llvm-project/lldb/source/Core/ValueObject.cpp

4326 lines
162 KiB
C++

//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObject.h"
// C Includes
#include <stdlib.h>
// C++ Includes
// Other libraries and framework includes
#include "llvm/Support/raw_ostream.h"
// Project includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectCast.h"
#include "lldb/Core/ValueObjectChild.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectDynamicValue.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectSyntheticFilter.h"
#include "lldb/DataFormatters/DataVisualization.h"
#include "lldb/DataFormatters/StringPrinter.h"
#include "lldb/DataFormatters/ValueObjectPrinter.h"
#include "Plugins/ExpressionParser/Clang/ClangExpressionVariable.h"
#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
#include "lldb/Host/Endian.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_utility;
static user_id_t g_value_obj_uid = 0;
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject (ValueObject &parent) :
UserID (++g_value_obj_uid), // Unique identifier for every value object
m_parent (&parent),
m_root (NULL),
m_update_point (parent.GetUpdatePoint ()),
m_name (),
m_data (),
m_value (),
m_error (),
m_value_str (),
m_old_value_str (),
m_location_str (),
m_summary_str (),
m_object_desc_str (),
m_validation_result(),
m_manager(parent.GetManager()),
m_children (),
m_synthetic_children (),
m_dynamic_value (NULL),
m_synthetic_value(NULL),
m_deref_valobj(NULL),
m_format (eFormatDefault),
m_last_format (eFormatDefault),
m_last_format_mgr_revision(0),
m_type_summary_sp(),
m_type_format_sp(),
m_synthetic_children_sp(),
m_type_validator_sp(),
m_user_id_of_forced_summary(),
m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid),
m_value_checksum(),
m_preferred_display_language(lldb::eLanguageTypeUnknown),
m_language_flags(0),
m_value_is_valid (false),
m_value_did_change (false),
m_children_count_valid (false),
m_old_value_valid (false),
m_is_deref_of_parent (false),
m_is_array_item_for_pointer(false),
m_is_bitfield_for_scalar(false),
m_is_child_at_offset(false),
m_is_getting_summary(false),
m_did_calculate_complete_objc_class_type(false),
m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated)
{
m_manager->ManageObject(this);
}
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject (ExecutionContextScope *exe_scope,
AddressType child_ptr_or_ref_addr_type) :
UserID (++g_value_obj_uid), // Unique identifier for every value object
m_parent (NULL),
m_root (NULL),
m_update_point (exe_scope),
m_name (),
m_data (),
m_value (),
m_error (),
m_value_str (),
m_old_value_str (),
m_location_str (),
m_summary_str (),
m_object_desc_str (),
m_validation_result(),
m_manager(),
m_children (),
m_synthetic_children (),
m_dynamic_value (NULL),
m_synthetic_value(NULL),
m_deref_valobj(NULL),
m_format (eFormatDefault),
m_last_format (eFormatDefault),
m_last_format_mgr_revision(0),
m_type_summary_sp(),
m_type_format_sp(),
m_synthetic_children_sp(),
m_type_validator_sp(),
m_user_id_of_forced_summary(),
m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
m_value_checksum(),
m_preferred_display_language(lldb::eLanguageTypeUnknown),
m_language_flags(0),
m_value_is_valid (false),
m_value_did_change (false),
m_children_count_valid (false),
m_old_value_valid (false),
m_is_deref_of_parent (false),
m_is_array_item_for_pointer(false),
m_is_bitfield_for_scalar(false),
m_is_child_at_offset(false),
m_is_getting_summary(false),
m_did_calculate_complete_objc_class_type(false),
m_is_synthetic_children_generated(false)
{
m_manager = new ValueObjectManager();
m_manager->ManageObject (this);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ValueObject::~ValueObject ()
{
}
bool
ValueObject::UpdateValueIfNeeded (bool update_format)
{
bool did_change_formats = false;
if (update_format)
did_change_formats = UpdateFormatsIfNeeded();
// If this is a constant value, then our success is predicated on whether
// we have an error or not
if (GetIsConstant())
{
// if you are constant, things might still have changed behind your back
// (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself)
// in this case, your value has not changed, but "computed" entries might have, so you might now have
// a different summary, or a different object description. clear these so we will recompute them
if (update_format && !did_change_formats)
ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription);
return m_error.Success();
}
bool first_update = IsChecksumEmpty();
if (NeedsUpdating())
{
m_update_point.SetUpdated();
// Save the old value using swap to avoid a string copy which
// also will clear our m_value_str
if (m_value_str.empty())
{
m_old_value_valid = false;
}
else
{
m_old_value_valid = true;
m_old_value_str.swap (m_value_str);
ClearUserVisibleData(eClearUserVisibleDataItemsValue);
}
ClearUserVisibleData();
if (IsInScope())
{
const bool value_was_valid = GetValueIsValid();
SetValueDidChange (false);
m_error.Clear();
// Call the pure virtual function to update the value
bool need_compare_checksums = false;
llvm::SmallVector<uint8_t, 16> old_checksum;
if (!first_update && CanProvideValue())
{
need_compare_checksums = true;
old_checksum.resize(m_value_checksum.size());
std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin());
}
bool success = UpdateValue ();
SetValueIsValid (success);
if (success)
{
const uint64_t max_checksum_size = 128;
m_data.Checksum(m_value_checksum,
max_checksum_size);
}
else
{
need_compare_checksums = false;
m_value_checksum.clear();
}
assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty()));
if (first_update)
SetValueDidChange (false);
else if (!m_value_did_change && success == false)
{
// The value wasn't gotten successfully, so we mark this
// as changed if the value used to be valid and now isn't
SetValueDidChange (value_was_valid);
}
else if (need_compare_checksums)
{
SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size()));
}
}
else
{
m_error.SetErrorString("out of scope");
}
}
return m_error.Success();
}
bool
ValueObject::UpdateFormatsIfNeeded()
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_DATAFORMATTERS));
if (log)
log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d",
GetName().GetCString(), static_cast<void*>(this),
m_last_format_mgr_revision,
DataVisualization::GetCurrentRevision());
bool any_change = false;
if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision()))
{
m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
any_change = true;
SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues));
SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType()));
#ifndef LLDB_DISABLE_PYTHON
SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType()));
#endif
SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType()));
}
return any_change;
}
void
ValueObject::SetNeedsUpdate ()
{
m_update_point.SetNeedsUpdate();
// We have to clear the value string here so ConstResult children will notice if their values are
// changed by hand (i.e. with SetValueAsCString).
ClearUserVisibleData(eClearUserVisibleDataItemsValue);
}
void
ValueObject::ClearDynamicTypeInformation ()
{
m_children_count_valid = false;
m_did_calculate_complete_objc_class_type = false;
m_last_format_mgr_revision = 0;
m_override_type = CompilerType();
SetValueFormat(lldb::TypeFormatImplSP());
SetSummaryFormat(lldb::TypeSummaryImplSP());
SetSyntheticChildren(lldb::SyntheticChildrenSP());
}
CompilerType
ValueObject::MaybeCalculateCompleteType ()
{
CompilerType compiler_type(GetCompilerTypeImpl());
if (m_did_calculate_complete_objc_class_type)
{
if (m_override_type.IsValid())
return m_override_type;
else
return compiler_type;
}
CompilerType class_type;
bool is_pointer_type = false;
if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type))
{
is_pointer_type = true;
}
else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type))
{
class_type = compiler_type;
}
else
{
return compiler_type;
}
m_did_calculate_complete_objc_class_type = true;
if (class_type)
{
ConstString class_name (class_type.GetConstTypeName());
if (class_name)
{
ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
if (process_sp)
{
ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime());
if (objc_language_runtime)
{
TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name);
if (complete_objc_class_type_sp)
{
CompilerType complete_class(complete_objc_class_type_sp->GetFullCompilerType ());
if (complete_class.GetCompleteType())
{
if (is_pointer_type)
{
m_override_type = complete_class.GetPointerType();
}
else
{
m_override_type = complete_class;
}
if (m_override_type.IsValid())
return m_override_type;
}
}
}
}
}
}
return compiler_type;
}
CompilerType
ValueObject::GetCompilerType ()
{
return MaybeCalculateCompleteType();
}
TypeImpl
ValueObject::GetTypeImpl ()
{
return TypeImpl(GetCompilerType());
}
DataExtractor &
ValueObject::GetDataExtractor ()
{
UpdateValueIfNeeded(false);
return m_data;
}
const Error &
ValueObject::GetError()
{
UpdateValueIfNeeded(false);
return m_error;
}
const ConstString &
ValueObject::GetName() const
{
return m_name;
}
const char *
ValueObject::GetLocationAsCString ()
{
return GetLocationAsCStringImpl(m_value,
m_data);
}
const char *
ValueObject::GetLocationAsCStringImpl (const Value& value,
const DataExtractor& data)
{
if (UpdateValueIfNeeded(false))
{
if (m_location_str.empty())
{
StreamString sstr;
Value::ValueType value_type = value.GetValueType();
switch (value_type)
{
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
if (value.GetContextType() == Value::eContextTypeRegisterInfo)
{
RegisterInfo *reg_info = value.GetRegisterInfo();
if (reg_info)
{
if (reg_info->name)
m_location_str = reg_info->name;
else if (reg_info->alt_name)
m_location_str = reg_info->alt_name;
if (m_location_str.empty())
m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar";
}
}
if (m_location_str.empty())
m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar";
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
m_location_str.swap(sstr.GetString());
}
break;
}
}
}
return m_location_str.c_str();
}
Value &
ValueObject::GetValue()
{
return m_value;
}
const Value &
ValueObject::GetValue() const
{
return m_value;
}
bool
ValueObject::ResolveValue (Scalar &scalar)
{
if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything
{
ExecutionContext exe_ctx (GetExecutionContextRef());
Value tmp_value(m_value);
scalar = tmp_value.ResolveValue(&exe_ctx);
if (scalar.IsValid())
{
const uint32_t bitfield_bit_size = GetBitfieldBitSize();
if (bitfield_bit_size)
return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset());
return true;
}
}
return false;
}
bool
ValueObject::IsLogicalTrue (Error& error)
{
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage()))
{
LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
switch (is_logical_true)
{
case eLazyBoolYes:
case eLazyBoolNo:
return (is_logical_true == true);
case eLazyBoolCalculate:
break;
}
}
Scalar scalar_value;
if (!ResolveValue (scalar_value))
{
error.SetErrorString("failed to get a scalar result");
return false;
}
bool ret;
if (scalar_value.ULongLong(1) == 0)
ret = false;
else
ret = true;
error.Clear();
return ret;
}
bool
ValueObject::GetValueIsValid () const
{
return m_value_is_valid;
}
void
ValueObject::SetValueIsValid (bool b)
{
m_value_is_valid = b;
}
bool
ValueObject::GetValueDidChange ()
{
return m_value_did_change;
}
void
ValueObject::SetValueDidChange (bool value_changed)
{
m_value_did_change = value_changed;
}
ValueObjectSP
ValueObject::GetChildAtIndex (size_t idx, bool can_create)
{
ValueObjectSP child_sp;
// We may need to update our value if we are dynamic
if (IsPossibleDynamicType ())
UpdateValueIfNeeded(false);
if (idx < GetNumChildren())
{
// Check if we have already made the child value object?
