Go to file
Nikita Popov a3904cc77f [BasicAA] Handle recursive queries more efficiently
An alias query currently works out roughly like this:

 * Look up location pair in cache.
 * Perform BasicAA logic (including cache lookup and insertion...)
 * Perform a recursive query using BestAAResults.
   * Look up location pair in cache (and thus do not recurse into BasicAA)
   * Query all the other AA providers.
 * Query all the other AA providers.

This is a lot of unnecessary work, all ultimately caused by the
BestAAResults query at the end of aliasCheck(). The reason we perform
it, is that aliasCheck() is getting called recursively, and we of
course want those recursive queries to also make use of other AA
providers, not just BasicAA. We can solve this by making the recursive
queries directly use BestAAResults (which will check both BasicAA
and other providers), rather than recursing into aliasCheck().

There are some tradeoffs:

 * We can no longer pass through the precomputed underlying object
   to aliasCheck(). This is not a major concern, because nowadays
   getUnderlyingObject() is quite cheap.
 * Results from other AA providers are no longer cached inside
   BasicAA. The way this worked was already a bit iffy, in that a
   result could be cached, but if it was MayAlias, we'd still end
   up re-querying other providers anyway. If we want to cache
   non-BasicAA results, we should do that in a more principled manner.

In any case, despite those tradeoffs, this works out to be a decent
compile-time improvment. I think it also simplifies the mental model
of how BasicAA works. It took me quite a while to fully understand
how these things interact.

Differential Revision: https://reviews.llvm.org/D90094
2021-01-14 20:32:41 +01:00
.github [github] Move repo lockdown config into llvm-project repo 2021-01-11 16:20:08 -08:00
clang [NFC] Update test to not check for 'opaque' in the file name. 2021-01-14 11:24:06 -08:00
clang-tools-extra [clangd] Trivial: Documentation fix in ASTSignals. 2021-01-14 18:38:42 +01:00
compiler-rt [GWP-ASan] Minor refactor of optional components. 2021-01-14 11:14:11 -08:00
debuginfo-tests Fix check-gdb-mlir-support build after MLIR API changed to take Context as first argument 2021-01-07 21:30:39 +00:00
flang [openacc] Rename generated file from ACC.cpp.inc to ACC.inc to match D92955 2021-01-14 14:19:53 -05:00
libc [libc][NFC] change isblank and iscntrl from implicit casting 2021-01-13 22:06:56 +00:00
libclc libclc: Use find_package to find Python 3 and require it 2020-10-01 22:31:33 +02:00
libcxx [libc++] Give extern templates default visibility on gcc 2021-01-12 18:30:56 -08:00
libcxxabi [libc++/abi] Re-remove unnecessary null pointer checks from operator delete 2021-01-08 17:03:50 -05:00
libunwind [libunwind] Unwind through aarch64/Linux sigreturn frame 2021-01-13 16:38:36 -08:00
lld [lld][WebAssembly] Add support for handling table symbols 2021-01-14 11:13:13 +01:00
lldb [LLDB] MinidumpParser: Prefer executable module even at higher address 2021-01-14 13:17:57 -05:00
llvm [BasicAA] Handle recursive queries more efficiently 2021-01-14 20:32:41 +01:00
mlir Add newline to terminate debug message (NFC) 2021-01-14 19:29:18 +00:00
openmp [OpenMP] Dropped unnecessary define when compiling deviceRTLs for NVPTX 2021-01-14 13:55:12 -05:00
parallel-libs Reapply "Try enabling -Wsuggest-override again, using add_compile_options instead of add_compile_definitions for disabling it in unittests/ directories." 2020-07-22 17:50:19 -07:00
polly [NFC] Rename ThinLTOPhase to ThinOrFullLTOPhase and move it from PassBuilder.h 2021-01-13 15:55:40 -08:00
pstl [pstl] Replace direct use of assert() with _PSTL_ASSERT 2020-11-02 18:35:54 -05:00
runtimes [CMake] Split the target side of runtimes build 2021-01-11 23:39:36 -08:00
utils/arcanist Fix arc lint's clang-format rule: only format the file we were asked to format. 2020-10-11 14:24:23 -07:00
.arcconfig Set the target branch for `arc land` to main 2020-12-07 21:57:32 +00:00
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format
.clang-tidy - Update .clang-tidy to ignore parameters of main like functions for naming violations in clang and llvm directory 2020-01-31 16:49:45 +00:00
.git-blame-ignore-revs NFC: Add whitespace-changing revisions to .git-blame-ignore-revs 2020-09-21 20:17:24 -04:00
.gitignore [NFC] Adding pythonenv* to .gitignore 2020-09-03 22:42:27 -04:00
CONTRIBUTING.md
README.md Revert "This is a test commit" 2020-10-21 09:34:15 +08:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.