forked from OSchip/llvm-project
1755 lines
58 KiB
C++
1755 lines
58 KiB
C++
//===- OutputSections.cpp -------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Config.h"
|
|
#include "SymbolTable.h"
|
|
#include "Target.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf2;
|
|
|
|
template <class ELFT>
|
|
OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
|
|
uintX_t Flags)
|
|
: Name(Name) {
|
|
memset(&Header, 0, sizeof(Elf_Shdr));
|
|
Header.sh_type = Type;
|
|
Header.sh_flags = Flags;
|
|
}
|
|
|
|
template <class ELFT>
|
|
GotPltSection<ELFT>::GotPltSection()
|
|
: OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
|
|
this->Header.sh_addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody *Sym) {
|
|
Sym->GotPltIndex = Target->getGotPltHeaderEntriesNum() + Entries.size();
|
|
Entries.push_back(Sym);
|
|
}
|
|
|
|
template <class ELFT> bool GotPltSection<ELFT>::empty() const {
|
|
return Entries.empty();
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotPltSection<ELFT>::uintX_t
|
|
GotPltSection<ELFT>::getEntryAddr(const SymbolBody &B) const {
|
|
return this->getVA() + B.GotPltIndex * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT> void GotPltSection<ELFT>::finalize() {
|
|
this->Header.sh_size =
|
|
(Target->getGotPltHeaderEntriesNum() + Entries.size()) * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Target->writeGotPltHeaderEntries(Buf);
|
|
Buf += Target->getGotPltHeaderEntriesNum() * sizeof(uintX_t);
|
|
for (const SymbolBody *B : Entries) {
|
|
Target->writeGotPltEntry(Buf, Out<ELFT>::Plt->getEntryAddr(*B));
|
|
Buf += sizeof(uintX_t);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
GotSection<ELFT>::GotSection()
|
|
: OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
|
|
if (Config->EMachine == EM_MIPS)
|
|
this->Header.sh_flags |= SHF_MIPS_GPREL;
|
|
this->Header.sh_addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody *Sym) {
|
|
Sym->GotIndex = Entries.size();
|
|
Entries.push_back(Sym);
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::addMipsLocalEntry() {
|
|
++MipsLocalEntries;
|
|
}
|
|
|
|
template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody *Sym) {
|
|
if (Sym->hasGlobalDynIndex())
|
|
return false;
|
|
Sym->GlobalDynIndex = Target->getGotHeaderEntriesNum() + Entries.size();
|
|
// Global Dynamic TLS entries take two GOT slots.
|
|
Entries.push_back(Sym);
|
|
Entries.push_back(nullptr);
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT> bool GotSection<ELFT>::addCurrentModuleTlsIndex() {
|
|
if (LocalTlsIndexOff != uint32_t(-1))
|
|
return false;
|
|
Entries.push_back(nullptr);
|
|
Entries.push_back(nullptr);
|
|
LocalTlsIndexOff = (Entries.size() - 2) * sizeof(uintX_t);
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getEntryAddr(const SymbolBody &B) const {
|
|
return this->getVA() +
|
|
(Target->getGotHeaderEntriesNum() + MipsLocalEntries + B.GotIndex) *
|
|
sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getMipsLocalFullAddr(const SymbolBody &B) {
|
|
return getMipsLocalEntryAddr(getSymVA<ELFT>(B));
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getMipsLocalPageAddr(uintX_t EntryValue) {
|
|
// Initialize the entry by the %hi(EntryValue) expression
|
|
// but without right-shifting.
|
|
return getMipsLocalEntryAddr((EntryValue + 0x8000) & ~0xffff);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getMipsLocalEntryAddr(uintX_t EntryValue) {
|
|
size_t NewIndex = Target->getGotHeaderEntriesNum() + MipsLocalGotPos.size();
|
|
auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
|
|
assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries);
|
|
return this->getVA() + P.first->second * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename GotSection<ELFT>::uintX_t
|
|
GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
|
|
return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
|
|
return Entries.empty() ? nullptr : Entries.front();
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
|
|
return Target->getGotHeaderEntriesNum() + MipsLocalEntries;
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::finalize() {
|
|
this->Header.sh_size =
|
|
(Target->getGotHeaderEntriesNum() + MipsLocalEntries + Entries.size()) *
|
|
sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Target->writeGotHeaderEntries(Buf);
|
|
for (const auto &L : MipsLocalGotPos) {
|
|
uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
|
|
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first);
|
|
}
|
|
Buf += Target->getGotHeaderEntriesNum() * sizeof(uintX_t);
|
|
Buf += MipsLocalEntries * sizeof(uintX_t);
|
|
for (const SymbolBody *B : Entries) {
|
|
uint8_t *Entry = Buf;
|
|
Buf += sizeof(uintX_t);
|
|
if (!B)
|
|
continue;
|
|
// MIPS has special rules to fill up GOT entries.
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed description:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
// As the first approach, we can just store addresses for all symbols.
|
|
if (Config->EMachine != EM_MIPS && canBePreempted(B, false))
|
|
continue; // The dynamic linker will take care of it.
|
|
uintX_t VA = getSymVA<ELFT>(*B);
|
|
write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
PltSection<ELFT>::PltSection()
|
|
: OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
|
|
this->Header.sh_addralign = 16;
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
size_t Off = 0;
|
|
bool LazyReloc = Target->supportsLazyRelocations();
|
|
if (LazyReloc) {
|
|
// First write PLT[0] entry which is special.
|
|
Target->writePltZeroEntry(Buf, Out<ELFT>::GotPlt->getVA(), this->getVA());
|
|
Off += Target->getPltZeroEntrySize();
|
|
}
|
|
for (auto &I : Entries) {
|
|
const SymbolBody *E = I.first;
|
|
unsigned RelOff = I.second;
|
|
uint64_t GotVA =
|
|
LazyReloc ? Out<ELFT>::GotPlt->getVA() : Out<ELFT>::Got->getVA();
|
|
uint64_t GotE = LazyReloc ? Out<ELFT>::GotPlt->getEntryAddr(*E)
|
|
: Out<ELFT>::Got->getEntryAddr(*E);
|
|
uint64_t Plt = this->getVA() + Off;
|
|
Target->writePltEntry(Buf + Off, GotVA, GotE, Plt, E->PltIndex, RelOff);
|
|
Off += Target->getPltEntrySize();
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody *Sym) {
|
|
Sym->PltIndex = Entries.size();
|
|
unsigned RelOff = Target->supportsLazyRelocations()
|
|
? Out<ELFT>::RelaPlt->getRelocOffset()
|
|
: Out<ELFT>::RelaDyn->getRelocOffset();
|
|
Entries.push_back(std::make_pair(Sym, RelOff));
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename PltSection<ELFT>::uintX_t
|
|
PltSection<ELFT>::getEntryAddr(const SymbolBody &B) const {
|
|
return this->getVA() + Target->getPltZeroEntrySize() +
|
|
B.PltIndex * Target->getPltEntrySize();
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::finalize() {
|
|
this->Header.sh_size = Target->getPltZeroEntrySize() +
|
|
Entries.size() * Target->getPltEntrySize();
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelocationSection<ELFT>::RelocationSection(StringRef Name, bool IsRela)
|
|
: OutputSectionBase<ELFT>(Name, IsRela ? SHT_RELA : SHT_REL, SHF_ALLOC),
|
|
IsRela(IsRela) {
|
|
this->Header.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
|
|
}
|
|
|
|
// Applies corresponding symbol and type for dynamic tls relocation.
|
|
// Returns true if relocation was handled.
|
|
template <class ELFT>
|
|
bool RelocationSection<ELFT>::applyTlsDynamicReloc(SymbolBody *Body,
|
|
uint32_t Type, Elf_Rel *P,
|
|
Elf_Rel *N) {
|
|
if (Target->isTlsLocalDynamicReloc(Type)) {
|
|
P->setSymbolAndType(0, Target->getTlsModuleIndexReloc(), Config->Mips64EL);
|
|
P->r_offset = Out<ELFT>::Got->getLocalTlsIndexVA();
|
|
return true;
|
|
}
|
|
|
|
if (!Body || !Target->isTlsGlobalDynamicReloc(Type))
|
|
return false;
|
|
|
|
if (Target->isTlsOptimized(Type, Body)) {
|
|
P->setSymbolAndType(Body->DynamicSymbolTableIndex,
|
|
Target->getTlsGotReloc(), Config->Mips64EL);
|
|
P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body);
|
|
return true;
|
|
}
|
|
|
|
P->setSymbolAndType(Body->DynamicSymbolTableIndex,
|
|
Target->getTlsModuleIndexReloc(), Config->Mips64EL);
|
|
P->r_offset = Out<ELFT>::Got->getGlobalDynAddr(*Body);
|
|
N->setSymbolAndType(Body->DynamicSymbolTableIndex,
|
|
Target->getTlsOffsetReloc(), Config->Mips64EL);
|
|
N->r_offset = Out<ELFT>::Got->getGlobalDynAddr(*Body) + sizeof(uintX_t);
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
for (const DynamicReloc<ELFT> &Rel : Relocs) {
|
|
auto *P = reinterpret_cast<Elf_Rel *>(Buf);
|
|
Buf += IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
|
|
// Skip placeholder for global dynamic TLS relocation pair. It was already
|
|
// handled by the previous relocation.
