forked from OSchip/llvm-project
993 lines
36 KiB
C++
993 lines
36 KiB
C++
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements extra semantic analysis beyond what is enforced
|
|
// by the C type system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "SemaUtil.h"
|
|
using namespace clang;
|
|
|
|
/// CheckFunctionCall - Check a direct function call for various correctness
|
|
/// and safety properties not strictly enforced by the C type system.
|
|
Action::ExprResult
|
|
Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
|
|
llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
|
|
// Get the IdentifierInfo* for the called function.
|
|
IdentifierInfo *FnInfo = FDecl->getIdentifier();
|
|
|
|
// None of the checks below are needed for functions that don't have
|
|
// simple names (e.g., C++ conversion functions).
|
|
if (!FnInfo)
|
|
return TheCall.take();
|
|
|
|
switch (FnInfo->getBuiltinID()) {
|
|
case Builtin::BI__builtin___CFStringMakeConstantString:
|
|
assert(TheCall->getNumArgs() == 1 &&
|
|
"Wrong # arguments to builtin CFStringMakeConstantString");
|
|
if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
|
|
return true;
|
|
return TheCall.take();
|
|
case Builtin::BI__builtin_stdarg_start:
|
|
case Builtin::BI__builtin_va_start:
|
|
if (SemaBuiltinVAStart(TheCall.get()))
|
|
return true;
|
|
return TheCall.take();
|
|
case Builtin::BI__builtin_isgreater:
|
|
case Builtin::BI__builtin_isgreaterequal:
|
|
case Builtin::BI__builtin_isless:
|
|
case Builtin::BI__builtin_islessequal:
|
|
case Builtin::BI__builtin_islessgreater:
|
|
case Builtin::BI__builtin_isunordered:
|
|
if (SemaBuiltinUnorderedCompare(TheCall.get()))
|
|
return true;
|
|
return TheCall.take();
|
|
case Builtin::BI__builtin_return_address:
|
|
case Builtin::BI__builtin_frame_address:
|
|
if (SemaBuiltinStackAddress(TheCall.get()))
|
|
return true;
|
|
return TheCall.take();
|
|
case Builtin::BI__builtin_shufflevector:
|
|
return SemaBuiltinShuffleVector(TheCall.get());
|
|
case Builtin::BI__builtin_prefetch:
|
|
if (SemaBuiltinPrefetch(TheCall.get()))
|
|
return true;
|
|
return TheCall.take();
|
|
case Builtin::BI__builtin_object_size:
|
|
if (SemaBuiltinObjectSize(TheCall.get()))
|
|
return true;
|
|
}
|
|
|
|
// FIXME: This mechanism should be abstracted to be less fragile and
|
|
// more efficient. For example, just map function ids to custom
|
|
// handlers.
|
|
|
|
// Search the KnownFunctionIDs for the identifier.
|
|
unsigned i = 0, e = id_num_known_functions;
|
|
for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
|
|
if (i == e) return TheCall.take();
|
|
|
|
// Printf checking.
|
|
if (i <= id_vprintf) {
|
|
// Retrieve the index of the format string parameter and determine
|
|
// if the function is passed a va_arg argument.
|
|
unsigned format_idx = 0;
|
|
bool HasVAListArg = false;
|
|
|
|
switch (i) {
|
|
default: assert(false && "No format string argument index.");
|
|
case id_NSLog: format_idx = 0; break;
|
|
case id_asprintf: format_idx = 1; break;
|
|
case id_fprintf: format_idx = 1; break;
|
|
case id_printf: format_idx = 0; break;
|
|
case id_snprintf: format_idx = 2; break;
|
|
case id_snprintf_chk: format_idx = 4; break;
|
|
case id_sprintf: format_idx = 1; break;
|
|
case id_sprintf_chk: format_idx = 3; break;
|
|
case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vfprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
|
|
case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
|
|
case id_vsprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vsprintf_chk: format_idx = 3; HasVAListArg = true; break;
|
|
case id_vprintf: format_idx = 0; HasVAListArg = true; break;
|
|
}
|
|
|
|
CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
|
|
}
|
|
|
|
return TheCall.take();
|
|
}
|
|
|
|
/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
|
|
/// CFString constructor is correct
|
|
bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
|
|
Arg = Arg->IgnoreParenCasts();
|
|
|
|
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
|
|
|
|
if (!Literal || Literal->isWide()) {
|
|
Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
|
|
<< Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
const char *Data = Literal->getStrData();
|
|
unsigned Length = Literal->getByteLength();
|
|
|
|
for (unsigned i = 0; i < Length; ++i) {
|
|
if (!isascii(Data[i])) {
|
|
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
|
|
diag::warn_cfstring_literal_contains_non_ascii_character)
|
|
<< Arg->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
if (!Data[i]) {
|
|
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
|
|
diag::warn_cfstring_literal_contains_nul_character)
|
|
<< Arg->getSourceRange();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
|
|
/// Emit an error and return true on failure, return false on success.
