forked from OSchip/llvm-project
1495 lines
52 KiB
C++
1495 lines
52 KiB
C++
//===-- RISCVInstrInfo.cpp - RISCV Instruction Information ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the RISCV implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVInstrInfo.h"
|
|
#include "MCTargetDesc/RISCVMatInt.h"
|
|
#include "RISCV.h"
|
|
#include "RISCVMachineFunctionInfo.h"
|
|
#include "RISCVSubtarget.h"
|
|
#include "RISCVTargetMachine.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GEN_CHECK_COMPRESS_INSTR
|
|
#include "RISCVGenCompressInstEmitter.inc"
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "RISCVGenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
namespace RISCVVPseudosTable {
|
|
|
|
using namespace RISCV;
|
|
|
|
#define GET_RISCVVPseudosTable_IMPL
|
|
#include "RISCVGenSearchableTables.inc"
|
|
|
|
} // namespace RISCVVPseudosTable
|
|
} // namespace llvm
|
|
|
|
RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
|
|
: RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
|
|
STI(STI) {}
|
|
|
|
MCInst RISCVInstrInfo::getNop() const {
|
|
if (STI.getFeatureBits()[RISCV::FeatureStdExtC])
|
|
return MCInstBuilder(RISCV::C_NOP);
|
|
return MCInstBuilder(RISCV::ADDI)
|
|
.addReg(RISCV::X0)
|
|
.addReg(RISCV::X0)
|
|
.addImm(0);
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case RISCV::LB:
|
|
case RISCV::LBU:
|
|
case RISCV::LH:
|
|
case RISCV::LHU:
|
|
case RISCV::FLH:
|
|
case RISCV::LW:
|
|
case RISCV::FLW:
|
|
case RISCV::LWU:
|
|
case RISCV::LD:
|
|
case RISCV::FLD:
|
|
break;
|
|
}
|
|
|
|
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case RISCV::SB:
|
|
case RISCV::SH:
|
|
case RISCV::SW:
|
|
case RISCV::FSH:
|
|
case RISCV::FSW:
|
|
case RISCV::SD:
|
|
case RISCV::FSD:
|
|
break;
|
|
}
|
|
|
|
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
|
|
unsigned NumRegs) {
|
|
// We really want the positive remainder mod 32 here, that happens to be
|
|
// easily obtainable with a mask.
|
|
return ((DstReg - SrcReg) & 0x1f) < NumRegs;
|
|
}
|
|
|
|
void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, MCRegister DstReg,
|
|
MCRegister SrcReg, bool KillSrc) const {
|
|
if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0);
|
|
return;
|
|
}
|
|
|
|
// FPR->FPR copies and VR->VR copies.
|
|
unsigned Opc;
|
|
bool IsScalableVector = true;
|
|
unsigned NF = 1;
|
|
unsigned LMul = 1;
|
|
unsigned SubRegIdx = RISCV::sub_vrm1_0;
|
|
if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::FSGNJ_H;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::FSGNJ_S;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::FSGNJ_D;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::VRRegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
} else if (RISCV::VRM2RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV2R_V;
|
|
} else if (RISCV::VRM4RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV4R_V;
|
|
} else if (RISCV::VRM8RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV8R_V;
|
|
} else if (RISCV::VRN2M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 2;
|
|
LMul = 1;
|
|
} else if (RISCV::VRN2M2RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV2R_V;
|
|
SubRegIdx = RISCV::sub_vrm2_0;
|
|
NF = 2;
|
|
LMul = 2;
|
|
} else if (RISCV::VRN2M4RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV4R_V;
|
|
SubRegIdx = RISCV::sub_vrm4_0;
|
|
NF = 2;
|
|
LMul = 4;
|
|
} else if (RISCV::VRN3M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 3;
|
|
LMul = 1;
|
|
} else if (RISCV::VRN3M2RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV2R_V;
|
|
SubRegIdx = RISCV::sub_vrm2_0;
|
|
NF = 3;
|
|
LMul = 2;
|
|
} else if (RISCV::VRN4M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 4;
|
|
LMul = 1;
|
|
} else if (RISCV::VRN4M2RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV2R_V;
|
|
SubRegIdx = RISCV::sub_vrm2_0;
|
|
NF = 4;
|
|
LMul = 2;
|
|
} else if (RISCV::VRN5M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 5;
|
|
LMul = 1;
|
|
} else if (RISCV::VRN6M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 6;
|
|
LMul = 1;
|
|
} else if (RISCV::VRN7M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 7;
|
|
LMul = 1;
|
|
} else if (RISCV::VRN8M1RegClass.contains(DstReg, SrcReg)) {
|
|
Opc = RISCV::PseudoVMV1R_V;
|
|
SubRegIdx = RISCV::sub_vrm1_0;
|
|
NF = 8;
|
|
LMul = 1;
|
|
} else {
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
}
|
|
|
|
if (IsScalableVector) {
|
|
if (NF == 1) {
|
|
BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
|
|
int I = 0, End = NF, Incr = 1;
|
|
unsigned SrcEncoding = TRI->getEncodingValue(SrcReg);
|
|
unsigned DstEncoding = TRI->getEncodingValue(DstReg);
|
|
if (forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NF * LMul)) {
|
|
I = NF - 1;
|
|
End = -1;
|
|
Incr = -1;
|
|
}
|
|
|
|
for (; I != End; I += Incr) {
|
|
BuildMI(MBB, MBBI, DL, get(Opc), TRI->getSubReg(DstReg, SubRegIdx + I))
|
|
.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I),
|
|
getKillRegState(KillSrc));
|
|
}
|
|
}
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
}
|
|
|
|
void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register SrcReg, bool IsKill, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (I != MBB.end())
|
|
DL = I->getDebugLoc();
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
|
|
unsigned Opcode;
|
|
bool IsScalableVector = true;
|
|
bool IsZvlsseg = true;
|
|
if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
|
|
RISCV::SW : RISCV::SD;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FSH;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FSW;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FSD;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVSPILL_M1;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVSPILL_M2;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVSPILL_M4;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVSPILL_M8;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL2_M1;
|
|
else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL2_M2;
|
|
else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL2_M4;
|
|
else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL3_M1;
|
|
else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL3_M2;
|
|
else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL4_M1;
|
|
else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL4_M2;
|
|
else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL5_M1;
|
|
else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL6_M1;
|
|
else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL7_M1;
|
|
else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL8_M1;
|
|
else
|
|
llvm_unreachable("Can't store this register to stack slot");
|
|
|
|
if (IsScalableVector) {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
|
|
MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
|
|
|
|
MFI.setStackID(FI, TargetStackID::ScalableVector);
|
|
auto MIB = BuildMI(MBB, I, DL, get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(IsKill))
|
|
.addFrameIndex(FI)
|
|
.addMemOperand(MMO);
|
|
if (IsZvlsseg) {
|
|
// For spilling/reloading Zvlsseg registers, append the dummy field for
|
|
// the scaled vector length. The argument will be used when expanding
|
|
// these pseudo instructions.