|
|
if (!Rel.C)
|
|
continue;
|
|
|
|
InputSectionBase<ELFT> &C = *Rel.C;
|
|
const Elf_Rel &RI = *Rel.RI;
|
|
uint32_t SymIndex = RI.getSymbol(Config->Mips64EL);
|
|
const ObjectFile<ELFT> &File = *C.getFile();
|
|
SymbolBody *Body = File.getSymbolBody(SymIndex);
|
|
if (Body)
|
|
Body = Body->repl();
|
|
|
|
uint32_t Type = RI.getType(Config->Mips64EL);
|
|
if (applyTlsDynamicReloc(Body, Type, P, reinterpret_cast<Elf_Rel *>(Buf)))
|
|
continue;
|
|
|
|
// Writer::scanRelocs creates a RELATIVE reloc for some type of TLS reloc.
|
|
// We want to write it down as is.
|
|
if (Type == Target->getRelativeReloc()) {
|
|
P->setSymbolAndType(0, Type, Config->Mips64EL);
|
|
P->r_offset = C.getOffset(RI.r_offset) + C.OutSec->getVA();
|
|
continue;
|
|
}
|
|
|
|
// Emit a copy relocation.
|
|
auto *SS = dyn_cast_or_null<SharedSymbol<ELFT>>(Body);
|
|
if (SS && SS->NeedsCopy) {
|
|
P->setSymbolAndType(Body->DynamicSymbolTableIndex, Target->getCopyReloc(),
|
|
Config->Mips64EL);
|
|
P->r_offset = Out<ELFT>::Bss->getVA() + SS->OffsetInBss;
|
|
continue;
|
|
}
|
|
|
|
bool NeedsGot = Body && Target->relocNeedsGot(Type, *Body);
|
|
bool CBP = canBePreempted(Body, NeedsGot);
|
|
|
|
// For a symbol with STT_GNU_IFUNC type, we always create a PLT and
|
|
// a GOT entry for the symbol, and emit an IRELATIVE reloc rather than
|
|
// the usual JUMP_SLOT reloc for the GOT entry. For the details, you
|
|
// want to read http://www.airs.com/blog/archives/403
|
|
if (!CBP && Body && isGnuIFunc<ELFT>(*Body)) {
|
|
P->setSymbolAndType(0, Target->getIRelativeReloc(), Config->Mips64EL);
|
|
if (Out<ELFT>::GotPlt)
|
|
P->r_offset = Out<ELFT>::GotPlt->getEntryAddr(*Body);
|
|
else
|
|
P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body);
|
|
continue;
|
|
}
|
|
|
|
bool LazyReloc = Body && Target->supportsLazyRelocations() &&
|
|
Target->relocNeedsPlt(Type, *Body);
|
|
|
|
unsigned Sym = CBP ? Body->DynamicSymbolTableIndex : 0;
|
|
unsigned Reloc;
|
|
if (!CBP)
|
|
Reloc = Target->getRelativeReloc();
|
|
else if (LazyReloc)
|
|
Reloc = Target->getPltReloc();
|
|
else if (NeedsGot)
|
|
Reloc = Body->isTls() ? Target->getTlsGotReloc() : Target->getGotReloc();
|
|
else
|
|
Reloc = Target->getDynReloc(Type);
|
|
P->setSymbolAndType(Sym, Reloc, Config->Mips64EL);
|
|
|
|
if (LazyReloc)
|
|
P->r_offset = Out<ELFT>::GotPlt->getEntryAddr(*Body);
|
|
else if (NeedsGot)
|
|
P->r_offset = Out<ELFT>::Got->getEntryAddr(*Body);
|
|
else
|
|
P->r_offset = C.getOffset(RI.r_offset) + C.OutSec->getVA();
|
|
|
|
uintX_t OrigAddend = 0;
|
|
if (IsRela && !NeedsGot)
|
|
OrigAddend = static_cast<const Elf_Rela &>(RI).r_addend;
|
|
|
|
uintX_t Addend;
|
|
if (CBP)
|
|
Addend = OrigAddend;
|
|
else if (Body)
|
|
Addend = getSymVA<ELFT>(*Body) + OrigAddend;
|
|
else if (IsRela)
|
|
Addend =
|
|
getLocalRelTarget(File, static_cast<const Elf_Rela &>(RI),
|
|
getAddend<ELFT>(static_cast<const Elf_Rela &>(RI)));
|
|
else
|
|
Addend = getLocalRelTarget(File, RI, 0);
|
|
|
|
if (IsRela)
|
|
static_cast<Elf_Rela *>(P)->r_addend = Addend;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
|
|
const unsigned EntrySize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
return EntrySize * Relocs.size();
|
|
}
|
|
|
|
template <class ELFT> void RelocationSection<ELFT>::finalize() {
|
|
this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex
|
|
: Out<ELFT>::DynSymTab->SectionIndex;
|
|
this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InterpSection<ELFT>::InterpSection()
|
|
: OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
|
|
this->Header.sh_size = Config->DynamicLinker.size() + 1;
|
|
this->Header.sh_addralign = 1;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *SHdr) {
|
|
Header.sh_name = Out<ELFT>::ShStrTab->addString(Name);
|
|
*SHdr = Header;
|
|
}
|
|
|
|
template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
memcpy(Buf, Config->DynamicLinker.data(), Config->DynamicLinker.size());
|
|
}
|
|
|
|
template <class ELFT>
|
|
HashTableSection<ELFT>::HashTableSection()
|
|
: OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
|
|
this->Header.sh_entsize = sizeof(Elf_Word);
|
|
this->Header.sh_addralign = sizeof(Elf_Word);
|
|
}
|
|
|
|
static uint32_t hashSysv(StringRef Name) {
|
|
uint32_t H = 0;
|
|
for (char C : Name) {
|
|
H = (H << 4) + C;
|
|
uint32_t G = H & 0xf0000000;
|
|
if (G)
|
|
H ^= G >> 24;
|
|
H &= ~G;
|
|
}
|
|
return H;
|
|
}
|
|
|
|
template <class ELFT> void HashTableSection<ELFT>::finalize() {
|
|
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
|
|
unsigned NumEntries = 2; // nbucket and nchain.
|
|
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
|
|
|
|
// Create as many buckets as there are symbols.
|
|
// FIXME: This is simplistic. We can try to optimize it, but implementing
|
|
// support for SHT_GNU_HASH is probably even more profitable.
|
|
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
|
|
this->Header.sh_size = NumEntries * sizeof(Elf_Word);
|
|
}
|
|
|
|
template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
|
|
auto *P = reinterpret_cast<Elf_Word *>(Buf);
|
|
*P++ = NumSymbols; // nbucket
|
|
*P++ = NumSymbols; // nchain
|
|
|
|
Elf_Word *Buckets = P;
|
|
Elf_Word *Chains = P + NumSymbols;
|
|
|
|
for (SymbolBody *Body : Out<ELFT>::DynSymTab->getSymbols()) {
|
|
StringRef Name = Body->getName();
|
|
unsigned I = Body->DynamicSymbolTableIndex;
|
|
uint32_t Hash = hashSysv(Name) % NumSymbols;
|
|
Chains[I] = Buckets[Hash];
|
|
Buckets[Hash] = I;
|
|
}
|
|
}
|
|
|
|
static uint32_t hashGnu(StringRef Name) {
|
|
uint32_t H = 5381;
|
|
for (uint8_t C : Name)
|
|
H = (H << 5) + H + C;
|
|
return H;
|
|
}
|
|
|
|
template <class ELFT>
|
|
GnuHashTableSection<ELFT>::GnuHashTableSection()
|
|
: OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
|
|
this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
|
|
this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
|
|
if (!NumHashed)
|
|
return 0;
|
|
|
|
// These values are prime numbers which are not greater than 2^(N-1) + 1.
|
|
// In result, for any particular NumHashed we return a prime number
|
|
// which is not greater than NumHashed.
|
|
static const unsigned Primes[] = {
|
|
1, 1, 3, 3, 7, 13, 31, 61, 127, 251,
|
|
509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
|
|
|
|
return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
|
|
array_lengthof(Primes) - 1)];
|
|
}
|
|
|
|
// Bloom filter estimation: at least 8 bits for each hashed symbol.
|
|
// GNU Hash table requirement: it should be a power of 2,
|
|
// the minimum value is 1, even for an empty table.
