llvm-project/llvm/lib/Target/X86/X86LowerAMXIntrinsics.cpp

680 lines
28 KiB
C++

//===-- X86LowerAMXIntrinsics.cpp -X86 Scalarize AMX Intrinsics------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to transform amx intrinsics to scalar operations.
/// This pass is always enabled and it skips when it is not -O0 and has no
/// optnone attributes. With -O0 or optnone attribute, the def of shape to amx
/// intrinsics is near the amx intrinsics code. We are not able to find a
/// point which post-dominate all the shape and dominate all amx intrinsics.
/// To decouple the dependency of the shape, we transform amx intrinsics
/// to scalar operation, so that compiling doesn't fail. In long term, we
/// should improve fast register allocation to allocate amx register.
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "lower-amx-intrinsics"
#ifndef NDEBUG
static bool isV256I32Ty(Type *Ty) {
if (auto *FVT = dyn_cast<FixedVectorType>(Ty))
return FVT->getNumElements() == 256 &&
FVT->getElementType()->isIntegerTy(32);
return false;
}
#endif
static cl::opt<bool>
X86ScalarizeAMX("enable-x86-scalar-amx", cl::init(false), cl::Hidden,
cl::desc("X86: enable AMX scalarizition."));
namespace {
class X86LowerAMXIntrinsics {
Function &Func;
public:
X86LowerAMXIntrinsics(Function &F, DomTreeUpdater &DomTU, LoopInfo *LoopI)
: Func(F), DTU(DomTU), LI(LoopI) {}
bool visit();
private:
DomTreeUpdater &DTU;
LoopInfo *LI;
BasicBlock *createLoop(BasicBlock *Preheader, BasicBlock *Exit, Value *Bound,
Value *Step, StringRef Name, IRBuilderBase &B,
Loop *L);
template <bool IsTileLoad>
Value *createTileLoadStoreLoops(BasicBlock *Start, BasicBlock *End,
IRBuilderBase &B, Value *Row, Value *Col,
Value *Ptr, Value *Stride, Value *Tile);
template <Intrinsic::ID IntrID>
typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
IntrID == Intrinsic::x86_tdpbsud_internal ||
IntrID == Intrinsic::x86_tdpbusd_internal ||
IntrID == Intrinsic::x86_tdpbuud_internal ||
IntrID == Intrinsic::x86_tdpbf16ps_internal,
Value *>::type
createTileDPLoops(BasicBlock *Start, BasicBlock *End, IRBuilderBase &B,
Value *Row, Value *Col, Value *K, Value *Acc, Value *LHS,
Value *RHS);
template <bool IsTileLoad>
bool lowerTileLoadStore(Instruction *TileLoadStore);
template <Intrinsic::ID IntrID>
typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
IntrID == Intrinsic::x86_tdpbsud_internal ||
IntrID == Intrinsic::x86_tdpbusd_internal ||
IntrID == Intrinsic::x86_tdpbuud_internal ||
IntrID == Intrinsic::x86_tdpbf16ps_internal,
bool>::type
lowerTileDP(Instruction *TileDP);
bool lowerTileZero(Instruction *TileZero);
};
} // anonymous namespace
BasicBlock *X86LowerAMXIntrinsics::createLoop(BasicBlock *Preheader,
BasicBlock *Exit, Value *Bound,
Value *Step, StringRef Name,
IRBuilderBase &B, Loop *L) {
LLVMContext &Ctx = Preheader->getContext();
BasicBlock *Header =
BasicBlock::Create(Ctx, Name + ".header", Preheader->getParent(), Exit);
BasicBlock *Body =
BasicBlock::Create(Ctx, Name + ".body", Header->getParent(), Exit);
BasicBlock *Latch =
BasicBlock::Create(Ctx, Name + ".latch", Header->getParent(), Exit);
Type *I16Ty = Type::getInt16Ty(Ctx);
BranchInst::Create(Body, Header);
BranchInst::Create(Latch, Body);
PHINode *IV =
PHINode::Create(I16Ty, 2, Name + ".iv", Header->getTerminator());
IV->addIncoming(ConstantInt::get(I16Ty, 0), Preheader);