if (can_create && !m_children.HasChildAtIndex(idx))
{
// No we haven't created the child at this index, so lets have our
// subclass do it and cache the result for quick future access.
m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0));
}
ValueObject* child = m_children.GetChildAtIndex(idx);
if (child != NULL)
return child->GetSP();
}
return child_sp;
}
ValueObjectSP
ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs,
size_t* index_of_error)
{
return GetChildAtIndexPath( std::vector<size_t>(idxs),
index_of_error );
}
ValueObjectSP
ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs,
size_t* index_of_error)
{
return GetChildAtIndexPath( std::vector<std::pair<size_t,bool>>(idxs),
index_of_error );
}
lldb::ValueObjectSP
ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs,
size_t* index_of_error)
{
if (idxs.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (size_t idx : idxs)
{
root = root->GetChildAtIndex(idx, true);
if (!root)
{
if (index_of_error)
*index_of_error = idx;
return root;
}
}
return root;
}
lldb::ValueObjectSP
ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs,
size_t* index_of_error)
{
if (idxs.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (std::pair<size_t, bool> idx : idxs)
{
root = root->GetChildAtIndex(idx.first, idx.second);
if (!root)
{
if (index_of_error)
*index_of_error = idx.first;
return root;
}
}
return root;
}
lldb::ValueObjectSP
ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names,
ConstString* name_of_error)
{
return GetChildAtNamePath( std::vector<ConstString>(names),
name_of_error );
}
lldb::ValueObjectSP
ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names,
ConstString* name_of_error)
{
return GetChildAtNamePath( std::vector<std::pair<ConstString,bool>>(names),
name_of_error );
}
lldb::ValueObjectSP
ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names,
ConstString* name_of_error)
{
if (names.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (ConstString name : names)
{
root = root->GetChildMemberWithName(name, true);
if (!root)
{
if (name_of_error)
*name_of_error = name;
return root;
}
}
return root;
}
lldb::ValueObjectSP
ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names,
ConstString* name_of_error)
{
if (names.size() == 0)
return GetSP();
ValueObjectSP root(GetSP());
for (std::pair<ConstString, bool> name : names)
{
root = root->GetChildMemberWithName(name.first, name.second);
if (!root)
{
if (name_of_error)
*name_of_error = name.first;
return root;
}
}
return root;
}
size_t
ValueObject::GetIndexOfChildWithName (const ConstString &name)
{
bool omit_empty_base_classes = true;
return GetCompilerType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes);
}
ValueObjectSP
ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create)
{
// when getting a child by name, it could be buried inside some base
// classes (which really aren't part of the expression path), so we
// need a vector of indexes that can get us down to the correct child
ValueObjectSP child_sp;
// We may need to update our value if we are dynamic
if (IsPossibleDynamicType ())
UpdateValueIfNeeded(false);
std::vector<uint32_t> child_indexes;
bool omit_empty_base_classes = true;
const size_t num_child_indexes = GetCompilerType().GetIndexOfChildMemberWithName (name.GetCString(),
omit_empty_base_classes,
child_indexes);
if (num_child_indexes > 0)
{
std::vector<uint32_t>::const_iterator pos = child_indexes.begin ();
std::vector<uint32_t>::const_iterator end = child_indexes.end ();
child_sp = GetChildAtIndex(*pos, can_create);
for (++pos; pos != end; ++pos)
{
if (child_sp)
{
ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create));
child_sp = new_child_sp;
}
else
{
child_sp.reset();
}
}
}
return child_sp;
}
size_t
ValueObject::GetNumChildren (uint32_t max)
{
UpdateValueIfNeeded();
if (max < UINT32_MAX)
{
if (m_children_count_valid)
{
size_t children_count = m_children.GetChildrenCount();
return children_count <= max ? children_count : max;
}
else
return CalculateNumChildren(max);
}
if (!m_children_count_valid)
{
SetNumChildren (CalculateNumChildren());
}
return m_children.GetChildrenCount();
}
bool
ValueObject::MightHaveChildren()
{
bool has_children = false;
const uint32_t type_info = GetTypeInfo();
if (type_info)
{
if (type_info & (eTypeHasChildren |
eTypeIsPointer |
eTypeIsReference))
has_children = true;
}
else
{
has_children = GetNumChildren () > 0;
}
return has_children;
}
// Should only be called by ValueObject::GetNumChildren()
void
ValueObject::SetNumChildren (size_t num_children)
{
m_children_count_valid = true;
m_children.SetChildrenCount(num_children);
}
void
ValueObject::SetName (const ConstString &name)
{
m_name = name;
}
ValueObject *
ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index)
{
ValueObject *valobj = NULL;
bool omit_empty_base_classes = true;
bool ignore_array_bounds = synthetic_array_member;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
uint64_t language_flags = 0;
const bool transparent_pointers = synthetic_array_member == false;
CompilerType child_compiler_type;
ExecutionContext exe_ctx (GetExecutionContextRef());
child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex (&exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name_str,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
this,
language_flags);
if (child_compiler_type)
{
if (synthetic_index)
child_byte_offset += child_byte_size * synthetic_index;
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString (child_name_str.c_str());
valobj = new ValueObjectChild (*this,
child_compiler_type,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
eAddressTypeInvalid,
language_flags);
//if (valobj)
// valobj->SetAddressTypeOfChildren(eAddressTypeInvalid);
}
return valobj;
}
bool
ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr,
std::string& destination,
lldb::LanguageType lang)
{
return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions().SetLanguage(lang));
}
bool
ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr,
std::string& destination,
const TypeSummaryOptions& options)
{
destination.clear();
// ideally we would like to bail out if passing NULL, but if we do so
// we end up not providing the summary for function pointers anymore
if (/*summary_ptr == NULL ||*/ m_is_getting_summary)
return false;
m_is_getting_summary = true;
TypeSummaryOptions actual_options(options);
if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
actual_options.SetLanguage(GetPreferredDisplayLanguage());
// this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other
// information that we might care to see in a crash log. might be useful in very specific situations though.
/*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s",
GetTypeName().GetCString(),
GetName().GetCString(),
summary_ptr->GetDescription().c_str());*/
if (UpdateValueIfNeeded (false) && summary_ptr)
{
if (HasSyntheticValue())
m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#})
summary_ptr->FormatObject(this, destination, actual_options);
}
m_is_getting_summary = false;
return !destination.empty();
}
const char *
ValueObject::GetSummaryAsCString (lldb::LanguageType lang)
{
if (UpdateValueIfNeeded(true) && m_summary_str.empty())
{
TypeSummaryOptions summary_options;
summary_options.SetLanguage(lang);
GetSummaryAsCString(GetSummaryFormat().get(),
m_summary_str,
summary_options);
}
if (m_summary_str.empty())
return NULL;
return m_summary_str.c_str();
}
bool
ValueObject::GetSummaryAsCString (std::string& destination,
const TypeSummaryOptions& options)
{
return GetSummaryAsCString(GetSummaryFormat().get(),
destination,
options);
}
bool
ValueObject::IsCStringContainer(bool check_pointer)
{
CompilerType pointee_or_element_compiler_type;
const Flags type_flags (GetTypeInfo (&pointee_or_element_compiler_type));
bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) &&
pointee_or_element_compiler_type.IsCharType ());
if (!is_char_arr_ptr)
return false;
if (!check_pointer)
return true;
if (type_flags.Test(eTypeIsArray))
return true;
addr_t cstr_address = LLDB_INVALID_ADDRESS;
AddressType cstr_address_type = eAddressTypeInvalid;
cstr_address = GetAddressOf (true, &cstr_address_type);
return (cstr_address != LLDB_INVALID_ADDRESS);
}
size_t
ValueObject::GetPointeeData (DataExtractor& data,
uint32_t item_idx,
uint32_t item_count)
{
CompilerType pointee_or_element_compiler_type;
const uint32_t type_info = GetTypeInfo (&pointee_or_element_compiler_type);
const bool is_pointer_type = type_info & eTypeIsPointer;
const bool is_array_type = type_info & eTypeIsArray;
if (!(is_pointer_type || is_array_type))
return 0;
if (item_count == 0)
return 0;
ExecutionContext exe_ctx (GetExecutionContextRef());
const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
const uint64_t bytes = item_count * item_type_size;
const uint64_t offset = item_idx * item_type_size;
if (item_idx == 0 && item_count == 1) // simply a deref
{
if (is_pointer_type)
{
Error error;
ValueObjectSP pointee_sp = Dereference(error);
if (error.Fail() || pointee_sp.get() == NULL)
return 0;
return pointee_sp->GetData(data, error);
}
else
{
ValueObjectSP child_sp = GetChildAtIndex(0, true);
if (child_sp.get() == NULL)
return 0;
Error error;
return child_sp->GetData(data, error);
}
return true;
}
else /* (items > 1) */
{
Error error;
lldb_private::DataBufferHeap* heap_buf_ptr = NULL;
lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap());
AddressType addr_type;
lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type);
switch (addr_type)
{
case eAddressTypeFile:
{
ModuleSP module_sp (GetModule());
if (module_sp)
{
addr = addr + offset;
Address so_addr;
module_sp->ResolveFileAddress(addr, so_addr);
ExecutionContext exe_ctx (GetExecutionContextRef());
Target* target = exe_ctx.GetTargetPtr();
if (target)
{
heap_buf_ptr->SetByteSize(bytes);
size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error);
if (error.Success())
{
data.SetData(data_sp);
return bytes_read;
}
}
}
}
break;
case eAddressTypeLoad:
{
ExecutionContext exe_ctx (GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
heap_buf_ptr->SetByteSize(bytes);
size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
if (error.Success() || bytes_read > 0)
{
data.SetData(data_sp);
return bytes_read;
}
}
}
break;
case eAddressTypeHost:
{
const uint64_t max_bytes = GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope());
if (max_bytes > offset)
{
size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes);
addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
break;
heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read);
data.SetData(data_sp);
return bytes_read;
}
}
break;
case eAddressTypeInvalid:
break;
}
}
return 0;
}
uint64_t
ValueObject::GetData (DataExtractor& data, Error &error)
{
UpdateValueIfNeeded(false);
ExecutionContext exe_ctx (GetExecutionContextRef());
error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get());
if (error.Fail())
{
if (m_data.GetByteSize())
{
data = m_data;
error.Clear();
return data.GetByteSize();
}
else
{
return 0;
}
}
data.SetAddressByteSize(m_data.GetAddressByteSize());
data.SetByteOrder(m_data.GetByteOrder());
return data.GetByteSize();
}
bool
ValueObject::SetData (DataExtractor &data, Error &error)
{
error.Clear();
// Make sure our value is up to date first so that our location and location
// type is valid.