|
|
bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
|
|
Expr *Fn = TheCall->getCallee();
|
|
if (TheCall->getNumArgs() > 2) {
|
|
Diag(TheCall->getArg(2)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< Fn->getSourceRange()
|
|
<< SourceRange(TheCall->getArg(2)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
return true;
|
|
}
|
|
|
|
// Determine whether the current function is variadic or not.
|
|
bool isVariadic;
|
|
if (getCurFunctionDecl())
|
|
isVariadic =
|
|
cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
|
|
else
|
|
isVariadic = getCurMethodDecl()->isVariadic();
|
|
|
|
if (!isVariadic) {
|
|
Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
|
|
return true;
|
|
}
|
|
|
|
// Verify that the second argument to the builtin is the last argument of the
|
|
// current function or method.
|
|
bool SecondArgIsLastNamedArgument = false;
|
|
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
|
|
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
|
|
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
|
|
// FIXME: This isn't correct for methods (results in bogus warning).
|
|
// Get the last formal in the current function.
|
|
const ParmVarDecl *LastArg;
|
|
if (getCurFunctionDecl())
|
|
LastArg = *(getCurFunctionDecl()->param_end()-1);
|
|
else
|
|
LastArg = *(getCurMethodDecl()->param_end()-1);
|
|
SecondArgIsLastNamedArgument = PV == LastArg;
|
|
}
|
|
}
|
|
|
|
if (!SecondArgIsLastNamedArgument)
|
|
Diag(TheCall->getArg(1)->getLocStart(),
|
|
diag::warn_second_parameter_of_va_start_not_last_named_argument);
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
|
|
/// friends. This is declared to take (...), so we have to check everything.
|
|
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 2)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
|
|
if (TheCall->getNumArgs() > 2)
|
|
return Diag(TheCall->getArg(2)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< SourceRange(TheCall->getArg(2)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
|
|
Expr *OrigArg0 = TheCall->getArg(0);
|
|
Expr *OrigArg1 = TheCall->getArg(1);
|
|
|
|
// Do standard promotions between the two arguments, returning their common
|
|
// type.
|
|
QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
|
|
|
|
// If the common type isn't a real floating type, then the arguments were
|
|
// invalid for this operation.
|
|
if (!Res->isRealFloatingType())
|
|
return Diag(OrigArg0->getLocStart(),
|
|
diag::err_typecheck_call_invalid_ordered_compare)
|
|
<< OrigArg0->getType().getAsString() << OrigArg1->getType().getAsString()
|
|
<< SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
|
|
// The signature for these builtins is exact; the only thing we need
|
|
// to check is that the argument is a constant.
|
|
SourceLocation Loc;
|
|
if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
|
|
return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
|
|
// This is declared to take (...), so we have to check everything.