B.SetInsertPoint(Latch);
Value *Inc = B.CreateAdd(IV, Step, Name + ".step");
Value *Cond = B.CreateICmpNE(Inc, Bound, Name + ".cond");
BranchInst::Create(Header, Exit, Cond, Latch);
IV->addIncoming(Inc, Latch);
BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
BasicBlock *Tmp = PreheaderBr->getSuccessor(0);
PreheaderBr->setSuccessor(0, Header);
DTU.applyUpdatesPermissive({
{DominatorTree::Delete, Preheader, Tmp},
{DominatorTree::Insert, Header, Body},
{DominatorTree::Insert, Body, Latch},
{DominatorTree::Insert, Latch, Header},
{DominatorTree::Insert, Latch, Exit},
{DominatorTree::Insert, Preheader, Header},
});
if (LI) {
L->addBasicBlockToLoop(Header, *LI);
L->addBasicBlockToLoop(Body, *LI);
L->addBasicBlockToLoop(Latch, *LI);
}
return Body;
}
template <bool IsTileLoad>
Value *X86LowerAMXIntrinsics::createTileLoadStoreLoops(
BasicBlock *Start, BasicBlock *End, IRBuilderBase &B, Value *Row,
Value *Col, Value *Ptr, Value *Stride, Value *Tile) {
std::string IntrinName = IsTileLoad ? "tileload" : "tilestore";
Loop *RowLoop = nullptr;
Loop *ColLoop = nullptr;
if (LI) {
RowLoop = LI->AllocateLoop();
ColLoop = LI->AllocateLoop();
RowLoop->addChildLoop(ColLoop);
if (Loop *ParentL = LI->getLoopFor(Start))
ParentL->addChildLoop(RowLoop);
else
LI->addTopLevelLoop(RowLoop);
}
BasicBlock *RowBody = createLoop(Start, End, Row, B.getInt16(1),
IntrinName + ".scalarize.rows", B, RowLoop);
BasicBlock *RowLatch = RowBody->getSingleSuccessor();
BasicBlock *ColBody = createLoop(RowBody, RowLatch, Col, B.getInt16(1),
IntrinName + ".scalarize.cols", B, ColLoop);
BasicBlock *ColLoopLatch = ColBody->getSingleSuccessor();
BasicBlock *ColLoopHeader = ColBody->getSinglePredecessor();
BasicBlock *RowLoopHeader = RowBody->getSinglePredecessor();
Value *CurrentRow = &*RowLoopHeader->begin();
Value *CurrentCol = &*ColLoopHeader->begin();
Type *EltTy = B.getInt32Ty();
FixedVectorType *V256I32Ty = FixedVectorType::get(EltTy, 256);
// Common part for tileload and tilestore
// *.scalarize.cols.body:
// Calculate %idxmem and %idxvec
B.SetInsertPoint(ColBody->getTerminator());
Value *CurrentRowZExt = B.CreateZExt(CurrentRow, Stride->getType());
Value *CurrentColZExt = B.CreateZExt(CurrentCol, Stride->getType());
Value *Offset =
B.CreateAdd(B.CreateMul(CurrentRowZExt, Stride), CurrentColZExt);
unsigned AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
Value *EltBasePtr = B.CreatePointerCast(Ptr, PointerType::get(EltTy, AS));
Value *EltPtr = B.CreateGEP(EltTy, EltBasePtr, Offset);
Value *Idx = B.CreateAdd(B.CreateMul(CurrentRow, B.getInt16(16)), CurrentCol);
if (IsTileLoad) {
// tileload.scalarize.rows.header:
// %vec.phi.row = phi <256 x i32> [ zeroinitializer, %entry ], [ %ResVec,
// %tileload.scalarize.rows.latch ]
B.SetInsertPoint(RowLoopHeader->getTerminator());
Value *VecZero = Constant::getNullValue(V256I32Ty);
PHINode *VecCPhiRowLoop = B.CreatePHI(V256I32Ty, 2, "vec.phi.row");
VecCPhiRowLoop->addIncoming(VecZero, Start);
// tileload.scalarize.cols.header:
// %vec.phi = phi <256 x i32> [ %vec.phi.row, %tileload.scalarize.rows.body
// ], [ %ResVec, %tileload.scalarize.cols.latch ]
B.SetInsertPoint(ColLoopHeader->getTerminator());
PHINode *VecPhi = B.CreatePHI(V256I32Ty, 2, "vec.phi");
VecPhi->addIncoming(VecCPhiRowLoop, RowBody);
// tileload.scalarize.cols.body:
