forked from OSchip/llvm-project
420 lines
16 KiB
C++
420 lines
16 KiB
C++
//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXTargetTransformInfo.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "NVPTXtti"
|
|
|
|
// Whether the given intrinsic reads threadIdx.x/y/z.
|
|
static bool readsThreadIndex(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: return false;
|
|
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
|
|
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
|
|
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool readsLaneId(const IntrinsicInst *II) {
|
|
return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
|
|
}
|
|
|
|
// Whether the given intrinsic is an atomic instruction in PTX.
|
|
static bool isNVVMAtomic(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
default: return false;
|
|
case Intrinsic::nvvm_atomic_load_inc_32:
|
|
case Intrinsic::nvvm_atomic_load_dec_32:
|
|
|
|
case Intrinsic::nvvm_atomic_add_gen_f_cta:
|
|
case Intrinsic::nvvm_atomic_add_gen_f_sys:
|
|
case Intrinsic::nvvm_atomic_add_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_add_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_and_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_and_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_max_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_max_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_min_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_min_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_or_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_or_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
|
|
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
|
|
case Intrinsic::nvvm_atomic_xor_gen_i_sys:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
|
|
// Without inter-procedural analysis, we conservatively assume that arguments
|
|
// to __device__ functions are divergent.
|
|
if (const Argument *Arg = dyn_cast<Argument>(V))
|
|
return !isKernelFunction(*Arg->getParent());
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// Without pointer analysis, we conservatively assume values loaded from
|
|
// generic or local address space are divergent.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
unsigned AS = LI->getPointerAddressSpace();
|
|
return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
|
|
}
|
|
// Atomic instructions may cause divergence. Atomic instructions are
|
|
// executed sequentially across all threads in a warp. Therefore, an earlier
|
|
// executed thread may see different memory inputs than a later executed
|
|
// thread. For example, suppose *a = 0 initially.
|
|
//
|
|
// atom.global.add.s32 d, [a], 1
|
|
//
|
|
// returns 0 for the first thread that enters the critical region, and 1 for
|
|
// the second thread.
|
|
if (I->isAtomic())
|
|
return true;
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
// Instructions that read threadIdx are obviously divergent.
|
|
if (readsThreadIndex(II) || readsLaneId(II))
|
|
return true;
|
|
// Handle the NVPTX atomic instrinsics that cannot be represented as an
|
|
// atomic IR instruction.
|
|
if (isNVVMAtomic(II))
|
|
return true;
|
|
}
|
|
// Conservatively consider the return value of function calls as divergent.
|
|
// We could analyze callees with bodies more precisely using
|
|
// inter-procedural analysis.
|
|
if (isa<CallInst>(I))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Convert NVVM intrinsics to target-generic LLVM code where possible.
|
|
static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
|
|
// Each NVVM intrinsic we can simplify can be replaced with one of:
|
|
//
|
|
// * an LLVM intrinsic,
|
|
// * an LLVM cast operation,
|
|
// * an LLVM binary operation, or
|
|
// * ad-hoc LLVM IR for the particular operation.
|
|
|
|
// Some transformations are only valid when the module's
|
|
// flush-denormals-to-zero (ftz) setting is true/false, whereas other
|
|
// transformations are valid regardless of the module's ftz setting.
|
|
enum FtzRequirementTy {
|
|
FTZ_Any, // Any ftz setting is ok.
|
|
FTZ_MustBeOn, // Transformation is valid only if ftz is on.
|
|
FTZ_MustBeOff, // Transformation is valid only if ftz is off.
|
|
};
|
|
// Classes of NVVM intrinsics that can't be replaced one-to-one with a
|
|
// target-generic intrinsic, cast op, or binary op but that we can nonetheless
|
|
// simplify.
|
|
enum SpecialCase {
|
|
SPC_Reciprocal,
|
|
};
|
|
|
|
// SimplifyAction is a poor-man's variant (plus an additional flag) that
|
|
// represents how to replace an NVVM intrinsic with target-generic LLVM IR.
|
|
struct SimplifyAction {
|
|
// Invariant: At most one of these Optionals has a value.
|
|
Optional<Intrinsic::ID> IID;
|
|
Optional<Instruction::CastOps> CastOp;
|
|
Optional<Instruction::BinaryOps> BinaryOp;
|
|
Optional<SpecialCase> Special;
|
|
|
|
FtzRequirementTy FtzRequirement = FTZ_Any;
|
|
|
|
SimplifyAction() = default;
|
|
|
|
SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
|
|
: IID(IID), FtzRequirement(FtzReq) {}
|
|
|
|
// Cast operations don't have anything to do with FTZ, so we skip that
|
|
// argument.
|
|
SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
|
|
|
|
SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
|
|
: BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
|
|
|
|
SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
|
|
: Special(Special), FtzRequirement(FtzReq) {}
|
|
};
|
|
|
|
// Try to generate a SimplifyAction describing how to replace our
|
|
// IntrinsicInstr with target-generic LLVM IR.