|
|
Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 3)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< TheCall->getSourceRange();
|
|
|
|
QualType FAType = TheCall->getArg(0)->getType();
|
|
QualType SAType = TheCall->getArg(1)->getType();
|
|
|
|
if (!FAType->isVectorType() || !SAType->isVectorType()) {
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
|
|
<< SourceRange(TheCall->getArg(0)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
return true;
|
|
}
|
|
|
|
if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
|
|
Context.getCanonicalType(SAType).getUnqualifiedType()) {
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
|
|
<< SourceRange(TheCall->getArg(0)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
return true;
|
|
}
|
|
|
|
unsigned numElements = FAType->getAsVectorType()->getNumElements();
|
|
if (TheCall->getNumArgs() != numElements+2) {
|
|
if (TheCall->getNumArgs() < numElements+2)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< TheCall->getSourceRange();
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
|
|
<< TheCall->getSourceRange();
|
|
}
|
|
|
|
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
|
|
llvm::APSInt Result(32);
|
|
if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
|
|
return Diag(TheCall->getLocStart(),
|
|
diag::err_shufflevector_nonconstant_argument)
|
|
<< TheCall->getArg(i)->getSourceRange();
|
|
|
|
if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
|
|
return Diag(TheCall->getLocStart(),
|
|
diag::err_shufflevector_argument_too_large)
|
|
<< TheCall->getArg(i)->getSourceRange();
|
|
}
|
|
|
|
llvm::SmallVector<Expr*, 32> exprs;
|
|
|
|
for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
|
|
exprs.push_back(TheCall->getArg(i));
|
|
TheCall->setArg(i, 0);
|
|
}
|
|
|
|
return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
|
|
TheCall->getCallee()->getLocStart(),
|
|
TheCall->getRParenLoc());
|
|
}
|
|
|
|
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
|
|
// This is declared to take (const void*, ...) and can take two
|
|
// optional constant int args.
|
|
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
|
|
if (NumArgs > 3)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
|
|
<< TheCall->getSourceRange();
|
|
|
|
// Argument 0 is checked for us and the remaining arguments must be
|
|
// constant integers.
|
|
for (unsigned i = 1; i != NumArgs; ++i) {
|
|
Expr *Arg = TheCall->getArg(i);
|
|
QualType RWType = Arg->getType();
|
|
|
|
const BuiltinType *BT = RWType->getAsBuiltinType();
|
|
llvm::APSInt Result;
|
|
if (!BT || BT->getKind() != BuiltinType::Int ||
|
|
!Arg->isIntegerConstantExpr(Result, Context))
|
|
return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
|
|
// FIXME: gcc issues a warning and rewrites these to 0. These
|
|
// seems especially odd for the third argument since the default
|
|
// is 3.
|
|
if (i == 1) {
|
|
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
} else {
|
|
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
|
|
/// int type). This simply type checks that type is one of the defined
|
|
/// constants (0-3).
|
|
bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
|
|
Expr *Arg = TheCall->getArg(1);
|
|
QualType ArgType = Arg->getType();
|
|
const BuiltinType *BT = ArgType->getAsBuiltinType();
|
|
llvm::APSInt Result(32);
|
|
if (!BT || BT->getKind() != BuiltinType::Int ||
|
|
!Arg->isIntegerConstantExpr(Result, Context)) {
|
|
return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
}
|
|
|
|
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
|
|
/// correct use of format strings.
|
|
///
|
|
/// HasVAListArg - A predicate indicating whether the printf-like
|
|
/// function is passed an explicit va_arg argument (e.g., vprintf)
|
|
///
|
|
/// format_idx - The index into Args for the format string.
|
|
///
|
|
/// Improper format strings to functions in the printf family can be
|
|
/// the source of bizarre bugs and very serious security holes. A
|
|
/// good source of information is available in the following paper
|
|
/// (which includes additional references):
|
|
///
|
|
/// FormatGuard: Automatic Protection From printf Format String
|
|
/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
|
|
///
|
|
/// Functionality implemented:
|
|
///
|
|
/// We can statically check the following properties for string
|
|
/// literal format strings for non v.*printf functions (where the
|
|
/// arguments are passed directly):
|
|
//
|
|
/// (1) Are the number of format conversions equal to the number of
|
|
/// data arguments?
|
|
///
|
|
/// (2) Does each format conversion correctly match the type of the
|
|
/// corresponding data argument? (TODO)
|
|
///
|
|
/// Moreover, for all printf functions we can:
|
|
///
|
|
/// (3) Check for a missing format string (when not caught by type checking).
|
|
///
|
|
/// (4) Check for no-operation flags; e.g. using "#" with format
|
|
/// conversion 'c' (TODO)
|
|
///
|
|
/// (5) Check the use of '%n', a major source of security holes.
|
|
///
|
|
/// (6) Check for malformed format conversions that don't specify anything.
|
|
///
|
|
/// (7) Check for empty format strings. e.g: printf("");
|
|
///
|
|
/// (8) Check that the format string is a wide literal.
|
|
///
|
|
/// (9) Also check the arguments of functions with the __format__ attribute.
|
|
/// (TODO).
