llvm-project/clang/lib/Basic/Targets/Mips.cpp

246 lines
8.3 KiB
C++

//===--- Mips.cpp - Implement Mips target feature support -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Mips TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "Mips.h"
#include "Targets.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
using namespace clang::targets;
const Builtin::Info MipsTargetInfo::BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
{#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
#include "clang/Basic/BuiltinsMips.def"
};
bool MipsTargetInfo::processorSupportsGPR64() const {
return llvm::StringSwitch<bool>(CPU)
.Case("mips3", true)
.Case("mips4", true)
.Case("mips5", true)
.Case("mips64", true)
.Case("mips64r2", true)
.Case("mips64r3", true)
.Case("mips64r5", true)
.Case("mips64r6", true)
.Case("octeon", true)
.Default(false);
return false;
}
static constexpr llvm::StringLiteral ValidCPUNames[] = {
{"mips1"}, {"mips2"}, {"mips3"}, {"mips4"}, {"mips5"},
{"mips32"}, {"mips32r2"}, {"mips32r3"}, {"mips32r5"}, {"mips32r6"},
{"mips64"}, {"mips64r2"}, {"mips64r3"}, {"mips64r5"}, {"mips64r6"},
{"octeon"}, {"p5600"}};
bool MipsTargetInfo::isValidCPUName(StringRef Name) const {
return llvm::find(ValidCPUNames, Name) != std::end(ValidCPUNames);
}
void MipsTargetInfo::fillValidCPUList(
SmallVectorImpl<StringRef> &Values) const {
Values.append(std::begin(ValidCPUNames), std::end(ValidCPUNames));
}
void MipsTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
if (BigEndian) {
DefineStd(Builder, "MIPSEB", Opts);
Builder.defineMacro("_MIPSEB");
} else {
DefineStd(Builder, "MIPSEL", Opts);
Builder.defineMacro("_MIPSEL");
}
Builder.defineMacro("__mips__");
Builder.defineMacro("_mips");
if (Opts.GNUMode)
Builder.defineMacro("mips");
if (ABI == "o32") {
Builder.defineMacro("__mips", "32");
Builder.defineMacro("_MIPS_ISA", "_MIPS_ISA_MIPS32");
} else {
Builder.defineMacro("__mips", "64");
Builder.defineMacro("__mips64");
Builder.defineMacro("__mips64__");
Builder.defineMacro("_MIPS_ISA", "_MIPS_ISA_MIPS64");
}
const std::string ISARev = llvm::StringSwitch<std::string>(getCPU())
.Cases("mips32", "mips64", "1")
.Cases("mips32r2", "mips64r2", "2")
.Cases("mips32r3", "mips64r3", "3")
.Cases("mips32r5", "mips64r5", "5")
.Cases("mips32r6", "mips64r6", "6")
.Default("");
if (!ISARev.empty())
Builder.defineMacro("__mips_isa_rev", ISARev);
if (ABI == "o32") {
Builder.defineMacro("__mips_o32");
Builder.defineMacro("_ABIO32", "1");
Builder.defineMacro("_MIPS_SIM", "_ABIO32");
} else if (ABI == "n32") {
Builder.defineMacro("__mips_n32");
Builder.defineMacro("_ABIN32", "2");
Builder.defineMacro("_MIPS_SIM", "_ABIN32");
} else if (ABI == "n64") {
Builder.defineMacro("__mips_n64");
Builder.defineMacro("_ABI64", "3");
Builder.defineMacro("_MIPS_SIM", "_ABI64");
} else
llvm_unreachable("Invalid ABI.");
if (!IsNoABICalls) {
Builder.defineMacro("__mips_abicalls");
if (CanUseBSDABICalls)
Builder.defineMacro("__ABICALLS__");
}
Builder.defineMacro("__REGISTER_PREFIX__", "");
switch (FloatABI) {
case HardFloat:
Builder.defineMacro("__mips_hard_float", Twine(1));
break;
case SoftFloat:
Builder.defineMacro("__mips_soft_float", Twine(1));
break;
}
if (IsSingleFloat)
Builder.defineMacro("__mips_single_float", Twine(1));
Builder.defineMacro("__mips_fpr", HasFP64 ? Twine(64) : Twine(32));
Builder.defineMacro("_MIPS_FPSET",
Twine(32 / (HasFP64 || IsSingleFloat ? 1 : 2)));
if (IsMips16)