// Calculate %idxmem and %idxvec
// %eltptr = getelementptr i32, i32* %base, i64 %idxmem
// %elt = load i32, i32* %ptr
// %ResVec = insertelement <256 x i32> %vec.phi, i32 %elt, i16 %idxvec
B.SetInsertPoint(ColBody->getTerminator());
Value *Elt = B.CreateLoad(EltTy, EltPtr);
Value *ResVec = B.CreateInsertElement(VecPhi, Elt, Idx);
VecPhi->addIncoming(ResVec, ColLoopLatch);
VecCPhiRowLoop->addIncoming(ResVec, RowLatch);
return ResVec;
} else {
auto *BitCast = cast<BitCastInst>(Tile);
Value *Vec = BitCast->getOperand(0);
assert(isV256I32Ty(Vec->getType()) && "bitcast from non-v256i32 to x86amx");
// tilestore.scalarize.cols.body:
// %mul = mul i16 %row.iv, i16 16
// %idx = add i16 %mul, i16 %col.iv
// %vec = extractelement <16 x i32> %vec, i16 %idx
// store i32 %vec, i32* %ptr
B.SetInsertPoint(ColBody->getTerminator());
Value *Elt = B.CreateExtractElement(Vec, Idx);
B.CreateStore(Elt, EltPtr);
return nullptr;
}
}
template <Intrinsic::ID IntrID>
typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
IntrID == Intrinsic::x86_tdpbsud_internal ||
IntrID == Intrinsic::x86_tdpbusd_internal ||
IntrID == Intrinsic::x86_tdpbuud_internal ||
IntrID == Intrinsic::x86_tdpbf16ps_internal,
Value *>::type
X86LowerAMXIntrinsics::createTileDPLoops(BasicBlock *Start, BasicBlock *End,
IRBuilderBase &B, Value *Row,
Value *Col, Value *K, Value *Acc,
Value *LHS, Value *RHS) {
std::string IntrinName;
switch (IntrID) {
case Intrinsic::x86_tdpbssd_internal:
IntrinName = "tiledpbssd";
break;
case Intrinsic::x86_tdpbsud_internal:
IntrinName = "tiledpbsud";
break;
case Intrinsic::x86_tdpbusd_internal:
IntrinName = "tiledpbusd";
break;
case Intrinsic::x86_tdpbuud_internal:
IntrinName = "tiledpbuud";
break;
case Intrinsic::x86_tdpbf16ps_internal:
IntrinName = "tiledpbf16ps";
break;
}
Loop *RowLoop = nullptr;
Loop *ColLoop = nullptr;
Loop *InnerLoop = nullptr;
if (LI) {
RowLoop = LI->AllocateLoop();
ColLoop = LI->AllocateLoop();
InnerLoop = LI->AllocateLoop();
ColLoop->addChildLoop(InnerLoop);
RowLoop->addChildLoop(ColLoop);
if (Loop *ParentL = LI->getLoopFor(Start))
ParentL->addChildLoop(RowLoop);
else
LI->addTopLevelLoop(RowLoop);
}
BasicBlock *RowBody = createLoop(Start, End, Row, B.getInt16(1),
IntrinName + ".scalarize.rows", B, RowLoop);
BasicBlock *RowLatch = RowBody->getSingleSuccessor();
BasicBlock *ColBody = createLoop(RowBody, RowLatch, Col, B.getInt16(1),
IntrinName + ".scalarize.cols", B, ColLoop);
BasicBlock *ColLoopLatch = ColBody->getSingleSuccessor();
B.SetInsertPoint(ColBody->getTerminator());
BasicBlock *InnerBody =
createLoop(ColBody, ColLoopLatch, K, B.getInt16(1),
IntrinName + ".scalarize.inner", B, InnerLoop);
BasicBlock *ColLoopHeader = ColBody->getSinglePredecessor();
BasicBlock *RowLoopHeader = RowBody->getSinglePredecessor();
BasicBlock *InnerLoopHeader = InnerBody->getSinglePredecessor();
BasicBlock *InnerLoopLatch = InnerBody->getSingleSuccessor();
Value *CurrentRow = &*RowLoopHeader->begin();
Value *CurrentCol = &*ColLoopHeader->begin();
Value *CurrentInner = &*InnerLoopHeader->begin();
FixedVectorType *V256I32Ty = FixedVectorType::get(B.getInt32Ty(), 256);
auto *BitCastAcc = cast<BitCastInst>(Acc);
Value *VecC = BitCastAcc->getOperand(0);
assert(isV256I32Ty(VecC->getType()) && "bitcast from non-v256i32 to x86amx");
// TODO else create BitCast from x86amx to v256i32.