|
|
///
|
|
/// All of these checks can be done by parsing the format string.
|
|
///
|
|
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
|
|
void
|
|
Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
|
|
unsigned format_idx) {
|
|
Expr *Fn = TheCall->getCallee();
|
|
|
|
// CHECK: printf-like function is called with no format string.
|
|
if (format_idx >= TheCall->getNumArgs()) {
|
|
Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
|
|
<< Fn->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
|
|
|
|
// CHECK: format string is not a string literal.
|
|
//
|
|
// Dynamically generated format strings are difficult to
|
|
// automatically vet at compile time. Requiring that format strings
|
|
// are string literals: (1) permits the checking of format strings by
|
|
// the compiler and thereby (2) can practically remove the source of
|
|
// many format string exploits.
|
|
|
|
// Format string can be either ObjC string (e.g. @"%d") or
|
|
// C string (e.g. "%d")
|
|
// ObjC string uses the same format specifiers as C string, so we can use
|
|
// the same format string checking logic for both ObjC and C strings.
|
|
ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
|
|
StringLiteral *FExpr = NULL;
|
|
|
|
if(ObjCFExpr != NULL)
|
|
FExpr = ObjCFExpr->getString();
|
|
else
|
|
FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
|
|
|
|
if (FExpr == NULL) {
|
|
// For vprintf* functions (i.e., HasVAListArg==true), we add a
|
|
// special check to see if the format string is a function parameter
|
|
// of the function calling the printf function. If the function
|
|
// has an attribute indicating it is a printf-like function, then we
|
|
// should suppress warnings concerning non-literals being used in a call
|
|
// to a vprintf function. For example:
|
|
//
|
|
// void
|
|
// logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
|
|
// va_list ap;
|
|
// va_start(ap, fmt);
|
|
// vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
|
|
// ...
|
|
//
|
|
//
|
|
// FIXME: We don't have full attribute support yet, so just check to see
|
|
// if the argument is a DeclRefExpr that references a parameter. We'll
|
|
// add proper support for checking the attribute later.
|
|
if (HasVAListArg)
|
|
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
|
|
if (isa<ParmVarDecl>(DR->getDecl()))
|
|
return;
|
|
|
|
Diag(TheCall->getArg(format_idx)->getLocStart(),
|
|
diag::warn_printf_not_string_constant)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// CHECK: is the format string a wide literal?
|
|
if (FExpr->isWide()) {
|
|
Diag(FExpr->getLocStart(),
|
|
diag::warn_printf_format_string_is_wide_literal)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Str - The format string. NOTE: this is NOT null-terminated!
|
|
const char * const Str = FExpr->getStrData();
|
|
|
|
// CHECK: empty format string?
|
|
const unsigned StrLen = FExpr->getByteLength();
|
|
|
|
if (StrLen == 0) {
|
|
Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// We process the format string using a binary state machine. The
|
|
// current state is stored in CurrentState.
|
|
enum {
|
|
state_OrdChr,
|
|
state_Conversion
|
|
} CurrentState = state_OrdChr;
|
|
|
|
// numConversions - The number of conversions seen so far. This is
|
|
// incremented as we traverse the format string.
|
|
unsigned numConversions = 0;
|
|
|
|
// numDataArgs - The number of data arguments after the format
|
|
// string. This can only be determined for non vprintf-like
|
|
// functions. For those functions, this value is 1 (the sole
|
|
// va_arg argument).
|
|
unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
|
|
|
|
// Inspect the format string.
|
|
unsigned StrIdx = 0;
|
|
|
|
// LastConversionIdx - Index within the format string where we last saw
|
|
// a '%' character that starts a new format conversion.
|
|
unsigned LastConversionIdx = 0;
|
|
|
|
for (; StrIdx < StrLen; ++StrIdx) {
|
|
|
|
// Is the number of detected conversion conversions greater than
|
|
// the number of matching data arguments? If so, stop.
|
|
if (!HasVAListArg && numConversions > numDataArgs) break;
|
|
|
|
// Handle "\0"
|
|
if (Str[StrIdx] == '\0') {
|
|
// The string returned by getStrData() is not null-terminated,
|
|
// so the presence of a null character is likely an error.
|
|
Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
|
|
diag::warn_printf_format_string_contains_null_char)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Ordinary characters (not processing a format conversion).