|
|
MIB.addReg(RISCV::X0);
|
|
}
|
|
} else {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
BuildMI(MBB, I, DL, get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(IsKill))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
}
|
|
|
|
void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register DstReg, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (I != MBB.end())
|
|
DL = I->getDebugLoc();
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
|
|
unsigned Opcode;
|
|
bool IsScalableVector = true;
|
|
bool IsZvlsseg = true;
|
|
if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
|
|
RISCV::LW : RISCV::LD;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FLH;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FLW;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FLD;
|
|
IsScalableVector = false;
|
|
} else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVRELOAD_M1;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVRELOAD_M2;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVRELOAD_M4;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoVRELOAD_M8;
|
|
IsZvlsseg = false;
|
|
} else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD2_M1;
|
|
else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD2_M2;
|
|
else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD2_M4;
|
|
else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD3_M1;
|
|
else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD3_M2;
|
|
else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD4_M1;
|
|
else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD4_M2;
|
|
else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD5_M1;
|
|
else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD6_M1;
|
|
else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD7_M1;
|
|
else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD8_M1;
|
|
else
|
|
llvm_unreachable("Can't load this register from stack slot");
|
|
|
|
if (IsScalableVector) {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
|
|
MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
|
|
|
|
MFI.setStackID(FI, TargetStackID::ScalableVector);
|
|
auto MIB = BuildMI(MBB, I, DL, get(Opcode), DstReg)
|
|
.addFrameIndex(FI)
|
|
.addMemOperand(MMO);
|
|
if (IsZvlsseg) {
|
|
// For spilling/reloading Zvlsseg registers, append the dummy field for
|
|
// the scaled vector length. The argument will be used when expanding
|
|
// these pseudo instructions.
|
|
MIB.addReg(RISCV::X0);
|
|
}
|
|
} else {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
BuildMI(MBB, I, DL, get(Opcode), DstReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
}
|
|
|
|
void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, Register DstReg, uint64_t Val,
|
|
MachineInstr::MIFlag Flag) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
bool IsRV64 = MF->getSubtarget<RISCVSubtarget>().is64Bit();
|
|
Register SrcReg = RISCV::X0;
|
|
Register Result = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
unsigned Num = 0;
|
|
|
|
if (!IsRV64 && !isInt<32>(Val))
|
|
report_fatal_error("Should only materialize 32-bit constants for RV32");
|
|
|
|
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, IsRV64);
|
|
assert(Seq.size() > 0);
|
|
|
|
for (RISCVMatInt::Inst &Inst : Seq) {
|
|
// Write the final result to DstReg if it's the last instruction in the Seq.
|
|
// Otherwise, write the result to the temp register.
|
|
if (++Num == Seq.size())
|
|
Result = DstReg;
|
|
|
|
if (Inst.Opc == RISCV::LUI) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::LUI), Result)
|
|
.addImm(Inst.Imm)
|
|
.setMIFlag(Flag);
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL, get(Inst.Opc), Result)
|
|
.addReg(SrcReg, RegState::Kill)
|
|
.addImm(Inst.Imm)
|
|
.setMIFlag(Flag);
|
|
}
|
|
// Only the first instruction has X0 as its source.
|
|
SrcReg = Result;
|
|
}
|
|
}
|
|
|
|
// The contents of values added to Cond are not examined outside of
|
|
// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
|
|
// push BranchOpcode, Reg1, Reg2.
|
|
static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
|
|
SmallVectorImpl<MachineOperand> &Cond) {
|
|
// Block ends with fall-through condbranch.
|
|
assert(LastInst.getDesc().isConditionalBranch() &&
|
|
"Unknown conditional branch");
|
|
Target = LastInst.getOperand(2).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst.getOpcode()));
|
|
Cond.push_back(LastInst.getOperand(0));
|
|
Cond.push_back(LastInst.getOperand(1));
|
|
}
|
|
|
|
static unsigned getOppositeBranchOpcode(int Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unrecognized conditional branch");
|
|
case RISCV::BEQ:
|
|
return RISCV::BNE;
|
|
case RISCV::BNE:
|
|
return RISCV::BEQ;
|
|
case RISCV::BLT:
|
|
return RISCV::BGE;
|
|
case RISCV::BGE:
|
|
return RISCV::BLT;
|
|
case RISCV::BLTU:
|
|
return RISCV::BGEU;
|
|
case RISCV::BGEU:
|
|
return RISCV::BLTU;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
TBB = FBB = nullptr;
|
|
Cond.clear();
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end() || !isUnpredicatedTerminator(*I))
|
|
return false;
|
|
|
|
// Count the number of terminators and find the first unconditional or
|
|
// indirect branch.