|
|
// Expected results for a 32-bit target:
|
|
// calcMaskWords(0..4) = 1
|
|
// calcMaskWords(5..8) = 2
|
|
// calcMaskWords(9..16) = 4
|
|
// For a 64-bit target:
|
|
// calcMaskWords(0..8) = 1
|
|
// calcMaskWords(9..16) = 2
|
|
// calcMaskWords(17..32) = 4
|
|
template <class ELFT>
|
|
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
|
|
if (!NumHashed)
|
|
return 1;
|
|
return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
|
|
}
|
|
|
|
template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
|
|
unsigned NumHashed = HashedSymbols.size();
|
|
NBuckets = calcNBuckets(NumHashed);
|
|
MaskWords = calcMaskWords(NumHashed);
|
|
// Second hash shift estimation: just predefined values.
|
|
Shift2 = ELFT::Is64Bits ? 6 : 5;
|
|
|
|
this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
this->Header.sh_size = sizeof(Elf_Word) * 4 // Header
|
|
+ sizeof(Elf_Off) * MaskWords // Bloom Filter
|
|
+ sizeof(Elf_Word) * NBuckets // Hash Buckets
|
|
+ sizeof(Elf_Word) * NumHashed; // Hash Values
|
|
}
|
|
|
|
template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
writeHeader(Buf);
|
|
if (HashedSymbols.empty())
|
|
return;
|
|
writeBloomFilter(Buf);
|
|
writeHashTable(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
|
|
auto *P = reinterpret_cast<Elf_Word *>(Buf);
|
|
*P++ = NBuckets;
|
|
*P++ = Out<ELFT>::DynSymTab->getNumSymbols() - HashedSymbols.size();
|
|
*P++ = MaskWords;
|
|
*P++ = Shift2;
|
|
Buf = reinterpret_cast<uint8_t *>(P);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
|
|
unsigned C = sizeof(Elf_Off) * 8;
|
|
|
|
auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
|
|
for (const HashedSymbolData &Item : HashedSymbols) {
|
|
size_t Pos = (Item.Hash / C) & (MaskWords - 1);
|
|
uintX_t V = (uintX_t(1) << (Item.Hash % C)) |
|
|
(uintX_t(1) << ((Item.Hash >> Shift2) % C));
|
|
Masks[Pos] |= V;
|
|
}
|
|
Buf += sizeof(Elf_Off) * MaskWords;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
|
|
Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
|
|
Elf_Word *Values = Buckets + NBuckets;
|
|
|
|
int PrevBucket = -1;
|
|
int I = 0;
|
|
for (const HashedSymbolData &Item : HashedSymbols) {
|
|
int Bucket = Item.Hash % NBuckets;
|
|
assert(PrevBucket <= Bucket);
|
|
if (Bucket != PrevBucket) {
|
|
Buckets[Bucket] = Item.Body->DynamicSymbolTableIndex;
|
|
PrevBucket = Bucket;
|
|
if (I > 0)
|
|
Values[I - 1] |= 1;
|
|
}
|
|
Values[I] = Item.Hash & ~1;
|
|
++I;
|
|
}
|
|
if (I > 0)
|
|
Values[I - 1] |= 1;
|
|
}
|
|
|
|
static bool includeInGnuHashTable(SymbolBody *B) {
|
|
// Assume that includeInDynamicSymtab() is already checked.
|
|
return !B->isUndefined();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::addSymbols(std::vector<SymbolBody *> &Symbols) {
|
|
std::vector<SymbolBody *> NotHashed;
|
|
NotHashed.reserve(Symbols.size());
|
|
HashedSymbols.reserve(Symbols.size());
|
|
for (SymbolBody *B : Symbols) {
|
|
if (includeInGnuHashTable(B))
|
|
HashedSymbols.push_back(HashedSymbolData{B, hashGnu(B->getName())});
|
|
else
|
|
NotHashed.push_back(B);
|
|
}
|
|
if (HashedSymbols.empty())
|
|
return;
|
|
|
|
unsigned NBuckets = calcNBuckets(HashedSymbols.size());
|
|
std::stable_sort(HashedSymbols.begin(), HashedSymbols.end(),
|
|
[&](const HashedSymbolData &L, const HashedSymbolData &R) {
|
|
return L.Hash % NBuckets < R.Hash % NBuckets;
|
|
});
|
|
|
|
Symbols = std::move(NotHashed);
|
|
for (const HashedSymbolData &Item : HashedSymbols)
|
|
Symbols.push_back(Item.Body);
|
|
}
|
|
|
|
template <class ELFT>
|
|
DynamicSection<ELFT>::DynamicSection(SymbolTable<ELFT> &SymTab)
|
|
: OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE),
|
|
SymTab(SymTab) {
|
|
Elf_Shdr &Header = this->Header;
|
|
Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
|
|
Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
|
|
|
|
// .dynamic section is not writable on MIPS.
|
|
// See "Special Section" in Chapter 4 in the following document:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
if (Config->EMachine == EM_MIPS)
|
|
Header.sh_flags = SHF_ALLOC;
|
|
}
|
|
|
|
template <class ELFT> void DynamicSection<ELFT>::finalize() {
|
|
if (this->Header.sh_size)
|
|
return; // Already finalized.
|
|
|
|
Elf_Shdr &Header = this->Header;
|
|
Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
|
|
|
|
// Reserve strings. We know that these are the last string to be added to
|
|
// DynStrTab and doing this here allows this function to set DT_STRSZ.
|
|
if (!Config->RPath.empty())
|
|
Out<ELFT>::DynStrTab->reserve(Config->RPath);
|
|
if (!Config->SoName.empty())
|
|
Out<ELFT>::DynStrTab->reserve(Config->SoName);
|
|
for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles())
|
|
if (F->isNeeded())
|
|
Out<ELFT>::DynStrTab->reserve(F->getSoName());
|
|
Out<ELFT>::DynStrTab->finalize();
|
|
|
|
auto Add = [=](Entry E) { Entries.push_back(E); };
|
|
|
|
if (Out<ELFT>::RelaDyn->hasRelocs()) {
|
|
bool IsRela = Out<ELFT>::RelaDyn->isRela();
|
|
Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
|
|
Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
|
|
Add({IsRela ? DT_RELAENT : DT_RELENT,
|
|
uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
|
|
}
|
|
if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
|
|
Add({DT_JMPREL, Out<ELFT>::RelaPlt});
|
|
Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
|
|
Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
|
|
Out<ELFT>::GotPlt});
|
|
Add({DT_PLTREL, Out<ELFT>::RelaPlt->isRela() ? DT_RELA : DT_REL});
|
|
}
|
|
|
|
Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
|
|
Add({DT_SYMENT, sizeof(Elf_Sym)});
|
|
Add({DT_STRTAB, Out<ELFT>::DynStrTab});
|
|
Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
|
|
if (Out<ELFT>::GnuHashTab)
|
|
Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
|
|
if (Out<ELFT>::HashTab)
|
|
Add({DT_HASH, Out<ELFT>::HashTab});
|
|
|
|
if (!Config->RPath.empty())
|
|
Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
|
|
Out<ELFT>::DynStrTab->addString(Config->RPath)});
|
|
|
|
if (!Config->SoName.empty())
|
|
Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});
|
|
|
|
if (PreInitArraySec) {
|
|
Add({DT_PREINIT_ARRAY, PreInitArraySec});
|
|
Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()});
|
|
}
|
|
if (InitArraySec) {
|
|
Add({DT_INIT_ARRAY, InitArraySec});
|
|
Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()});
|
|
}
|
|
if (FiniArraySec) {
|
|
Add({DT_FINI_ARRAY, FiniArraySec});
|
|
Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()});
|
|
}
|
|
|
|
for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles())
|
|
if (F->isNeeded())
|
|
Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
|
|
|
|
if (SymbolBody *B = SymTab.find(Config->Init))
|
|
Add({DT_INIT, B});
|
|
if (SymbolBody *B = SymTab.find(Config->Fini))
|
|
Add({DT_FINI, B});
|
|
|
|
uint32_t DtFlags = 0;
|
|
uint32_t DtFlags1 = 0;
|
|
if (Config->Bsymbolic)
|
|
DtFlags |= DF_SYMBOLIC;
|
|
if (Config->ZNodelete)
|
|
DtFlags1 |= DF_1_NODELETE;
|
|
if (Config->ZNow) {
|
|
DtFlags |= DF_BIND_NOW;
|
|
DtFlags1 |= DF_1_NOW;
|
|
}
|
|
if (Config->ZOrigin) {
|
|
DtFlags |= DF_ORIGIN;
|
|
DtFlags1 |= DF_1_ORIGIN;
|
|
}
|
|
|
|
if (DtFlags)
|
|
Add({DT_FLAGS, DtFlags});
|
|
if (DtFlags1)
|
|
Add({DT_FLAGS_1, DtFlags1});
|
|
|
|
if (!Config->Entry.empty())
|
|
Add({DT_DEBUG, (uintX_t)0});
|
|
|
|
if (Config->EMachine == EM_MIPS) {
|
|
Add({DT_MIPS_RLD_VERSION, 1});
|
|
Add({DT_MIPS_FLAGS, RHF_NOTPOT});
|
|
Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()});
|
|
Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
|
|
Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
|
|
if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
|
|
Add({DT_MIPS_GOTSYM, B->DynamicSymbolTableIndex});
|
|
else
|
|
Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
|
|
Add({DT_PLTGOT, Out<ELFT>::Got});
|
|
if (Out<ELFT>::MipsRldMap)
|
|
Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
|
|
}
|
|
|
|
// +1 for DT_NULL
|
|
Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
|
|
}
|
|
|
|
template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
|
|
|
|
for (const Entry &E : Entries) {
|
|
P->d_tag = E.Tag;
|
|
switch (E.Kind) {
|
|
case Entry::SecAddr:
|
|
P->d_un.d_ptr = E.OutSec->getVA();
|
|
break;
|
|
case Entry::SymAddr:
|
|
P->d_un.d_ptr = getSymVA<ELFT>(*E.Sym);
|
|
break;
|
|
case Entry::PlainInt:
|
|
P->d_un.d_val = E.Val;
|
|
break;
|
|
}
|
|
++P;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhFrameHeader<ELFT>::EhFrameHeader()
|
|
: OutputSectionBase<ELFT>(".eh_frame_hdr", llvm::ELF::SHT_PROGBITS,
|
|
SHF_ALLOC) {
|
|
// It's a 4 bytes of header + pointer to the contents of the .eh_frame section
|
|
// + the number of FDE pointers in the table.