Builder.defineMacro("__mips16", Twine(1));
if (IsMicromips)
Builder.defineMacro("__mips_micromips", Twine(1));
if (IsNan2008)
Builder.defineMacro("__mips_nan2008", Twine(1));
if (IsAbs2008)
Builder.defineMacro("__mips_abs2008", Twine(1));
switch (DspRev) {
default:
break;
case DSP1:
Builder.defineMacro("__mips_dsp_rev", Twine(1));
Builder.defineMacro("__mips_dsp", Twine(1));
break;
case DSP2:
Builder.defineMacro("__mips_dsp_rev", Twine(2));
Builder.defineMacro("__mips_dspr2", Twine(1));
Builder.defineMacro("__mips_dsp", Twine(1));
break;
}
if (HasMSA)
Builder.defineMacro("__mips_msa", Twine(1));
if (DisableMadd4)
Builder.defineMacro("__mips_no_madd4", Twine(1));
Builder.defineMacro("_MIPS_SZPTR", Twine(getPointerWidth(0)));
Builder.defineMacro("_MIPS_SZINT", Twine(getIntWidth()));
Builder.defineMacro("_MIPS_SZLONG", Twine(getLongWidth()));
Builder.defineMacro("_MIPS_ARCH", "\"" + CPU + "\"");
Builder.defineMacro("_MIPS_ARCH_" + StringRef(CPU).upper());
// These shouldn't be defined for MIPS-I but there's no need to check
// for that since MIPS-I isn't supported.
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
// 32-bit MIPS processors don't have the necessary lld/scd instructions
// found in 64-bit processors. In the case of O32 on a 64-bit processor,
// the instructions exist but using them violates the ABI since they
// require 64-bit GPRs and O32 only supports 32-bit GPRs.
if (ABI == "n32" || ABI == "n64")
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
}
bool MipsTargetInfo::hasFeature(StringRef Feature) const {
return llvm::StringSwitch<bool>(Feature)
.Case("mips", true)
.Case("fp64", HasFP64)
.Default(false);
}
ArrayRef<Builtin::Info> MipsTargetInfo::getTargetBuiltins() const {
return llvm::makeArrayRef(BuiltinInfo, clang::Mips::LastTSBuiltin -
Builtin::FirstTSBuiltin);
}
bool MipsTargetInfo::validateTarget(DiagnosticsEngine &Diags) const {
// microMIPS64R6 backend was removed.
if ((getTriple().getArch() == llvm::Triple::mips64 ||
getTriple().getArch() == llvm::Triple::mips64el) &&
IsMicromips && (ABI == "n32" || ABI == "n64")) {
Diags.Report(diag::err_target_unsupported_cpu_for_micromips) << CPU;
return false;
}
// FIXME: It's valid to use O32 on a 64-bit CPU but the backend can't handle
// this yet. It's better to fail here than on the backend assertion.
if (processorSupportsGPR64() && ABI == "o32") {
Diags.Report(diag::err_target_unsupported_abi) << ABI << CPU;
return false;
}
// 64-bit ABI's require 64-bit CPU's.
if (!processorSupportsGPR64() && (ABI == "n32" || ABI == "n64")) {
Diags.Report(diag::err_target_unsupported_abi) << ABI << CPU;
return false;
}
// FIXME: It's valid to use O32 on a mips64/mips64el triple but the backend
// can't handle this yet. It's better to fail here than on the
// backend assertion.
if ((getTriple().getArch() == llvm::Triple::mips64 ||
getTriple().getArch() == llvm::Triple::mips64el) &&
ABI == "o32") {
Diags.Report(diag::err_target_unsupported_abi_for_triple)
<< ABI << getTriple().str();
return false;
}
// FIXME: It's valid to use N32/N64 on a mips/mipsel triple but the backend
// can't handle this yet. It's better to fail here than on the
// backend assertion.
if ((getTriple().getArch() == llvm::Triple::mips ||
getTriple().getArch() == llvm::Triple::mipsel) &&
(ABI == "n32" || ABI == "n64")) {
Diags.Report(diag::err_target_unsupported_abi_for_triple)
<< ABI << getTriple().str();
return false;
}
return true;
}