the type was *written* as an l-value type
|
|
/// or an r-value type.
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
|
|
ReferenceTypeLoc TL,
|
|
QualType ObjectType) {
|
|
const ReferenceType *T = TL.getTypePtr();
|
|
|
|
// Note that this works with the pointee-as-written.
|
|
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
|
|
if (PointeeType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
PointeeType != T->getPointeeTypeAsWritten()) {
|
|
Result = getDerived().RebuildReferenceType(PointeeType,
|
|
T->isSpelledAsLValue(),
|
|
TL.getSigilLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// r-value references can be rebuilt as l-value references.
|
|
ReferenceTypeLoc NewTL;
|
|
if (isa<LValueReferenceType>(Result))
|
|
NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
|
|
else
|
|
NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
|
|
NewTL.setSigilLoc(TL.getSigilLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
|
|
LValueReferenceTypeLoc TL,
|
|
QualType ObjectType) {
|
|
return TransformReferenceType(TLB, TL, ObjectType);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
|
|
RValueReferenceTypeLoc TL,
|
|
QualType ObjectType) {
|
|
return TransformReferenceType(TLB, TL, ObjectType);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
|
|
MemberPointerTypeLoc TL,
|
|
QualType ObjectType) {
|
|
MemberPointerType *T = TL.getTypePtr();
|
|
|
|
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
|
|
if (PointeeType.isNull())
|
|
return QualType();
|
|
|
|
// TODO: preserve source information for this.
|
|
QualType ClassType
|
|
= getDerived().TransformType(QualType(T->getClass(), 0));
|
|
if (ClassType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
PointeeType != T->getPointeeType() ||
|
|
ClassType != QualType(T->getClass(), 0)) {
|
|
Result = getDerived().RebuildMemberPointerType(PointeeType, ClassType,
|
|
TL.getStarLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
|
|
NewTL.setSigilLoc(TL.getSigilLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
|
|
ConstantArrayTypeLoc TL,
|
|
QualType ObjectType) {
|
|
ConstantArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildConstantArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
T->getSize(),
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
ConstantArrayTypeLoc NewTL = TLB.push<ConstantArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
|
|
Expr *Size = TL.getSizeExpr();
|
|
if (Size) {
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
Size = getDerived().TransformExpr(Size).template takeAs<Expr>();
|
|
}
|
|
NewTL.setSizeExpr(Size);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformIncompleteArrayType(
|
|
TypeLocBuilder &TLB,
|
|
IncompleteArrayTypeLoc TL,
|
|
QualType ObjectType) {
|
|
IncompleteArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildIncompleteArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
NewTL.setSizeExpr(0);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
|
|
VariableArrayTypeLoc TL,
|
|
QualType ObjectType) {
|
|
VariableArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
// Array bounds are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
Sema::OwningExprResult SizeResult
|
|
= getDerived().TransformExpr(T->getSizeExpr());
|
|
if (SizeResult.isInvalid())
|
|
return QualType();
|
|
|
|
Expr *Size = static_cast<Expr*>(SizeResult.get());
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType() ||
|
|
Size != T->getSizeExpr()) {
|
|
Result = getDerived().RebuildVariableArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
move(SizeResult),
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else SizeResult.take();
|
|
|
|
VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
NewTL.setSizeExpr(Size);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
|
|
DependentSizedArrayTypeLoc TL,
|
|
QualType ObjectType) {
|
|
DependentSizedArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
// Array bounds are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
Sema::OwningExprResult SizeResult
|
|
= getDerived().TransformExpr(T->getSizeExpr());
|
|
if (SizeResult.isInvalid())
|
|
return QualType();
|
|
|
|
Expr *Size = static_cast<Expr*>(SizeResult.get());
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType() ||
|
|
Size != T->getSizeExpr()) {
|
|
Result = getDerived().RebuildDependentSizedArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
move(SizeResult),
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else SizeResult.take();
|
|
|
|
// We might have any sort of array type now, but fortunately they
|
|
// all have the same location layout.
|
|
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
NewTL.setSizeExpr(Size);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
|
|
TypeLocBuilder &TLB,
|
|
DependentSizedExtVectorTypeLoc TL,
|
|
QualType ObjectType) {
|
|
DependentSizedExtVectorType *T = TL.getTypePtr();
|
|
|
|
// FIXME: ext vector locs should be nested
|
|
QualType ElementType = getDerived().TransformType(T->getElementType());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
// Vector sizes are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
Sema::OwningExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
|
|
if (Size.isInvalid())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType() ||
|
|
Size.get() != T->getSizeExpr()) {
|
|
Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
|
|
move(Size),
|
|
T->getAttributeLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else Size.take();
|
|
|
|
// Result might be dependent or not.
|
|
if (isa<DependentSizedExtVectorType>(Result)) {
|
|
DependentSizedExtVectorTypeLoc NewTL
|
|
= TLB.push<DependentSizedExtVectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
} else {
|
|
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
|
|
VectorTypeLoc TL,
|
|
QualType ObjectType) {
|
|
VectorType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(T->getElementType());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
|
|
T->isAltiVec(), T->isPixel());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
|
|
ExtVectorTypeLoc TL,
|
|
QualType ObjectType) {
|
|
VectorType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(T->getElementType());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildExtVectorType(ElementType,
|
|
T->getNumElements(),
|
|
/*FIXME*/ SourceLocation());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
ParmVarDecl *
|
|
TreeTransform<Derived>::TransformFunctionTypeParam(ParmVarDecl *OldParm) {
|
|
TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
|
|
TypeSourceInfo *NewDI = getDerived().TransformType(OldDI);
|
|
if (!NewDI)
|
|
return 0;
|
|
|
|
if (NewDI == OldDI)
|
|
return OldParm;
|
|
else
|
|
return ParmVarDecl::Create(SemaRef.Context,
|
|
OldParm->getDeclContext(),
|
|
OldParm->getLocation(),
|
|
OldParm->getIdentifier(),
|
|
NewDI->getType(),
|
|
NewDI,
|
|
OldParm->getStorageClass(),
|
|
/* DefArg */ NULL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool TreeTransform<Derived>::
|
|
TransformFunctionTypeParams(FunctionProtoTypeLoc TL,
|
|
llvm::SmallVectorImpl<QualType> &PTypes,
|
|
llvm::SmallVectorImpl<ParmVarDecl*> &PVars) {
|
|
FunctionProtoType *T = TL.getTypePtr();
|
|
|
|
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) {
|
|
ParmVarDecl *OldParm = TL.getArg(i);
|
|
|
|
QualType NewType;
|
|
ParmVarDecl *NewParm;
|
|
|
|
if (OldParm) {
|
|
NewParm = getDerived().TransformFunctionTypeParam(OldParm);
|
|
if (!NewParm)
|
|
return true;
|
|
NewType = NewParm->getType();
|
|
|
|
// Deal with the possibility that we don't have a parameter
|
|
// declaration for this parameter.
|
|
} else {
|
|
NewParm = 0;
|
|
|
|
QualType OldType = T->getArgType(i);
|
|
NewType = getDerived().TransformType(OldType);
|
|
if (NewType.isNull())
|
|
return true;
|
|
}
|
|
|
|
PTypes.push_back(NewType);
|
|
PVars.push_back(NewParm);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
|
|
FunctionProtoTypeLoc TL,
|
|
QualType ObjectType) {
|
|
FunctionProtoType *T = TL.getTypePtr();
|
|
QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
|
|
if (ResultType.isNull())
|
|
return QualType();
|
|
|
|
// Transform the parameters.
|
|
llvm::SmallVector<QualType, 4> ParamTypes;
|
|
llvm::SmallVector<ParmVarDecl*, 4> ParamDecls;
|
|
if (getDerived().TransformFunctionTypeParams(TL, ParamTypes, ParamDecls))
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ResultType != T->getResultType() ||
|
|
!std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) {
|
|
Result = getDerived().RebuildFunctionProtoType(ResultType,
|
|
ParamTypes.data(),
|
|
ParamTypes.size(),
|
|
T->isVariadic(),
|
|
T->getTypeQuals());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i)
|
|
NewTL.setArg(i, ParamDecls[i]);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
|
|
TypeLocBuilder &TLB,
|
|
FunctionNoProtoTypeLoc TL,
|
|
QualType ObjectType) {
|
|
FunctionNoProtoType *T = TL.getTypePtr();
|
|
QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
|
|
if (ResultType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ResultType != T->getResultType())
|
|
Result = getDerived().RebuildFunctionNoProtoType(ResultType);
|
|
|
|
FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived> QualType
|
|
TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
|
|
UnresolvedUsingTypeLoc TL,
|
|
QualType ObjectType) {
|
|
UnresolvedUsingType *T = TL.getTypePtr();
|
|
Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
|
|
if (!D)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
|
|
Result = getDerived().RebuildUnresolvedUsingType(D);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// We might get an arbitrary type spec type back. We should at
|
|
// least always get a type spec type, though.
|
|
TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
|
|
TypedefTypeLoc TL,
|
|
QualType ObjectType) {
|
|
TypedefType *T = TL.getTypePtr();
|
|
TypedefDecl *Typedef
|
|
= cast_or_null<TypedefDecl>(getDerived().TransformDecl(TL.getNameLoc(),
|
|
T->getDecl()));
|
|
if (!Typedef)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Typedef != T->getDecl()) {
|
|
Result = getDerived().RebuildTypedefType(Typedef);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
|
|
TypeOfExprTypeLoc TL,
|
|
QualType ObjectType) {
|
|
// typeof expressions are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
Sema::OwningExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
|
|
if (E.isInvalid())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
E.get() != TL.getUnderlyingExpr()) {
|
|
Result = getDerived().RebuildTypeOfExprType(move(E));
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else E.take();
|
|
|
|
TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
|
|
NewTL.setTypeofLoc(TL.getTypeofLoc());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
|
|
TypeOfTypeLoc TL,
|
|
QualType ObjectType) {
|
|
TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
|
|
TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
|
|
if (!New_Under_TI)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
|
|
Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
|
|
NewTL.setTypeofLoc(TL.getTypeofLoc());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
NewTL.setUnderlyingTInfo(New_Under_TI);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
|
|
DecltypeTypeLoc TL,
|
|
QualType ObjectType) {
|
|
DecltypeType *T = TL.getTypePtr();
|
|
|
|
// decltype expressions are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
Sema::OwningExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
|
|
if (E.isInvalid())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
E.get() != T->getUnderlyingExpr()) {
|
|
Result = getDerived().RebuildDecltypeType(move(E));
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else E.take();
|
|
|
|
DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
|
|
RecordTypeLoc TL,
|
|
QualType ObjectType) {
|
|
RecordType *T = TL.getTypePtr();
|
|
RecordDecl *Record
|
|
= cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
|
|
T->getDecl()));
|
|
if (!Record)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Record != T->getDecl()) {
|
|
Result = getDerived().RebuildRecordType(Record);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
|
|
EnumTypeLoc TL,
|
|
QualType ObjectType) {
|
|
EnumType *T = TL.getTypePtr();
|
|
EnumDecl *Enum
|
|
= cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
|
|
T->getDecl()));
|
|
if (!Enum)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Enum != T->getDecl()) {
|
|
Result = getDerived().RebuildEnumType(Enum);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <typename Derived>
|
|
QualType TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
|
|
ElaboratedTypeLoc TL,
|
|
QualType ObjectType) {
|
|
ElaboratedType *T = TL.getTypePtr();
|
|
|
|
// FIXME: this should be a nested type.