if (!UpdateValueIfNeeded(false))
{
error.SetErrorString("unable to read value");
return false;
}
uint64_t count = 0;
const Encoding encoding = GetCompilerType().GetEncoding(count);
const size_t byte_size = GetByteSize();
Value::ValueType value_type = m_value.GetValueType();
switch (value_type)
{
case Value::eValueTypeScalar:
{
Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
if (!set_error.Success())
{
error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString());
return false;
}
}
break;
case Value::eValueTypeLoadAddress:
{
// If it is a load address, then the scalar value is the storage location
// of the data, and we have to shove this value down to that load location.
ExecutionContext exe_ctx (GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
size_t bytes_written = process->WriteMemory(target_addr,
data.GetDataStart(),
byte_size,
error);
if (!error.Success())
return false;
if (bytes_written != byte_size)
{
error.SetErrorString("unable to write value to memory");
return false;
}
}
}
break;
case Value::eValueTypeHostAddress:
{
// If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data.
DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0));
m_data.SetData(buffer_sp, 0);
data.CopyByteOrderedData (0,
byte_size,
const_cast<uint8_t *>(m_data.GetDataStart()),
byte_size,
m_data.GetByteOrder());
m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
}
break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeVector:
break;
}
// If we have reached this point, then we have successfully changed the value.
SetNeedsUpdate();
return true;
}
static bool
CopyStringDataToBufferSP(const StreamString& source,
lldb::DataBufferSP& destination)
{
destination.reset(new DataBufferHeap(source.GetSize()+1,0));
memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize());
return true;
}
std::pair<size_t,bool>
ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp,
Error& error,
uint32_t max_length,
bool honor_array,
Format item_format)
{
bool was_capped = false;
StreamString s;
ExecutionContext exe_ctx (GetExecutionContextRef());
Target* target = exe_ctx.GetTargetPtr();
if (!target)
{
s << "<no target to read from>";
error.SetErrorString("no target to read from");
CopyStringDataToBufferSP(s, buffer_sp);
return {0,was_capped};
}
if (max_length == 0)
max_length = target->GetMaximumSizeOfStringSummary();
size_t bytes_read = 0;
size_t total_bytes_read = 0;
CompilerType compiler_type = GetCompilerType();
CompilerType elem_or_pointee_compiler_type;
const Flags type_flags (GetTypeInfo (&elem_or_pointee_compiler_type));
if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) &&
elem_or_pointee_compiler_type.IsCharType ())
{
addr_t cstr_address = LLDB_INVALID_ADDRESS;
AddressType cstr_address_type = eAddressTypeInvalid;
size_t cstr_len = 0;
bool capped_data = false;
if (type_flags.Test (eTypeIsArray))
{
// We have an array
uint64_t array_size = 0;
if (compiler_type.IsArrayType(NULL, &array_size, NULL))
{
cstr_len = array_size;
if (cstr_len > max_length)
{
capped_data = true;
cstr_len = max_length;
}
}
cstr_address = GetAddressOf (true, &cstr_address_type);
}
else
{
// We have a pointer
cstr_address = GetPointerValue (&cstr_address_type);
}
if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS)
{
s << "<invalid address>";
error.SetErrorString("invalid address");
CopyStringDataToBufferSP(s, buffer_sp);
return {0,was_capped};
}
Address cstr_so_addr (cstr_address);
DataExtractor data;
if (cstr_len > 0 && honor_array)
{
// I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host
// but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this
GetPointeeData(data, 0, cstr_len);
if ((bytes_read = data.GetByteSize()) > 0)
{
total_bytes_read = bytes_read;
for (size_t offset = 0; offset < bytes_read; offset++)
s.Printf("%c", *data.PeekData(offset, 1));
if (capped_data)
was_capped = true;
}
}
else
{
cstr_len = max_length;
const size_t k_max_buf_size = 64;
size_t offset = 0;
int cstr_len_displayed = -1;
bool capped_cstr = false;
// I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host
// but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this
while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0)
{
total_bytes_read += bytes_read;
const char *cstr = data.PeekCStr(0);
size_t len = strnlen (cstr, k_max_buf_size);
if (cstr_len_displayed < 0)
cstr_len_displayed = len;
if (len == 0)
break;
cstr_len_displayed += len;
if (len > bytes_read)
len = bytes_read;
if (len > cstr_len)
len = cstr_len;
for (size_t offset = 0; offset < bytes_read; offset++)
s.Printf("%c", *data.PeekData(offset, 1));
if (len < k_max_buf_size)
break;
if (len >= cstr_len)
{
capped_cstr = true;
break;
}
cstr_len -= len;
offset += len;
}
if (cstr_len_displayed >= 0)
{
if (capped_cstr)
was_capped = true;
}
}
}
else
{
error.SetErrorString("not a string object");
s << "<not a string object>";
}
CopyStringDataToBufferSP(s, buffer_sp);
return {total_bytes_read,was_capped};
}
std::pair<TypeValidatorResult, std::string>
ValueObject::GetValidationStatus ()
{
if (!UpdateValueIfNeeded(true))
return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems
if (m_validation_result.hasValue())
return m_validation_result.getValue();
if (!m_type_validator_sp)
return {TypeValidatorResult::Success,""}; // no validator no failure
auto outcome = m_type_validator_sp->FormatObject(this);
return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue();
}
const char *
ValueObject::GetObjectDescription ()
{
if (!UpdateValueIfNeeded (true))
return NULL;
if (!m_object_desc_str.empty())
return m_object_desc_str.c_str();
ExecutionContext exe_ctx (GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
return NULL;
StreamString s;
LanguageType language = GetObjectRuntimeLanguage();
LanguageRuntime *runtime = process->GetLanguageRuntime(language);
if (runtime == NULL)
{
// Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway...
CompilerType compiler_type = GetCompilerType();
if (compiler_type)
{
bool is_signed;
if (compiler_type.IsIntegerType (is_signed) || compiler_type.IsPointerType ())
{
runtime = process->GetLanguageRuntime(eLanguageTypeObjC);
}
}
}
if (runtime && runtime->GetObjectDescription(s, *this))
{
m_object_desc_str.append (s.GetData());
}
if (m_object_desc_str.empty())
return NULL;
else
return m_object_desc_str.c_str();
}
bool
ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format,
std::string& destination)
{
if (UpdateValueIfNeeded(false))
return format.FormatObject(this,destination);
else
return false;
}
bool
ValueObject::GetValueAsCString (lldb::Format format,
std::string& destination)
{
return GetValueAsCString(TypeFormatImpl_Format(format),destination);
}
const char *
ValueObject::GetValueAsCString ()
{
if (UpdateValueIfNeeded(true))
{
lldb::TypeFormatImplSP format_sp;
lldb::Format my_format = GetFormat();
if (my_format == lldb::eFormatDefault)
{
if (m_type_format_sp)
format_sp = m_type_format_sp;
else
{
if (m_is_bitfield_for_scalar)
my_format = eFormatUnsigned;
else
{
if (m_value.GetContextType() == Value::eContextTypeRegisterInfo)
{
const RegisterInfo *reg_info = m_value.GetRegisterInfo();
if (reg_info)
my_format = reg_info->format;
}
else
{
my_format = GetValue().GetCompilerType().GetFormat();
}
}
}
}
if (my_format != m_last_format || m_value_str.empty())
{
m_last_format = my_format;
if (!format_sp)
format_sp.reset(new TypeFormatImpl_Format(my_format));
if (GetValueAsCString(*format_sp.get(), m_value_str))
{
if (!m_value_did_change && m_old_value_valid)
{
// The value was gotten successfully, so we consider the
// value as changed if the value string differs
SetValueDidChange (m_old_value_str != m_value_str);
}
}
}
}
if (m_value_str.empty())
return NULL;
return m_value_str.c_str();
}
// if > 8bytes, 0 is returned. this method should mostly be used
// to read address values out of pointers
uint64_t
ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success)
{
// If our byte size is zero this is an aggregate type that has children
if (CanProvideValue())
{
Scalar scalar;
if (ResolveValue (scalar))
{
if (success)
*success = true;
return scalar.ULongLong(fail_value);
}
// fallthrough, otherwise...
}
if (success)
*success = false;
return fail_value;
}
int64_t
ValueObject::GetValueAsSigned (int64_t fail_value, bool *success)
{
// If our byte size is zero this is an aggregate type that has children
if (CanProvideValue())
{
Scalar scalar;
if (ResolveValue (scalar))
{
if (success)
*success = true;
return scalar.SLongLong(fail_value);
}
// fallthrough, otherwise...