|
|
MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
|
|
int NumTerminators = 0;
|
|
for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
|
|
J++) {
|
|
NumTerminators++;
|
|
if (J->getDesc().isUnconditionalBranch() ||
|
|
J->getDesc().isIndirectBranch()) {
|
|
FirstUncondOrIndirectBr = J.getReverse();
|
|
}
|
|
}
|
|
|
|
// If AllowModify is true, we can erase any terminators after
|
|
// FirstUncondOrIndirectBR.
|
|
if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
|
|
while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
|
|
std::next(FirstUncondOrIndirectBr)->eraseFromParent();
|
|
NumTerminators--;
|
|
}
|
|
I = FirstUncondOrIndirectBr;
|
|
}
|
|
|
|
// We can't handle blocks that end in an indirect branch.
|
|
if (I->getDesc().isIndirectBranch())
|
|
return true;
|
|
|
|
// We can't handle blocks with more than 2 terminators.
|
|
if (NumTerminators > 2)
|
|
return true;
|
|
|
|
// Handle a single unconditional branch.
|
|
if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
|
|
TBB = getBranchDestBlock(*I);
|
|
return false;
|
|
}
|
|
|
|
// Handle a single conditional branch.
|
|
if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
|
|
parseCondBranch(*I, TBB, Cond);
|
|
return false;
|
|
}
|
|
|
|
// Handle a conditional branch followed by an unconditional branch.
|
|
if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
|
|
I->getDesc().isUnconditionalBranch()) {
|
|
parseCondBranch(*std::prev(I), TBB, Cond);
|
|
FBB = getBranchDestBlock(*I);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we can't handle this.
|
|
return true;
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
if (BytesRemoved)
|
|
*BytesRemoved = 0;
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
if (!I->getDesc().isUnconditionalBranch() &&
|
|
!I->getDesc().isConditionalBranch())
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
if (BytesRemoved)
|
|
*BytesRemoved += getInstSizeInBytes(*I);
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin())
|
|
return 1;
|
|
--I;
|
|
if (!I->getDesc().isConditionalBranch())
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
if (BytesRemoved)
|
|
*BytesRemoved += getInstSizeInBytes(*I);
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
// Inserts a branch into the end of the specific MachineBasicBlock, returning
|
|
// the number of instructions inserted.
|
|
unsigned RISCVInstrInfo::insertBranch(
|
|
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
|
|
if (BytesAdded)
|
|
*BytesAdded = 0;
|
|
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 3 || Cond.size() == 0) &&
|
|
"RISCV branch conditions have two components!");
|
|
|
|
// Unconditional branch.
|
|
if (Cond.empty()) {
|
|
MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
|
|
if (BytesAdded)
|
|
*BytesAdded += getInstSizeInBytes(MI);
|
|
return 1;
|
|
}
|
|
|
|
// Either a one or two-way conditional branch.
|
|
unsigned Opc = Cond[0].getImm();
|
|
MachineInstr &CondMI =
|
|
*BuildMI(&MBB, DL, get(Opc)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
|
|
if (BytesAdded)
|
|
*BytesAdded += getInstSizeInBytes(CondMI);
|
|
|
|
// One-way conditional branch.
|
|
if (!FBB)
|
|
return 1;
|
|
|
|
// Two-way conditional branch.
|
|
MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
|
|
if (BytesAdded)
|
|
*BytesAdded += getInstSizeInBytes(MI);
|
|
return 2;
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock &DestBB,
|
|
const DebugLoc &DL,
|
|
int64_t BrOffset,
|
|
RegScavenger *RS) const {
|
|
assert(RS && "RegScavenger required for long branching");
|
|
assert(MBB.empty() &&
|
|
"new block should be inserted for expanding unconditional branch");
|
|
assert(MBB.pred_size() == 1);
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
if (!isInt<32>(BrOffset))
|
|
report_fatal_error(
|
|
"Branch offsets outside of the signed 32-bit range not supported");
|
|
|
|
// FIXME: A virtual register must be used initially, as the register
|
|
// scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
|
|
// uses the same workaround).
|
|
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
auto II = MBB.end();
|
|
|
|
MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
|
|
.addReg(ScratchReg, RegState::Define | RegState::Dead)
|
|
.addMBB(&DestBB, RISCVII::MO_CALL);
|
|
|
|
RS->enterBasicBlockEnd(MBB);
|
|
unsigned Scav = RS->scavengeRegisterBackwards(RISCV::GPRRegClass,
|
|
MI.getIterator(), false, 0);
|
|
MRI.replaceRegWith(ScratchReg, Scav);
|
|
MRI.clearVirtRegs();
|
|
RS->setRegUsed(Scav);
|
|
return 8;
|
|
}
|
|
|
|
bool RISCVInstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert((Cond.size() == 3) && "Invalid branch condition!");
|
|
Cond[0].setImm(getOppositeBranchOpcode(Cond[0].getImm()));
|
|
return false;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
|
|
assert(MI.getDesc().isBranch() && "Unexpected opcode!");
|
|
// The branch target is always the last operand.