|
|
QualType Underlying = getDerived().TransformType(T->getUnderlyingType());
|
|
if (Underlying.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Underlying != T->getUnderlyingType()) {
|
|
Result = getDerived().RebuildElaboratedType(Underlying, T->getTagKind());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformInjectedClassNameType(
|
|
TypeLocBuilder &TLB,
|
|
InjectedClassNameTypeLoc TL,
|
|
QualType ObjectType) {
|
|
Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
|
|
TL.getTypePtr()->getDecl());
|
|
if (!D) return QualType();
|
|
|
|
QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
|
|
TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
|
|
return T;
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
|
|
TypeLocBuilder &TLB,
|
|
TemplateTypeParmTypeLoc TL,
|
|
QualType ObjectType) {
|
|
return TransformTypeSpecType(TLB, TL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
|
|
TypeLocBuilder &TLB,
|
|
SubstTemplateTypeParmTypeLoc TL,
|
|
QualType ObjectType) {
|
|
return TransformTypeSpecType(TLB, TL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
|
|
const TemplateSpecializationType *TST,
|
|
QualType ObjectType) {
|
|
// FIXME: this entire method is a temporary workaround; callers
|
|
// should be rewritten to provide real type locs.
|
|
|
|
// Fake up a TemplateSpecializationTypeLoc.
|
|
TypeLocBuilder TLB;
|
|
TemplateSpecializationTypeLoc TL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(QualType(TST, 0));
|
|
|
|
SourceLocation BaseLoc = getDerived().getBaseLocation();
|
|
|
|
TL.setTemplateNameLoc(BaseLoc);
|
|
TL.setLAngleLoc(BaseLoc);
|
|
TL.setRAngleLoc(BaseLoc);
|
|
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) {
|
|
const TemplateArgument &TA = TST->getArg(i);
|
|
TemplateArgumentLoc TAL;
|
|
getDerived().InventTemplateArgumentLoc(TA, TAL);
|
|
TL.setArgLocInfo(i, TAL.getLocInfo());
|
|
}
|
|
|
|
TypeLocBuilder IgnoredTLB;
|
|
return TransformTemplateSpecializationType(IgnoredTLB, TL, ObjectType);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
|
|
TypeLocBuilder &TLB,
|
|
TemplateSpecializationTypeLoc TL,
|
|
QualType ObjectType) {
|
|
const TemplateSpecializationType *T = TL.getTypePtr();
|
|
|
|
TemplateName Template
|
|
= getDerived().TransformTemplateName(T->getTemplateName(), ObjectType);
|
|
if (Template.isNull())
|
|
return QualType();
|
|
|
|
TemplateArgumentListInfo NewTemplateArgs;
|
|
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
|
|
|
|
for (unsigned i = 0, e = T->getNumArgs(); i != e; ++i) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(TL.getArgLoc(i), Loc))
|
|
return QualType();
|
|
NewTemplateArgs.addArgument(Loc);
|
|
}
|
|
|
|
// FIXME: maybe don't rebuild if all the template arguments are the same.
|
|
|
|
QualType Result =
|
|
getDerived().RebuildTemplateSpecializationType(Template,
|
|
TL.getTemplateNameLoc(),
|
|
NewTemplateArgs);
|
|
|
|
if (!Result.isNull()) {
|
|
TemplateSpecializationTypeLoc NewTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
NewTL.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
|
|
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformQualifiedNameType(TypeLocBuilder &TLB,
|
|
QualifiedNameTypeLoc TL,
|
|
QualType ObjectType) {
|
|
QualifiedNameType *T = TL.getTypePtr();
|
|
NestedNameSpecifier *NNS
|
|
= getDerived().TransformNestedNameSpecifier(T->getQualifier(),
|
|
SourceRange(),
|
|
ObjectType);
|
|
if (!NNS)
|
|
return QualType();
|
|
|
|
QualType Named = getDerived().TransformType(T->getNamedType());
|
|
if (Named.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
NNS != T->getQualifier() ||
|
|
Named != T->getNamedType()) {
|
|
Result = getDerived().RebuildQualifiedNameType(NNS, Named);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
QualifiedNameTypeLoc NewTL = TLB.push<QualifiedNameTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypenameType(TypeLocBuilder &TLB,
|
|
TypenameTypeLoc TL,
|
|
QualType ObjectType) {
|
|
TypenameType *T = TL.getTypePtr();
|
|
|
|
/* FIXME: preserve source information better than this */
|
|
SourceRange SR(TL.getNameLoc());
|
|
|
|
NestedNameSpecifier *NNS
|
|
= getDerived().TransformNestedNameSpecifier(T->getQualifier(), SR,
|
|
ObjectType);
|
|
if (!NNS)
|
|
return QualType();
|
|
|
|
QualType Result;
|
|
|
|
if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
|
|
QualType NewTemplateId
|
|
= getDerived().TransformType(QualType(TemplateId, 0));
|
|
if (NewTemplateId.isNull())
|
|
return QualType();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
NNS == T->getQualifier() &&
|
|
NewTemplateId == QualType(TemplateId, 0))
|
|
return QualType(T, 0);
|
|
|
|
Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
|
|
} else {
|
|
Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), SR);
|
|
}
|
|
if (Result.isNull())
|
|
return QualType();
|
|
|
|
TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
|
|
ObjCInterfaceTypeLoc TL,
|
|
QualType ObjectType) {
|
|
assert(false && "TransformObjCInterfaceType unimplemented");
|
|
return QualType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
|
|
ObjCObjectPointerTypeLoc TL,
|
|
QualType ObjectType) {
|
|
assert(false && "TransformObjCObjectPointerType unimplemented");
|
|
return QualType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Statement transformation
|
|
//===----------------------------------------------------------------------===//
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
|
|
return getDerived().TransformCompoundStmt(S, false);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
|
|
bool IsStmtExpr) {
|
|
bool SubStmtChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteStmt> Statements(getSema());
|
|
for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
|
|
B != BEnd; ++B) {
|
|
OwningStmtResult Result = getDerived().TransformStmt(*B);
|
|
if (Result.isInvalid())
|
|
return getSema().StmtError();
|
|
|
|
SubStmtChanged = SubStmtChanged || Result.get() != *B;
|
|
Statements.push_back(Result.takeAs<Stmt>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
!SubStmtChanged)
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
|
|
move_arg(Statements),
|
|
S->getRBracLoc(),
|
|
IsStmtExpr);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
|
|
OwningExprResult LHS(SemaRef), RHS(SemaRef);
|
|
{
|
|
// The case value expressions are not potentially evaluated.
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
// Transform the left-hand case value.
|
|
LHS = getDerived().TransformExpr(S->getLHS());
|
|
if (LHS.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the right-hand case value (for the GNU case-range extension).
|
|
RHS = getDerived().TransformExpr(S->getRHS());
|
|
if (RHS.isInvalid())
|
|
return SemaRef.StmtError();
|
|
}
|
|
|
|
// Build the case statement.
|
|
// Case statements are always rebuilt so that they will attached to their
|
|
// transformed switch statement.
|
|
OwningStmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
|
|
move(LHS),
|
|
S->getEllipsisLoc(),
|
|
move(RHS),
|
|
S->getColonLoc());
|
|
if (Case.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the statement following the case
|
|
OwningStmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Attach the body to the case statement
|
|
return getDerived().RebuildCaseStmtBody(move(Case), move(SubStmt));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
|
|
// Transform the statement following the default case
|
|
OwningStmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Default statements are always rebuilt
|
|
return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
|
|
move(SubStmt));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
|
|
OwningStmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// FIXME: Pass the real colon location in.
|
|
SourceLocation ColonLoc = SemaRef.PP.getLocForEndOfToken(S->getIdentLoc());
|
|
return getDerived().RebuildLabelStmt(S->getIdentLoc(), S->getID(), ColonLoc,
|
|
move(SubStmt));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
|
|
// Transform the condition
|
|
OwningExprResult Cond(SemaRef);
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return SemaRef.StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return SemaRef.StmtError();
|
|
}
|
|
|
|
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond));
|
|
|
|
// Transform the "then" branch.
|
|
OwningStmtResult Then = getDerived().TransformStmt(S->getThen());
|
|
if (Then.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the "else" branch.
|
|
OwningStmtResult Else = getDerived().TransformStmt(S->getElse());
|
|
if (Else.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
FullCond->get() == S->getCond() &&
|
|
ConditionVar == S->getConditionVariable() &&
|
|
Then.get() == S->getThen() &&
|
|
Else.get() == S->getElse())
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
|
|
move(Then),
|
|
S->getElseLoc(), move(Else));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
|
|
// Transform the condition.
|
|
OwningExprResult Cond(SemaRef);
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return SemaRef.StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return SemaRef.StmtError();
|
|
}
|
|
|
|
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond));
|
|
|
|
// Rebuild the switch statement.
|
|
OwningStmtResult Switch = getDerived().RebuildSwitchStmtStart(FullCond,
|
|
ConditionVar);
|
|
if (Switch.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the body of the switch statement.
|
|
OwningStmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Complete the switch statement.
|
|
return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), move(Switch),
|
|
move(Body));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
|
|
// Transform the condition
|
|
OwningExprResult Cond(SemaRef);
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return SemaRef.StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return SemaRef.StmtError();
|
|
}
|
|
|
|
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond));
|
|
|
|
// Transform the body
|
|
OwningStmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
FullCond->get() == S->getCond() &&
|
|
ConditionVar == S->getConditionVariable() &&
|
|
Body.get() == S->getBody())
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond, ConditionVar,
|
|
move(Body));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
|
|
// Transform the condition
|
|
OwningExprResult Cond = getDerived().TransformExpr(S->getCond());
|
|
if (Cond.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the body
|
|
OwningStmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Cond.get() == S->getCond() &&
|
|
Body.get() == S->getBody())
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildDoStmt(S->getDoLoc(), move(Body), S->getWhileLoc(),
|
|
/*FIXME:*/S->getWhileLoc(), move(Cond),
|
|
S->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
|
|
// Transform the initialization statement
|
|
OwningStmtResult Init = getDerived().TransformStmt(S->getInit());
|
|
if (Init.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the condition
|
|
OwningExprResult Cond(SemaRef);
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return SemaRef.StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return SemaRef.StmtError();
|
|
}
|
|
|
|
// Transform the increment
|
|
OwningExprResult Inc = getDerived().TransformExpr(S->getInc());
|
|
if (Inc.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the body
|
|
OwningStmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Init.get() == S->getInit() &&
|
|
Cond.get() == S->getCond() &&
|
|
Inc.get() == S->getInc() &&
|
|
Body.get() == S->getBody())
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
|
|
move(Init), getSema().MakeFullExpr(Cond),
|
|
ConditionVar,
|
|
getSema().MakeFullExpr(Inc),
|
|
S->getRParenLoc(), move(Body));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
|
|
// Goto statements must always be rebuilt, to resolve the label.