|
|
this->Header.sh_size = 12;
|
|
}
|
|
|
|
// We have to get PC values of FDEs. They depend on relocations
|
|
// which are target specific, so we run this code after performing
|
|
// all relocations. We read the values from ouput buffer according to the
|
|
// encoding given for FDEs. Return value is an offset to the initial PC value
|
|
// for the FDE.
|
|
template <class ELFT>
|
|
typename EhFrameHeader<ELFT>::uintX_t
|
|
EhFrameHeader<ELFT>::getFdePc(uintX_t EhVA, const FdeData &F) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
assert((F.Enc & 0xF0) != dwarf::DW_EH_PE_datarel);
|
|
|
|
uintX_t FdeOff = EhVA + F.Off + 8;
|
|
switch (F.Enc & 0xF) {
|
|
case dwarf::DW_EH_PE_udata2:
|
|
case dwarf::DW_EH_PE_sdata2:
|
|
return FdeOff + read16<E>(F.PCRel);
|
|
case dwarf::DW_EH_PE_udata4:
|
|
case dwarf::DW_EH_PE_sdata4:
|
|
return FdeOff + read32<E>(F.PCRel);
|
|
case dwarf::DW_EH_PE_udata8:
|
|
case dwarf::DW_EH_PE_sdata8:
|
|
return FdeOff + read64<E>(F.PCRel);
|
|
case dwarf::DW_EH_PE_absptr:
|
|
if (sizeof(uintX_t) == 8)
|
|
return FdeOff + read64<E>(F.PCRel);
|
|
return FdeOff + read32<E>(F.PCRel);
|
|
}
|
|
error("unknown FDE size encoding");
|
|
}
|
|
|
|
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
const uint8_t Header[] = {1, dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4,
|
|
dwarf::DW_EH_PE_udata4,
|
|
dwarf::DW_EH_PE_datarel | dwarf::DW_EH_PE_sdata4};
|
|
memcpy(Buf, Header, sizeof(Header));
|
|
|
|
uintX_t EhVA = Sec->getVA();
|
|
uintX_t VA = this->getVA();
|
|
uintX_t EhOff = EhVA - VA - 4;
|
|
write32<E>(Buf + 4, EhOff);
|
|
write32<E>(Buf + 8, this->FdeList.size());
|
|
Buf += 12;
|
|
|
|
// InitialPC -> Offset in .eh_frame, sorted by InitialPC.
|
|
std::map<uintX_t, size_t> PcToOffset;
|
|
for (const FdeData &F : FdeList)
|
|
PcToOffset[getFdePc(EhVA, F)] = F.Off;
|
|
|
|
for (auto &I : PcToOffset) {
|
|
// The first four bytes are an offset to the initial PC value for the FDE.
|
|
write32<E>(Buf, I.first - VA);
|
|
// The last four bytes are an offset to the FDE data itself.
|
|
write32<E>(Buf + 4, EhVA + I.second - VA);
|
|
Buf += 8;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhFrameHeader<ELFT>::assignEhFrame(EHOutputSection<ELFT> *Sec) {
|
|
assert((!this->Sec || this->Sec == Sec) &&
|
|
"multiple .eh_frame sections not supported for .eh_frame_hdr");
|
|
Live = Config->EhFrameHdr;
|
|
this->Sec = Sec;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhFrameHeader<ELFT>::addFde(uint8_t Enc, size_t Off, uint8_t *PCRel) {
|
|
if (Live && (Enc & 0xF0) == dwarf::DW_EH_PE_datarel)
|
|
error("DW_EH_PE_datarel encoding unsupported for FDEs by .eh_frame_hdr");
|
|
FdeList.push_back(FdeData{Enc, Off, PCRel});
|
|
}
|
|
|
|
template <class ELFT> void EhFrameHeader<ELFT>::reserveFde() {
|
|
// Each FDE entry is 8 bytes long:
|
|
// The first four bytes are an offset to the initial PC value for the FDE. The
|
|
// last four byte are an offset to the FDE data itself.
|
|
this->Header.sh_size += 8;
|
|
}
|
|
|
|
template <class ELFT>
|
|
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type,
|
|
uintX_t Flags)
|
|
: OutputSectionBase<ELFT>(Name, Type, Flags) {}
|
|
|
|
template <class ELFT>
|
|
void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
auto *S = cast<InputSection<ELFT>>(C);
|
|
Sections.push_back(S);
|
|
S->OutSec = this;
|
|
uint32_t Align = S->getAlign();
|
|
if (Align > this->Header.sh_addralign)
|
|
this->Header.sh_addralign = Align;
|
|
|
|
uintX_t Off = this->Header.sh_size;
|
|
Off = alignTo(Off, Align);
|
|
S->OutSecOff = Off;
|
|
Off += S->getSize();
|
|
this->Header.sh_size = Off;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename ELFFile<ELFT>::uintX_t elf2::getSymVA(const SymbolBody &S) {
|
|
switch (S.kind()) {
|
|
case SymbolBody::DefinedSyntheticKind: {
|
|
auto &D = cast<DefinedSynthetic<ELFT>>(S);
|
|
return D.Section.getVA() + D.Value;
|
|
}
|
|
case SymbolBody::DefinedRegularKind: {
|
|
const auto &DR = cast<DefinedRegular<ELFT>>(S);
|
|
InputSectionBase<ELFT> *SC = DR.Section;
|
|
if (!SC)
|
|
return DR.Sym.st_value;
|
|
|
|
// Symbol offsets for AMDGPU need to be the offset in bytes of the symbol
|
|
// from the beginning of the section.
|
|
if (Config->EMachine == EM_AMDGPU)
|
|
return SC->getOffset(DR.Sym);
|
|
if (DR.Sym.getType() == STT_TLS)
|
|
return SC->OutSec->getVA() + SC->getOffset(DR.Sym) -
|
|
Out<ELFT>::TlsPhdr->p_vaddr;
|
|
return SC->OutSec->getVA() + SC->getOffset(DR.Sym);
|
|
}
|
|
case SymbolBody::DefinedCommonKind:
|
|
return Out<ELFT>::Bss->getVA() + cast<DefinedCommon>(S).OffsetInBss;
|
|
case SymbolBody::SharedKind: {
|
|
auto &SS = cast<SharedSymbol<ELFT>>(S);
|
|
if (SS.NeedsCopy)
|
|
return Out<ELFT>::Bss->getVA() + SS.OffsetInBss;
|
|
return 0;
|
|
}
|
|
case SymbolBody::UndefinedElfKind:
|
|
case SymbolBody::UndefinedKind:
|
|
return 0;
|
|
case SymbolBody::LazyKind:
|
|
assert(S.isUsedInRegularObj() && "Lazy symbol reached writer");
|
|
return 0;
|
|
}
|
|
llvm_unreachable("Invalid symbol kind");
|
|
}
|
|
|
|
// Returns a VA which a relocatin RI refers to. Used only for local symbols.
|
|
// For non-local symbols, use getSymVA instead.
|
|
template <class ELFT, bool IsRela>
|
|
typename ELFFile<ELFT>::uintX_t
|
|
elf2::getLocalRelTarget(const ObjectFile<ELFT> &File,
|
|
const Elf_Rel_Impl<ELFT, IsRela> &RI,
|
|
typename ELFFile<ELFT>::uintX_t Addend) {
|
|
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
|
|
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
|
|
|
|
// PPC64 has a special relocation representing the TOC base pointer
|
|
// that does not have a corresponding symbol.