|
|
int NumOp = MI.getNumExplicitOperands();
|
|
return MI.getOperand(NumOp - 1).getMBB();
|
|
}
|
|
|
|
bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
|
|
int64_t BrOffset) const {
|
|
unsigned XLen = STI.getXLen();
|
|
// Ideally we could determine the supported branch offset from the
|
|
// RISCVII::FormMask, but this can't be used for Pseudo instructions like
|
|
// PseudoBR.
|
|
switch (BranchOp) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode!");
|
|
case RISCV::BEQ:
|
|
case RISCV::BNE:
|
|
case RISCV::BLT:
|
|
case RISCV::BGE:
|
|
case RISCV::BLTU:
|
|
case RISCV::BGEU:
|
|
return isIntN(13, BrOffset);
|
|
case RISCV::JAL:
|
|
case RISCV::PseudoBR:
|
|
return isIntN(21, BrOffset);
|
|
case RISCV::PseudoJump:
|
|
return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
|
|
}
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
switch (Opcode) {
|
|
default: {
|
|
if (MI.getParent() && MI.getParent()->getParent()) {
|
|
const auto MF = MI.getMF();
|
|
const auto &TM = static_cast<const RISCVTargetMachine &>(MF->getTarget());
|
|
const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
|
|
const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
|
|
const RISCVSubtarget &ST = MF->getSubtarget<RISCVSubtarget>();
|
|
if (isCompressibleInst(MI, &ST, MRI, STI))
|
|
return 2;
|
|
}
|
|
return get(Opcode).getSize();
|
|
}
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
return 0;
|
|
// These values are determined based on RISCVExpandAtomicPseudoInsts,
|
|
// RISCVExpandPseudoInsts and RISCVMCCodeEmitter, depending on where the
|
|
// pseudos are expanded.
|
|
case RISCV::PseudoCALLReg:
|
|
case RISCV::PseudoCALL:
|
|
case RISCV::PseudoJump:
|
|
case RISCV::PseudoTAIL:
|
|
case RISCV::PseudoLLA:
|
|
case RISCV::PseudoLA:
|
|
case RISCV::PseudoLA_TLS_IE:
|
|
case RISCV::PseudoLA_TLS_GD:
|
|
return 8;
|
|
case RISCV::PseudoAtomicLoadNand32:
|
|
case RISCV::PseudoAtomicLoadNand64:
|
|
return 20;
|
|
case RISCV::PseudoMaskedAtomicSwap32:
|
|
case RISCV::PseudoMaskedAtomicLoadAdd32:
|
|
case RISCV::PseudoMaskedAtomicLoadSub32:
|
|
return 28;
|
|
case RISCV::PseudoMaskedAtomicLoadNand32:
|
|
return 32;
|
|
case RISCV::PseudoMaskedAtomicLoadMax32:
|
|
case RISCV::PseudoMaskedAtomicLoadMin32:
|
|
return 44;
|
|
case RISCV::PseudoMaskedAtomicLoadUMax32:
|
|
case RISCV::PseudoMaskedAtomicLoadUMin32:
|
|
return 36;
|
|
case RISCV::PseudoCmpXchg32:
|
|
case RISCV::PseudoCmpXchg64:
|
|
return 16;
|
|
case RISCV::PseudoMaskedCmpXchg32:
|
|
return 32;
|
|
case TargetOpcode::INLINEASM:
|
|
case TargetOpcode::INLINEASM_BR: {
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
|
|
return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
|
|
*TM.getMCAsmInfo());
|
|
}
|
|
case RISCV::PseudoVSPILL2_M1:
|
|
case RISCV::PseudoVSPILL2_M2:
|
|
case RISCV::PseudoVSPILL2_M4:
|
|
case RISCV::PseudoVSPILL3_M1:
|
|
case RISCV::PseudoVSPILL3_M2:
|
|
case RISCV::PseudoVSPILL4_M1:
|
|
case RISCV::PseudoVSPILL4_M2:
|
|
case RISCV::PseudoVSPILL5_M1:
|
|
case RISCV::PseudoVSPILL6_M1:
|
|
case RISCV::PseudoVSPILL7_M1:
|
|
case RISCV::PseudoVSPILL8_M1:
|
|
case RISCV::PseudoVRELOAD2_M1:
|
|
case RISCV::PseudoVRELOAD2_M2:
|
|
case RISCV::PseudoVRELOAD2_M4:
|
|
case RISCV::PseudoVRELOAD3_M1:
|
|
case RISCV::PseudoVRELOAD3_M2:
|
|
case RISCV::PseudoVRELOAD4_M1:
|
|
case RISCV::PseudoVRELOAD4_M2:
|
|
case RISCV::PseudoVRELOAD5_M1:
|
|
case RISCV::PseudoVRELOAD6_M1:
|
|
case RISCV::PseudoVRELOAD7_M1:
|
|
case RISCV::PseudoVRELOAD8_M1: {
|
|
// The values are determined based on expandVSPILL and expandVRELOAD that
|
|
// expand the pseudos depending on NF.
|
|
unsigned NF = isRVVSpillForZvlsseg(Opcode)->first;
|
|
return 4 * (2 * NF - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
|
|
const unsigned Opcode = MI.getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case RISCV::FSGNJ_D:
|
|
case RISCV::FSGNJ_S:
|
|
// The canonical floating-point move is fsgnj rd, rs, rs.
|
|
return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
|
|
case RISCV::ADDI:
|
|
case RISCV::ORI:
|
|
case RISCV::XORI:
|
|
return (MI.getOperand(1).isReg() &&
|
|
MI.getOperand(1).getReg() == RISCV::X0) ||
|
|
(MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
|
|
}
|
|
return MI.isAsCheapAsAMove();
|
|
}
|
|
|
|
Optional<DestSourcePair>
|
|
RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
|
|
if (MI.isMoveReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCV::ADDI:
|
|
// Operand 1 can be a frameindex but callers expect registers
|
|
if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0)
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
break;
|
|
case RISCV::FSGNJ_D:
|
|
case RISCV::FSGNJ_S:
|
|
// The canonical floating-point move is fsgnj rd, rs, rs.