|
|
return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
|
|
S->getLabel());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
|
|
OwningExprResult Target = getDerived().TransformExpr(S->getTarget());
|
|
if (Target.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Target.get() == S->getTarget())
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
|
|
move(Target));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
|
|
Sema::OwningExprResult Result = getDerived().TransformExpr(S->getRetValue());
|
|
if (Result.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// FIXME: We always rebuild the return statement because there is no way
|
|
// to tell whether the return type of the function has changed.
|
|
return getDerived().RebuildReturnStmt(S->getReturnLoc(), move(Result));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
|
|
bool DeclChanged = false;
|
|
llvm::SmallVector<Decl *, 4> Decls;
|
|
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
|
|
D != DEnd; ++D) {
|
|
Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(),
|
|
*D);
|
|
if (!Transformed)
|
|
return SemaRef.StmtError();
|
|
|
|
if (Transformed != *D)
|
|
DeclChanged = true;
|
|
|
|
Decls.push_back(Transformed);
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !DeclChanged)
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildDeclStmt(Decls.data(), Decls.size(),
|
|
S->getStartLoc(), S->getEndLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformSwitchCase(SwitchCase *S) {
|
|
assert(false && "SwitchCase is abstract and cannot be transformed");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformAsmStmt(AsmStmt *S) {
|
|
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Constraints(getSema());
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Exprs(getSema());
|
|
llvm::SmallVector<IdentifierInfo *, 4> Names;
|
|
|
|
OwningExprResult AsmString(SemaRef);
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Clobbers(getSema());
|
|
|
|
bool ExprsChanged = false;
|
|
|
|
// Go through the outputs.
|
|
for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
|
|
Names.push_back(S->getOutputIdentifier(I));
|
|
|
|
// No need to transform the constraint literal.
|
|
Constraints.push_back(S->getOutputConstraintLiteral(I)->Retain());
|
|
|
|
// Transform the output expr.
|
|
Expr *OutputExpr = S->getOutputExpr(I);
|
|
OwningExprResult Result = getDerived().TransformExpr(OutputExpr);
|
|
if (Result.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
ExprsChanged |= Result.get() != OutputExpr;
|
|
|
|
Exprs.push_back(Result.takeAs<Expr>());
|
|
}
|
|
|
|
// Go through the inputs.
|
|
for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
|
|
Names.push_back(S->getInputIdentifier(I));
|
|
|
|
// No need to transform the constraint literal.
|
|
Constraints.push_back(S->getInputConstraintLiteral(I)->Retain());
|
|
|
|
// Transform the input expr.
|
|
Expr *InputExpr = S->getInputExpr(I);
|
|
OwningExprResult Result = getDerived().TransformExpr(InputExpr);
|
|
if (Result.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
ExprsChanged |= Result.get() != InputExpr;
|
|
|
|
Exprs.push_back(Result.takeAs<Expr>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !ExprsChanged)
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
// Go through the clobbers.
|
|
for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
|
|
Clobbers.push_back(S->getClobber(I)->Retain());
|
|
|
|
// No need to transform the asm string literal.
|
|
AsmString = SemaRef.Owned(S->getAsmString());
|
|
|
|
return getDerived().RebuildAsmStmt(S->getAsmLoc(),
|
|
S->isSimple(),
|
|
S->isVolatile(),
|
|
S->getNumOutputs(),
|
|
S->getNumInputs(),
|
|
Names.data(),
|
|
move_arg(Constraints),
|
|
move_arg(Exprs),
|
|
move(AsmString),
|
|
move_arg(Clobbers),
|
|
S->getRParenLoc(),
|
|
S->isMSAsm());
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
|
|
// FIXME: Implement this
|
|
assert(false && "Cannot transform an Objective-C @try statement");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
|
|
// FIXME: Implement this
|
|
assert(false && "Cannot transform an Objective-C @catch statement");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
|
|
// FIXME: Implement this
|
|
assert(false && "Cannot transform an Objective-C @finally statement");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
|
|
// FIXME: Implement this
|
|
assert(false && "Cannot transform an Objective-C @throw statement");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
|
|
ObjCAtSynchronizedStmt *S) {
|
|
// FIXME: Implement this
|
|
assert(false && "Cannot transform an Objective-C @synchronized statement");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformObjCForCollectionStmt(
|
|
ObjCForCollectionStmt *S) {
|
|
// FIXME: Implement this
|
|
assert(false && "Cannot transform an Objective-C for-each statement");
|
|
return SemaRef.Owned(S->Retain());
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
|
|
// Transform the exception declaration, if any.
|
|
VarDecl *Var = 0;
|
|
if (S->getExceptionDecl()) {
|
|
VarDecl *ExceptionDecl = S->getExceptionDecl();
|
|
TemporaryBase Rebase(*this, ExceptionDecl->getLocation(),
|
|
ExceptionDecl->getDeclName());
|
|
|
|
QualType T = getDerived().TransformType(ExceptionDecl->getType());
|
|
if (T.isNull())
|
|
return SemaRef.StmtError();
|
|
|
|
Var = getDerived().RebuildExceptionDecl(ExceptionDecl,
|
|
T,
|
|
ExceptionDecl->getTypeSourceInfo(),
|
|
ExceptionDecl->getIdentifier(),
|
|
ExceptionDecl->getLocation(),
|
|
/*FIXME: Inaccurate*/
|
|
SourceRange(ExceptionDecl->getLocation()));
|
|
if (!Var || Var->isInvalidDecl()) {
|
|
if (Var)
|
|
Var->Destroy(SemaRef.Context);
|
|
return SemaRef.StmtError();
|
|
}
|
|
}
|
|
|
|
// Transform the actual exception handler.
|
|
OwningStmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
|
|
if (Handler.isInvalid()) {
|
|
if (Var)
|
|
Var->Destroy(SemaRef.Context);
|
|
return SemaRef.StmtError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
!Var &&
|
|
Handler.get() == S->getHandlerBlock())
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(),
|
|
Var,
|
|
move(Handler));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningStmtResult
|
|
TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
|
|
// Transform the try block itself.
|
|
OwningStmtResult TryBlock
|
|
= getDerived().TransformCompoundStmt(S->getTryBlock());
|
|
if (TryBlock.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
// Transform the handlers.
|
|
bool HandlerChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteStmt> Handlers(SemaRef);
|
|
for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
|
|
OwningStmtResult Handler
|
|
= getDerived().TransformCXXCatchStmt(S->getHandler(I));
|
|
if (Handler.isInvalid())
|
|
return SemaRef.StmtError();
|
|
|
|
HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
|
|
Handlers.push_back(Handler.takeAs<Stmt>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TryBlock.get() == S->getTryBlock() &&
|
|
!HandlerChanged)
|
|
return SemaRef.Owned(S->Retain());
|
|
|
|
return getDerived().RebuildCXXTryStmt(S->getTryLoc(), move(TryBlock),
|
|
move_arg(Handlers));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Expression transformation
|
|
//===----------------------------------------------------------------------===//
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (E->getQualifier()) {
|
|
Qualifier = getDerived().TransformNestedNameSpecifier(E->getQualifier(),
|
|
E->getQualifierRange());
|
|
if (!Qualifier)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
ValueDecl *ND
|
|
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
|
|
E->getDecl()));
|
|
if (!ND)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Qualifier == E->getQualifier() &&
|
|
ND == E->getDecl() &&
|
|
!E->hasExplicitTemplateArgumentList()) {
|
|
|
|
// Mark it referenced in the new context regardless.
|
|
// FIXME: this is a bit instantiation-specific.
|
|
SemaRef.MarkDeclarationReferenced(E->getLocation(), ND);
|
|
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs, *TemplateArgs = 0;
|
|
if (E->hasExplicitTemplateArgumentList()) {
|
|
TemplateArgs = &TransArgs;
|
|
TransArgs.setLAngleLoc(E->getLAngleLoc());
|
|
TransArgs.setRAngleLoc(E->getRAngleLoc());
|
|
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
|
|
return SemaRef.ExprError();
|
|
TransArgs.addArgument(Loc);
|
|
}
|
|
}
|
|
|
|
return getDerived().RebuildDeclRefExpr(Qualifier, E->getQualifierRange(),
|
|
ND, E->getLocation(), TemplateArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
|
|
OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildParenExpr(move(SubExpr), E->getLParen(),
|
|
E->getRParen());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
|
|
OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
|
|
E->getOpcode(),
|
|
move(SubExpr));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
|
|
if (E->isArgumentType()) {
|
|
TypeSourceInfo *OldT = E->getArgumentTypeInfo();
|
|
|
|
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && OldT == NewT)
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildSizeOfAlignOf(NewT, E->getOperatorLoc(),
|
|
E->isSizeOf(),
|
|
E->getSourceRange());
|
|
}
|
|
|
|
Sema::OwningExprResult SubExpr(SemaRef);
|
|
{
|
|
// C++0x [expr.sizeof]p1:
|
|
// The operand is either an expression, which is an unevaluated operand
|
|
// [...]