// Store x86amx to memory, and reload from memory
// to vector. However with -O0, it doesn't happen.
auto *BitCastLHS = cast<BitCastInst>(LHS);
Value *VecA = BitCastLHS->getOperand(0);
assert(isV256I32Ty(VecA->getType()) && "bitcast from non-v256i32 to x86amx");
auto *BitCastRHS = cast<BitCastInst>(RHS);
Value *VecB = BitCastRHS->getOperand(0);
assert(isV256I32Ty(VecB->getType()) && "bitcast from non-v256i32 to x86amx");
// tiledpbssd.scalarize.rows.header:
// %vec.c.phi.row = phi <256 x i32> [ %VecC, %continue ], [ %NewVecC,
// %tiledpbssd.scalarize.rows.latch ]
// %vec.d.phi.row = phi <256 x i32> [ zeroinitializer, %continue ], [
// %NewVecD, %tiledpbssd.scalarize.rows.latch ]
B.SetInsertPoint(RowLoopHeader->getTerminator());
PHINode *VecCPhiRowLoop = B.CreatePHI(V256I32Ty, 2, "vec.c.phi.row");
VecCPhiRowLoop->addIncoming(VecC, Start);
Value *VecZero = Constant::getNullValue(V256I32Ty);
PHINode *VecDPhiRowLoop = B.CreatePHI(V256I32Ty, 2, "vec.d.phi.row");
VecDPhiRowLoop->addIncoming(VecZero, Start);
// tiledpbssd.scalarize.cols.header:
// %vec.c.phi.col = phi <256 x i32> [ %vec.c.phi.row,
// %tiledpbssd.scalarize.rows.body ], [ %NewVecC,
// %tiledpbssd.scalarize.cols.latch ]
// %vec.d.phi.col = phi <256 x i32> [
// %vec.d.phi.row, %tiledpbssd.scalarize.rows.body ], [ %NewVecD,
// %tiledpbssd.scalarize.cols.latch ]
// calculate idxc.