}
if (success)
*success = false;
return fail_value;
}
// if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep
// this call up to date by returning true for your new special cases. We will eventually move
// to checking this call result before trying to display special cases
bool
ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display,
Format custom_format)
{
Flags flags(GetTypeInfo());
if (flags.AnySet(eTypeIsArray | eTypeIsPointer)
&& val_obj_display == ValueObject::eValueObjectRepresentationStyleValue)
{
if (IsCStringContainer(true) &&
(custom_format == eFormatCString ||
custom_format == eFormatCharArray ||
custom_format == eFormatChar ||
custom_format == eFormatVectorOfChar))
return true;
if (flags.Test(eTypeIsArray))
{
if ((custom_format == eFormatBytes) ||
(custom_format == eFormatBytesWithASCII))
return true;
if ((custom_format == eFormatVectorOfChar) ||
(custom_format == eFormatVectorOfFloat32) ||
(custom_format == eFormatVectorOfFloat64) ||
(custom_format == eFormatVectorOfSInt16) ||
(custom_format == eFormatVectorOfSInt32) ||
(custom_format == eFormatVectorOfSInt64) ||
(custom_format == eFormatVectorOfSInt8) ||
(custom_format == eFormatVectorOfUInt128) ||
(custom_format == eFormatVectorOfUInt16) ||
(custom_format == eFormatVectorOfUInt32) ||
(custom_format == eFormatVectorOfUInt64) ||
(custom_format == eFormatVectorOfUInt8))
return true;
}
}
return false;
}
bool
ValueObject::DumpPrintableRepresentation(Stream& s,
ValueObjectRepresentationStyle val_obj_display,
Format custom_format,
PrintableRepresentationSpecialCases special,
bool do_dump_error)
{
Flags flags(GetTypeInfo());
bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow);
bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly);
if (allow_special)
{
if (flags.AnySet(eTypeIsArray | eTypeIsPointer)
&& val_obj_display == ValueObject::eValueObjectRepresentationStyleValue)
{
// when being asked to get a printable display an array or pointer type directly,
// try to "do the right thing"
if (IsCStringContainer(true) &&
(custom_format == eFormatCString ||
custom_format == eFormatCharArray ||
custom_format == eFormatChar ||
custom_format == eFormatVectorOfChar)) // print char[] & char* directly
{
Error error;
lldb::DataBufferSP buffer_sp;
std::pair<size_t, bool> read_string = ReadPointedString(buffer_sp,
error,
0,
(custom_format == eFormatVectorOfChar) ||
(custom_format == eFormatCharArray));
lldb_private::formatters::StringPrinter::ReadBufferAndDumpToStreamOptions options(*this);
options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults
options.SetStream(&s);
options.SetPrefixToken(0);
options.SetQuote('"');
options.SetSourceSize(buffer_sp->GetByteSize());
options.SetIsTruncated(read_string.second);
formatters::StringPrinter::ReadBufferAndDumpToStream<lldb_private::formatters::StringPrinter::StringElementType::ASCII>(options);
return !error.Fail();
}
if (custom_format == eFormatEnum)
return false;
// this only works for arrays, because I have no way to know when
// the pointed memory ends, and no special \0 end of data marker
if (flags.Test(eTypeIsArray))
{
if ((custom_format == eFormatBytes) ||
(custom_format == eFormatBytesWithASCII))
{
const size_t count = GetNumChildren();
s << '[';
for (size_t low = 0; low < count; low++)
{
if (low)
s << ',';
ValueObjectSP child = GetChildAtIndex(low,true);
if (!child.get())
{
s << "<invalid child>";
continue;
}
child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format);
}
s << ']';
return true;
}
if ((custom_format == eFormatVectorOfChar) ||
(custom_format == eFormatVectorOfFloat32) ||
(custom_format == eFormatVectorOfFloat64) ||
(custom_format == eFormatVectorOfSInt16) ||
(custom_format == eFormatVectorOfSInt32) ||
(custom_format == eFormatVectorOfSInt64) ||
(custom_format == eFormatVectorOfSInt8) ||
(custom_format == eFormatVectorOfUInt128) ||
(custom_format == eFormatVectorOfUInt16) ||
(custom_format == eFormatVectorOfUInt32) ||
(custom_format == eFormatVectorOfUInt64) ||
(custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly
{
const size_t count = GetNumChildren();
Format format = FormatManager::GetSingleItemFormat(custom_format);
s << '[';
for (size_t low = 0; low < count; low++)
{
if (low)
s << ',';
ValueObjectSP child = GetChildAtIndex(low,true);
if (!child.get())
{
s << "<invalid child>";
continue;
}
child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format);
}
s << ']';
return true;
}
}
if ((custom_format == eFormatBoolean) ||
(custom_format == eFormatBinary) ||
(custom_format == eFormatChar) ||
(custom_format == eFormatCharPrintable) ||
(custom_format == eFormatComplexFloat) ||
(custom_format == eFormatDecimal) ||
(custom_format == eFormatHex) ||
(custom_format == eFormatHexUppercase) ||
(custom_format == eFormatFloat) ||
(custom_format == eFormatOctal) ||
(custom_format == eFormatOSType) ||
(custom_format == eFormatUnicode16) ||
(custom_format == eFormatUnicode32) ||
(custom_format == eFormatUnsigned) ||
(custom_format == eFormatPointer) ||
(custom_format == eFormatComplexInteger) ||
(custom_format == eFormatComplex) ||
(custom_format == eFormatDefault)) // use the [] operator
return false;
}
}
if (only_special)
return false;
bool var_success = false;
{
const char *cstr = NULL;
// this is a local stream that we are using to ensure that the data pointed to by cstr survives
// long enough for us to copy it to its destination - it is necessary to have this temporary storage
// area for cases where our desired output is not backed by some other longer-term storage
StreamString strm;
if (custom_format != eFormatInvalid)
SetFormat(custom_format);
switch(val_obj_display)
{
case eValueObjectRepresentationStyleValue:
cstr = GetValueAsCString();
break;
case eValueObjectRepresentationStyleSummary:
cstr = GetSummaryAsCString();
break;
case eValueObjectRepresentationStyleLanguageSpecific:
cstr = GetObjectDescription();
break;
case eValueObjectRepresentationStyleLocation:
cstr = GetLocationAsCString();
break;
case eValueObjectRepresentationStyleChildrenCount:
strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren());
cstr = strm.GetString().c_str();
break;
case eValueObjectRepresentationStyleType:
cstr = GetTypeName().AsCString();
break;
case eValueObjectRepresentationStyleName:
cstr = GetName().AsCString();
break;
case eValueObjectRepresentationStyleExpressionPath:
GetExpressionPath(strm, false);
cstr = strm.GetString().c_str();
break;
}
if (!cstr)
{
if (val_obj_display == eValueObjectRepresentationStyleValue)
cstr = GetSummaryAsCString();
else if (val_obj_display == eValueObjectRepresentationStyleSummary)
{
if (!CanProvideValue())
{
strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString());
cstr = strm.GetString().c_str();
}
else
cstr = GetValueAsCString();
}
}
if (cstr)
s.PutCString(cstr);
else
{
if (m_error.Fail())
{
if (do_dump_error)
s.Printf("<%s>", m_error.AsCString());
else
return false;
}
else if (val_obj_display == eValueObjectRepresentationStyleSummary)
s.PutCString("<no summary available>");
else if (val_obj_display == eValueObjectRepresentationStyleValue)
s.PutCString("<no value available>");
else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific)
s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description
else
s.PutCString("<no printable representation>");
}
// we should only return false here if we could not do *anything*
// even if we have an error message as output, that's a success
// from our callers' perspective, so return true
var_success = true;
if (custom_format != eFormatInvalid)
SetFormat(eFormatDefault);
}
return var_success;
}
addr_t
ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type)
{
if (!UpdateValueIfNeeded(false))
return LLDB_INVALID_ADDRESS;
switch (m_value.GetValueType())
{
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
if (scalar_is_load_address)
{
if(address_type)
*address_type = eAddressTypeLoad;
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
{
if(address_type)
*address_type = m_value.GetValueAddressType ();
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
case Value::eValueTypeHostAddress:
{
if(address_type)
*address_type = m_value.GetValueAddressType ();
return LLDB_INVALID_ADDRESS;
}
break;
}
if (address_type)
*address_type = eAddressTypeInvalid;
return LLDB_INVALID_ADDRESS;
}
addr_t
ValueObject::GetPointerValue (AddressType *address_type)
{
addr_t address = LLDB_INVALID_ADDRESS;
if(address_type)
*address_type = eAddressTypeInvalid;
if (!UpdateValueIfNeeded(false))
return address;
switch (m_value.GetValueType())
{
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
break;
case Value::eValueTypeHostAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
{
lldb::offset_t data_offset = 0;
address = m_data.GetPointer(&data_offset);
}
break;
}
if (address_type)
*address_type = GetAddressTypeOfChildren();
return address;
}
bool
ValueObject::SetValueFromCString (const char *value_str, Error& error)
{
error.Clear();
// Make sure our value is up to date first so that our location and location
// type is valid.
if (!UpdateValueIfNeeded(false))
{
error.SetErrorString("unable to read value");
return false;
}
uint64_t count = 0;
const Encoding encoding = GetCompilerType().GetEncoding (count);
const size_t byte_size = GetByteSize();
Value::ValueType value_type = m_value.GetValueType();
if (value_type == Value::eValueTypeScalar)
{
// If the value is already a scalar, then let the scalar change itself:
m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size);
}
else if (byte_size <= 16)
{
// If the value fits in a scalar, then make a new scalar and again let the
// scalar code do the conversion, then figure out where to put the new value.
Scalar new_scalar;
error = new_scalar.SetValueFromCString (value_str, encoding, byte_size);
if (error.Success())
{
switch (value_type)
{
case Value::eValueTypeLoadAddress:
{
// If it is a load address, then the scalar value is the storage location
// of the data, and we have to shove this value down to that load location.