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated);
|
|
|
|
SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
return getDerived().RebuildSizeOfAlignOf(move(SubExpr), E->getOperatorLoc(),
|
|
E->isSizeOf(),
|
|
E->getSourceRange());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
OwningExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildArraySubscriptExpr(move(LHS),
|
|
/*FIXME:*/E->getLHS()->getLocStart(),
|
|
move(RHS),
|
|
E->getRBracketLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
|
|
// Transform the callee.
|
|
OwningExprResult Callee = getDerived().TransformExpr(E->getCallee());
|
|
if (Callee.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// Transform arguments.
|
|
bool ArgChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef);
|
|
llvm::SmallVector<SourceLocation, 4> FakeCommaLocs;
|
|
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
|
|
OwningExprResult Arg = getDerived().TransformExpr(E->getArg(I));
|
|
if (Arg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// FIXME: Wrong source location information for the ','.
|
|
FakeCommaLocs.push_back(
|
|
SemaRef.PP.getLocForEndOfToken(E->getArg(I)->getSourceRange().getEnd()));
|
|
|
|
ArgChanged = ArgChanged || Arg.get() != E->getArg(I);
|
|
Args.push_back(Arg.takeAs<Expr>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Callee.get() == E->getCallee() &&
|
|
!ArgChanged)
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// FIXME: Wrong source location information for the '('.
|
|
SourceLocation FakeLParenLoc
|
|
= ((Expr *)Callee.get())->getSourceRange().getBegin();
|
|
return getDerived().RebuildCallExpr(move(Callee), FakeLParenLoc,
|
|
move_arg(Args),
|
|
FakeCommaLocs.data(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
|
|
OwningExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (E->hasQualifier()) {
|
|
Qualifier
|
|
= getDerived().TransformNestedNameSpecifier(E->getQualifier(),
|
|
E->getQualifierRange());
|
|
if (Qualifier == 0)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
ValueDecl *Member
|
|
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
|
|
E->getMemberDecl()));
|
|
if (!Member)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase() &&
|
|
Qualifier == E->getQualifier() &&
|
|
Member == E->getMemberDecl() &&
|
|
!E->hasExplicitTemplateArgumentList()) {
|
|
|
|
// Mark it referenced in the new context regardless.
|
|
// FIXME: this is a bit instantiation-specific.
|
|
SemaRef.MarkDeclarationReferenced(E->getMemberLoc(), Member);
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs;
|
|
if (E->hasExplicitTemplateArgumentList()) {
|
|
TransArgs.setLAngleLoc(E->getLAngleLoc());
|
|
TransArgs.setRAngleLoc(E->getRAngleLoc());
|
|
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
|
|
return SemaRef.ExprError();
|
|
TransArgs.addArgument(Loc);
|
|
}
|
|
}
|
|
|
|
// FIXME: Bogus source location for the operator
|
|
SourceLocation FakeOperatorLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
|
|
|
|
// FIXME: to do this check properly, we will need to preserve the
|
|
// first-qualifier-in-scope here, just in case we had a dependent
|
|
// base (and therefore couldn't do the check) and a
|
|
// nested-name-qualifier (and therefore could do the lookup).
|
|
NamedDecl *FirstQualifierInScope = 0;
|
|
|
|
return getDerived().RebuildMemberExpr(move(Base), FakeOperatorLoc,
|
|
E->isArrow(),
|
|
Qualifier,
|
|
E->getQualifierRange(),
|
|
E->getMemberLoc(),
|
|
Member,
|
|
(E->hasExplicitTemplateArgumentList()
|
|
? &TransArgs : 0),
|
|
FirstQualifierInScope);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
|
|
OwningExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
|
|
move(LHS), move(RHS));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCompoundAssignOperator(
|
|
CompoundAssignOperator *E) {
|
|
return getDerived().TransformBinaryOperator(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
|
|
OwningExprResult Cond = getDerived().TransformExpr(E->getCond());
|
|
if (Cond.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Cond.get() == E->getCond() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildConditionalOperator(move(Cond),
|
|
E->getQuestionLoc(),
|
|
move(LHS),
|
|
E->getColonLoc(),
|
|
move(RHS));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
|
|
// Implicit casts are eliminated during transformation, since they
|
|
// will be recomputed by semantic analysis after transformation.
|
|
return getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
|
|
TypeSourceInfo *OldT;
|
|
TypeSourceInfo *NewT;
|
|
{
|
|
// FIXME: Source location isn't quite accurate.
|
|
SourceLocation TypeStartLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getLParenLoc());
|
|
TemporaryBase Rebase(*this, TypeStartLoc, DeclarationName());
|
|
|
|
OldT = E->getTypeInfoAsWritten();
|
|
NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
OwningExprResult SubExpr
|
|
= getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
OldT == NewT &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
|
|
NewT,
|
|
E->getRParenLoc(),
|
|
move(SubExpr));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
TypeSourceInfo *OldT = E->getTypeSourceInfo();
|
|
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult Init = getDerived().TransformExpr(E->getInitializer());
|
|
if (Init.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
OldT == NewT &&
|
|
Init.get() == E->getInitializer())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// Note: the expression type doesn't necessarily match the
|
|
// type-as-written, but that's okay, because it should always be
|
|
// derivable from the initializer.
|
|
|
|
return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
|
|
/*FIXME:*/E->getInitializer()->getLocEnd(),
|
|
move(Init));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
|
|
OwningExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// FIXME: Bad source location
|
|
SourceLocation FakeOperatorLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd());
|
|
return getDerived().RebuildExtVectorElementExpr(move(Base), FakeOperatorLoc,
|
|
E->getAccessorLoc(),
|
|
E->getAccessor());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
|
|
bool InitChanged = false;
|
|
|
|
ASTOwningVector<&ActionBase::DeleteExpr, 4> Inits(SemaRef);
|
|
for (unsigned I = 0, N = E->getNumInits(); I != N; ++I) {
|
|
OwningExprResult Init = getDerived().TransformExpr(E->getInit(I));
|
|
if (Init.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
InitChanged = InitChanged || Init.get() != E->getInit(I);
|
|
Inits.push_back(Init.takeAs<Expr>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !InitChanged)
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildInitList(E->getLBraceLoc(), move_arg(Inits),
|
|
E->getRBraceLoc(), E->getType());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
|
|
Designation Desig;
|
|
|
|
// transform the initializer value
|
|
OwningExprResult Init = getDerived().TransformExpr(E->getInit());
|
|
if (Init.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// transform the designators.
|
|
ASTOwningVector<&ActionBase::DeleteExpr, 4> ArrayExprs(SemaRef);
|
|
bool ExprChanged = false;
|
|
for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
|
|
DEnd = E->designators_end();
|
|
D != DEnd; ++D) {
|
|
if (D->isFieldDesignator()) {
|
|
Desig.AddDesignator(Designator::getField(D->getFieldName(),
|
|
D->getDotLoc(),
|
|
D->getFieldLoc()));
|
|
continue;
|
|
}
|
|
|
|
if (D->isArrayDesignator()) {
|
|
OwningExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
|
|
if (Index.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
Desig.AddDesignator(Designator::getArray(Index.get(),
|
|
D->getLBracketLoc()));
|
|
|
|
ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
|
|
ArrayExprs.push_back(Index.release());
|
|
continue;
|
|
}
|
|
|
|
assert(D->isArrayRangeDesignator() && "New kind of designator?");
|
|
OwningExprResult Start
|
|
= getDerived().TransformExpr(E->getArrayRangeStart(*D));
|
|
if (Start.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
|
|
if (End.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
Desig.AddDesignator(Designator::getArrayRange(Start.get(),
|
|
End.get(),
|
|
D->getLBracketLoc(),
|
|
D->getEllipsisLoc()));
|
|
|
|
ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
|
|
End.get() != E->getArrayRangeEnd(*D);
|
|
|
|
ArrayExprs.push_back(Start.release());
|
|
ArrayExprs.push_back(End.release());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Init.get() == E->getInit() &&
|
|
!ExprChanged)
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildDesignatedInitExpr(Desig, move_arg(ArrayExprs),
|
|
E->getEqualOrColonLoc(),
|
|
E->usesGNUSyntax(), move(Init));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformImplicitValueInitExpr(
|
|
ImplicitValueInitExpr *E) {
|
|
TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
|
|
|
|
// FIXME: Will we ever have proper type location here? Will we actually
|
|
// need to transform the type?
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildImplicitValueInitExpr(T);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
|
|
// FIXME: Do we want the type as written?
|
|
QualType T;
|
|
|
|
{
|
|
// FIXME: Source location isn't quite accurate.
|
|
TemporaryBase Rebase(*this, E->getBuiltinLoc(), DeclarationName());
|
|
T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), move(SubExpr),
|
|
T, E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
|
|
bool ArgumentChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr, 4> Inits(SemaRef);
|
|
for (unsigned I = 0, N = E->getNumExprs(); I != N; ++I) {
|
|
OwningExprResult Init = getDerived().TransformExpr(E->getExpr(I));
|
|
if (Init.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || Init.get() != E->getExpr(I);
|
|
Inits.push_back(Init.takeAs<Expr>());
|
|
}
|
|
|
|
return getDerived().RebuildParenListExpr(E->getLParenLoc(),
|
|
move_arg(Inits),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
/// \brief Transform an address-of-label expression.
|
|
///
|
|
/// By default, the transformation of an address-of-label expression always
|
|
/// rebuilds the expression, so that the label identifier can be resolved to
|
|
/// the corresponding label statement by semantic analysis.
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
|
|
return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
|
|
E->getLabel());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
|
|
OwningStmtResult SubStmt
|
|
= getDerived().TransformCompoundStmt(E->getSubStmt(), true);
|
|
if (SubStmt.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubStmt.get() == E->getSubStmt())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildStmtExpr(E->getLParenLoc(),
|
|
move(SubStmt),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformTypesCompatibleExpr(TypesCompatibleExpr *E) {
|
|
QualType T1, T2;
|
|
{
|
|
// FIXME: Source location isn't quite accurate.
|
|
TemporaryBase Rebase(*this, E->getBuiltinLoc(), DeclarationName());
|
|
|
|
T1 = getDerived().TransformType(E->getArgType1());
|
|
if (T1.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
T2 = getDerived().TransformType(E->getArgType2());
|
|
if (T2.isNull())
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T1 == E->getArgType1() &&
|
|
T2 == E->getArgType2())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildTypesCompatibleExpr(E->getBuiltinLoc(),
|
|
T1, T2, E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
|
|
OwningExprResult Cond = getDerived().TransformExpr(E->getCond());
|
|
if (Cond.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Cond.get() == E->getCond() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
|
|
move(Cond), move(LHS), move(RHS),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
|
|
switch (E->getOperator()) {
|
|
case OO_New:
|
|
case OO_Delete:
|
|
case OO_Array_New:
|
|
case OO_Array_Delete:
|
|
llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
|
|
return SemaRef.ExprError();
|
|
|
|
case OO_Call: {
|
|
// This is a call to an object's operator().
|
|
assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
|
|
|
|
// Transform the object itself.
|
|
OwningExprResult Object = getDerived().TransformExpr(E->getArg(0));
|
|
if (Object.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// FIXME: Poor location information
|
|
SourceLocation FakeLParenLoc
|
|
= SemaRef.PP.getLocForEndOfToken(
|
|
static_cast<Expr *>(Object.get())->getLocEnd());
|
|
|
|
// Transform the call arguments.