B.SetInsertPoint(ColLoopHeader->getTerminator());
PHINode *VecCPhiColLoop = B.CreatePHI(V256I32Ty, 2, "vec.c.phi.col");
VecCPhiColLoop->addIncoming(VecCPhiRowLoop, RowBody);
PHINode *VecDPhiColLoop = B.CreatePHI(V256I32Ty, 2, "vec.d.phi.col");
VecDPhiColLoop->addIncoming(VecDPhiRowLoop, RowBody);
Value *IdxC =
B.CreateAdd(B.CreateMul(CurrentRow, B.getInt16(16)), CurrentCol);
// tiledpbssd.scalarize.inner.header:
// %vec.c.inner.phi = phi <256 x i32> [ %vec.c.phi.col,
// %tiledpbssd.scalarize.cols.body ], [ %NewVecC,
// %tiledpbssd.scalarize.inner.latch ]
B.SetInsertPoint(InnerLoopHeader->getTerminator());
PHINode *VecCPhi = B.CreatePHI(V256I32Ty, 2, "vec.c.inner.phi");
VecCPhi->addIncoming(VecCPhiColLoop, ColBody);
B.SetInsertPoint(InnerBody->getTerminator());
Value *IdxA =
B.CreateAdd(B.CreateMul(CurrentRow, B.getInt16(16)), CurrentInner);
Value *IdxB =
B.CreateAdd(B.CreateMul(CurrentInner, B.getInt16(16)), CurrentCol);
Value *NewVecC = nullptr;
if (IntrID != Intrinsic::x86_tdpbf16ps_internal) {
// tiledpbssd.scalarize.inner.body:
// calculate idxa, idxb
// %eltc = extractelement <256 x i32> %vec.c.inner.phi, i16 %idxc
// %elta = extractelement <256 x i32> %veca, i16 %idxa
// %eltav4i8 = bitcast i32 %elta to <4 x i8>
// %eltb = extractelement <256 x i32> %vecb, i16 %idxb
// %eltbv4i8 = bitcast i32 %eltb to <4 x i8>
// %eltav4i32 = sext <4 x i8> %eltav4i8 to <4 x i32>
// %eltbv4i32 = sext <4 x i8> %eltbv4i8 to <4 x i32>
// %mulab = mul <4 x i32> %eltbv4i32, %eltav4i32
// %acc = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> %131)
// %neweltc = add i32 %elt, %acc
// %NewVecC = insertelement <256 x i32> %vec.c.inner.phi, i32 %neweltc,
// i16 %idxc
FixedVectorType *V4I8Ty = FixedVectorType::get(B.getInt8Ty(), 4);
FixedVectorType *V4I32Ty = FixedVectorType::get(B.getInt32Ty(), 4);
Value *EltC = B.CreateExtractElement(VecCPhi, IdxC);
Value *EltA = B.CreateExtractElement(VecA, IdxA);
Value *SubVecA = B.CreateBitCast(EltA, V4I8Ty);
Value *EltB = B.CreateExtractElement(VecB, IdxB);
Value *SubVecB = B.CreateBitCast(EltB, V4I8Ty);
Value *SEXTSubVecB = nullptr;
Value *SEXTSubVecA = nullptr;
switch (IntrID) {
case Intrinsic::x86_tdpbssd_internal:
SEXTSubVecB = B.CreateSExt(SubVecB, V4I32Ty);
SEXTSubVecA = B.CreateSExt(SubVecA, V4I32Ty);
break;
case Intrinsic::x86_tdpbsud_internal:
SEXTSubVecB = B.CreateZExt(SubVecB, V4I32Ty);
SEXTSubVecA = B.CreateSExt(SubVecA, V4I32Ty);
break;
case Intrinsic::x86_tdpbusd_internal:
SEXTSubVecB = B.CreateSExt(SubVecB, V4I32Ty);
SEXTSubVecA = B.CreateZExt(SubVecA, V4I32Ty);
break;
case Intrinsic::x86_tdpbuud_internal:
SEXTSubVecB = B.CreateZExt(SubVecB, V4I32Ty);
SEXTSubVecA = B.CreateZExt(SubVecA, V4I32Ty);
break;
default:
llvm_unreachable("Invalid intrinsic ID!");
}
Value *SubVecR = B.CreateAddReduce(B.CreateMul(SEXTSubVecA, SEXTSubVecB));
Value *ResElt = B.CreateAdd(EltC, SubVecR);
NewVecC = B.CreateInsertElement(VecCPhi, ResElt, IdxC);
} else {
// tiledpbf16ps.scalarize.inner.body:
// calculate idxa, idxb, idxc