|
|
const SimplifyAction Action = [II]() -> SimplifyAction {
|
|
switch (II->getIntrinsicID()) {
|
|
// NVVM intrinsics that map directly to LLVM intrinsics.
|
|
case Intrinsic::nvvm_ceil_d:
|
|
return {Intrinsic::ceil, FTZ_Any};
|
|
case Intrinsic::nvvm_ceil_f:
|
|
return {Intrinsic::ceil, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_ceil_ftz_f:
|
|
return {Intrinsic::ceil, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fabs_d:
|
|
return {Intrinsic::fabs, FTZ_Any};
|
|
case Intrinsic::nvvm_fabs_f:
|
|
return {Intrinsic::fabs, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fabs_ftz_f:
|
|
return {Intrinsic::fabs, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_floor_d:
|
|
return {Intrinsic::floor, FTZ_Any};
|
|
case Intrinsic::nvvm_floor_f:
|
|
return {Intrinsic::floor, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_floor_ftz_f:
|
|
return {Intrinsic::floor, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fma_rn_d:
|
|
return {Intrinsic::fma, FTZ_Any};
|
|
case Intrinsic::nvvm_fma_rn_f:
|
|
return {Intrinsic::fma, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fma_rn_ftz_f:
|
|
return {Intrinsic::fma, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fmax_d:
|
|
return {Intrinsic::maxnum, FTZ_Any};
|
|
case Intrinsic::nvvm_fmax_f:
|
|
return {Intrinsic::maxnum, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fmax_ftz_f:
|
|
return {Intrinsic::maxnum, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fmin_d:
|
|
return {Intrinsic::minnum, FTZ_Any};
|
|
case Intrinsic::nvvm_fmin_f:
|
|
return {Intrinsic::minnum, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fmin_ftz_f:
|
|
return {Intrinsic::minnum, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_round_d:
|
|
return {Intrinsic::round, FTZ_Any};
|
|
case Intrinsic::nvvm_round_f:
|
|
return {Intrinsic::round, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_round_ftz_f:
|
|
return {Intrinsic::round, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_sqrt_rn_d:
|
|
return {Intrinsic::sqrt, FTZ_Any};
|
|
case Intrinsic::nvvm_sqrt_f:
|
|
// nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
|
|
// ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
|
|
// the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
|
|
// the versions with explicit ftz-ness.
|
|
return {Intrinsic::sqrt, FTZ_Any};
|
|
case Intrinsic::nvvm_sqrt_rn_f:
|
|
return {Intrinsic::sqrt, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_sqrt_rn_ftz_f:
|
|
return {Intrinsic::sqrt, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_trunc_d:
|
|
return {Intrinsic::trunc, FTZ_Any};
|
|
case Intrinsic::nvvm_trunc_f:
|
|
return {Intrinsic::trunc, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_trunc_ftz_f:
|
|
return {Intrinsic::trunc, FTZ_MustBeOn};
|
|
|
|
// NVVM intrinsics that map to LLVM cast operations.
|
|
//
|
|
// Note that llvm's target-generic conversion operators correspond to the rz
|
|
// (round to zero) versions of the nvvm conversion intrinsics, even though
|
|
// most everything else here uses the rn (round to nearest even) nvvm ops.
|
|
case Intrinsic::nvvm_d2i_rz:
|
|
case Intrinsic::nvvm_f2i_rz:
|
|
case Intrinsic::nvvm_d2ll_rz:
|
|
case Intrinsic::nvvm_f2ll_rz:
|
|
return {Instruction::FPToSI};
|
|
case Intrinsic::nvvm_d2ui_rz:
|
|
case Intrinsic::nvvm_f2ui_rz:
|
|
case Intrinsic::nvvm_d2ull_rz:
|
|
case Intrinsic::nvvm_f2ull_rz:
|
|
return {Instruction::FPToUI};
|
|
case Intrinsic::nvvm_i2d_rz:
|
|
case Intrinsic::nvvm_i2f_rz:
|
|
case Intrinsic::nvvm_ll2d_rz:
|
|
case Intrinsic::nvvm_ll2f_rz:
|
|
return {Instruction::SIToFP};
|
|
case Intrinsic::nvvm_ui2d_rz:
|
|
case Intrinsic::nvvm_ui2f_rz:
|
|
case Intrinsic::nvvm_ull2d_rz:
|
|
case Intrinsic::nvvm_ull2f_rz:
|
|
return {Instruction::UIToFP};
|
|
|
|
// NVVM intrinsics that map to LLVM binary ops.
|
|
case Intrinsic::nvvm_add_rn_d:
|
|
return {Instruction::FAdd, FTZ_Any};
|
|
case Intrinsic::nvvm_add_rn_f:
|
|
return {Instruction::FAdd, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_add_rn_ftz_f:
|
|
return {Instruction::FAdd, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_mul_rn_d:
|
|
return {Instruction::FMul, FTZ_Any};
|
|
case Intrinsic::nvvm_mul_rn_f:
|
|
return {Instruction::FMul, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_mul_rn_ftz_f:
|
|
return {Instruction::FMul, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_div_rn_d:
|
|
return {Instruction::FDiv, FTZ_Any};
|
|
case Intrinsic::nvvm_div_rn_f:
|
|
return {Instruction::FDiv, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_div_rn_ftz_f:
|
|
return {Instruction::FDiv, FTZ_MustBeOn};
|
|
|
|
// The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
|
|
// need special handling.