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef);
|
|
llvm::SmallVector<SourceLocation, 4> FakeCommaLocs;
|
|
for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
|
|
if (getDerived().DropCallArgument(E->getArg(I)))
|
|
break;
|
|
|
|
OwningExprResult Arg = getDerived().TransformExpr(E->getArg(I));
|
|
if (Arg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// FIXME: Poor source location information.
|
|
SourceLocation FakeCommaLoc
|
|
= SemaRef.PP.getLocForEndOfToken(
|
|
static_cast<Expr *>(Arg.get())->getLocEnd());
|
|
FakeCommaLocs.push_back(FakeCommaLoc);
|
|
Args.push_back(Arg.release());
|
|
}
|
|
|
|
return getDerived().RebuildCallExpr(move(Object), FakeLParenLoc,
|
|
move_arg(Args),
|
|
FakeCommaLocs.data(),
|
|
E->getLocEnd());
|
|
}
|
|
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
case OO_##Name:
|
|
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
case OO_Subscript:
|
|
// Handled below.
|
|
break;
|
|
|
|
case OO_Conditional:
|
|
llvm_unreachable("conditional operator is not actually overloadable");
|
|
return SemaRef.ExprError();
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("not an overloaded operator?");
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
OwningExprResult Callee = getDerived().TransformExpr(E->getCallee());
|
|
if (Callee.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult First = getDerived().TransformExpr(E->getArg(0));
|
|
if (First.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
OwningExprResult Second(SemaRef);
|
|
if (E->getNumArgs() == 2) {
|
|
Second = getDerived().TransformExpr(E->getArg(1));
|
|
if (Second.isInvalid())
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Callee.get() == E->getCallee() &&
|
|
First.get() == E->getArg(0) &&
|
|
(E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
|
|
E->getOperatorLoc(),
|
|
move(Callee),
|
|
move(First),
|
|
move(Second));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
|
|
return getDerived().TransformCallExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
|
|
TypeSourceInfo *OldT;
|
|
TypeSourceInfo *NewT;
|
|
{
|
|
// FIXME: Source location isn't quite accurate.
|
|
SourceLocation TypeStartLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getOperatorLoc());
|
|
TemporaryBase Rebase(*this, TypeStartLoc, DeclarationName());
|
|
|
|
OldT = E->getTypeInfoAsWritten();
|
|
NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
OwningExprResult SubExpr
|
|
= getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
OldT == NewT &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// FIXME: Poor source location information here.
|
|
SourceLocation FakeLAngleLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getOperatorLoc());
|
|
SourceLocation FakeRAngleLoc = E->getSubExpr()->getSourceRange().getBegin();
|
|
SourceLocation FakeRParenLoc
|
|
= SemaRef.PP.getLocForEndOfToken(
|
|
E->getSubExpr()->getSourceRange().getEnd());
|
|
return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
|
|
E->getStmtClass(),
|
|
FakeLAngleLoc,
|
|
NewT,
|
|
FakeRAngleLoc,
|
|
FakeRAngleLoc,
|
|
move(SubExpr),
|
|
FakeRParenLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
|
|
CXXReinterpretCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
|
|
CXXFunctionalCastExpr *E) {
|
|
TypeSourceInfo *OldT;
|
|
TypeSourceInfo *NewT;
|
|
{
|
|
TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName());
|
|
|
|
OldT = E->getTypeInfoAsWritten();
|
|
NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
OwningExprResult SubExpr
|
|
= getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
OldT == NewT &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// FIXME: The end of the type's source range is wrong
|
|
return getDerived().RebuildCXXFunctionalCastExpr(
|
|
/*FIXME:*/SourceRange(E->getTypeBeginLoc()),
|
|
NewT,
|
|
/*FIXME:*/E->getSubExpr()->getLocStart(),
|
|
move(SubExpr),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
|
|
if (E->isTypeOperand()) {
|
|
TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
|
|
|
|
QualType T = getDerived().TransformType(E->getTypeOperand());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getTypeOperand())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXTypeidExpr(E->getLocStart(),
|
|
/*FIXME:*/E->getLocStart(),
|
|
T,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
// We don't know whether the expression is potentially evaluated until
|
|
// after we perform semantic analysis, so the expression is potentially
|
|
// potentially evaluated.
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef,
|
|
Action::PotentiallyPotentiallyEvaluated);
|
|
|
|
OwningExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubExpr.get() == E->getExprOperand())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXTypeidExpr(E->getLocStart(),
|
|
/*FIXME:*/E->getLocStart(),
|
|
move(SubExpr),
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
|
|
CXXNullPtrLiteralExpr *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
|
|
TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
|
|
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
|
|
OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), move(SubExpr));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
|
|
ParmVarDecl *Param
|
|
= cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
|
|
E->getParam()));
|
|
if (!Param)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Param == E->getParam())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
|
|
TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName());
|
|
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXZeroInitValueExpr(E->getTypeBeginLoc(),
|
|
/*FIXME:*/E->getTypeBeginLoc(),
|
|
T,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
|
|
// Transform the type that we're allocating
|
|
TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
|
|
QualType AllocType = getDerived().TransformType(E->getAllocatedType());
|
|
if (AllocType.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
// Transform the size of the array we're allocating (if any).
|
|
OwningExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
|
|
if (ArraySize.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// Transform the placement arguments (if any).
|
|
bool ArgumentChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr> PlacementArgs(SemaRef);
|
|
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
|
|
OwningExprResult Arg = getDerived().TransformExpr(E->getPlacementArg(I));
|
|
if (Arg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || Arg.get() != E->getPlacementArg(I);
|
|
PlacementArgs.push_back(Arg.take());
|
|
}
|
|
|
|
// transform the constructor arguments (if any).
|
|
ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(SemaRef);
|
|
for (unsigned I = 0, N = E->getNumConstructorArgs(); I != N; ++I) {
|
|
OwningExprResult Arg = getDerived().TransformExpr(E->getConstructorArg(I));
|
|
if (Arg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || Arg.get() != E->getConstructorArg(I);
|
|
ConstructorArgs.push_back(Arg.take());
|
|
}
|
|
|
|
// Transform constructor, new operator, and delete operator.
|
|
CXXConstructorDecl *Constructor = 0;
|
|
if (E->getConstructor()) {
|
|
Constructor = cast_or_null<CXXConstructorDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getConstructor()));
|
|
if (!Constructor)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
FunctionDecl *OperatorNew = 0;
|
|
if (E->getOperatorNew()) {
|
|
OperatorNew = cast_or_null<FunctionDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getOperatorNew()));
|
|
if (!OperatorNew)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
FunctionDecl *OperatorDelete = 0;
|
|
if (E->getOperatorDelete()) {
|
|
OperatorDelete = cast_or_null<FunctionDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getOperatorDelete()));
|
|
if (!OperatorDelete)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
AllocType == E->getAllocatedType() &&
|
|
ArraySize.get() == E->getArraySize() &&
|
|
Constructor == E->getConstructor() &&
|
|
OperatorNew == E->getOperatorNew() &&
|
|
OperatorDelete == E->getOperatorDelete() &&
|
|
!ArgumentChanged) {
|
|
// Mark any declarations we need as referenced.
|
|
// FIXME: instantiation-specific.
|
|
if (Constructor)
|
|
SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
|
|
if (OperatorNew)
|
|
SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorNew);
|
|
if (OperatorDelete)
|
|
SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorDelete);
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
if (!ArraySize.get()) {
|
|
// If no array size was specified, but the new expression was
|
|
// instantiated with an array type (e.g., "new T" where T is
|
|
// instantiated with "int[4]"), extract the outer bound from the
|
|
// array type as our array size. We do this with constant and
|
|
// dependently-sized array types.
|
|
const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
|
|
if (!ArrayT) {
|
|
// Do nothing
|
|
} else if (const ConstantArrayType *ConsArrayT
|
|
= dyn_cast<ConstantArrayType>(ArrayT)) {
|
|
ArraySize
|
|
= SemaRef.Owned(new (SemaRef.Context) IntegerLiteral(
|
|
ConsArrayT->getSize(),
|
|
SemaRef.Context.getSizeType(),
|
|
/*FIXME:*/E->getLocStart()));
|
|
AllocType = ConsArrayT->getElementType();
|
|
} else if (const DependentSizedArrayType *DepArrayT
|
|
= dyn_cast<DependentSizedArrayType>(ArrayT)) {
|
|
if (DepArrayT->getSizeExpr()) {
|
|
ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr()->Retain());
|
|
AllocType = DepArrayT->getElementType();
|
|
}
|
|
}
|
|
}
|
|
return getDerived().RebuildCXXNewExpr(E->getLocStart(),
|
|
E->isGlobalNew(),
|
|
/*FIXME:*/E->getLocStart(),
|
|
move_arg(PlacementArgs),
|
|
/*FIXME:*/E->getLocStart(),
|
|
E->isParenTypeId(),
|
|
AllocType,
|
|
/*FIXME:*/E->getLocStart(),
|
|
/*FIXME:*/SourceRange(),
|
|
move(ArraySize),
|
|
/*FIXME:*/E->getLocStart(),
|
|
move_arg(ConstructorArgs),
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
|
|
OwningExprResult Operand = getDerived().TransformExpr(E->getArgument());
|
|
if (Operand.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// Transform the delete operator, if known.
|
|
FunctionDecl *OperatorDelete = 0;
|
|
if (E->getOperatorDelete()) {
|
|
OperatorDelete = cast_or_null<FunctionDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getOperatorDelete()));
|
|
if (!OperatorDelete)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Operand.get() == E->getArgument() &&
|
|
OperatorDelete == E->getOperatorDelete()) {
|
|
// Mark any declarations we need as referenced.
|
|
// FIXME: instantiation-specific.
|
|
if (OperatorDelete)
|
|
SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorDelete);
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
|
|
E->isGlobalDelete(),
|
|
E->isArrayForm(),
|
|
move(Operand));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
|
|
CXXPseudoDestructorExpr *E) {
|
|
OwningExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
Sema::TypeTy *ObjectTypePtr = 0;
|
|
bool MayBePseudoDestructor = false;
|
|
Base = SemaRef.ActOnStartCXXMemberReference(0, move(Base),
|
|
E->getOperatorLoc(),
|
|
E->isArrow()? tok::arrow : tok::period,
|
|
ObjectTypePtr,
|
|
MayBePseudoDestructor);
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
|
|
NestedNameSpecifier *Qualifier
|
|
= getDerived().TransformNestedNameSpecifier(E->getQualifier(),
|
|
E->getQualifierRange(),
|
|
ObjectType);
|
|
if (E->getQualifier() && !Qualifier)
|
|
return SemaRef.ExprError();
|
|
|
|
PseudoDestructorTypeStorage Destroyed;
|
|
if (E->getDestroyedTypeInfo()) {
|
|
TypeSourceInfo *DestroyedTypeInfo
|
|
= getDerived().TransformType(E->getDestroyedTypeInfo(), ObjectType);
|
|
if (!DestroyedTypeInfo)
|
|
return SemaRef.ExprError();
|
|
Destroyed = DestroyedTypeInfo;
|
|
} else if (ObjectType->isDependentType()) {
|
|
// We aren't likely to be able to resolve the identifier down to a type
|
|
// now anyway, so just retain the identifier.