|
|
if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
break;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
|
|
StringRef &ErrInfo) const {
|
|
const MCInstrInfo *MCII = STI.getInstrInfo();
|
|
MCInstrDesc const &Desc = MCII->get(MI.getOpcode());
|
|
|
|
for (auto &OI : enumerate(Desc.operands())) {
|
|
unsigned OpType = OI.value().OperandType;
|
|
if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
|
|
OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
|
|
const MachineOperand &MO = MI.getOperand(OI.index());
|
|
if (MO.isImm()) {
|
|
int64_t Imm = MO.getImm();
|
|
bool Ok;
|
|
switch (OpType) {
|
|
default:
|
|
llvm_unreachable("Unexpected operand type");
|
|
case RISCVOp::OPERAND_UIMM4:
|
|
Ok = isUInt<4>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM5:
|
|
Ok = isUInt<5>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM12:
|
|
Ok = isUInt<12>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM12:
|
|
Ok = isInt<12>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM20:
|
|
Ok = isUInt<20>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMMLOG2XLEN:
|
|
if (STI.getTargetTriple().isArch64Bit())
|
|
Ok = isUInt<6>(Imm);
|
|
else
|
|
Ok = isUInt<5>(Imm);
|
|
break;
|
|
}
|
|
if (!Ok) {
|
|
ErrInfo = "Invalid immediate";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if get the base operand, byte offset of an instruction and the
|
|
// memory width. Width is the size of memory that is being loaded/stored.
|
|
bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
|
|
const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
|
|
unsigned &Width, const TargetRegisterInfo *TRI) const {
|
|
if (!LdSt.mayLoadOrStore())
|
|
return false;
|
|
|
|
// Here we assume the standard RISC-V ISA, which uses a base+offset
|
|
// addressing mode. You'll need to relax these conditions to support custom
|
|
// load/stores instructions.
|
|
if (LdSt.getNumExplicitOperands() != 3)
|
|
return false;
|
|
if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm())
|
|
return false;
|
|
|
|
if (!LdSt.hasOneMemOperand())
|
|
return false;
|
|
|
|
Width = (*LdSt.memoperands_begin())->getSize();
|
|
BaseReg = &LdSt.getOperand(1);
|
|
Offset = LdSt.getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
|
|
const MachineInstr &MIa, const MachineInstr &MIb) const {
|
|
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
|
|
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
|
|
|
|
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
|
|
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Retrieve the base register, offset from the base register and width. Width
|
|
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
|
|
// base registers are identical, and the offset of a lower memory access +
|
|
// the width doesn't overlap the offset of a higher memory access,
|
|
// then the memory accesses are different.
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
|
|
int64_t OffsetA = 0, OffsetB = 0;
|
|
unsigned int WidthA = 0, WidthB = 0;
|
|
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
|
|
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
|
|
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
|
|
int LowOffset = std::min(OffsetA, OffsetB);
|
|
int HighOffset = std::max(OffsetA, OffsetB);
|
|
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
if (LowOffset + LowWidth <= HighOffset)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
|
|
const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
|
|
return std::make_pair(TF & Mask, TF & ~Mask);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
|
|
using namespace RISCVII;
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_CALL, "riscv-call"},
|
|
{MO_PLT, "riscv-plt"},
|
|
{MO_LO, "riscv-lo"},
|
|
{MO_HI, "riscv-hi"},
|
|
{MO_PCREL_LO, "riscv-pcrel-lo"},
|
|
{MO_PCREL_HI, "riscv-pcrel-hi"},
|
|
{MO_GOT_HI, "riscv-got-hi"},
|
|
{MO_TPREL_LO, "riscv-tprel-lo"},
|
|
{MO_TPREL_HI, "riscv-tprel-hi"},
|
|
{MO_TPREL_ADD, "riscv-tprel-add"},
|
|
{MO_TLS_GOT_HI, "riscv-tls-got-hi"},
|
|
{MO_TLS_GD_HI, "riscv-tls-gd-hi"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
|
|
MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
|
|
const Function &F = MF.getFunction();
|
|
|
|
// Can F be deduplicated by the linker? If it can, don't outline from it.
|
|
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
|
|
return false;
|
|
|
|
// Don't outline from functions with section markings; the program could
|
|
// expect that all the code is in the named section.
|
|
if (F.hasSection())
|
|
return false;
|
|
|
|
// It's safe to outline from MF.
|
|
return true;
|
|
}
|
|
|
|
bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
|
|
unsigned &Flags) const {
|
|
// More accurate safety checking is done in getOutliningCandidateInfo.
|
|
return true;
|
|
}
|
|
|
|
// Enum values indicating how an outlined call should be constructed.
|
|
enum MachineOutlinerConstructionID {
|
|
MachineOutlinerDefault
|
|
};
|
|
|
|
outliner::OutlinedFunction RISCVInstrInfo::getOutliningCandidateInfo(
|
|
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
|
|
|
|
// First we need to filter out candidates where the X5 register (IE t0) can't
|
|
// be used to setup the function call.
|
|
auto CannotInsertCall = [](outliner::Candidate &C) {
|
|
const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
|
|
|
|
C.initLRU(*TRI);
|
|
LiveRegUnits LRU = C.LRU;
|
|
return !LRU.available(RISCV::X5);
|
|
};
|
|
|
|
llvm::erase_if(RepeatedSequenceLocs, CannotInsertCall);
|
|
|
|
// If the sequence doesn't have enough candidates left, then we're done.