|
|
if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC)
|
|
return getPPC64TocBase() + Addend;
|
|
|
|
const Elf_Sym *Sym =
|
|
File.getObj().getRelocationSymbol(&RI, File.getSymbolTable());
|
|
|
|
if (!Sym)
|
|
error("Unsupported relocation without symbol");
|
|
|
|
InputSectionBase<ELFT> *Section = File.getSection(*Sym);
|
|
|
|
if (Sym->getType() == STT_TLS)
|
|
return (Section->OutSec->getVA() + Section->getOffset(*Sym) + Addend) -
|
|
Out<ELFT>::TlsPhdr->p_vaddr;
|
|
|
|
// According to the ELF spec reference to a local symbol from outside
|
|
// the group are not allowed. Unfortunately .eh_frame breaks that rule
|
|
// and must be treated specially. For now we just replace the symbol with
|
|
// 0.
|
|
if (Section == &InputSection<ELFT>::Discarded || !Section->isLive())
|
|
return Addend;
|
|
|
|
uintX_t VA = Section->OutSec->getVA();
|
|
if (isa<InputSection<ELFT>>(Section))
|
|
return VA + Section->getOffset(*Sym) + Addend;
|
|
|
|
uintX_t Offset = Sym->st_value;
|
|
if (Sym->getType() == STT_SECTION) {
|
|
Offset += Addend;
|
|
Addend = 0;
|
|
}
|
|
return VA + Section->getOffset(Offset) + Addend;
|
|
}
|
|
|
|
// Returns true if a symbol can be replaced at load-time by a symbol
|
|
// with the same name defined in other ELF executable or DSO.
|
|
bool elf2::canBePreempted(const SymbolBody *Body, bool NeedsGot) {
|
|
if (!Body)
|
|
return false; // Body is a local symbol.
|
|
if (Body->isShared())
|
|
return true;
|
|
|
|
if (Body->isUndefined()) {
|
|
if (!Body->isWeak())
|
|
return true;
|
|
|
|
// This is an horrible corner case. Ideally we would like to say that any
|
|
// undefined symbol can be preempted so that the dynamic linker has a
|
|
// chance of finding it at runtime.
|
|
//
|
|
// The problem is that the code sequence used to test for weak undef
|
|
// functions looks like
|
|
// if (func) func()
|
|
// If the code is -fPIC the first reference is a load from the got and
|
|
// everything works.
|
|
// If the code is not -fPIC there is no reasonable way to solve it:
|
|
// * A relocation writing to the text segment will fail (it is ro).
|
|
// * A copy relocation doesn't work for functions.
|
|
// * The trick of using a plt entry as the address would fail here since
|
|
// the plt entry would have a non zero address.
|
|
// Since we cannot do anything better, we just resolve the symbol to 0 and
|
|
// don't produce a dynamic relocation.
|
|
//
|
|
// As an extra hack, assume that if we are producing a shared library the
|
|
// user knows what he or she is doing and can handle a dynamic relocation.
|
|
return Config->Shared || NeedsGot;
|
|
}
|
|
if (!Config->Shared)
|
|
return false;
|
|
return Body->getVisibility() == STV_DEFAULT;
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
for (InputSection<ELFT> *C : Sections)
|
|
C->writeTo(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
EHOutputSection<ELFT>::EHOutputSection(StringRef Name, uint32_t Type,
|
|
uintX_t Flags)
|
|
: OutputSectionBase<ELFT>(Name, Type, Flags) {
|
|
Out<ELFT>::EhFrameHdr->assignEhFrame(this);
|
|
}
|
|
|
|
template <class ELFT>
|
|
EHRegion<ELFT>::EHRegion(EHInputSection<ELFT> *S, unsigned Index)
|
|
: S(S), Index(Index) {}
|
|
|
|
template <class ELFT> StringRef EHRegion<ELFT>::data() const {
|
|
ArrayRef<uint8_t> SecData = S->getSectionData();
|
|
ArrayRef<std::pair<uintX_t, uintX_t>> Offsets = S->Offsets;
|
|
size_t Start = Offsets[Index].first;
|
|
size_t End =
|
|
Index == Offsets.size() - 1 ? SecData.size() : Offsets[Index + 1].first;
|
|
return StringRef((const char *)SecData.data() + Start, End - Start);
|
|
}
|
|
|
|
template <class ELFT>
|
|
Cie<ELFT>::Cie(EHInputSection<ELFT> *S, unsigned Index)
|
|
: EHRegion<ELFT>(S, Index) {}
|
|
|
|
// Read a byte and advance D by one byte.
|
|
static uint8_t readByte(ArrayRef<uint8_t> &D) {
|
|
if (D.empty())
|
|
error("corrupted or unsupported CIE information");
|
|
uint8_t B = D.front();
|
|
D = D.slice(1);
|
|
return B;
|
|
}
|
|
|
|
static void skipLeb128(ArrayRef<uint8_t> &D) {
|
|
while (!D.empty()) {
|
|
uint8_t Val = D.front();
|
|
D = D.slice(1);
|
|
if ((Val & 0x80) == 0)
|
|
return;
|
|
}
|
|
error("corrupted or unsupported CIE information");
|
|
}
|
|
|
|
template <class ELFT> static unsigned getSizeForEncoding(unsigned Enc) {
|
|
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
|
|
switch (Enc & 0x0f) {
|
|
default:
|
|
error("unknown FDE encoding");
|
|
case dwarf::DW_EH_PE_absptr:
|
|
case dwarf::DW_EH_PE_signed:
|
|
return sizeof(uintX_t);
|
|
case dwarf::DW_EH_PE_udata2:
|
|
case dwarf::DW_EH_PE_sdata2:
|
|
return 2;
|
|
case dwarf::DW_EH_PE_udata4:
|
|
case dwarf::DW_EH_PE_sdata4:
|
|
return 4;
|
|
case dwarf::DW_EH_PE_udata8:
|
|
case dwarf::DW_EH_PE_sdata8:
|
|
return 8;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint8_t EHOutputSection<ELFT>::getFdeEncoding(ArrayRef<uint8_t> D) {
|
|
auto Check = [](bool C) {
|
|
if (!C)
|
|
error("corrupted or unsupported CIE information");
|
|
};
|
|
|
|
Check(D.size() >= 8);
|
|
D = D.slice(8);
|
|
|
|
uint8_t Version = readByte(D);
|
|
if (Version != 1 && Version != 3)
|
|
error("FDE version 1 or 3 expected, but got " + Twine((unsigned)Version));
|
|
|
|
auto AugEnd = std::find(D.begin() + 1, D.end(), '\0');
|
|
Check(AugEnd != D.end());
|
|
ArrayRef<uint8_t> AugString(D.begin(), AugEnd - D.begin());
|
|
D = D.slice(AugString.size() + 1);
|
|
|
|
// Code alignment factor should always be 1 for .eh_frame.
|
|
if (readByte(D) != 1)
|
|
error("CIE code alignment must be 1");
|
|
// Skip data alignment factor
|
|
skipLeb128(D);
|
|
|
|
// Skip the return address register. In CIE version 1 this is a single
|
|
// byte. In CIE version 3 this is an unsigned LEB128.
|
|
if (Version == 1)
|
|
readByte(D);
|
|
else
|
|
skipLeb128(D);
|
|
|
|
while (!AugString.empty()) {
|
|
switch (readByte(AugString)) {
|
|
case 'z':
|
|
skipLeb128(D);
|
|
break;
|
|
case 'R':
|
|
return readByte(D);
|
|
case 'P': {
|
|
uint8_t Enc = readByte(D);
|
|
if ((Enc & 0xf0) == dwarf::DW_EH_PE_aligned)
|
|
error("DW_EH_PE_aligned encoding for address of a personality routine "
|
|
"handler not supported");
|
|
unsigned EncSize = getSizeForEncoding<ELFT>(Enc);
|
|
Check(D.size() >= EncSize);
|
|
D = D.slice(EncSize);
|
|
break;
|
|
}
|
|
case 'S':
|
|
case 'L':
|
|
// L: Language Specific Data Area (LSDA) encoding
|
|
// S: This CIE represents a stack frame for the invocation of a signal
|
|
// handler
|
|
break;
|
|
default:
|
|
error("unknown .eh_frame augmentation string value");
|
|
}
|
|
}
|
|
return dwarf::DW_EH_PE_absptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
template <bool IsRela>
|
|
void EHOutputSection<ELFT>::addSectionAux(
|
|
EHInputSection<ELFT> *S,
|
|
iterator_range<const Elf_Rel_Impl<ELFT, IsRela> *> Rels) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
S->OutSec = this;
|
|
uint32_t Align = S->getAlign();
|
|
if (Align > this->Header.sh_addralign)
|
|
this->Header.sh_addralign = Align;
|
|
|
|
Sections.push_back(S);
|
|
|
|
ArrayRef<uint8_t> SecData = S->getSectionData();
|
|
ArrayRef<uint8_t> D = SecData;
|
|
uintX_t Offset = 0;
|
|
auto RelI = Rels.begin();
|
|
auto RelE = Rels.end();
|
|
|
|
DenseMap<unsigned, unsigned> OffsetToIndex;
|
|
while (!D.empty()) {
|
|
unsigned Index = S->Offsets.size();
|
|
S->Offsets.push_back(std::make_pair(Offset, -1));
|
|
|
|
uintX_t Length = readEntryLength(D);
|
|
// If CIE/FDE data length is zero then Length is 4, this
|
|
// shall be considered a terminator and processing shall end.