|
|
if (CurrentState == state_OrdChr) {
|
|
if (Str[StrIdx] == '%') {
|
|
CurrentState = state_Conversion;
|
|
LastConversionIdx = StrIdx;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Seen '%'. Now processing a format conversion.
|
|
switch (Str[StrIdx]) {
|
|
// Handle dynamic precision or width specifier.
|
|
case '*': {
|
|
++numConversions;
|
|
|
|
if (!HasVAListArg && numConversions > numDataArgs) {
|
|
SourceLocation Loc = FExpr->getLocStart();
|
|
Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
|
|
|
|
if (Str[StrIdx-1] == '.')
|
|
Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
else
|
|
Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
|
|
// Don't do any more checking. We'll just emit spurious errors.
|
|
return;
|
|
}
|
|
|
|
// Perform type checking on width/precision specifier.
|
|
Expr *E = TheCall->getArg(format_idx+numConversions);
|
|
if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
|
|
if (BT->getKind() == BuiltinType::Int)
|
|
break;
|
|
|
|
SourceLocation Loc =
|
|
PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
|
|
|
|
if (Str[StrIdx-1] == '.')
|
|
Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
|
|
<< E->getType().getAsString() << E->getSourceRange();
|
|
else
|
|
Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
|
|
<< E->getType().getAsString() << E->getSourceRange();
|
|
|
|
break;
|
|
}
|
|
|
|
// Characters which can terminate a format conversion
|
|
// (e.g. "%d"). Characters that specify length modifiers or
|
|
// other flags are handled by the default case below.
|
|
//
|
|
// FIXME: additional checks will go into the following cases.
|
|
case 'i':
|
|
case 'd':
|
|
case 'o':
|
|
case 'u':
|
|
case 'x':
|
|
case 'X':
|
|
case 'D':
|
|
case 'O':
|
|
case 'U':
|
|
case 'e':
|
|
case 'E':
|
|
case 'f':
|
|
case 'F':
|
|
case 'g':
|
|
case 'G':
|
|
case 'a':
|
|
case 'A':
|
|
case 'c':
|
|
case 'C':
|
|
case 'S':
|
|
case 's':
|
|
case 'p':
|
|
++numConversions;
|
|
CurrentState = state_OrdChr;
|
|
break;
|
|
|
|
// CHECK: Are we using "%n"? Issue a warning.
|
|
case 'n': {
|
|
++numConversions;
|
|
CurrentState = state_OrdChr;
|
|
SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
// Handle "%@"
|
|
case '@':
|
|
// %@ is allowed in ObjC format strings only.
|
|
if(ObjCFExpr != NULL)
|
|
CurrentState = state_OrdChr;
|
|
else {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion,
|
|
std::string(Str+LastConversionIdx,
|
|
Str+std::min(LastConversionIdx+2, StrLen)),
|
|
OrigFormatExpr->getSourceRange());
|
|
}
|
|
++numConversions;
|
|
break;
|
|
|
|
// Handle "%%"
|
|
case '%':
|
|
// Sanity check: Was the first "%" character the previous one?
|
|
// If not, we will assume that we have a malformed format
|
|
// conversion, and that the current "%" character is the start
|
|
// of a new conversion.
|
|
if (StrIdx - LastConversionIdx == 1)
|
|
CurrentState = state_OrdChr;
|
|
else {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion,
|
|
std::string(Str+LastConversionIdx, Str+StrIdx),
|
|
OrigFormatExpr->getSourceRange());
|
|
|
|
// This conversion is broken. Advance to the next format
|
|
// conversion.
|
|
LastConversionIdx = StrIdx;
|
|
++numConversions;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// This case catches all other characters: flags, widths, etc.
|
|
// We should eventually process those as well.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CurrentState == state_Conversion) {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion,
|
|
std::string(Str+LastConversionIdx,
|
|
Str+std::min(LastConversionIdx+2, StrLen)),
|
|
OrigFormatExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
if (!HasVAListArg) {
|
|
// CHECK: Does the number of format conversions exceed the number
|
|
// of data arguments?
|
|
if (numConversions > numDataArgs) {
|
|
SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
|
|
LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_insufficient_data_args)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
// CHECK: Does the number of data arguments exceed the number of
|
|
// format conversions in the format string?