// %eltc = extractelement <256 x i32> %vec.c.inner.phi, i16 %idxc
// %eltcf32 = bitcast i32 %eltc to float
// %elta = extractelement <256 x i32> %veca, i16 %idxa
// %eltav2i16 = bitcast i32 %elta to <2 x i16>
// %eltb = extractelement <256 x i32> %vecb, i16 %idxb
// %eltbv2i16 = bitcast i32 %eltb to <2 x i16>
// %shufflea = shufflevector <2 x i16> %elta, <2 x i16> zeroinitializer, <4
// x i32> <i32 2, i32 0, i32 3, i32 1>
// %eltav2f32 = bitcast <4 x i16> %shufflea to <2 x float>
// %shuffleb = shufflevector <2 x i16> %eltb, <2 xi16> zeroinitializer, <4 x
// i32> <i32 2, i32 0, i32 3, i32 1>
// %eltbv2f32 = bitcast <4 x i16> %shuffleb to <2 x float>
// %mulab = fmul <2 x float> %eltav2f32, %eltbv2f32
// %acc = call float
// @llvm.vector.reduce.fadd.v2f32(float %eltcf32, <2 x float> %mulab)
// %neweltc = bitcast float %acc to i32
// %NewVecC = insertelement <256 x i32> %vec.c.inner.phi, i32 %neweltc,
// i16 %idxc
// %NewVecD = insertelement <256 x i32> %vec.d.inner.phi, i32 %neweltc,
// i16 %idxc
FixedVectorType *V2I16Ty = FixedVectorType::get(B.getInt16Ty(), 2);
FixedVectorType *V2F32Ty = FixedVectorType::get(B.getFloatTy(), 2);
Value *EltC = B.CreateExtractElement(VecCPhi, IdxC);
Value *EltCF32 = B.CreateBitCast(EltC, B.getFloatTy());
Value *EltA = B.CreateExtractElement(VecA, IdxA);
Value *SubVecA = B.CreateBitCast(EltA, V2I16Ty);
Value *EltB = B.CreateExtractElement(VecB, IdxB);
Value *SubVecB = B.CreateBitCast(EltB, V2I16Ty);
Value *ZeroV2I16 = Constant::getNullValue(V2I16Ty);
int ShuffleMask[4] = {2, 0, 3, 1};
auto ShuffleArray = makeArrayRef(ShuffleMask);
Value *AV2F32 = B.CreateBitCast(
B.CreateShuffleVector(SubVecA, ZeroV2I16, ShuffleArray), V2F32Ty);
Value *BV2F32 = B.CreateBitCast(
B.CreateShuffleVector(SubVecB, ZeroV2I16, ShuffleArray), V2F32Ty);
Value *SubVecR = B.CreateFAddReduce(EltCF32, B.CreateFMul(AV2F32, BV2F32));
Value *ResElt = B.CreateBitCast(SubVecR, B.getInt32Ty());
NewVecC = B.CreateInsertElement(VecCPhi, ResElt, IdxC);
}
// tiledpbssd.scalarize.cols.latch:
// %NewEltC = extractelement <256 x i32> %vec.c.phi.col, i16 %idxc
// %NewVecD = insertelement <256 x i32> %vec.d.phi.col, i32 %NewEltC,
// i16 %idxc
B.SetInsertPoint(ColLoopLatch->getTerminator());
Value *NewEltC = B.CreateExtractElement(NewVecC, IdxC);
Value *NewVecD = B.CreateInsertElement(VecDPhiColLoop, NewEltC, IdxC);
VecCPhi->addIncoming(NewVecC, InnerLoopLatch);
VecCPhiRowLoop->addIncoming(NewVecC, RowLatch);
VecCPhiColLoop->addIncoming(NewVecC, ColLoopLatch);
VecDPhiRowLoop->addIncoming(NewVecD, RowLatch);
VecDPhiColLoop->addIncoming(NewVecD, ColLoopLatch);
return NewVecD;
}
template <Intrinsic::ID IntrID>
typename std::enable_if<IntrID == Intrinsic::x86_tdpbssd_internal ||
IntrID == Intrinsic::x86_tdpbsud_internal ||
IntrID == Intrinsic::x86_tdpbusd_internal ||
IntrID == Intrinsic::x86_tdpbuud_internal ||
IntrID == Intrinsic::x86_tdpbf16ps_internal,
bool>::type
X86LowerAMXIntrinsics::lowerTileDP(Instruction *TileDP) {
Value *M, *N, *K, *C, *A, *B;
match(TileDP, m_Intrinsic<IntrID>(m_Value(M), m_Value(N), m_Value(K),