|
|
if (Length == 4)
|
|
break;
|
|
StringRef Entry((const char *)D.data(), Length);
|
|
|
|
while (RelI != RelE && RelI->r_offset < Offset)
|
|
++RelI;
|
|
uintX_t NextOffset = Offset + Length;
|
|
bool HasReloc = RelI != RelE && RelI->r_offset < NextOffset;
|
|
|
|
uint32_t ID = read32<E>(D.data() + 4);
|
|
if (ID == 0) {
|
|
// CIE
|
|
Cie<ELFT> C(S, Index);
|
|
if (Config->EhFrameHdr)
|
|
C.FdeEncoding = getFdeEncoding(D);
|
|
|
|
StringRef Personality;
|
|
if (HasReloc) {
|
|
uint32_t SymIndex = RelI->getSymbol(Config->Mips64EL);
|
|
SymbolBody &Body = *S->getFile()->getSymbolBody(SymIndex)->repl();
|
|
Personality = Body.getName();
|
|
}
|
|
|
|
std::pair<StringRef, StringRef> CieInfo(Entry, Personality);
|
|
auto P = CieMap.insert(std::make_pair(CieInfo, Cies.size()));
|
|
if (P.second) {
|
|
Cies.push_back(C);
|
|
this->Header.sh_size += alignTo(Length, sizeof(uintX_t));
|
|
}
|
|
OffsetToIndex[Offset] = P.first->second;
|
|
} else {
|
|
if (!HasReloc)
|
|
error("FDE doesn't reference another section");
|
|
InputSectionBase<ELFT> *Target = S->getRelocTarget(*RelI);
|
|
if (Target != &InputSection<ELFT>::Discarded && Target->isLive()) {
|
|
uint32_t CieOffset = Offset + 4 - ID;
|
|
auto I = OffsetToIndex.find(CieOffset);
|
|
if (I == OffsetToIndex.end())
|
|
error("Invalid CIE reference");
|
|
Cies[I->second].Fdes.push_back(EHRegion<ELFT>(S, Index));
|
|
Out<ELFT>::EhFrameHdr->reserveFde();
|
|
this->Header.sh_size += alignTo(Length, sizeof(uintX_t));
|
|
}
|
|
}
|
|
|
|
Offset = NextOffset;
|
|
D = D.slice(Length);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename EHOutputSection<ELFT>::uintX_t
|
|
EHOutputSection<ELFT>::readEntryLength(ArrayRef<uint8_t> D) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
if (D.size() < 4)
|
|
error("Truncated CIE/FDE length");
|
|
uint64_t Len = read32<E>(D.data());
|
|
if (Len < UINT32_MAX) {
|
|
if (Len > (UINT32_MAX - 4))
|
|
error("CIE/FIE size is too large");
|
|
if (Len + 4 > D.size())
|
|
error("CIE/FIE ends past the end of the section");
|
|
return Len + 4;
|
|
}
|
|
|
|
if (D.size() < 12)
|
|
error("Truncated CIE/FDE length");
|
|
Len = read64<E>(D.data() + 4);
|
|
if (Len > (UINT64_MAX - 12))
|
|
error("CIE/FIE size is too large");
|
|
if (Len + 12 > D.size())
|
|
error("CIE/FIE ends past the end of the section");
|
|
return Len + 12;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EHOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
auto *S = cast<EHInputSection<ELFT>>(C);
|
|
const Elf_Shdr *RelSec = S->RelocSection;
|
|
if (!RelSec)
|
|
return addSectionAux(
|
|
S, make_range((const Elf_Rela *)nullptr, (const Elf_Rela *)nullptr));
|
|
ELFFile<ELFT> &Obj = S->getFile()->getObj();
|
|
if (RelSec->sh_type == SHT_RELA)
|
|
return addSectionAux(S, Obj.relas(RelSec));
|
|
return addSectionAux(S, Obj.rels(RelSec));
|
|
}
|
|
|
|
template <class ELFT>
|
|
static typename ELFFile<ELFT>::uintX_t writeAlignedCieOrFde(StringRef Data,
|
|
uint8_t *Buf) {
|
|
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
|
|
const endianness E = ELFT::TargetEndianness;
|
|
uint64_t Len = alignTo(Data.size(), sizeof(uintX_t));
|
|
write32<E>(Buf, Len - 4);
|
|
memcpy(Buf + 4, Data.data() + 4, Data.size() - 4);
|
|
return Len;
|
|
}
|
|
|
|
template <class ELFT> void EHOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
size_t Offset = 0;
|
|
for (const Cie<ELFT> &C : Cies) {
|
|
size_t CieOffset = Offset;
|
|
|
|
uintX_t CIELen = writeAlignedCieOrFde<ELFT>(C.data(), Buf + Offset);
|
|
C.S->Offsets[C.Index].second = Offset;
|
|
Offset += CIELen;
|
|
|
|
for (const EHRegion<ELFT> &F : C.Fdes) {
|
|
uintX_t Len = writeAlignedCieOrFde<ELFT>(F.data(), Buf + Offset);
|
|
write32<E>(Buf + Offset + 4, Offset + 4 - CieOffset); // Pointer
|
|
F.S->Offsets[F.Index].second = Offset;
|
|
Out<ELFT>::EhFrameHdr->addFde(C.FdeEncoding, Offset, Buf + Offset + 8);
|
|
Offset += Len;
|
|
}
|
|
}
|
|
|
|
for (EHInputSection<ELFT> *S : Sections) {
|
|
const Elf_Shdr *RelSec = S->RelocSection;
|
|
if (!RelSec)
|
|
continue;
|
|
ELFFile<ELFT> &EObj = S->getFile()->getObj();
|
|
if (RelSec->sh_type == SHT_RELA)
|
|
S->relocate(Buf, nullptr, EObj.relas(RelSec));
|
|
else
|
|
S->relocate(Buf, nullptr, EObj.rels(RelSec));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
|
|
uintX_t Flags)
|
|
: OutputSectionBase<ELFT>(Name, Type, Flags) {}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
if (shouldTailMerge()) {
|
|
StringRef Data = Builder.data();
|
|
memcpy(Buf, Data.data(), Data.size());
|
|
return;
|
|
}
|
|
for (const std::pair<StringRef, size_t> &P : Builder.getMap()) {
|
|
StringRef Data = P.first;
|
|
memcpy(Buf + P.second, Data.data(), Data.size());
|
|
}
|
|
}
|
|
|
|
static size_t findNull(StringRef S, size_t EntSize) {
|
|
// Optimize the common case.
|
|
if (EntSize == 1)
|
|
return S.find(0);
|
|
|
|
for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
|
|
const char *B = S.begin() + I;
|
|
if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
|
|
return I;
|
|
}
|
|
return StringRef::npos;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
auto *S = cast<MergeInputSection<ELFT>>(C);
|
|
S->OutSec = this;
|
|
uint32_t Align = S->getAlign();
|
|
if (Align > this->Header.sh_addralign)
|
|
this->Header.sh_addralign = Align;
|
|
|
|
ArrayRef<uint8_t> D = S->getSectionData();
|
|
StringRef Data((const char *)D.data(), D.size());
|
|
uintX_t EntSize = S->getSectionHdr()->sh_entsize;
|
|
|
|
if (this->Header.sh_flags & SHF_STRINGS) {
|
|
uintX_t Offset = 0;
|
|
while (!Data.empty()) {
|
|
size_t End = findNull(Data, EntSize);
|
|
if (End == StringRef::npos)
|
|
error("String is not null terminated");
|
|
StringRef Entry = Data.substr(0, End + EntSize);
|
|
uintX_t OutputOffset = Builder.add(Entry);
|
|
if (shouldTailMerge())
|
|
OutputOffset = -1;
|
|
S->Offsets.push_back(std::make_pair(Offset, OutputOffset));
|
|
uintX_t Size = End + EntSize;
|
|
Data = Data.substr(Size);
|
|
Offset += Size;
|
|
}
|
|
} else {
|
|
for (unsigned I = 0, N = Data.size(); I != N; I += EntSize) {
|
|
StringRef Entry = Data.substr(I, EntSize);
|
|
size_t OutputOffset = Builder.add(Entry);
|
|
S->Offsets.push_back(std::make_pair(I, OutputOffset));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
|
|
return Builder.getOffset(Val);
|
|
}
|
|
|
|
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
|
|
return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
|
|
if (shouldTailMerge())
|
|
Builder.finalize();
|
|
this->Header.sh_size = Builder.getSize();
|
|
}
|
|
|
|
template <class ELFT>
|
|
StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
|
|
: OutputSectionBase<ELFT>(Name, SHT_STRTAB,
|
|
Dynamic ? (uintX_t)SHF_ALLOC : 0),
|
|
Dynamic(Dynamic) {
|
|
this->Header.sh_addralign = 1;
|
|
}
|
|
|
|
// String tables are created in two phases. First you call reserve()
|
|
// to reserve room in the string table, and then call addString() to actually
|
|
// add that string.