|
|
else if (numConversions < numDataArgs)
|
|
Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
|
|
diag::warn_printf_too_many_data_args)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Return Address of Stack Variable --------------------------===//
|
|
|
|
static DeclRefExpr* EvalVal(Expr *E);
|
|
static DeclRefExpr* EvalAddr(Expr* E);
|
|
|
|
/// CheckReturnStackAddr - Check if a return statement returns the address
|
|
/// of a stack variable.
|
|
void
|
|
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc) {
|
|
|
|
// Perform checking for returned stack addresses.
|
|
if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
|
|
if (DeclRefExpr *DR = EvalAddr(RetValExp))
|
|
Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
|
|
<< DR->getDecl()->getIdentifier() << RetValExp->getSourceRange();
|
|
|
|
// Skip over implicit cast expressions when checking for block expressions.
|
|
if (ImplicitCastExpr *IcExpr =
|
|
dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
|
|
RetValExp = IcExpr->getSubExpr();
|
|
|
|
if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
|
|
Diag(C->getLocStart(), diag::err_ret_local_block)
|
|
<< C->getSourceRange();
|
|
}
|
|
// Perform checking for stack values returned by reference.
|
|
else if (lhsType->isReferenceType()) {
|
|
// Check for a reference to the stack
|
|
if (DeclRefExpr *DR = EvalVal(RetValExp))
|
|
Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
|
|
<< DR->getDecl()->getIdentifier()
|
|
<< RetValExp->getSourceRange();
|
|
}
|
|
}
|
|
|
|
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
|
|
/// check if the expression in a return statement evaluates to an address
|
|
/// to a location on the stack. The recursion is used to traverse the
|
|
/// AST of the return expression, with recursion backtracking when we
|
|
/// encounter a subexpression that (1) clearly does not lead to the address
|
|
/// of a stack variable or (2) is something we cannot determine leads to
|
|
/// the address of a stack variable based on such local checking.
|
|
///
|
|
/// EvalAddr processes expressions that are pointers that are used as
|
|
/// references (and not L-values). EvalVal handles all other values.
|
|
/// At the base case of the recursion is a check for a DeclRefExpr* in
|
|
/// the refers to a stack variable.
|
|
///
|
|
/// This implementation handles:
|
|
///
|
|
/// * pointer-to-pointer casts
|
|
/// * implicit conversions from array references to pointers
|
|
/// * taking the address of fields
|
|
/// * arbitrary interplay between "&" and "*" operators
|
|
/// * pointer arithmetic from an address of a stack variable
|
|
/// * taking the address of an array element where the array is on the stack
|
|
static DeclRefExpr* EvalAddr(Expr *E) {
|
|
// We should only be called for evaluating pointer expressions.
|
|
assert((E->getType()->isPointerType() ||
|
|
E->getType()->isBlockPointerType() ||
|
|
E->getType()->isObjCQualifiedIdType()) &&
|
|
"EvalAddr only works on pointers");
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::ParenExprClass:
|
|
// Ignore parentheses.
|
|
return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is AddrOf. All others don't make sense as pointers.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UnaryOperator::AddrOf)
|
|
return EvalVal(U->getSubExpr());
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
// Handle pointer arithmetic. All other binary operators are not valid
|
|
// in this context.
|
|
BinaryOperator *B = cast<BinaryOperator>(E);
|
|
BinaryOperator::Opcode op = B->getOpcode();
|
|
|
|
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
|
|
return NULL;
|
|
|
|
Expr *Base = B->getLHS();
|
|
|
|
// Determine which argument is the real pointer base. It could be
|
|
// the RHS argument instead of the LHS.
|
|
if (!Base->getType()->isPointerType()) Base = B->getRHS();
|
|
|
|
assert (Base->getType()->isPointerType());
|
|
return EvalAddr(Base);
|
|
}
|
|
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// valid DeclRefExpr*s. If one of them is valid, we return it.
|
|
case Stmt::ConditionalOperatorClass: {
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
if (Expr *lhsExpr = C->getLHS())
|
|
if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
|
|
return LHS;
|
|
|
|
return EvalAddr(C->getRHS());
|
|
}
|
|
|
|
// For casts, we need to handle conversions from arrays to
|
|
// pointer values, and pointer-to-pointer conversions.