|
|
if (RepeatedSequenceLocs.size() < 2)
|
|
return outliner::OutlinedFunction();
|
|
|
|
unsigned SequenceSize = 0;
|
|
|
|
auto I = RepeatedSequenceLocs[0].front();
|
|
auto E = std::next(RepeatedSequenceLocs[0].back());
|
|
for (; I != E; ++I)
|
|
SequenceSize += getInstSizeInBytes(*I);
|
|
|
|
// call t0, function = 8 bytes.
|
|
unsigned CallOverhead = 8;
|
|
for (auto &C : RepeatedSequenceLocs)
|
|
C.setCallInfo(MachineOutlinerDefault, CallOverhead);
|
|
|
|
// jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
|
|
unsigned FrameOverhead = 4;
|
|
if (RepeatedSequenceLocs[0].getMF()->getSubtarget()
|
|
.getFeatureBits()[RISCV::FeatureStdExtC])
|
|
FrameOverhead = 2;
|
|
|
|
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
|
|
FrameOverhead, MachineOutlinerDefault);
|
|
}
|
|
|
|
outliner::InstrType
|
|
RISCVInstrInfo::getOutliningType(MachineBasicBlock::iterator &MBBI,
|
|
unsigned Flags) const {
|
|
MachineInstr &MI = *MBBI;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
const TargetRegisterInfo *TRI =
|
|
MBB->getParent()->getSubtarget().getRegisterInfo();
|
|
|
|
// Positions generally can't safely be outlined.
|
|
if (MI.isPosition()) {
|
|
// We can manually strip out CFI instructions later.
|
|
if (MI.isCFIInstruction())
|
|
return outliner::InstrType::Invisible;
|
|
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
// Don't trust the user to write safe inline assembly.
|
|
if (MI.isInlineAsm())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// We can't outline branches to other basic blocks.
|
|
if (MI.isTerminator() && !MBB->succ_empty())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// We need support for tail calls to outlined functions before return
|
|
// statements can be allowed.
|
|
if (MI.isReturn())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Don't allow modifying the X5 register which we use for return addresses for
|
|
// these outlined functions.
|
|
if (MI.modifiesRegister(RISCV::X5, TRI) ||
|
|
MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5))
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Make sure the operands don't reference something unsafe.
|
|
for (const auto &MO : MI.operands())
|
|
if (MO.isMBB() || MO.isBlockAddress() || MO.isCPI())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Don't allow instructions which won't be materialized to impact outlining
|
|
// analysis.
|
|
if (MI.isMetaInstruction())
|
|
return outliner::InstrType::Invisible;
|
|
|
|
return outliner::InstrType::Legal;
|
|
}
|
|
|
|
void RISCVInstrInfo::buildOutlinedFrame(
|
|
MachineBasicBlock &MBB, MachineFunction &MF,
|
|
const outliner::OutlinedFunction &OF) const {
|
|
|
|
// Strip out any CFI instructions
|
|
bool Changed = true;
|
|
while (Changed) {
|
|
Changed = false;
|
|
auto I = MBB.begin();
|
|
auto E = MBB.end();
|
|
for (; I != E; ++I) {
|
|
if (I->isCFIInstruction()) {
|
|
I->removeFromParent();
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MBB.addLiveIn(RISCV::X5);
|
|
|
|
// Add in a return instruction to the end of the outlined frame.
|
|
MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
|
|
.addReg(RISCV::X0, RegState::Define)
|
|
.addReg(RISCV::X5)
|
|
.addImm(0));
|
|
}
|
|
|
|
MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
|
|
Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
|
|
MachineFunction &MF, const outliner::Candidate &C) const {
|
|
|
|
// Add in a call instruction to the outlined function at the given location.
|
|
It = MBB.insert(It,
|
|
BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
|
|
.addGlobalAddress(M.getNamedValue(MF.getName()), 0,
|
|
RISCVII::MO_CALL));
|
|
return It;
|
|
}
|
|
|
|
// clang-format off
|
|
#define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL) \
|
|
RISCV::PseudoV##OP##_##TYPE##_##LMUL##_COMMUTABLE
|
|
|
|
#define CASE_VFMA_OPCODE_LMULS(OP, TYPE) \
|
|
CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF8): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8)
|
|
|
|
#define CASE_VFMA_SPLATS(OP) \
|
|
CASE_VFMA_OPCODE_LMULS(OP, VF16): \
|
|
case CASE_VFMA_OPCODE_LMULS(OP, VF32): \
|
|
case CASE_VFMA_OPCODE_LMULS(OP, VF64)
|
|
// clang-format on
|
|
|
|
bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
if (!Desc.isCommutable())
|
|
return false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case CASE_VFMA_SPLATS(FMADD):
|
|
case CASE_VFMA_SPLATS(FMSUB):
|
|
case CASE_VFMA_SPLATS(FMACC):
|
|
case CASE_VFMA_SPLATS(FMSAC):
|
|
case CASE_VFMA_SPLATS(FNMADD):
|
|
case CASE_VFMA_SPLATS(FNMSUB):
|
|
case CASE_VFMA_SPLATS(FNMACC):
|
|
case CASE_VFMA_SPLATS(FNMSAC):
|
|
case CASE_VFMA_OPCODE_LMULS(FMACC, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FMSAC, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMACC, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMSAC, VV): {
|
|
// For these instructions we can only swap operand 1 and operand 3 by
|
|
// changing the opcode.