ExecutionContext exe_ctx (GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
size_t bytes_written = process->WriteScalarToMemory (target_addr,
new_scalar,
byte_size,
error);
if (!error.Success())
return false;
if (bytes_written != byte_size)
{
error.SetErrorString("unable to write value to memory");
return false;
}
}
}
break;
case Value::eValueTypeHostAddress:
{
// If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data.
DataExtractor new_data;
new_data.SetByteOrder (m_data.GetByteOrder());
DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0));
m_data.SetData(buffer_sp, 0);
bool success = new_scalar.GetData(new_data);
if (success)
{
new_data.CopyByteOrderedData (0,
byte_size,
const_cast<uint8_t *>(m_data.GetDataStart()),
byte_size,
m_data.GetByteOrder());
}
m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
}
break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
break;
}
}
else
{
return false;
}
}
else
{
// We don't support setting things bigger than a scalar at present.
error.SetErrorString("unable to write aggregate data type");
return false;
}
// If we have reached this point, then we have successfully changed the value.
SetNeedsUpdate();
return true;
}
bool
ValueObject::GetDeclaration (Declaration &decl)
{
decl.Clear();
return false;
}
ConstString
ValueObject::GetTypeName()
{
return GetCompilerType().GetConstTypeName();
}
ConstString
ValueObject::GetDisplayTypeName()
{
return GetTypeName();
}
ConstString
ValueObject::GetQualifiedTypeName()
{
return GetCompilerType().GetConstQualifiedTypeName();
}
LanguageType
ValueObject::GetObjectRuntimeLanguage ()
{
return GetCompilerType().GetMinimumLanguage ();
}
void
ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj)
{
m_synthetic_children[key] = valobj;
}
ValueObjectSP
ValueObject::GetSyntheticChild (const ConstString &key) const
{
ValueObjectSP synthetic_child_sp;
std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key);
if (pos != m_synthetic_children.end())
synthetic_child_sp = pos->second->GetSP();
return synthetic_child_sp;
}
uint32_t
ValueObject::GetTypeInfo (CompilerType *pointee_or_element_compiler_type)
{
return GetCompilerType().GetTypeInfo (pointee_or_element_compiler_type);
}
bool
ValueObject::IsPointerType ()
{
return GetCompilerType().IsPointerType();
}
bool
ValueObject::IsArrayType ()
{
return GetCompilerType().IsArrayType (NULL, NULL, NULL);
}
bool
ValueObject::IsScalarType ()
{
return GetCompilerType().IsScalarType ();
}
bool
ValueObject::IsIntegerType (bool &is_signed)
{
return GetCompilerType().IsIntegerType (is_signed);
}
bool
ValueObject::IsPointerOrReferenceType ()
{
return GetCompilerType().IsPointerOrReferenceType ();
}
bool
ValueObject::IsPossibleDynamicType ()
{
ExecutionContext exe_ctx (GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
return process->IsPossibleDynamicValue(*this);
else
return GetCompilerType().IsPossibleDynamicType (NULL, true, true);
}
bool
ValueObject::IsRuntimeSupportValue ()
{
Process *process(GetProcessSP().get());
if (process)
{
LanguageRuntime *runtime = process->GetLanguageRuntime(GetObjectRuntimeLanguage());
if (!runtime)
runtime = process->GetObjCLanguageRuntime();
if (runtime)
return runtime->IsRuntimeSupportValue(*this);
}
return false;
}
bool
ValueObject::IsNilReference ()
{
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage()))
{
return language->IsNilReference(*this);
}
return false;
}
bool
ValueObject::IsUninitializedReference ()
{
if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage()))
{
return language->IsUninitializedReference(*this);
}
return false;
}
// This allows you to create an array member using and index
// that doesn't not fall in the normal bounds of the array.
// Many times structure can be defined as:
// struct Collection
// {
// uint32_t item_count;
// Item item_array[0];
// };
// The size of the "item_array" is 1, but many times in practice
// there are more items in "item_array".
ValueObjectSP
ValueObject::GetSyntheticArrayMember (size_t index, bool can_create)
{
ValueObjectSP synthetic_child_sp;
if (IsPointerType () || IsArrayType())
{
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (index_const_str);
if (!synthetic_child_sp)
{
ValueObject *synthetic_child;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = CreateChildAtIndex(0, true, index);
// Cache the value if we got one back...
if (synthetic_child)
{
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_array_item_for_pointer = true;
}
}
}
return synthetic_child_sp;
}
ValueObjectSP
ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create)
{
ValueObjectSP synthetic_child_sp;
if (IsScalarType ())
{
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (index_const_str);
if (!synthetic_child_sp)
{
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
ValueObjectChild *synthetic_child = new ValueObjectChild (*this,
GetCompilerType(),
index_const_str,
GetByteSize(),
0,
to-from+1,
from,
false,
false,
eAddressTypeInvalid,
0);
// Cache the value if we got one back...
if (synthetic_child)
{
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_bitfield_for_scalar = true;
}
}
}
return synthetic_child_sp;
}
ValueObjectSP
ValueObject::GetSyntheticChildAtOffset(uint32_t offset, const CompilerType& type, bool can_create)
{
ValueObjectSP synthetic_child_sp;
char name_str[64];
snprintf(name_str, sizeof(name_str), "@%i", offset);
ConstString name_const_str(name_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (name_const_str);
if (synthetic_child_sp.get())
return synthetic_child_sp;
if (!can_create)
return ValueObjectSP();
ExecutionContext exe_ctx (GetExecutionContextRef());
ValueObjectChild *synthetic_child = new ValueObjectChild(*this,
type,
name_const_str,
type.GetByteSize(exe_ctx.GetBestExecutionContextScope()),
offset,
0,
0,
false,
false,
eAddressTypeInvalid,
0);
if (synthetic_child)
{
AddSyntheticChild(name_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(name_const_str);
synthetic_child_sp->m_is_child_at_offset = true;
}
return synthetic_child_sp;
}
ValueObjectSP
ValueObject::GetSyntheticBase (uint32_t offset, const CompilerType& type, bool can_create)
{
ValueObjectSP synthetic_child_sp;
char name_str[64];
snprintf(name_str, sizeof(name_str), "%s", type.GetTypeName().AsCString("<unknown>"));
ConstString name_const_str(name_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (name_const_str);
if (synthetic_child_sp.get())
return synthetic_child_sp;
if (!can_create)
return ValueObjectSP();
const bool is_base_class = true;
ExecutionContext exe_ctx (GetExecutionContextRef());
ValueObjectChild *synthetic_child = new ValueObjectChild(*this,
type,
name_const_str,
type.GetByteSize(exe_ctx.GetBestExecutionContextScope()),
offset,
0,
0,
is_base_class,
false,
eAddressTypeInvalid,
0);
if (synthetic_child)
{
AddSyntheticChild(name_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(name_const_str);
}
return synthetic_child_sp;
}
// your expression path needs to have a leading . or ->
// (unless it somehow "looks like" an array, in which case it has
// a leading [ symbol). while the [ is meaningful and should be shown
// to the user, . and -> are just parser design, but by no means
// added information for the user.. strip them off
static const char*
SkipLeadingExpressionPathSeparators(const char* expression)
{
if (!expression || !expression[0])
return expression;
if (expression[0] == '.')
return expression+1;
if (expression[0] == '-' && expression[1] == '>')
return expression+2;
return expression;
}
ValueObjectSP
ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create)
{
ValueObjectSP synthetic_child_sp;
ConstString name_const_string(expression);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (name_const_string);
if (!synthetic_child_sp)
{
// We haven't made a synthetic array member for expression yet, so
// lets make one and cache it for any future reference.
synthetic_child_sp = GetValueForExpressionPath(expression,
NULL, NULL, NULL,
GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None));
// Cache the value if we got one back...
if (synthetic_child_sp.get())
{
// FIXME: this causes a "real" child to end up with its name changed to the contents of expression
AddSyntheticChild(name_const_string, synthetic_child_sp.get());
synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression)));
}
}
return synthetic_child_sp;
}
void
ValueObject::CalculateSyntheticValue (bool use_synthetic)
{
if (use_synthetic == false)
return;
TargetSP target_sp(GetTargetSP());
if (target_sp && target_sp->GetEnableSyntheticValue() == false)
{
m_synthetic_value = NULL;
return;
}
lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp);
if (!UpdateFormatsIfNeeded() && m_synthetic_value)
return;
if (m_synthetic_children_sp.get() == NULL)
return;
if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
return;
m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
}
void
ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic)
{
if (use_dynamic == eNoDynamicValues)
return;
if (!m_dynamic_value && !IsDynamic())
{
ExecutionContext exe_ctx (GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process && process->IsPossibleDynamicValue(*this))
{
ClearDynamicTypeInformation ();
m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic);
}
}
}
ValueObjectSP
ValueObject::GetDynamicValue (DynamicValueType use_dynamic)
{
if (use_dynamic == eNoDynamicValues)
return ValueObjectSP();
if (!IsDynamic() && m_dynamic_value == NULL)
{
CalculateDynamicValue(use_dynamic);
}
if (m_dynamic_value)
return m_dynamic_value->GetSP();
else
return ValueObjectSP();
}
ValueObjectSP
ValueObject::GetStaticValue()
{
return GetSP();
}
lldb::ValueObjectSP
ValueObject::GetNonSyntheticValue ()
{
return GetSP();
}
ValueObjectSP
ValueObject::GetSyntheticValue (bool use_synthetic)
{
if (use_synthetic == false)
return ValueObjectSP();
CalculateSyntheticValue(use_synthetic);
if (m_synthetic_value)
return m_synthetic_value->GetSP();
else
return ValueObjectSP();
}
bool
ValueObject::HasSyntheticValue()
{
UpdateFormatsIfNeeded();
if (m_synthetic_children_sp.get() == NULL)
return false;
CalculateSyntheticValue(true);
if (m_synthetic_value)
return true;
else
return false;
}
bool
ValueObject::GetBaseClassPath (Stream &s)
{
if (IsBaseClass())
{
bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s);
CompilerType compiler_type = GetCompilerType();
std::string cxx_class_name;
bool this_had_base_class = ClangASTContext::GetCXXClassName (compiler_type, cxx_class_name);
if (this_had_base_class)
{
if (parent_had_base_class)
s.PutCString("::");
s.PutCString(cxx_class_name.c_str());
}
return parent_had_base_class || this_had_base_class;
}
return false;
}
ValueObject *
ValueObject::GetNonBaseClassParent()
{
if (GetParent())
{
if (GetParent()->IsBaseClass())
return GetParent()->GetNonBaseClassParent();
else
return GetParent();
}
return NULL;
}
bool
ValueObject::IsBaseClass (uint32_t& depth)
{
if (!IsBaseClass())
{
depth = 0;
return false;
}
if (GetParent())
{
GetParent()->IsBaseClass(depth);
depth = depth + 1;
return true;
}
// TODO: a base of no parent? weird..