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass: {
|
|
Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
|
|
QualType T = SubExpr->getType();
|
|
|
|
if (SubExpr->getType()->isPointerType() ||
|
|
SubExpr->getType()->isBlockPointerType() ||
|
|
SubExpr->getType()->isObjCQualifiedIdType())
|
|
return EvalAddr(SubExpr);
|
|
else if (T->isArrayType())
|
|
return EvalVal(SubExpr);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// C++ casts. For dynamic casts, static casts, and const casts, we
|
|
// are always converting from a pointer-to-pointer, so we just blow
|
|
// through the cast. In the case the dynamic cast doesn't fail (and
|
|
// return NULL), we take the conservative route and report cases
|
|
// where we return the address of a stack variable. For Reinterpre
|
|
// FIXME: The comment about is wrong; we're not always converting
|
|
// from pointer to pointer. I'm guessing that this code should also
|
|
// handle references to objects.
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass: {
|
|
Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
|
|
if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
|
|
return EvalAddr(S);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
|
|
/// See the comments for EvalAddr for more details.
|
|
static DeclRefExpr* EvalVal(Expr *E) {
|
|
|
|
// We should only be called for evaluating non-pointer expressions, or
|
|
// expressions with a pointer type that are not used as references but instead
|
|
// are l-values (e.g., DeclRefExpr with a pointer type).
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass: {
|
|
// DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
|
|
// at code that refers to a variable's name. We check if it has local
|
|
// storage within the function, and if so, return the expression.
|
|
DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
|
|
if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
// Ignore parentheses.
|
|
return EvalVal(cast<ParenExpr>(E)->getSubExpr());
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is Deref. All others don't resolve to a "name." This includes
|
|
// handling all sorts of rvalues passed to a unary operator.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UnaryOperator::Deref)
|
|
return EvalAddr(U->getSubExpr());
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// Array subscripts are potential references to data on the stack. We
|
|
// retrieve the DeclRefExpr* for the array variable if it indeed
|
|
// has local storage.
|
|
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass: {
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// non-NULL DeclRefExpr's. If one is non-NULL, we return it.
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
if (Expr *lhsExpr = C->getLHS())
|
|
if (DeclRefExpr *LHS = EvalVal(lhsExpr))
|
|
return LHS;
|
|
|
|
return EvalVal(C->getRHS());
|
|
}
|
|
|
|
// Accesses to members are potential references to data on the stack.
|
|
case Stmt::MemberExprClass: {
|
|
MemberExpr *M = cast<MemberExpr>(E);
|
|
|
|
// Check for indirect access. We only want direct field accesses.
|
|
if (!M->isArrow())
|
|
return EvalVal(M->getBase());
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
|
|
|
|
/// Check for comparisons of floating point operands using != and ==.
|
|
/// Issue a warning if these are no self-comparisons, as they are not likely
|
|
/// to do what the programmer intended.
|
|
void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
|
|
bool EmitWarning = true;
|
|
|
|
Expr* LeftExprSansParen = lex->IgnoreParens();
|
|
Expr* RightExprSansParen = rex->IgnoreParens();
|
|
|
|
// Special case: check for x == x (which is OK).
|
|
// Do not emit warnings for such cases.
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
EmitWarning = false;
|
|
|
|
|
|
// Special case: check for comparisons against literals that can be exactly
|
|
// represented by APFloat. In such cases, do not emit a warning. This
|
|
// is a heuristic: often comparison against such literals are used to
|
|
// detect if a value in a variable has not changed. This clearly can
|
|
// lead to false negatives.
|
|
if (EmitWarning) {
|
|
if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
|
|
if (FLL->isExact())
|
|
EmitWarning = false;
|
|
}
|
|
else
|
|
if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
|
|
if (FLR->isExact())
|
|
EmitWarning = false;
|
|
}
|
|
}
|
|
|
|
// Check for comparisons with builtin types.
|
|
if (EmitWarning)
|
|
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
|
|
if (isCallBuiltin(CL))
|
|
EmitWarning = false;
|
|
|
|
if (EmitWarning)
|
|
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
|
|
if (isCallBuiltin(CR))
|
|
EmitWarning = false;
|
|
|
|
// Emit the diagnostic.
|
|
if (EmitWarning)
|
|
Diag(loc, diag::warn_floatingpoint_eq)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
}
|