|
|
unsigned CommutableOpIdx1 = 1;
|
|
unsigned CommutableOpIdx2 = 3;
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
|
|
CommutableOpIdx2))
|
|
return false;
|
|
return true;
|
|
}
|
|
case CASE_VFMA_OPCODE_LMULS(FMADD, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FMSUB, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMADD, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMSUB, VV): {
|
|
// For these instructions we have more freedom. We can commute with the
|
|
// other multiplicand or with the addend/subtrahend/minuend.
|
|
|
|
// Any fixed operand must be from source 1, 2 or 3.
|
|
if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
|
|
return false;
|
|
if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
|
|
return false;
|
|
|
|
// It both ops are fixed one must be the tied source.
|
|
if (SrcOpIdx1 != CommuteAnyOperandIndex &&
|
|
SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
|
|
return false;
|
|
|
|
// Look for two different register operands assumed to be commutable
|
|
// regardless of the FMA opcode. The FMA opcode is adjusted later if
|
|
// needed.
|
|
if (SrcOpIdx1 == CommuteAnyOperandIndex ||
|
|
SrcOpIdx2 == CommuteAnyOperandIndex) {
|
|
// At least one of operands to be commuted is not specified and
|
|
// this method is free to choose appropriate commutable operands.
|
|
unsigned CommutableOpIdx1 = SrcOpIdx1;
|
|
if (SrcOpIdx1 == SrcOpIdx2) {
|
|
// Both of operands are not fixed. Set one of commutable
|
|
// operands to the tied source.
|
|
CommutableOpIdx1 = 1;
|
|
} else if (SrcOpIdx1 == CommutableOpIdx1) {
|
|
// Only one of the operands is not fixed.
|
|
CommutableOpIdx1 = SrcOpIdx2;
|
|
}
|
|
|
|
// CommutableOpIdx1 is well defined now. Let's choose another commutable
|
|
// operand and assign its index to CommutableOpIdx2.
|
|
unsigned CommutableOpIdx2;
|
|
if (CommutableOpIdx1 != 1) {
|
|
// If we haven't already used the tied source, we must use it now.
|
|
CommutableOpIdx2 = 1;
|
|
} else {
|
|
Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
|
|
|
|
// The commuted operands should have different registers.
|
|
// Otherwise, the commute transformation does not change anything and
|
|
// is useless. We use this as a hint to make our decision.
|
|
if (Op1Reg != MI.getOperand(2).getReg())
|
|
CommutableOpIdx2 = 2;
|
|
else
|
|
CommutableOpIdx2 = 3;
|
|
}
|
|
|
|
// Assign the found pair of commutable indices to SrcOpIdx1 and
|
|
// SrcOpIdx2 to return those values.
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
|
|
CommutableOpIdx2))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
}
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \
|
|
case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_COMMUTABLE: \
|
|
Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_COMMUTABLE; \
|
|
break;
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF16) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF32) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF64)
|
|
|
|
MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI,
|
|
bool NewMI,
|
|
unsigned OpIdx1,
|
|
unsigned OpIdx2) const {
|
|
auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
|
|
if (NewMI)
|
|
return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
|
|
return MI;
|
|
};
|
|
|
|
switch (MI.getOpcode()) {
|
|
case CASE_VFMA_SPLATS(FMACC):
|
|
case CASE_VFMA_SPLATS(FMADD):
|
|
case CASE_VFMA_SPLATS(FMSAC):
|
|
case CASE_VFMA_SPLATS(FMSUB):
|
|
case CASE_VFMA_SPLATS(FNMACC):
|
|
case CASE_VFMA_SPLATS(FNMADD):
|
|
case CASE_VFMA_SPLATS(FNMSAC):
|
|
case CASE_VFMA_SPLATS(FNMSUB):
|
|
case CASE_VFMA_OPCODE_LMULS(FMACC, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FMSAC, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMACC, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMSAC, VV): {
|
|
// It only make sense to toggle these between clobbering the
|
|
// addend/subtrahend/minuend one of the multiplicands.
|
|
assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
|
|
assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
|
|
unsigned Opc;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FMACC, FMADD, VV)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FMSAC, FMSUB, VV)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMACC, FNMADD, VV)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMSAC, FNMSUB, VV)
|
|
}
|
|
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case CASE_VFMA_OPCODE_LMULS(FMADD, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FMSUB, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMADD, VV):
|
|
case CASE_VFMA_OPCODE_LMULS(FNMSUB, VV): {
|
|
assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
|
|
// If one of the operands, is the addend we need to change opcode.
|
|
// Otherwise we're just swapping 2 of the multiplicands.