depth = 1;
return true;
}
void
ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat)
{
// synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways
// that don't make sense from an underlying language/API standpoint. So, use a special code path here to return
// something that can hopefully be used in expression
if (m_is_synthetic_children_generated)
{
UpdateValueIfNeeded();
if (m_value.GetValueType() == Value::eValueTypeLoadAddress)
{
if (IsPointerOrReferenceType())
{
s.Printf("((%s)0x%" PRIx64 ")",
GetTypeName().AsCString("void"),
GetValueAsUnsigned(0));
return;
}
else
{
uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (load_addr != LLDB_INVALID_ADDRESS)
{
s.Printf("(*( (%s *)0x%" PRIx64 "))",
GetTypeName().AsCString("void"),
load_addr);
return;
}
}
}
if (CanProvideValue())
{
s.Printf("((%s)%s)",
GetTypeName().AsCString("void"),
GetValueAsCString());
return;
}
return;
}
const bool is_deref_of_parent = IsDereferenceOfParent ();
if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers)
{
// this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely
// fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName.
// the eHonorPointers mode is meant to produce strings in this latter format
s.PutCString("*(");
}
ValueObject* parent = GetParent();
if (parent)
parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat);
// if we are a deref_of_parent just because we are synthetic array
// members made up to allow ptr[%d] syntax to work in variable
// printing, then add our name ([%d]) to the expression path
if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers)
s.PutCString(m_name.AsCString());
if (!IsBaseClass())
{
if (!is_deref_of_parent)
{
ValueObject *non_base_class_parent = GetNonBaseClassParent();
if (non_base_class_parent)
{
CompilerType non_base_class_parent_compiler_type = non_base_class_parent->GetCompilerType();
if (non_base_class_parent_compiler_type)
{
if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers)
{
s.PutCString("->");
}
else
{
const uint32_t non_base_class_parent_type_info = non_base_class_parent_compiler_type.GetTypeInfo();
if (non_base_class_parent_type_info & eTypeIsPointer)
{
s.PutCString("->");
}
else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
!(non_base_class_parent_type_info & eTypeIsArray))
{
s.PutChar('.');
}
}
}
}
const char *name = GetName().GetCString();
if (name)
{
if (qualify_cxx_base_classes)
{
if (GetBaseClassPath (s))
s.PutCString("::");
}
s.PutCString(name);
}
}
}
if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers)
{
s.PutChar(')');
}
}
ValueObjectSP
ValueObject::GetValueForExpressionPath(const char* expression,
const char** first_unparsed,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_value_type,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* final_task_on_target)
{
const char* dummy_first_unparsed;
ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown;
ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression,
first_unparsed ? first_unparsed : &dummy_first_unparsed,
reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type,
options,
final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
return ret_val;
if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects
{
if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference)
{
Error error;
ValueObjectSP final_value = ret_val->Dereference(error);
if (error.Fail() || !final_value.get())
{
if (reason_to_stop)
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
if (final_value_type)
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
if (final_task_on_target)
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
return final_value;
}
}
if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress)
{
Error error;
ValueObjectSP final_value = ret_val->AddressOf(error);
if (error.Fail() || !final_value.get())
{
if (reason_to_stop)
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
if (final_value_type)
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
if (final_task_on_target)
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
return final_value;
}
}
}
return ret_val; // final_task_on_target will still have its original value, so you know I did not do it
}
int
ValueObject::GetValuesForExpressionPath(const char* expression,
ValueObjectListSP& list,
const char** first_unparsed,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_value_type,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* final_task_on_target)
{
const char* dummy_first_unparsed;
ExpressionPathScanEndReason dummy_reason_to_stop;
ExpressionPathEndResultType dummy_final_value_type;
ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression,
first_unparsed ? first_unparsed : &dummy_first_unparsed,
reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type,
options,
final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
if (!ret_val.get()) // if there are errors, I add nothing to the list
return 0;
if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet)
{
// I need not expand a range, just post-process the final value and return
if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
{
list->Append(ret_val);
return 1;
}
if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects
{
if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference)
{
Error error;
ValueObjectSP final_value = ret_val->Dereference(error);
if (error.Fail() || !final_value.get())
{
if (reason_to_stop)
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
if (final_value_type)
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
list->Append(final_value);
return 1;
}
}
if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress)
{
Error error;
ValueObjectSP final_value = ret_val->AddressOf(error);
if (error.Fail() || !final_value.get())
{
if (reason_to_stop)
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
if (final_value_type)
*final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
*final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
list->Append(final_value);
return 1;
}
}
}
}
else
{
return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed,
first_unparsed ? first_unparsed : &dummy_first_unparsed,
ret_val,
list,
reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type,
options,
final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
}
// in any non-covered case, just do the obviously right thing
list->Append(ret_val);
return 1;
}
ValueObjectSP
ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr,
const char** first_unparsed,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_result,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* what_next)
{
ValueObjectSP root = GetSP();
if (!root.get())
return ValueObjectSP();
*first_unparsed = expression_cstr;
while (true)
{
const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr
CompilerType root_compiler_type = root->GetCompilerType();
CompilerType pointee_compiler_type;
Flags pointee_compiler_type_info;
Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type));
if (pointee_compiler_type)
pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
if (!expression_cstr || *expression_cstr == '\0')
{
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
return root;
}
switch (*expression_cstr)
{
case '-':
{
if (options.m_check_dot_vs_arrow_syntax &&
root_compiler_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden
root_compiler_type_info.Test(eTypeIsPointer) &&
options.m_no_fragile_ivar)
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (expression_cstr[1] != '>')
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
expression_cstr++; // skip the -
}
case '.': // or fallthrough from ->
{
if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' &&
root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
expression_cstr++; // skip .
const char *next_separator = strpbrk(expression_cstr+1,"-.[");
ConstString child_name;
if (!next_separator) // if no other separator just expand this last layer
{
child_name.SetCString (expression_cstr);
ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true);
if (child_valobj_sp.get()) // we know we are done, so just return
{
*first_unparsed = "";
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
return child_valobj_sp;
}
else
{
switch (options.m_synthetic_children_traversal)
{
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None:
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic:
if (root->IsSynthetic())
{
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic:
if (!root->IsSynthetic())
{
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both:
if (root->IsSynthetic())
{
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
else
{
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
}
}
// if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP,
// so we hit the "else" branch, and return an error
if(child_valobj_sp.get()) // if it worked, just return
{
*first_unparsed = "";
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
return child_valobj_sp;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
else // other layers do expand
{
child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr);
ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true);
if (child_valobj_sp.get()) // store the new root and move on
{
root = child_valobj_sp;
*first_unparsed = next_separator;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
else
{
switch (options.m_synthetic_children_traversal)
{
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None:
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic:
if (root->IsSynthetic())
{
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic:
if (!root->IsSynthetic())
{
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both:
if (root->IsSynthetic())
{
child_valobj_sp = root->GetNonSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
else
{
child_valobj_sp = root->GetSyntheticValue();
if (child_valobj_sp.get())
child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true);
}
break;
}
}
// if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP,
// so we hit the "else" branch, and return an error
if(child_valobj_sp.get()) // if it worked, move on
{
root = child_valobj_sp;
*first_unparsed = next_separator;
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
break;
}
case '[':
{
if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer) && !root_compiler_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T*
{
if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar...
{
if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None) // ...only chance left is synthetic
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays
{
if (!root_compiler_type_info.Test(eTypeIsArray))
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else // even if something follows, we cannot expand unbounded ranges, just let the caller do it
{
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange;
return root;
}
}
const char *separator_position = ::strchr(expression_cstr+1,'-');
const char *close_bracket_position = ::strchr(expression_cstr+1,']');
if (!close_bracket_position) // if there is no ], this is a syntax error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N]
{
char *end = NULL;
unsigned long index = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays
{
if (root_compiler_type_info.Test(eTypeIsArray))
{
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange;
return root;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
// from here on we do have a valid index
if (root_compiler_type_info.Test(eTypeIsArray))
{
ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true);
if (!child_valobj_sp)
child_valobj_sp = root->GetSyntheticArrayMember(index, true);
if (!child_valobj_sp)
if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index)
child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true);
if (child_valobj_sp)
{
root = child_valobj_sp;
*first_unparsed = end+1; // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
else if (root_compiler_type_info.Test(eTypeIsPointer))
{
if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
pointee_compiler_type_info.Test(eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
*what_next = eExpressionPathAftermathNothing;
continue;
}
}
else
{
if (root->GetCompilerType().GetMinimumLanguage() == eLanguageTypeObjC
&& pointee_compiler_type_info.AllClear(eTypeIsPointer)
&& root->HasSyntheticValue()
&& (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic ||
options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both))
{
root = root->GetSyntheticValue()->GetChildAtIndex(index, true);
}
else
root = root->GetSyntheticArrayMember(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
*first_unparsed = end+1; // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
}
}
else if (root_compiler_type_info.Test(eTypeIsScalar))
{
root = root->GetSyntheticBitFieldChild(index, index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
{
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
return root;
}
}
else if (root_compiler_type_info.Test(eTypeIsVector))
{
root = root->GetChildAtIndex(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
*first_unparsed = end+1; // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
}
else if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic ||
options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both)
{
if (root->HasSyntheticValue())
root = root->GetSyntheticValue();
else if (!root->IsSynthetic())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
// if we are here, then root itself is a synthetic VO.. should be good to go
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
root = root->GetChildAtIndex(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
*first_unparsed = end+1; // skip ]
*final_result = ValueObject::eExpressionPathEndResultTypePlain;
continue;
}
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
}
else // we have a low and a high index
{
char *end = NULL;
unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != separator_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
unsigned long index_higher = ::strtoul (separator_position+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
if (index_lower > index_higher) // swap indices if required
{
unsigned long temp = index_lower;
index_lower = index_higher;
index_higher = temp;
}
if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars
{
root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
return root;
}
}
else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
*what_next == ValueObject::eExpressionPathAftermathDereference &&
pointee_compiler_type_info.Test(eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
}
else
{
*what_next = ValueObject::eExpressionPathAftermathNothing;
continue;
}
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
*final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
return root;
}
}
break;
}
default: // some non-separator is in the way
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return ValueObjectSP();
break;
}
}
}
}
int
ValueObject::ExpandArraySliceExpression(const char* expression_cstr,
const char** first_unparsed,
ValueObjectSP root,
ValueObjectListSP& list,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_result,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* what_next)
{
if (!root.get())
return 0;
*first_unparsed = expression_cstr;
while (true)
{
const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr
CompilerType root_compiler_type = root->GetCompilerType();
CompilerType pointee_compiler_type;
Flags pointee_compiler_type_info;
Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type));
if (pointee_compiler_type)
pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
if (!expression_cstr || *expression_cstr == '\0')
{
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
list->Append(root);
return 1;
}
switch (*expression_cstr)
{
case '[':
{
if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T*
{
if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong!