|
|
Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
|
|
E->getDestroyedTypeLoc());
|
|
} else {
|
|
// Look for a destructor known with the given name.
|
|
CXXScopeSpec SS;
|
|
if (Qualifier) {
|
|
SS.setScopeRep(Qualifier);
|
|
SS.setRange(E->getQualifierRange());
|
|
}
|
|
|
|
Sema::TypeTy *T = SemaRef.getDestructorName(E->getTildeLoc(),
|
|
*E->getDestroyedTypeIdentifier(),
|
|
E->getDestroyedTypeLoc(),
|
|
/*Scope=*/0,
|
|
SS, ObjectTypePtr,
|
|
false);
|
|
if (!T)
|
|
return SemaRef.ExprError();
|
|
|
|
Destroyed
|
|
= SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
|
|
E->getDestroyedTypeLoc());
|
|
}
|
|
|
|
TypeSourceInfo *ScopeTypeInfo = 0;
|
|
if (E->getScopeTypeInfo()) {
|
|
ScopeTypeInfo = getDerived().TransformType(E->getScopeTypeInfo(),
|
|
ObjectType);
|
|
if (!ScopeTypeInfo)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
return getDerived().RebuildCXXPseudoDestructorExpr(move(Base),
|
|
E->getOperatorLoc(),
|
|
E->isArrow(),
|
|
Qualifier,
|
|
E->getQualifierRange(),
|
|
ScopeTypeInfo,
|
|
E->getColonColonLoc(),
|
|
E->getTildeLoc(),
|
|
Destroyed);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformUnresolvedLookupExpr(
|
|
UnresolvedLookupExpr *Old) {
|
|
TemporaryBase Rebase(*this, Old->getNameLoc(), DeclarationName());
|
|
|
|
LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
|
|
// Transform all the decls.
|
|
for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
|
|
E = Old->decls_end(); I != E; ++I) {
|
|
NamedDecl *InstD = static_cast<NamedDecl*>(
|
|
getDerived().TransformDecl(Old->getNameLoc(),
|
|
*I));
|
|
if (!InstD) {
|
|
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
|
|
// This can happen because of dependent hiding.
|
|
if (isa<UsingShadowDecl>(*I))
|
|
continue;
|
|
else
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
// Expand using declarations.
|
|
if (isa<UsingDecl>(InstD)) {
|
|
UsingDecl *UD = cast<UsingDecl>(InstD);
|
|
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
|
|
E = UD->shadow_end(); I != E; ++I)
|
|
R.addDecl(*I);
|
|
continue;
|
|
}
|
|
|
|
R.addDecl(InstD);
|
|
}
|
|
|
|
// Resolve a kind, but don't do any further analysis. If it's
|
|
// ambiguous, the callee needs to deal with it.
|
|
R.resolveKind();
|
|
|
|
// Rebuild the nested-name qualifier, if present.
|
|
CXXScopeSpec SS;
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (Old->getQualifier()) {
|
|
Qualifier = getDerived().TransformNestedNameSpecifier(Old->getQualifier(),
|
|
Old->getQualifierRange());
|
|
if (!Qualifier)
|
|
return SemaRef.ExprError();
|
|
|
|
SS.setScopeRep(Qualifier);
|
|
SS.setRange(Old->getQualifierRange());
|
|
}
|
|
|
|
// If we have no template arguments, it's a normal declaration name.
|
|
if (!Old->hasExplicitTemplateArgs())
|
|
return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
|
|
|
|
// If we have template arguments, rebuild them, then rebuild the
|
|
// templateid expression.
|
|
TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
|
|
for (unsigned I = 0, N = Old->getNumTemplateArgs(); I != N; ++I) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(Old->getTemplateArgs()[I], Loc))
|
|
return SemaRef.ExprError();
|
|
TransArgs.addArgument(Loc);
|
|
}
|
|
|
|
return getDerived().RebuildTemplateIdExpr(SS, R, Old->requiresADL(),
|
|
TransArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
|
|
TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
|
|
|
|
QualType T = getDerived().TransformType(E->getQueriedType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getQueriedType())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// FIXME: Bad location information
|
|
SourceLocation FakeLParenLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getLocStart());
|
|
|
|
return getDerived().RebuildUnaryTypeTrait(E->getTrait(),
|
|
E->getLocStart(),
|
|
/*FIXME:*/FakeLParenLoc,
|
|
T,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
|
|
DependentScopeDeclRefExpr *E) {
|
|
NestedNameSpecifier *NNS
|
|
= getDerived().TransformNestedNameSpecifier(E->getQualifier(),
|
|
E->getQualifierRange());
|
|
if (!NNS)
|
|
return SemaRef.ExprError();
|
|
|
|
DeclarationName Name
|
|
= getDerived().TransformDeclarationName(E->getDeclName(), E->getLocation());
|
|
if (!Name)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!E->hasExplicitTemplateArgs()) {
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
NNS == E->getQualifier() &&
|
|
Name == E->getDeclName())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildDependentScopeDeclRefExpr(NNS,
|
|
E->getQualifierRange(),
|
|
Name, E->getLocation(),
|
|
/*TemplateArgs*/ 0);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
|
|
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
|
|
return SemaRef.ExprError();
|
|
TransArgs.addArgument(Loc);
|
|
}
|
|
|
|
return getDerived().RebuildDependentScopeDeclRefExpr(NNS,
|
|
E->getQualifierRange(),
|
|
Name, E->getLocation(),
|
|
&TransArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
|
|
// CXXConstructExprs are always implicit, so when we have a
|
|
// 1-argument construction we just transform that argument.
|
|
if (E->getNumArgs() == 1 ||
|
|
(E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1))))
|
|
return getDerived().TransformExpr(E->getArg(0));
|
|
|
|
TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
|
|
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= cast_or_null<CXXConstructorDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getConstructor()));
|
|
if (!Constructor)
|
|
return SemaRef.ExprError();
|
|
|
|
bool ArgumentChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef);
|
|
for (CXXConstructExpr::arg_iterator Arg = E->arg_begin(),
|
|
ArgEnd = E->arg_end();
|
|
Arg != ArgEnd; ++Arg) {
|
|
if (getDerived().DropCallArgument(*Arg)) {
|
|
ArgumentChanged = true;
|
|
break;
|
|
}
|
|
|
|
OwningExprResult TransArg = getDerived().TransformExpr(*Arg);
|
|
if (TransArg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg;
|
|
Args.push_back(TransArg.takeAs<Expr>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType() &&
|
|
Constructor == E->getConstructor() &&
|
|
!ArgumentChanged) {
|
|
// Mark the constructor as referenced.
|
|
// FIXME: Instantiation-specific
|
|
SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
|
|
Constructor, E->isElidable(),
|
|
move_arg(Args));
|
|
}
|
|
|
|
/// \brief Transform a C++ temporary-binding expression.
|
|
///
|
|
/// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
|
|
/// transform the subexpression and return that.
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
/// \brief Transform a C++ reference-binding expression.
|
|
///
|
|
/// Since CXXBindReferenceExpr nodes are implicitly generated, we just
|
|
/// transform the subexpression and return that.
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXBindReferenceExpr(CXXBindReferenceExpr *E) {
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
/// \brief Transform a C++ expression that contains temporaries that should
|
|
/// be destroyed after the expression is evaluated.
|
|
///
|
|
/// Since CXXExprWithTemporaries nodes are implicitly generated, we
|
|
/// just transform the subexpression and return that.
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXExprWithTemporaries(
|
|
CXXExprWithTemporaries *E) {
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
|
|
CXXTemporaryObjectExpr *E) {
|
|
TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName());
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= cast_or_null<CXXConstructorDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getConstructor()));
|
|
if (!Constructor)
|
|
return SemaRef.ExprError();
|
|
|
|
bool ArgumentChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef);
|
|
Args.reserve(E->getNumArgs());
|
|
for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(),
|
|
ArgEnd = E->arg_end();
|
|
Arg != ArgEnd; ++Arg) {
|
|
if (getDerived().DropCallArgument(*Arg)) {
|
|
ArgumentChanged = true;
|
|
break;
|
|
}
|
|
|
|
OwningExprResult TransArg = getDerived().TransformExpr(*Arg);
|
|
if (TransArg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg;
|
|
Args.push_back((Expr *)TransArg.release());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType() &&
|
|
Constructor == E->getConstructor() &&
|
|
!ArgumentChanged) {
|
|
// FIXME: Instantiation-specific
|
|
SemaRef.MarkDeclarationReferenced(E->getTypeBeginLoc(), Constructor);
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
// FIXME: Bogus location information
|
|
SourceLocation CommaLoc;
|
|
if (Args.size() > 1) {
|
|
Expr *First = (Expr *)Args[0];
|
|
CommaLoc
|
|
= SemaRef.PP.getLocForEndOfToken(First->getSourceRange().getEnd());
|
|
}
|
|
return getDerived().RebuildCXXTemporaryObjectExpr(E->getTypeBeginLoc(),
|
|
T,
|
|
/*FIXME:*/E->getTypeBeginLoc(),
|
|
move_arg(Args),
|
|
&CommaLoc,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
|
|
CXXUnresolvedConstructExpr *E) {
|
|
TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName());
|
|
QualType T = getDerived().TransformType(E->getTypeAsWritten());
|
|
if (T.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
bool ArgumentChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef);
|
|
llvm::SmallVector<SourceLocation, 8> FakeCommaLocs;
|
|
for (CXXUnresolvedConstructExpr::arg_iterator Arg = E->arg_begin(),
|
|
ArgEnd = E->arg_end();
|
|
Arg != ArgEnd; ++Arg) {
|
|
OwningExprResult TransArg = getDerived().TransformExpr(*Arg);
|
|
if (TransArg.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg;
|
|
FakeCommaLocs.push_back(
|
|
SemaRef.PP.getLocForEndOfToken((*Arg)->getLocEnd()));
|
|
Args.push_back(TransArg.takeAs<Expr>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getTypeAsWritten() &&
|
|
!ArgumentChanged)
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
// FIXME: we're faking the locations of the commas
|
|
return getDerived().RebuildCXXUnresolvedConstructExpr(E->getTypeBeginLoc(),
|
|
T,
|
|
E->getLParenLoc(),
|
|
move_arg(Args),
|
|
FakeCommaLocs.data(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
|
|
CXXDependentScopeMemberExpr *E) {
|
|
// Transform the base of the expression.
|
|
OwningExprResult Base(SemaRef, (Expr*) 0);
|
|
Expr *OldBase;
|
|
QualType BaseType;
|
|
QualType ObjectType;
|
|
if (!E->isImplicitAccess()) {
|
|
OldBase = E->getBase();
|
|
Base = getDerived().TransformExpr(OldBase);
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
// Start the member reference and compute the object's type.