|
|
//
|
|
// Why two phases? We want to know the size of the string table as early as
|
|
// possible to fix file layout. So we have separated finalize(), which
|
|
// determines the size of the section, from writeTo(), which writes the section
|
|
// contents to the output buffer. If we merge reserve() with addString(),
|
|
// we need a plumbing work for finalize() and writeTo() so that offsets
|
|
// we obtained in the former function can be written in the latter.
|
|
// This design eliminated that need.
|
|
template <class ELFT> void StringTableSection<ELFT>::reserve(StringRef S) {
|
|
Reserved += S.size() + 1; // +1 for NUL
|
|
}
|
|
|
|
// Adds a string to the string table. You must call reserve() with the
|
|
// same string before calling addString().
|
|
template <class ELFT> size_t StringTableSection<ELFT>::addString(StringRef S) {
|
|
size_t Pos = Used;
|
|
Strings.push_back(S);
|
|
Used += S.size() + 1;
|
|
Reserved -= S.size() + 1;
|
|
assert((int64_t)Reserved >= 0);
|
|
return Pos;
|
|
}
|
|
|
|
template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
// ELF string tables start with NUL byte, so advance the pointer by one.
|
|
++Buf;
|
|
for (StringRef S : Strings) {
|
|
memcpy(Buf, S.data(), S.size());
|
|
Buf += S.size() + 1;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool elf2::shouldKeepInSymtab(const ObjectFile<ELFT> &File, StringRef SymName,
|
|
const typename ELFFile<ELFT>::Elf_Sym &Sym) {
|
|
if (Sym.getType() == STT_SECTION || Sym.getType() == STT_FILE)
|
|
return false;
|
|
|
|
InputSectionBase<ELFT> *Sec = File.getSection(Sym);
|
|
// If sym references a section in a discarded group, don't keep it.
|
|
if (Sec == &InputSection<ELFT>::Discarded)
|
|
return false;
|
|
|
|
if (Config->DiscardNone)
|
|
return true;
|
|
|
|
// In ELF assembly .L symbols are normally discarded by the assembler.
|
|
// If the assembler fails to do so, the linker discards them if
|
|
// * --discard-locals is used.
|
|
// * The symbol is in a SHF_MERGE section, which is normally the reason for
|
|
// the assembler keeping the .L symbol.
|
|
if (!SymName.startswith(".L") && !SymName.empty())
|
|
return true;
|
|
|
|
if (Config->DiscardLocals)
|
|
return false;
|
|
|
|
return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE);
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolTableSection<ELFT>::SymbolTableSection(
|
|
SymbolTable<ELFT> &Table, StringTableSection<ELFT> &StrTabSec)
|
|
: OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
|
|
StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
|
|
StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
|
|
Table(Table), StrTabSec(StrTabSec) {
|
|
this->Header.sh_entsize = sizeof(Elf_Sym);
|
|
this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
|
|
}
|
|
|
|
// Orders symbols according to their positions in the GOT,
|
|
// in compliance with MIPS ABI rules.
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed description:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
static bool sortMipsSymbols(SymbolBody *L, SymbolBody *R) {
|
|
if (!L->isInGot() || !R->isInGot())
|
|
return R->isInGot();
|
|
return L->GotIndex < R->GotIndex;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
|
|
if (this->Header.sh_size)
|
|
return; // Already finalized.
|
|
|
|
this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
|
|
this->Header.sh_link = StrTabSec.SectionIndex;
|
|
this->Header.sh_info = NumLocals + 1;
|
|
|
|
if (!StrTabSec.isDynamic()) {
|
|
std::stable_sort(Symbols.begin(), Symbols.end(),
|
|
[](SymbolBody *L, SymbolBody *R) {
|
|
return getSymbolBinding(L) == STB_LOCAL &&
|
|
getSymbolBinding(R) != STB_LOCAL;
|
|
});
|
|
return;
|
|
}
|
|
if (Out<ELFT>::GnuHashTab)
|
|
// NB: It also sorts Symbols to meet the GNU hash table requirements.
|
|
Out<ELFT>::GnuHashTab->addSymbols(Symbols);
|
|
else if (Config->EMachine == EM_MIPS)
|
|
std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
|
|
size_t I = 0;
|
|
for (SymbolBody *B : Symbols)
|
|
B->DynamicSymbolTableIndex = ++I;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::addLocalSymbol(StringRef Name) {
|
|
StrTabSec.reserve(Name);
|
|
++NumVisible;
|
|
++NumLocals;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::addSymbol(SymbolBody *Body) {
|
|
StrTabSec.reserve(Body->getName());
|
|
Symbols.push_back(Body);
|
|
++NumVisible;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Buf += sizeof(Elf_Sym);
|
|
|
|
// All symbols with STB_LOCAL binding precede the weak and global symbols.
|
|
// .dynsym only contains global symbols.
|
|
if (!Config->DiscardAll && !StrTabSec.isDynamic())
|
|
writeLocalSymbols(Buf);
|
|
|
|
writeGlobalSymbols(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
|
|
// Iterate over all input object files to copy their local symbols
|
|
// to the output symbol table pointed by Buf.
|
|
for (const std::unique_ptr<ObjectFile<ELFT>> &File : Table.getObjectFiles()) {
|
|
Elf_Sym_Range Syms = File->getLocalSymbols();
|
|
for (const Elf_Sym &Sym : Syms) {
|
|
ErrorOr<StringRef> SymNameOrErr = Sym.getName(File->getStringTable());
|
|
error(SymNameOrErr);
|
|
StringRef SymName = *SymNameOrErr;
|
|
if (!shouldKeepInSymtab<ELFT>(*File, SymName, Sym))
|
|
continue;
|
|
|
|
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
uintX_t VA = 0;
|
|
if (Sym.st_shndx == SHN_ABS) {
|
|
ESym->st_shndx = SHN_ABS;
|
|
VA = Sym.st_value;
|
|
} else {
|
|
InputSectionBase<ELFT> *Section = File->getSection(Sym);
|
|
if (!Section->isLive())
|
|
continue;
|
|
const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
|
|
ESym->st_shndx = OutSec->SectionIndex;
|
|
VA = Section->getOffset(Sym);
|
|
// Symbol offsets for AMDGPU need to be the offset in bytes of the
|
|
// symbol from the beginning of the section.
|
|
if (Config->EMachine != EM_AMDGPU)
|
|
VA += OutSec->getVA();
|
|
}
|
|
ESym->st_name = StrTabSec.addString(SymName);
|
|
ESym->st_size = Sym.st_size;
|
|
ESym->setBindingAndType(Sym.getBinding(), Sym.getType());
|
|
ESym->st_value = VA;
|
|
Buf += sizeof(*ESym);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
static const typename llvm::object::ELFFile<ELFT>::Elf_Sym *
|
|
getElfSym(SymbolBody &Body) {
|
|
if (auto *EBody = dyn_cast<DefinedElf<ELFT>>(&Body))
|
|
return &EBody->Sym;
|
|
if (auto *EBody = dyn_cast<UndefinedElf<ELFT>>(&Body))
|
|
return &EBody->Sym;
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
|
|
// Write the internal symbol table contents to the output symbol table
|
|
// pointed by Buf.