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
}
if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays
{
if (!root_compiler_type_info.Test(eTypeIsArray))
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else // expand this into list
{
const size_t max_index = root->GetNumChildren() - 1;
for (size_t index = 0; index < max_index; index++)
{
ValueObjectSP child =
root->GetChildAtIndex(index, true);
list->Append(child);
}
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return max_index; // tell me number of items I added to the VOList
}
}
const char *separator_position = ::strchr(expression_cstr+1,'-');
const char *close_bracket_position = ::strchr(expression_cstr+1,']');
if (!close_bracket_position) // if there is no ], this is a syntax error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N]
{
char *end = NULL;
unsigned long index = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays
{
if (root_compiler_type_info.Test(eTypeIsArray))
{
const size_t max_index = root->GetNumChildren() - 1;
for (size_t index = 0; index < max_index; index++)
{
ValueObjectSP child =
root->GetChildAtIndex(index, true);
list->Append(child);
}
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return max_index; // tell me number of items I added to the VOList
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
}
// from here on we do have a valid index
if (root_compiler_type_info.Test(eTypeIsArray))
{
root = root->GetChildAtIndex(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return 1;
}
}
else if (root_compiler_type_info.Test(eTypeIsPointer))
{
if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
pointee_compiler_type_info.Test(eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
*what_next = eExpressionPathAftermathNothing;
continue;
}
}
else
{
root = root->GetSyntheticArrayMember(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return 1;
}
}
}
else /*if (ClangASTContext::IsScalarType(root_compiler_type))*/
{
root = root->GetSyntheticBitFieldChild(index, index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return 1;
}
}
}
else // we have a low and a high index
{
char *end = NULL;
unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != separator_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
unsigned long index_higher = ::strtoul (separator_position+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
if (index_lower > index_higher) // swap indices if required
{
unsigned long temp = index_lower;
index_lower = index_higher;
index_higher = temp;
}
if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars
{
root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return 1;
}
}
else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
*what_next == ValueObject::eExpressionPathAftermathDereference &&
pointee_compiler_type_info.Test(eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
}
else
{
*what_next = ValueObject::eExpressionPathAftermathNothing;
continue;
}
}
else
{
for (unsigned long index = index_lower;
index <= index_higher; index++)
{
ValueObjectSP child =
root->GetChildAtIndex(index, true);
list->Append(child);
}
*first_unparsed = end+1;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded;
*final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList;
return index_higher-index_lower+1; // tell me number of items I added to the VOList
}
}
break;
}
default: // some non-[ separator, or something entirely wrong, is in the way
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
*final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
return 0;
break;
}
}
}
}
void
ValueObject::LogValueObject (Log *log)
{
if (log)
return LogValueObject (log, DumpValueObjectOptions(*this));
}
void
ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options)
{
if (log)
{
StreamString s;
Dump (s, options);
if (s.GetSize())
log->PutCString(s.GetData());
}
}
void
ValueObject::Dump (Stream &s)
{
Dump (s, DumpValueObjectOptions(*this));
}
void
ValueObject::Dump (Stream &s,
const DumpValueObjectOptions& options)
{
ValueObjectPrinter printer(this,&s,options);
printer.PrintValueObject();
}
ValueObjectSP
ValueObject::CreateConstantValue (const ConstString &name)
{
ValueObjectSP valobj_sp;
if (UpdateValueIfNeeded(false) && m_error.Success())
{
ExecutionContext exe_ctx (GetExecutionContextRef());
DataExtractor data;
data.SetByteOrder (m_data.GetByteOrder());
data.SetAddressByteSize(m_data.GetAddressByteSize());
if (IsBitfield())
{
Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get());
}
else
m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get());
valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(),
GetCompilerType(),
name,
data,
GetAddressOf());
}
if (!valobj_sp)
{
ExecutionContext exe_ctx (GetExecutionContextRef());
valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error);
}
return valobj_sp;
}
ValueObjectSP
ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue,
bool synthValue)
{
ValueObjectSP result_sp(GetSP());
switch (dynValue)
{
case lldb::eDynamicCanRunTarget:
case lldb::eDynamicDontRunTarget:
{
if (!result_sp->IsDynamic())
{
if (result_sp->GetDynamicValue(dynValue))
result_sp = result_sp->GetDynamicValue(dynValue);
}
}
break;
case lldb::eNoDynamicValues:
{
if (result_sp->IsDynamic())
{
if (result_sp->GetStaticValue())
result_sp = result_sp->GetStaticValue();
}
}
break;
}
if (synthValue)
{
if (!result_sp->IsSynthetic())
{
if (result_sp->GetSyntheticValue())
result_sp = result_sp->GetSyntheticValue();
}
}
else
{
if (result_sp->IsSynthetic())
{
if (result_sp->GetNonSyntheticValue())
result_sp = result_sp->GetNonSyntheticValue();
}
}
return result_sp;
}
lldb::addr_t
ValueObject::GetCPPVTableAddress (AddressType &address_type)
{
CompilerType pointee_type;
CompilerType this_type(GetCompilerType());
uint32_t type_info = this_type.GetTypeInfo(&pointee_type);
if (type_info)
{
bool ptr_or_ref = false;
if (type_info & (eTypeIsPointer | eTypeIsReference))
{
ptr_or_ref = true;
type_info = pointee_type.GetTypeInfo();
}
const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus;
if ((type_info & cpp_class) == cpp_class)
{
if (ptr_or_ref)
{
address_type = GetAddressTypeOfChildren();
return GetValueAsUnsigned(LLDB_INVALID_ADDRESS);
}
else
return GetAddressOf (false, &address_type);
}
}
address_type = eAddressTypeInvalid;
return LLDB_INVALID_ADDRESS;
}
ValueObjectSP
ValueObject::Dereference (Error &error)
{
if (m_deref_valobj)
return m_deref_valobj->GetSP();
const bool is_pointer_or_reference_type = IsPointerOrReferenceType();
if (is_pointer_or_reference_type)
{
bool omit_empty_base_classes = true;
bool ignore_array_bounds = false;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
const bool transparent_pointers = false;
CompilerType compiler_type = GetCompilerType();
CompilerType child_compiler_type;
uint64_t language_flags;
ExecutionContext exe_ctx (GetExecutionContextRef());
child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex (&exe_ctx,
0,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name_str,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
this,
language_flags);
if (child_compiler_type && child_byte_size)
{
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString (child_name_str.c_str());
m_deref_valobj = new ValueObjectChild (*this,
child_compiler_type,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
eAddressTypeInvalid,
language_flags);
}
}
if (m_deref_valobj)
{
error.Clear();
return m_deref_valobj->GetSP();
}
else
{
StreamString strm;
GetExpressionPath(strm, true);
if (is_pointer_or_reference_type)
error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str());
else
error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str());
return ValueObjectSP();
}
}
ValueObjectSP
ValueObject::AddressOf (Error &error)
{
if (m_addr_of_valobj_sp)
return m_addr_of_valobj_sp;
AddressType address_type = eAddressTypeInvalid;
const bool scalar_is_load_address = false;
addr_t addr = GetAddressOf (scalar_is_load_address, &address_type);
error.Clear();
if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost)
{
switch (address_type)
{
case eAddressTypeInvalid:
{
StreamString expr_path_strm;
GetExpressionPath(expr_path_strm, true);
error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str());
}
break;
case eAddressTypeFile:
case eAddressTypeLoad:
{
CompilerType compiler_type = GetCompilerType();
if (compiler_type)
{
std::string name (1, '&');
name.append (m_name.AsCString(""));
ExecutionContext exe_ctx (GetExecutionContextRef());
m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(),
compiler_type.GetPointerType(),
ConstString (name.c_str()),
addr,
eAddressTypeInvalid,
m_data.GetAddressByteSize());
}
}
break;
default:
break;
}
}
else
{
StreamString expr_path_strm;
GetExpressionPath(expr_path_strm, true);
error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str());
}
return m_addr_of_valobj_sp;
}
ValueObjectSP
ValueObject::Cast (const CompilerType &compiler_type)
{
return ValueObjectCast::Create (*this, GetName(), compiler_type);
}
ValueObjectSP
ValueObject::CastPointerType (const char *name, CompilerType &compiler_type)
{
ValueObjectSP valobj_sp;
AddressType address_type;
addr_t ptr_value = GetPointerValue (&address_type);
if (ptr_value != LLDB_INVALID_ADDRESS)
{
Address ptr_addr (ptr_value);
ExecutionContext exe_ctx (GetExecutionContextRef());
valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(),
name,
ptr_addr,
compiler_type);
}
return valobj_sp;
}
ValueObjectSP
ValueObject::CastPointerType (const char *name, TypeSP &type_sp)
{
ValueObjectSP valobj_sp;
AddressType address_type;
addr_t ptr_value = GetPointerValue (&address_type);
if (ptr_value != LLDB_INVALID_ADDRESS)
{
Address ptr_addr (ptr_value);
ExecutionContext exe_ctx (GetExecutionContextRef());
valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(),
name,
ptr_addr,
type_sp);
}
return valobj_sp;
}
ValueObject::EvaluationPoint::EvaluationPoint () :
m_mod_id(),
m_exe_ctx_ref(),
m_needs_update (true)
{
}
ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected):
m_mod_id(),
m_exe_ctx_ref(),
m_needs_update (true)
{
ExecutionContext exe_ctx(exe_scope);
TargetSP target_sp (exe_ctx.GetTargetSP());
if (target_sp)
{
m_exe_ctx_ref.SetTargetSP (target_sp);
ProcessSP process_sp (exe_ctx.GetProcessSP());
if (!process_sp)
process_sp = target_sp->GetProcessSP();
if (process_sp)
{
m_mod_id = process_sp->GetModID();
m_exe_ctx_ref.SetProcessSP (process_sp);
ThreadSP thread_sp (exe_ctx.GetThreadSP());
if (!thread_sp)
{
if (use_selected)
thread_sp = process_sp->GetThreadList().GetSelectedThread();
}
if (thread_sp)
{
m_exe_ctx_ref.SetThreadSP(thread_sp);
StackFrameSP frame_sp (exe_ctx.GetFrameSP());
if (!frame_sp)
{
if (use_selected)
frame_sp = thread_sp->GetSelectedFrame();
}
if (frame_sp)
m_exe_ctx_ref.SetFrameSP(frame_sp);
}
}
}
}
ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) :
m_mod_id(),
m_exe_ctx_ref(rhs.m_exe_ctx_ref),
m_needs_update (true)
{
}
ValueObject::EvaluationPoint::~EvaluationPoint ()
{
}
// This function checks the EvaluationPoint against the current process state. If the current
// state matches the evaluation point, or the evaluation point is already invalid, then we return
// false, meaning "no change". If the current state is different, we update our state, and return
// true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so
// future calls to NeedsUpdate will return true.