|
|
if (OpIdx1 == 3 || OpIdx2 == 3) {
|
|
unsigned Opc;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FMADD, FMACC, VV)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FMSUB, FMSAC, VV)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMADD, FNMACC, VV)
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMSUB, FNMSAC, VV)
|
|
}
|
|
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
// Let the default code handle it.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
|
|
}
|
|
|
|
#undef CASE_VFMA_CHANGE_OPCODE_SPLATS
|
|
#undef CASE_VFMA_CHANGE_OPCODE_LMULS
|
|
#undef CASE_VFMA_CHANGE_OPCODE_COMMON
|
|
#undef CASE_VFMA_SPLATS
|
|
#undef CASE_VFMA_OPCODE_LMULS
|
|
#undef CASE_VFMA_OPCODE_COMMON
|
|
|
|
Register RISCVInstrInfo::getVLENFactoredAmount(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator II,
|
|
const DebugLoc &DL,
|
|
int64_t Amount) const {
|
|
assert(Amount > 0 && "There is no need to get VLEN scaled value.");
|
|
assert(Amount % 8 == 0 &&
|
|
"Reserve the stack by the multiple of one vector size.");
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
|
|
int64_t NumOfVReg = Amount / 8;
|
|
|
|
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
|
|
assert(isInt<12>(NumOfVReg) &&
|
|
"Expect the number of vector registers within 12-bits.");
|
|
if (isPowerOf2_32(NumOfVReg)) {
|
|
uint32_t ShiftAmount = Log2_32(NumOfVReg);
|
|
if (ShiftAmount == 0)
|
|
return VL;
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
|
|
.addReg(VL, RegState::Kill)
|
|
.addImm(ShiftAmount);
|
|
} else if (isPowerOf2_32(NumOfVReg - 1)) {
|
|
Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
uint32_t ShiftAmount = Log2_32(NumOfVReg - 1);
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), ScaledRegister)
|
|
.addReg(VL)
|
|
.addImm(ShiftAmount);
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), VL)
|
|
.addReg(ScaledRegister, RegState::Kill)
|
|
.addReg(VL, RegState::Kill);
|
|
} else if (isPowerOf2_32(NumOfVReg + 1)) {
|
|
Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
uint32_t ShiftAmount = Log2_32(NumOfVReg + 1);
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), ScaledRegister)
|
|
.addReg(VL)
|
|
.addImm(ShiftAmount);
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::SUB), VL)
|
|
.addReg(ScaledRegister, RegState::Kill)
|
|
.addReg(VL, RegState::Kill);
|
|
} else {
|
|
Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), N)
|
|
.addReg(RISCV::X0)
|
|
.addImm(NumOfVReg);
|
|
if (!MF.getSubtarget<RISCVSubtarget>().hasStdExtM())
|
|
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
|
|
MF.getFunction(),
|
|
"M-extension must be enabled to calculate the vscaled size/offset."});
|
|
BuildMI(MBB, II, DL, TII->get(RISCV::MUL), VL)
|
|
.addReg(VL, RegState::Kill)
|
|
.addReg(N, RegState::Kill);
|
|
}
|
|
|
|
return VL;
|
|
}
|
|
|
|
static bool isRVVWholeLoadStore(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
return false;
|
|
case RISCV::VS1R_V:
|
|
case RISCV::VS2R_V:
|
|
case RISCV::VS4R_V:
|
|
case RISCV::VS8R_V:
|
|
case RISCV::VL1RE8_V:
|
|
case RISCV::VL2RE8_V:
|
|
case RISCV::VL4RE8_V:
|
|
case RISCV::VL8RE8_V:
|
|
case RISCV::VL1RE16_V:
|
|
case RISCV::VL2RE16_V:
|
|
case RISCV::VL4RE16_V:
|
|
case RISCV::VL8RE16_V:
|
|
case RISCV::VL1RE32_V:
|
|
case RISCV::VL2RE32_V:
|
|
case RISCV::VL4RE32_V:
|
|
case RISCV::VL8RE32_V:
|
|
case RISCV::VL1RE64_V:
|
|
case RISCV::VL2RE64_V:
|
|
case RISCV::VL4RE64_V:
|
|
case RISCV::VL8RE64_V:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::isRVVSpill(const MachineInstr &MI, bool CheckFIs) const {
|
|
// RVV lacks any support for immediate addressing for stack addresses, so be
|
|
// conservative.
|
|
unsigned Opcode = MI.getOpcode();
|
|
if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
|
|
!isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
|
|
return false;
|
|
return !CheckFIs || any_of(MI.operands(), [](const MachineOperand &MO) {
|
|
return MO.isFI();
|
|
});
|
|
}
|
|
|
|
Optional<std::pair<unsigned, unsigned>>
|
|
RISCVInstrInfo::isRVVSpillForZvlsseg(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default:
|
|
return None;
|
|
case RISCV::PseudoVSPILL2_M1:
|
|
case RISCV::PseudoVRELOAD2_M1:
|
|
return std::make_pair(2u, 1u);
|
|
case RISCV::PseudoVSPILL2_M2:
|
|
case RISCV::PseudoVRELOAD2_M2:
|
|
return std::make_pair(2u, 2u);
|
|
case RISCV::PseudoVSPILL2_M4:
|
|
case RISCV::PseudoVRELOAD2_M4:
|
|
return std::make_pair(2u, 4u);
|
|
case RISCV::PseudoVSPILL3_M1:
|
|
case RISCV::PseudoVRELOAD3_M1:
|
|
return std::make_pair(3u, 1u);
|
|
case RISCV::PseudoVSPILL3_M2:
|
|
case RISCV::PseudoVRELOAD3_M2:
|
|
return std::make_pair(3u, 2u);
|
|
case RISCV::PseudoVSPILL4_M1:
|
|
case RISCV::PseudoVRELOAD4_M1:
|
|
return std::make_pair(4u, 1u);
|
|
case RISCV::PseudoVSPILL4_M2:
|
|
case RISCV::PseudoVRELOAD4_M2:
|
|
return std::make_pair(4u, 2u);
|
|
case RISCV::PseudoVSPILL5_M1:
|
|
case RISCV::PseudoVRELOAD5_M1:
|
|
return std::make_pair(5u, 1u);
|
|
case RISCV::PseudoVSPILL6_M1:
|
|
case RISCV::PseudoVRELOAD6_M1:
|
|
return std::make_pair(6u, 1u);
|
|
case RISCV::PseudoVSPILL7_M1:
|
|
case RISCV::PseudoVRELOAD7_M1:
|
|
return std::make_pair(7u, 1u);
|
|
case RISCV::PseudoVSPILL8_M1:
|
|
case RISCV::PseudoVRELOAD8_M1:
|
|
return std::make_pair(8u, 1u);
|
|
}
|
|
}
|