m_Value(C), m_Value(A), m_Value(B)));
Instruction *InsertI = TileDP;
IRBuilder<> PreBuilder(TileDP);
PreBuilder.SetInsertPoint(TileDP);
// We visit the loop with (m, n/4, k/4):
// %n_dword = lshr i16 %n, 2
// %k_dword = lshr i16 %k, 2
Value *NDWord = PreBuilder.CreateLShr(N, PreBuilder.getInt16(2));
Value *KDWord = PreBuilder.CreateLShr(K, PreBuilder.getInt16(2));
BasicBlock *Start = InsertI->getParent();
BasicBlock *End =
SplitBlock(InsertI->getParent(), InsertI, &DTU, LI, nullptr, "continue");
IRBuilder<> Builder(TileDP);
Value *ResVec = createTileDPLoops<IntrID>(Start, End, Builder, M, NDWord,
KDWord, C, A, B);
// we cannot assume there always be bitcast after tiledpbssd. So we need to
// insert one bitcast as required
Builder.SetInsertPoint(End->getFirstNonPHI());
Value *ResAMX =
Builder.CreateBitCast(ResVec, Type::getX86_AMXTy(Builder.getContext()));
// Delete TileDP intrinsic and do some clean-up.
for (auto UI = TileDP->use_begin(), UE = TileDP->use_end(); UI != UE;) {
Instruction *I = cast<Instruction>((UI++)->getUser());
Value *Vec;
if (match(I, m_BitCast(m_Value(Vec)))) {
I->replaceAllUsesWith(ResVec);
I->eraseFromParent();
}
}
TileDP->replaceAllUsesWith(ResAMX);
TileDP->eraseFromParent();
return true;
}
template <bool IsTileLoad>
bool X86LowerAMXIntrinsics::lowerTileLoadStore(Instruction *TileLoadStore) {
Value *M, *N, *Ptr, *Stride, *Tile;
if (IsTileLoad)
match(TileLoadStore,
m_Intrinsic<Intrinsic::x86_tileloadd64_internal>(
m_Value(M), m_Value(N), m_Value(Ptr), m_Value(Stride)));
else
match(TileLoadStore, m_Intrinsic<Intrinsic::x86_tilestored64_internal>(
m_Value(M), m_Value(N), m_Value(Ptr),
m_Value(Stride), m_Value(Tile)));
Instruction *InsertI = TileLoadStore;
IRBuilder<> PreBuilder(TileLoadStore);
PreBuilder.SetInsertPoint(TileLoadStore);
Value *NDWord = PreBuilder.CreateLShr(N, PreBuilder.getInt16(2));
Value *StrideDWord = PreBuilder.CreateLShr(Stride, PreBuilder.getInt64(2));
BasicBlock *Start = InsertI->getParent();
BasicBlock *End =
SplitBlock(InsertI->getParent(), InsertI, &DTU, LI, nullptr, "continue");
IRBuilder<> Builder(TileLoadStore);
Value *ResVec = createTileLoadStoreLoops<IsTileLoad>(
Start, End, Builder, M, NDWord, Ptr, StrideDWord,
IsTileLoad ? nullptr : Tile);
if (IsTileLoad) {
// we cannot assume there always be bitcast after tileload. So we need to
// insert one bitcast as required
Builder.SetInsertPoint(End->getFirstNonPHI());
Value *ResAMX =
Builder.CreateBitCast(ResVec, Type::getX86_AMXTy(Builder.getContext()));
// Delete tileloadd6 intrinsic and do some clean-up
for (auto UI = TileLoadStore->use_begin(), UE = TileLoadStore->use_end();
UI != UE;) {
Instruction *I = cast<Instruction>((UI++)->getUser());
Value *Vec;
if (match(I, m_BitCast(m_Value(Vec)))) {
I->replaceAllUsesWith(ResVec);
I->eraseFromParent();
}
}
TileLoadStore->replaceAllUsesWith(ResAMX);
}
TileLoadStore->eraseFromParent();
return true;
}
bool X86LowerAMXIntrinsics::lowerTileZero(Instruction *TileZero) {
IRBuilder<> Builder(TileZero);