|
|
Sema::TypeTy *ObjectTy = 0;
|
|
bool MayBePseudoDestructor = false;
|
|
Base = SemaRef.ActOnStartCXXMemberReference(0, move(Base),
|
|
E->getOperatorLoc(),
|
|
E->isArrow()? tok::arrow : tok::period,
|
|
ObjectTy,
|
|
MayBePseudoDestructor);
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ObjectType = QualType::getFromOpaquePtr(ObjectTy);
|
|
BaseType = ((Expr*) Base.get())->getType();
|
|
} else {
|
|
OldBase = 0;
|
|
BaseType = getDerived().TransformType(E->getBaseType());
|
|
ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
|
|
}
|
|
|
|
// Transform the first part of the nested-name-specifier that qualifies
|
|
// the member name.
|
|
NamedDecl *FirstQualifierInScope
|
|
= getDerived().TransformFirstQualifierInScope(
|
|
E->getFirstQualifierFoundInScope(),
|
|
E->getQualifierRange().getBegin());
|
|
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (E->getQualifier()) {
|
|
Qualifier = getDerived().TransformNestedNameSpecifier(E->getQualifier(),
|
|
E->getQualifierRange(),
|
|
ObjectType,
|
|
FirstQualifierInScope);
|
|
if (!Qualifier)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
DeclarationName Name
|
|
= getDerived().TransformDeclarationName(E->getMember(), E->getMemberLoc(),
|
|
ObjectType);
|
|
if (!Name)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!E->hasExplicitTemplateArgs()) {
|
|
// This is a reference to a member without an explicitly-specified
|
|
// template argument list. Optimize for this common case.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == OldBase &&
|
|
BaseType == E->getBaseType() &&
|
|
Qualifier == E->getQualifier() &&
|
|
Name == E->getMember() &&
|
|
FirstQualifierInScope == E->getFirstQualifierFoundInScope())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildCXXDependentScopeMemberExpr(move(Base),
|
|
BaseType,
|
|
E->isArrow(),
|
|
E->getOperatorLoc(),
|
|
Qualifier,
|
|
E->getQualifierRange(),
|
|
FirstQualifierInScope,
|
|
Name,
|
|
E->getMemberLoc(),
|
|
/*TemplateArgs*/ 0);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
|
|
for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc))
|
|
return SemaRef.ExprError();
|
|
TransArgs.addArgument(Loc);
|
|
}
|
|
|
|
return getDerived().RebuildCXXDependentScopeMemberExpr(move(Base),
|
|
BaseType,
|
|
E->isArrow(),
|
|
E->getOperatorLoc(),
|
|
Qualifier,
|
|
E->getQualifierRange(),
|
|
FirstQualifierInScope,
|
|
Name,
|
|
E->getMemberLoc(),
|
|
&TransArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
|
|
// Transform the base of the expression.
|
|
OwningExprResult Base(SemaRef, (Expr*) 0);
|
|
QualType BaseType;
|
|
if (!Old->isImplicitAccess()) {
|
|
Base = getDerived().TransformExpr(Old->getBase());
|
|
if (Base.isInvalid())
|
|
return SemaRef.ExprError();
|
|
BaseType = ((Expr*) Base.get())->getType();
|
|
} else {
|
|
BaseType = getDerived().TransformType(Old->getBaseType());
|
|
}
|
|
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (Old->getQualifier()) {
|
|
Qualifier
|
|
= getDerived().TransformNestedNameSpecifier(Old->getQualifier(),
|
|
Old->getQualifierRange());
|
|
if (Qualifier == 0)
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
LookupResult R(SemaRef, Old->getMemberName(), Old->getMemberLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
|
|
// Transform all the decls.
|
|
for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
|
|
E = Old->decls_end(); I != E; ++I) {
|
|
NamedDecl *InstD = static_cast<NamedDecl*>(
|
|
getDerived().TransformDecl(Old->getMemberLoc(),
|
|
*I));
|
|
if (!InstD) {
|
|
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
|
|
// This can happen because of dependent hiding.
|
|
if (isa<UsingShadowDecl>(*I))
|
|
continue;
|
|
else
|
|
return SemaRef.ExprError();
|
|
}
|
|
|
|
// Expand using declarations.
|
|
if (isa<UsingDecl>(InstD)) {
|
|
UsingDecl *UD = cast<UsingDecl>(InstD);
|
|
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
|
|
E = UD->shadow_end(); I != E; ++I)
|
|
R.addDecl(*I);
|
|
continue;
|
|
}
|
|
|
|
R.addDecl(InstD);
|
|
}
|
|
|
|
R.resolveKind();
|
|
|
|
TemplateArgumentListInfo TransArgs;
|
|
if (Old->hasExplicitTemplateArgs()) {
|
|
TransArgs.setLAngleLoc(Old->getLAngleLoc());
|
|
TransArgs.setRAngleLoc(Old->getRAngleLoc());
|
|
for (unsigned I = 0, N = Old->getNumTemplateArgs(); I != N; ++I) {
|
|
TemplateArgumentLoc Loc;
|
|
if (getDerived().TransformTemplateArgument(Old->getTemplateArgs()[I],
|
|
Loc))
|
|
return SemaRef.ExprError();
|
|
TransArgs.addArgument(Loc);
|
|
}
|
|
}
|
|
|
|
// FIXME: to do this check properly, we will need to preserve the
|
|
// first-qualifier-in-scope here, just in case we had a dependent
|
|
// base (and therefore couldn't do the check) and a
|
|
// nested-name-qualifier (and therefore could do the lookup).
|
|
NamedDecl *FirstQualifierInScope = 0;
|
|
|
|
return getDerived().RebuildUnresolvedMemberExpr(move(Base),
|
|
BaseType,
|
|
Old->getOperatorLoc(),
|
|
Old->isArrow(),
|
|
Qualifier,
|
|
Old->getQualifierRange(),
|
|
FirstQualifierInScope,
|
|
R,
|
|
(Old->hasExplicitTemplateArgs()
|
|
? &TransArgs : 0));
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
|
|
// FIXME: poor source location
|
|
TemporaryBase Rebase(*this, E->getAtLoc(), DeclarationName());
|
|
QualType EncodedType = getDerived().TransformType(E->getEncodedType());
|
|
if (EncodedType.isNull())
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
EncodedType == E->getEncodedType())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
|
|
EncodedType,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform Objective-C expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
|
|
ObjCProtocolDecl *Protocol
|
|
= cast_or_null<ObjCProtocolDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getProtocol()));
|
|
if (!Protocol)
|
|
return SemaRef.ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Protocol == E->getProtocol())
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildObjCProtocolExpr(Protocol,
|
|
E->getAtLoc(),
|
|
/*FIXME:*/E->getAtLoc(),
|
|
/*FIXME:*/E->getAtLoc(),
|
|
E->getRParenLoc());
|
|
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform Objective-C expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform Objective-C expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCImplicitSetterGetterRefExpr(
|
|
ObjCImplicitSetterGetterRefExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform Objective-C expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCSuperExpr(ObjCSuperExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform Objective-C expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform Objective-C expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
|
|
bool ArgumentChanged = false;
|
|
ASTOwningVector<&ActionBase::DeleteExpr> SubExprs(SemaRef);
|
|
for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I) {
|
|
OwningExprResult SubExpr = getDerived().TransformExpr(E->getExpr(I));
|
|
if (SubExpr.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
ArgumentChanged = ArgumentChanged || SubExpr.get() != E->getExpr(I);
|
|
SubExprs.push_back(SubExpr.takeAs<Expr>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
!ArgumentChanged)
|
|
return SemaRef.Owned(E->Retain());
|
|
|
|
return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
|
|
move_arg(SubExprs),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform block expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::TransformBlockDeclRefExpr(BlockDeclRefExpr *E) {
|
|
// FIXME: Implement this!
|
|
assert(false && "Cannot transform block-related expressions yet");
|
|
return SemaRef.Owned(E->Retain());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type reconstruction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
|
|
SourceLocation Star) {
|
|
return SemaRef.BuildPointerType(PointeeType, Qualifiers(), Star,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
|
|
SourceLocation Star) {
|
|
return SemaRef.BuildBlockPointerType(PointeeType, Qualifiers(), Star,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
|
|
bool WrittenAsLValue,
|
|
SourceLocation Sigil) {
|
|
return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, Qualifiers(),
|
|
Sigil, getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
|
|
QualType ClassType,
|
|
SourceLocation Sigil) {
|
|
return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Qualifiers(),
|
|
Sigil, getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildObjCObjectPointerType(QualType PointeeType,
|
|
SourceLocation Sigil) {
|
|
return SemaRef.BuildPointerType(PointeeType, Qualifiers(), Sigil,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt *Size,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
if (SizeExpr || !Size)
|
|
return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
|
|
IndexTypeQuals, BracketsRange,
|
|
getDerived().getBaseEntity());
|
|
|
|
QualType Types[] = {
|
|
SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
|
|
SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
|
|
SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
|
|
};
|
|
const unsigned NumTypes = sizeof(Types) / sizeof(QualType);
|
|
QualType SizeType;
|
|
for (unsigned I = 0; I != NumTypes; ++I)
|
|
if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
|
|
SizeType = Types[I];
|
|
break;
|
|
}
|
|
|
|
IntegerLiteral ArraySize(*Size, SizeType, /*FIXME*/BracketsRange.getBegin());
|
|
return SemaRef.BuildArrayType(ElementType, SizeMod, &ArraySize,
|
|
IndexTypeQuals, BracketsRange,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt &Size,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0,
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0,
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
ExprArg SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
|
|
SizeExpr.takeAs<Expr>(),
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
ExprArg SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
|
|
SizeExpr.takeAs<Expr>(),
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
|
|
unsigned NumElements,
|
|
bool IsAltiVec, bool IsPixel) {
|
|
// FIXME: semantic checking!
|
|
return SemaRef.Context.getVectorType(ElementType, NumElements,
|
|
IsAltiVec, IsPixel);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
|
|
unsigned NumElements,
|
|
SourceLocation AttributeLoc) {
|
|
llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
|
|
NumElements, true);
|
|
IntegerLiteral *VectorSize
|
|
= new (SemaRef.Context) IntegerLiteral(numElements, SemaRef.Context.IntTy,
|
|
AttributeLoc);
|
|
return SemaRef.BuildExtVectorType(ElementType, SemaRef.Owned(VectorSize),
|
|
AttributeLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
|
|
ExprArg SizeExpr,
|
|
SourceLocation AttributeLoc) {
|
|
return SemaRef.BuildExtVectorType(ElementType, move(SizeExpr), AttributeLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildFunctionProtoType(QualType T,
|
|
QualType *ParamTypes,
|
|
unsigned NumParamTypes,
|
|
bool Variadic,
|
|
unsigned Quals) {
|
|
return SemaRef.BuildFunctionType(T, ParamTypes, NumParamTypes, Variadic,
|
|
Quals,
|
|
getDerived().getBaseLocation(),
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
|
|
return SemaRef.Context.getFunctionNoProtoType(T);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
|
|
assert(D && "no decl found");
|
|
if (D->isInvalidDecl()) return QualType();
|
|
|
|
TypeDecl *Ty;
|
|
if (isa<UsingDecl>(D)) {
|
|
UsingDecl *Using = cast<UsingDecl>(D);
|
|
assert(Using->isTypeName() &&
|
|
"UnresolvedUsingTypenameDecl transformed to non-typename using");
|
|
|
|
// A valid resolved using typename decl points to exactly one type decl.