// exe_scope will be set to the current execution context scope.
bool
ValueObject::EvaluationPoint::SyncWithProcessState(bool accept_invalid_exe_ctx)
{
// Start with the target, if it is NULL, then we're obviously not going to get any further:
const bool thread_and_frame_only_if_stopped = true;
ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
if (exe_ctx.GetTargetPtr() == NULL)
return false;
// If we don't have a process nothing can change.
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
return false;
// If our stop id is the current stop ID, nothing has changed:
ProcessModID current_mod_id = process->GetModID();
// If the current stop id is 0, either we haven't run yet, or the process state has been cleared.
// In either case, we aren't going to be able to sync with the process state.
if (current_mod_id.GetStopID() == 0)
return false;
bool changed = false;
const bool was_valid = m_mod_id.IsValid();
if (was_valid)
{
if (m_mod_id == current_mod_id)
{
// Everything is already up to date in this object, no need to
// update the execution context scope.
changed = false;
}
else
{
m_mod_id = current_mod_id;
m_needs_update = true;
changed = true;
}
}
// Now re-look up the thread and frame in case the underlying objects have gone away & been recreated.
// That way we'll be sure to return a valid exe_scope.
// If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid.
if (!accept_invalid_exe_ctx)
{
if (m_exe_ctx_ref.HasThreadRef())
{
ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP());
if (thread_sp)
{
if (m_exe_ctx_ref.HasFrameRef())
{
StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP());
if (!frame_sp)
{
// We used to have a frame, but now it is gone
SetInvalid();
changed = was_valid;
}
}
}
else
{
// We used to have a thread, but now it is gone
SetInvalid();
changed = was_valid;
}
}
}
return changed;
}
void
ValueObject::EvaluationPoint::SetUpdated ()
{
ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
if (process_sp)
m_mod_id = process_sp->GetModID();
m_needs_update = false;
}
void
ValueObject::ClearUserVisibleData(uint32_t clear_mask)
{
if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue)
m_value_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation)
m_location_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary)
m_summary_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription)
m_object_desc_str.clear();
if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren)
{
if (m_synthetic_value)
m_synthetic_value = NULL;
}
if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator)
m_validation_result.reset();
}
SymbolContextScope *
ValueObject::GetSymbolContextScope()
{
if (m_parent)
{
if (!m_parent->IsPointerOrReferenceType())
return m_parent->GetSymbolContextScope();
}
return NULL;
}
lldb::ValueObjectSP
ValueObject::CreateValueObjectFromExpression (const char* name,
const char* expression,
const ExecutionContext& exe_ctx)
{
return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions());
}
lldb::ValueObjectSP
ValueObject::CreateValueObjectFromExpression (const char* name,
const char* expression,
const ExecutionContext& exe_ctx,
const EvaluateExpressionOptions& options)
{
lldb::ValueObjectSP retval_sp;
lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
if (!target_sp)
return retval_sp;
if (!expression || !*expression)
return retval_sp;
target_sp->EvaluateExpression (expression,
exe_ctx.GetFrameSP().get(),
retval_sp,
options);
if (retval_sp && name && *name)
retval_sp->SetName(ConstString(name));
return retval_sp;
}
lldb::ValueObjectSP
ValueObject::CreateValueObjectFromAddress (const char* name,
uint64_t address,
const ExecutionContext& exe_ctx,
CompilerType type)
{
if (type)
{
CompilerType pointer_type(type.GetPointerType());
if (pointer_type)
{
lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t)));
lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(),
pointer_type,
ConstString(name),
buffer,
exe_ctx.GetByteOrder(),
exe_ctx.GetAddressByteSize()));
if (ptr_result_valobj_sp)
{
ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress);
Error err;
ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
if (ptr_result_valobj_sp && name && *name)
ptr_result_valobj_sp->SetName(ConstString(name));
}
return ptr_result_valobj_sp;
}
}
return lldb::ValueObjectSP();
}
lldb::ValueObjectSP
ValueObject::CreateValueObjectFromData (const char* name,
const DataExtractor& data,
const ExecutionContext& exe_ctx,
CompilerType type)
{
lldb::ValueObjectSP new_value_sp;
new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(),
type,
ConstString(name),
data,
LLDB_INVALID_ADDRESS);
new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
if (new_value_sp && name && *name)
new_value_sp->SetName(ConstString(name));
return new_value_sp;
}
ModuleSP
ValueObject::GetModule ()
{
ValueObject* root(GetRoot());
if (root != this)
return root->GetModule();
return lldb::ModuleSP();
}
ValueObject*
ValueObject::GetRoot ()
{
if (m_root)
return m_root;
return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool {
return (vo->m_parent != nullptr);
}));
}
ValueObject*
ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f)
{
ValueObject* vo = this;
while (vo)
{
if (f(vo) == false)
break;
vo = vo->m_parent;
}
return vo;
}
AddressType
ValueObject::GetAddressTypeOfChildren()
{
if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid)
{
ValueObject* root(GetRoot());
if (root != this)
return root->GetAddressTypeOfChildren();
}
return m_address_type_of_ptr_or_ref_children;
}
lldb::DynamicValueType
ValueObject::GetDynamicValueType ()
{
ValueObject* with_dv_info = this;
while (with_dv_info)
{
if (with_dv_info->HasDynamicValueTypeInfo())
return with_dv_info->GetDynamicValueTypeImpl();
with_dv_info = with_dv_info->m_parent;
}
return lldb::eNoDynamicValues;
}
lldb::Format
ValueObject::GetFormat () const
{
const ValueObject* with_fmt_info = this;
while (with_fmt_info)
{
if (with_fmt_info->m_format != lldb::eFormatDefault)
return with_fmt_info->m_format;
with_fmt_info = with_fmt_info->m_parent;
}
return m_format;
}
lldb::LanguageType
ValueObject::GetPreferredDisplayLanguage ()
{
lldb::LanguageType type = m_preferred_display_language;
if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
{
if (GetRoot())
{
if (GetRoot() == this)
{
if (StackFrameSP frame_sp = GetFrameSP())
{
const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit));
if (CompileUnit* cu = sc.comp_unit)
type = cu->GetLanguage();
}
}
else
{
type = GetRoot()->GetPreferredDisplayLanguage();
}
}
}
return (m_preferred_display_language = type); // only compute it once
}
void
ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt)
{
m_preferred_display_language = lt;
}
void
ValueObject::SetPreferredDisplayLanguageIfNeeded (lldb::LanguageType lt)
{
if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
SetPreferredDisplayLanguage(lt);
}
bool
ValueObject::CanProvideValue ()
{
// we need to support invalid types as providers of values because some bare-board
// debugging scenarios have no notion of types, but still manage to have raw numeric
// values for things like registers. sigh.
const CompilerType &type(GetCompilerType());
return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue));
}
bool
ValueObject::IsChecksumEmpty ()
{
return m_value_checksum.empty();
}
ValueObjectSP
ValueObject::Persist ()
{
if (!UpdateValueIfNeeded())
return nullptr;
TargetSP target_sp(GetTargetSP());
if (!target_sp)
return nullptr;
PersistentExpressionState *persistent_state = target_sp->GetPersistentExpressionStateForLanguage(GetPreferredDisplayLanguage());
if (!persistent_state)
return nullptr;
ConstString name(persistent_state->GetNextPersistentVariableName());
ValueObjectSP const_result_sp = ValueObjectConstResult::Create (target_sp.get(), GetValue(), name);
ExpressionVariableSP clang_var_sp = persistent_state->CreatePersistentVariable(const_result_sp);
clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp;
clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
return clang_var_sp->GetValueObject();
}
bool
ValueObject::IsSyntheticChildrenGenerated ()
{
return m_is_synthetic_children_generated;
}
void
ValueObject::SetSyntheticChildrenGenerated (bool b)
{
m_is_synthetic_children_generated = b;
}
uint64_t
ValueObject::GetLanguageFlags ()
{
return m_language_flags;
}
void
ValueObject::SetLanguageFlags (uint64_t flags)
{
m_language_flags = flags;
}