FixedVectorType *V256I32Ty = FixedVectorType::get(Builder.getInt32Ty(), 256);
Value *VecZero = Constant::getNullValue(V256I32Ty);
for (auto UI = TileZero->use_begin(), UE = TileZero->use_end(); UI != UE;) {
Instruction *I = cast<Instruction>((UI++)->getUser());
Value *Vec;
if (match(I, m_BitCast(m_Value(Vec)))) {
I->replaceAllUsesWith(VecZero);
I->eraseFromParent();
}
}
TileZero->eraseFromParent();
return true;
}
bool X86LowerAMXIntrinsics::visit() {
bool C = false;
SmallVector<IntrinsicInst *, 8> WorkList;
for (BasicBlock *BB : depth_first(&Func)) {
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
if (auto *Inst = dyn_cast<IntrinsicInst>(&*II++)) {
switch (Inst->getIntrinsicID()) {
case Intrinsic::x86_tdpbssd_internal:
case Intrinsic::x86_tdpbsud_internal:
case Intrinsic::x86_tdpbusd_internal:
case Intrinsic::x86_tdpbuud_internal:
case Intrinsic::x86_tileloadd64_internal:
case Intrinsic::x86_tilestored64_internal:
case Intrinsic::x86_tilezero_internal:
case Intrinsic::x86_tdpbf16ps_internal:
WorkList.push_back(Inst);
break;
default:
break;
}
}
}
}
for (auto *Inst : WorkList) {
switch (Inst->getIntrinsicID()) {
case Intrinsic::x86_tdpbssd_internal:
C = lowerTileDP<Intrinsic::x86_tdpbssd_internal>(Inst) || C;
break;
case Intrinsic::x86_tdpbsud_internal:
C = lowerTileDP<Intrinsic::x86_tdpbsud_internal>(Inst) || C;
break;
case Intrinsic::x86_tdpbusd_internal:
C = lowerTileDP<Intrinsic::x86_tdpbusd_internal>(Inst) || C;
break;
case Intrinsic::x86_tdpbuud_internal:
C = lowerTileDP<Intrinsic::x86_tdpbuud_internal>(Inst) || C;
break;
case Intrinsic::x86_tdpbf16ps_internal:
C = lowerTileDP<Intrinsic::x86_tdpbf16ps_internal>(Inst) || C;
break;
case Intrinsic::x86_tileloadd64_internal:
C = lowerTileLoadStore<true>(Inst) || C;
break;
case Intrinsic::x86_tilestored64_internal:
C = lowerTileLoadStore<false>(Inst) || C;
break;
case Intrinsic::x86_tilezero_internal:
C = lowerTileZero(Inst) || C;
break;
default:
llvm_unreachable("invalid amx intrinsics!");
}
}
return C;
}
class X86LowerAMXIntrinsicsLegacyPass : public FunctionPass {
public:
static char ID;
X86LowerAMXIntrinsicsLegacyPass() : FunctionPass(ID) {
initializeX86LowerAMXIntrinsicsLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!X86ScalarizeAMX)
return false;
TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
if (!F.hasFnAttribute(Attribute::OptimizeNone) &&
TM->getOptLevel() != CodeGenOpt::None)
return false;
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
X86LowerAMXIntrinsics LAT(F, DTU, LI);
return LAT.visit();
}
StringRef getPassName() const override { return "Lower AMX intrinsics"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
};
static const char PassName[] = "Lower AMX intrinsics";
char X86LowerAMXIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXIntrinsicsLegacyPass, DEBUG_TYPE, PassName,
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(X86LowerAMXIntrinsicsLegacyPass, DEBUG_TYPE, PassName,
false, false)
FunctionPass *llvm::createX86LowerAMXIntrinsicsPass() {
return new X86LowerAMXIntrinsicsLegacyPass();
}