|
|
assert(++Using->shadow_begin() == Using->shadow_end());
|
|
Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
|
|
|
|
} else {
|
|
assert(isa<UnresolvedUsingTypenameDecl>(D) &&
|
|
"UnresolvedUsingTypenameDecl transformed to non-using decl");
|
|
Ty = cast<UnresolvedUsingTypenameDecl>(D);
|
|
}
|
|
|
|
return SemaRef.Context.getTypeDeclType(Ty);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildTypeOfExprType(ExprArg E) {
|
|
return SemaRef.BuildTypeofExprType(E.takeAs<Expr>());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
|
|
return SemaRef.Context.getTypeOfType(Underlying);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildDecltypeType(ExprArg E) {
|
|
return SemaRef.BuildDecltypeType(E.takeAs<Expr>());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
|
|
TemplateName Template,
|
|
SourceLocation TemplateNameLoc,
|
|
const TemplateArgumentListInfo &TemplateArgs) {
|
|
return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
NestedNameSpecifier *
|
|
TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
|
|
SourceRange Range,
|
|
IdentifierInfo &II,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
CXXScopeSpec SS;
|
|
// FIXME: The source location information is all wrong.
|
|
SS.setRange(Range);
|
|
SS.setScopeRep(Prefix);
|
|
return static_cast<NestedNameSpecifier *>(
|
|
SemaRef.BuildCXXNestedNameSpecifier(0, SS, Range.getEnd(),
|
|
Range.getEnd(), II,
|
|
ObjectType,
|
|
FirstQualifierInScope,
|
|
false, false));
|
|
}
|
|
|
|
template<typename Derived>
|
|
NestedNameSpecifier *
|
|
TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
|
|
SourceRange Range,
|
|
NamespaceDecl *NS) {
|
|
return NestedNameSpecifier::Create(SemaRef.Context, Prefix, NS);
|
|
}
|
|
|
|
template<typename Derived>
|
|
NestedNameSpecifier *
|
|
TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix,
|
|
SourceRange Range,
|
|
bool TemplateKW,
|
|
QualType T) {
|
|
if (T->isDependentType() || T->isRecordType() ||
|
|
(SemaRef.getLangOptions().CPlusPlus0x && T->isEnumeralType())) {
|
|
assert(!T.hasLocalQualifiers() && "Can't get cv-qualifiers here");
|
|
return NestedNameSpecifier::Create(SemaRef.Context, Prefix, TemplateKW,
|
|
T.getTypePtr());
|
|
}
|
|
|
|
SemaRef.Diag(Range.getBegin(), diag::err_nested_name_spec_non_tag) << T;
|
|
return 0;
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier,
|
|
bool TemplateKW,
|
|
TemplateDecl *Template) {
|
|
return SemaRef.Context.getQualifiedTemplateName(Qualifier, TemplateKW,
|
|
Template);
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier,
|
|
const IdentifierInfo &II,
|
|
QualType ObjectType) {
|
|
CXXScopeSpec SS;
|
|
SS.setRange(SourceRange(getDerived().getBaseLocation()));
|
|
SS.setScopeRep(Qualifier);
|
|
UnqualifiedId Name;
|
|
Name.setIdentifier(&II, /*FIXME:*/getDerived().getBaseLocation());
|
|
return getSema().ActOnDependentTemplateName(
|
|
/*FIXME:*/getDerived().getBaseLocation(),
|
|
SS,
|
|
Name,
|
|
ObjectType.getAsOpaquePtr(),
|
|
/*EnteringContext=*/false)
|
|
.template getAsVal<TemplateName>();
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier,
|
|
OverloadedOperatorKind Operator,
|
|
QualType ObjectType) {
|
|
CXXScopeSpec SS;
|
|
SS.setRange(SourceRange(getDerived().getBaseLocation()));
|
|
SS.setScopeRep(Qualifier);
|
|
UnqualifiedId Name;
|
|
SourceLocation SymbolLocations[3]; // FIXME: Bogus location information.
|
|
Name.setOperatorFunctionId(/*FIXME:*/getDerived().getBaseLocation(),
|
|
Operator, SymbolLocations);
|
|
return getSema().ActOnDependentTemplateName(
|
|
/*FIXME:*/getDerived().getBaseLocation(),
|
|
SS,
|
|
Name,
|
|
ObjectType.getAsOpaquePtr(),
|
|
/*EnteringContext=*/false)
|
|
.template getAsVal<TemplateName>();
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
ExprArg Callee,
|
|
ExprArg First,
|
|
ExprArg Second) {
|
|
Expr *FirstExpr = (Expr *)First.get();
|
|
Expr *SecondExpr = (Expr *)Second.get();
|
|
Expr *CalleeExpr = ((Expr *)Callee.get())->IgnoreParenCasts();
|
|
bool isPostIncDec = SecondExpr && (Op == OO_PlusPlus || Op == OO_MinusMinus);
|
|
|
|
// Determine whether this should be a builtin operation.
|
|
if (Op == OO_Subscript) {
|
|
if (!FirstExpr->getType()->isOverloadableType() &&
|
|
!SecondExpr->getType()->isOverloadableType())
|
|
return getSema().CreateBuiltinArraySubscriptExpr(move(First),
|
|
CalleeExpr->getLocStart(),
|
|
move(Second), OpLoc);
|
|
} else if (Op == OO_Arrow) {
|
|
// -> is never a builtin operation.
|
|
return SemaRef.BuildOverloadedArrowExpr(0, move(First), OpLoc);
|
|
} else if (SecondExpr == 0 || isPostIncDec) {
|
|
if (!FirstExpr->getType()->isOverloadableType()) {
|
|
// The argument is not of overloadable type, so try to create a
|
|
// built-in unary operation.
|
|
UnaryOperator::Opcode Opc
|
|
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
|
|
|
|
return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, move(First));
|
|
}
|
|
} else {
|
|
if (!FirstExpr->getType()->isOverloadableType() &&
|
|
!SecondExpr->getType()->isOverloadableType()) {
|
|
// Neither of the arguments is an overloadable type, so try to
|
|
// create a built-in binary operation.
|
|
BinaryOperator::Opcode Opc = BinaryOperator::getOverloadedOpcode(Op);
|
|
OwningExprResult Result
|
|
= SemaRef.CreateBuiltinBinOp(OpLoc, Opc, FirstExpr, SecondExpr);
|
|
if (Result.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
First.release();
|
|
Second.release();
|
|
return move(Result);
|
|
}
|
|
}
|
|
|
|
// Compute the transformed set of functions (and function templates) to be
|
|
// used during overload resolution.
|
|
UnresolvedSet<16> Functions;
|
|
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(CalleeExpr)) {
|
|
assert(ULE->requiresADL());
|
|
|
|
// FIXME: Do we have to check
|
|
// IsAcceptableNonMemberOperatorCandidate for each of these?
|
|
Functions.append(ULE->decls_begin(), ULE->decls_end());
|
|
} else {
|
|
Functions.addDecl(cast<DeclRefExpr>(CalleeExpr)->getDecl());
|
|
}
|
|
|
|
// Add any functions found via argument-dependent lookup.
|
|
Expr *Args[2] = { FirstExpr, SecondExpr };
|
|
unsigned NumArgs = 1 + (SecondExpr != 0);
|
|
|
|
// Create the overloaded operator invocation for unary operators.
|
|
if (NumArgs == 1 || isPostIncDec) {
|
|
UnaryOperator::Opcode Opc
|
|
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
|
|
return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(First));
|
|
}
|
|
|
|
if (Op == OO_Subscript)
|
|
return SemaRef.CreateOverloadedArraySubscriptExpr(CalleeExpr->getLocStart(),
|
|
OpLoc,
|
|
move(First),
|
|
move(Second));
|
|
|
|
// Create the overloaded operator invocation for binary operators.
|
|
BinaryOperator::Opcode Opc =
|
|
BinaryOperator::getOverloadedOpcode(Op);
|
|
OwningExprResult Result
|
|
= SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
|
|
if (Result.isInvalid())
|
|
return SemaRef.ExprError();
|
|
|
|
First.release();
|
|
Second.release();
|
|
return move(Result);
|
|
}
|
|
|
|
template<typename Derived>
|
|
Sema::OwningExprResult
|
|
TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(ExprArg Base,
|
|
SourceLocation OperatorLoc,
|
|
bool isArrow,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceRange QualifierRange,
|
|
TypeSourceInfo *ScopeType,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage Destroyed) {
|
|
CXXScopeSpec SS;
|
|
if (Qualifier) {
|
|
SS.setRange(QualifierRange);
|
|
SS.setScopeRep(Qualifier);
|
|
}
|
|
|
|
Expr *BaseE = (Expr *)Base.get();
|
|
QualType BaseType = BaseE->getType();
|
|
if (BaseE->isTypeDependent() || Destroyed.getIdentifier() ||
|
|
(!isArrow && !BaseType->getAs<RecordType>()) ||
|
|
(isArrow && BaseType->getAs<PointerType>() &&
|
|
!BaseType->getAs<PointerType>()->getPointeeType()
|
|
->template getAs<RecordType>())){
|
|
// This pseudo-destructor expression is still a pseudo-destructor.
|
|
return SemaRef.BuildPseudoDestructorExpr(move(Base), OperatorLoc,
|
|
isArrow? tok::arrow : tok::period,
|
|
SS, ScopeType, CCLoc, TildeLoc,
|
|
Destroyed,
|
|
/*FIXME?*/true);
|
|
}
|
|
|
|
TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
|
|
DeclarationName Name
|
|
= SemaRef.Context.DeclarationNames.getCXXDestructorName(
|
|
SemaRef.Context.getCanonicalType(DestroyedType->getType()));
|
|
|
|
// FIXME: the ScopeType should be tacked onto SS.
|
|
|
|
return getSema().BuildMemberReferenceExpr(move(Base), BaseType,
|
|
OperatorLoc, isArrow,
|
|
SS, /*FIXME: FirstQualifier*/ 0,
|
|
Name, Destroyed.getLocation(),
|
|
/*TemplateArgs*/ 0);
|
|
}
|
|
|
|
} // end namespace clang
|
|
|
|
#endif // LLVM_CLANG_SEMA_TREETRANSFORM_H
|