|
|
//
|
|
// We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
|
|
// as well.
|
|
case Intrinsic::nvvm_rcp_rn_d:
|
|
return {SPC_Reciprocal, FTZ_Any};
|
|
case Intrinsic::nvvm_rcp_rn_f:
|
|
return {SPC_Reciprocal, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_rcp_rn_ftz_f:
|
|
return {SPC_Reciprocal, FTZ_MustBeOn};
|
|
|
|
// We do not currently simplify intrinsics that give an approximate
|
|
// answer. These include:
|
|
//
|
|
// - nvvm_cos_approx_{f,ftz_f}
|
|
// - nvvm_ex2_approx_{d,f,ftz_f}
|
|
// - nvvm_lg2_approx_{d,f,ftz_f}
|
|
// - nvvm_sin_approx_{f,ftz_f}
|
|
// - nvvm_sqrt_approx_{f,ftz_f}
|
|
// - nvvm_rsqrt_approx_{d,f,ftz_f}
|
|
// - nvvm_div_approx_{ftz_d,ftz_f,f}
|
|
// - nvvm_rcp_approx_ftz_d
|
|
//
|
|
// Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
|
|
// means that fastmath is enabled in the intrinsic. Unfortunately only
|
|
// binary operators (currently) have a fastmath bit in SelectionDAG, so
|
|
// this information gets lost and we can't select on it.
|
|
//
|
|
// TODO: div and rcp are lowered to a binary op, so these we could in
|
|
// theory lower them to "fast fdiv".
|
|
|
|
default:
|
|
return {};
|
|
}
|
|
}();
|
|
|
|
// If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
|
|
// can bail out now. (Notice that in the case that IID is not an NVVM
|
|
// intrinsic, we don't have to look up any module metadata, as
|
|
// FtzRequirementTy will be FTZ_Any.)
|
|
if (Action.FtzRequirement != FTZ_Any) {
|
|
StringRef Attr = II->getFunction()
|
|
->getFnAttribute("denormal-fp-math-f32")
|
|
.getValueAsString();
|
|
DenormalMode Mode = parseDenormalFPAttribute(Attr);
|
|
bool FtzEnabled = Mode.Output != DenormalMode::IEEE;
|
|
|
|
if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
|
|
return nullptr;
|
|
}
|
|
|
|
// Simplify to target-generic intrinsic.
|
|
if (Action.IID) {
|
|
SmallVector<Value *, 4> Args(II->arg_operands());
|
|
// All the target-generic intrinsics currently of interest to us have one
|
|
// type argument, equal to that of the nvvm intrinsic's argument.
|
|
Type *Tys[] = {II->getArgOperand(0)->getType()};
|
|
return CallInst::Create(
|
|
Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
|
|
}
|
|
|
|
// Simplify to target-generic binary op.
|
|
if (Action.BinaryOp)
|
|
return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
|
|
II->getArgOperand(1), II->getName());
|
|
|
|
// Simplify to target-generic cast op.
|
|
if (Action.CastOp)
|
|
return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
|
|
II->getName());
|
|
|
|
// All that's left are the special cases.
|
|
if (!Action.Special)
|
|
return nullptr;
|
|
|
|
switch (*Action.Special) {
|
|
case SPC_Reciprocal:
|
|
// Simplify reciprocal.
|
|
return BinaryOperator::Create(
|
|
Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
|
|
II->getArgOperand(0), II->getName());
|
|
}
|
|
llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
|
|
}
|
|
|
|
Optional<Instruction *>
|
|
NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
|
|
if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) {
|
|
return I;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
InstructionCost NVPTXTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
switch (ISD) {
|
|
default:
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
|
|
Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::XOR:
|
|
case ISD::OR:
|
|
case ISD::AND:
|
|
// The machine code (SASS) simulates an i64 with two i32. Therefore, we
|
|
// estimate that arithmetic operations on i64 are twice as expensive as
|
|
// those on types that can fit into one machine register.
|
|
if (LT.second.SimpleTy == MVT::i64)
|
|
return 2 * LT.first;
|
|
// Delegate other cases to the basic TTI.
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
|
|
Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
}
|
|
}
|
|
|
|
void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
BaseT::getUnrollingPreferences(L, SE, UP);
|
|
|
|
// Enable partial unrolling and runtime unrolling, but reduce the
|
|
// threshold. This partially unrolls small loops which are often
|
|
// unrolled by the PTX to SASS compiler and unrolling earlier can be
|
|
// beneficial.
|
|
UP.Partial = UP.Runtime = true;
|
|
UP.PartialThreshold = UP.Threshold / 4;
|
|
}
|
|
|
|
void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
}
|