|
|
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
for (SymbolBody *Body : Symbols) {
|
|
const OutputSectionBase<ELFT> *OutSec = nullptr;
|
|
|
|
switch (Body->kind()) {
|
|
case SymbolBody::DefinedSyntheticKind:
|
|
OutSec = &cast<DefinedSynthetic<ELFT>>(Body)->Section;
|
|
break;
|
|
case SymbolBody::DefinedRegularKind: {
|
|
auto *Sym = cast<DefinedRegular<ELFT>>(Body->repl());
|
|
if (InputSectionBase<ELFT> *Sec = Sym->Section) {
|
|
if (!Sec->isLive())
|
|
continue;
|
|
OutSec = Sec->OutSec;
|
|
}
|
|
break;
|
|
}
|
|
case SymbolBody::DefinedCommonKind:
|
|
OutSec = Out<ELFT>::Bss;
|
|
break;
|
|
case SymbolBody::SharedKind: {
|
|
if (cast<SharedSymbol<ELFT>>(Body)->NeedsCopy)
|
|
OutSec = Out<ELFT>::Bss;
|
|
break;
|
|
}
|
|
case SymbolBody::UndefinedElfKind:
|
|
case SymbolBody::UndefinedKind:
|
|
case SymbolBody::LazyKind:
|
|
break;
|
|
}
|
|
|
|
StringRef Name = Body->getName();
|
|
ESym->st_name = StrTabSec.addString(Name);
|
|
|
|
unsigned char Type = STT_NOTYPE;
|
|
uintX_t Size = 0;
|
|
if (const Elf_Sym *InputSym = getElfSym<ELFT>(*Body)) {
|
|
Type = InputSym->getType();
|
|
Size = InputSym->st_size;
|
|
} else if (auto *C = dyn_cast<DefinedCommon>(Body)) {
|
|
Type = STT_OBJECT;
|
|
Size = C->Size;
|
|
}
|
|
|
|
ESym->setBindingAndType(getSymbolBinding(Body), Type);
|
|
ESym->st_size = Size;
|
|
ESym->setVisibility(Body->getVisibility());
|
|
ESym->st_value = getSymVA<ELFT>(*Body);
|
|
|
|
if (OutSec)
|
|
ESym->st_shndx = OutSec->SectionIndex;
|
|
else if (isa<DefinedRegular<ELFT>>(Body))
|
|
ESym->st_shndx = SHN_ABS;
|
|
|
|
++ESym;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint8_t SymbolTableSection<ELFT>::getSymbolBinding(SymbolBody *Body) {
|
|
uint8_t Visibility = Body->getVisibility();
|
|
if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
|
|
return STB_LOCAL;
|
|
if (const Elf_Sym *ESym = getElfSym<ELFT>(*Body))
|
|
return ESym->getBinding();
|
|
if (isa<DefinedSynthetic<ELFT>>(Body))
|
|
return STB_LOCAL;
|
|
return Body->isWeak() ? STB_WEAK : STB_GLOBAL;
|
|
}
|
|
|
|
template <class ELFT>
|
|
MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
|
|
: OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
|
|
this->Header.sh_addralign = 4;
|
|
this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
|
|
this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
|
|
R->ri_gp_value = getMipsGpAddr<ELFT>();
|
|
R->ri_gprmask = GprMask;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
|
|
// Copy input object file's .reginfo gprmask to output.
|
|
auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
|
|
GprMask |= S->Reginfo->ri_gprmask;
|
|
}
|
|
|
|
namespace lld {
|
|
namespace elf2 {
|
|
template class OutputSectionBase<ELF32LE>;
|
|
template class OutputSectionBase<ELF32BE>;
|
|
template class OutputSectionBase<ELF64LE>;
|
|
template class OutputSectionBase<ELF64BE>;
|
|
|
|
template class EhFrameHeader<ELF32LE>;
|
|
template class EhFrameHeader<ELF32BE>;
|
|
template class EhFrameHeader<ELF64LE>;
|
|
template class EhFrameHeader<ELF64BE>;
|
|
|
|
template class GotPltSection<ELF32LE>;
|
|
template class GotPltSection<ELF32BE>;
|
|
template class GotPltSection<ELF64LE>;
|
|
template class GotPltSection<ELF64BE>;
|
|
|
|
template class GotSection<ELF32LE>;
|
|
template class GotSection<ELF32BE>;
|
|
template class GotSection<ELF64LE>;
|
|
template class GotSection<ELF64BE>;
|
|
|
|
template class PltSection<ELF32LE>;
|
|
template class PltSection<ELF32BE>;
|
|
template class PltSection<ELF64LE>;
|
|
template class PltSection<ELF64BE>;
|
|
|
|
template class RelocationSection<ELF32LE>;
|
|
template class RelocationSection<ELF32BE>;
|
|
template class RelocationSection<ELF64LE>;
|
|
template class RelocationSection<ELF64BE>;
|
|
|
|
template class InterpSection<ELF32LE>;
|
|
template class InterpSection<ELF32BE>;
|
|
template class InterpSection<ELF64LE>;
|
|
template class InterpSection<ELF64BE>;
|
|
|
|
template class GnuHashTableSection<ELF32LE>;
|
|
template class GnuHashTableSection<ELF32BE>;
|
|
template class GnuHashTableSection<ELF64LE>;
|
|
template class GnuHashTableSection<ELF64BE>;
|
|
|
|
template class HashTableSection<ELF32LE>;
|
|
template class HashTableSection<ELF32BE>;
|
|
template class HashTableSection<ELF64LE>;
|
|
template class HashTableSection<ELF64BE>;
|
|
|
|
template class DynamicSection<ELF32LE>;
|
|
template class DynamicSection<ELF32BE>;
|
|
template class DynamicSection<ELF64LE>;
|
|
template class DynamicSection<ELF64BE>;
|
|
|
|
template class OutputSection<ELF32LE>;
|
|
template class OutputSection<ELF32BE>;
|
|
template class OutputSection<ELF64LE>;
|
|
template class OutputSection<ELF64BE>;
|
|
|
|
template class EHOutputSection<ELF32LE>;
|
|
template class EHOutputSection<ELF32BE>;
|
|
template class EHOutputSection<ELF64LE>;
|
|
template class EHOutputSection<ELF64BE>;
|
|
|
|
template class MipsReginfoOutputSection<ELF32LE>;
|
|
template class MipsReginfoOutputSection<ELF32BE>;
|
|
template class MipsReginfoOutputSection<ELF64LE>;
|
|
template class MipsReginfoOutputSection<ELF64BE>;
|
|
|
|
template class MergeOutputSection<ELF32LE>;
|
|
template class MergeOutputSection<ELF32BE>;
|
|
template class MergeOutputSection<ELF64LE>;
|
|
template class MergeOutputSection<ELF64BE>;
|
|
|
|
template class StringTableSection<ELF32LE>;
|
|
template class StringTableSection<ELF32BE>;
|
|
template class StringTableSection<ELF64LE>;
|
|
template class StringTableSection<ELF64BE>;
|
|
|
|
template class SymbolTableSection<ELF32LE>;
|
|
template class SymbolTableSection<ELF32BE>;
|
|
template class SymbolTableSection<ELF64LE>;
|
|
template class SymbolTableSection<ELF64BE>;
|
|
|
|
template ELFFile<ELF32LE>::uintX_t getSymVA<ELF32LE>(const SymbolBody &);
|
|
template ELFFile<ELF32BE>::uintX_t getSymVA<ELF32BE>(const SymbolBody &);
|
|
template ELFFile<ELF64LE>::uintX_t getSymVA<ELF64LE>(const SymbolBody &);
|
|
template ELFFile<ELF64BE>::uintX_t getSymVA<ELF64BE>(const SymbolBody &);
|
|
|
|
template ELFFile<ELF32LE>::uintX_t
|
|
getLocalRelTarget(const ObjectFile<ELF32LE> &,
|
|
const ELFFile<ELF32LE>::Elf_Rel &,
|
|
ELFFile<ELF32LE>::uintX_t Addend);
|
|
template ELFFile<ELF32BE>::uintX_t
|
|
getLocalRelTarget(const ObjectFile<ELF32BE> &,
|
|
const ELFFile<ELF32BE>::Elf_Rel &,
|
|
ELFFile<ELF32BE>::uintX_t Addend);
|
|
template ELFFile<ELF64LE>::uintX_t
|
|
getLocalRelTarget(const ObjectFile<ELF64LE> &,
|
|
const ELFFile<ELF64LE>::Elf_Rel &,
|
|
ELFFile<ELF64LE>::uintX_t Addend);
|
|
template ELFFile<ELF64BE>::uintX_t
|
|
getLocalRelTarget(const ObjectFile<ELF64BE> &,
|
|
const ELFFile<ELF64BE>::Elf_Rel &,
|
|
ELFFile<ELF64BE>::uintX_t Addend);
|
|
|
|
template bool shouldKeepInSymtab<ELF32LE>(const ObjectFile<ELF32LE> &,
|
|
StringRef,
|
|
const ELFFile<ELF32LE>::Elf_Sym &);
|
|
template bool shouldKeepInSymtab<ELF32BE>(const ObjectFile<ELF32BE> &,
|
|
StringRef,
|
|
const ELFFile<ELF32BE>::Elf_Sym &);
|
|
template bool shouldKeepInSymtab<ELF64LE>(const ObjectFile<ELF64LE> &,
|
|
StringRef,
|
|
const ELFFile<ELF64LE>::Elf_Sym &);
|
|
template bool shouldKeepInSymtab<ELF64BE>(const ObjectFile<ELF64BE> &,
|
|
StringRef,
|
|
const ELFFile<ELF64BE>::Elf_Sym &);
|
|
}
|
|
}
|