forked from OSchip/llvm-project
937 lines
34 KiB
C++
937 lines
34 KiB
C++
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines ExprEngine's support for C expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::APSInt;
|
|
|
|
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
Expr *LHS = B->getLHS()->IgnoreParens();
|
|
Expr *RHS = B->getRHS()->IgnoreParens();
|
|
|
|
// FIXME: Prechecks eventually go in ::Visit().
|
|
ExplodedNodeSet CheckedSet;
|
|
ExplodedNodeSet Tmp2;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
|
|
|
|
// With both the LHS and RHS evaluated, process the operation itself.
|
|
for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
|
|
it != ei; ++it) {
|
|
|
|
ProgramStateRef state = (*it)->getState();
|
|
const LocationContext *LCtx = (*it)->getLocationContext();
|
|
SVal LeftV = state->getSVal(LHS, LCtx);
|
|
SVal RightV = state->getSVal(RHS, LCtx);
|
|
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
if (Op == BO_Assign) {
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
if (RightV.isUnknown()) {
|
|
unsigned Count = currBldrCtx->blockCount();
|
|
RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
|
|
}
|
|
// Simulate the effects of a "store": bind the value of the RHS
|
|
// to the L-Value represented by the LHS.
|
|
SVal ExprVal = B->isGLValue() ? LeftV : RightV;
|
|
evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
|
|
LeftV, RightV);
|
|
continue;
|
|
}
|
|
|
|
if (!B->isAssignmentOp()) {
|
|
StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
|
|
|
|
if (B->isAdditiveOp()) {
|
|
// If one of the operands is a location, conjure a symbol for the other
|
|
// one (offset) if it's unknown so that memory arithmetic always
|
|
// results in an ElementRegion.
|
|
// TODO: This can be removed after we enable history tracking with
|
|
// SymSymExpr.
|
|
unsigned Count = currBldrCtx->blockCount();
|
|
if (LeftV.getAs<Loc>() &&
|
|
RHS->getType()->isIntegerType() && RightV.isUnknown()) {
|
|
RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
|
|
Count);
|
|
}
|
|
if (RightV.getAs<Loc>() &&
|
|
LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
|
|
LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
|
|
Count);
|
|
}
|
|
}
|
|
|
|
// Process non-assignments except commas or short-circuited
|
|
// logical expressions (LAnd and LOr).
|
|
SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
|
|
if (Result.isUnknown()) {
|
|
Bldr.generateNode(B, *it, state);
|
|
continue;
|
|
}
|
|
|
|
state = state->BindExpr(B, LCtx, Result);
|
|
Bldr.generateNode(B, *it, state);
|
|
continue;
|
|
}
|
|
|
|
assert (B->isCompoundAssignmentOp());
|
|
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Invalid opcode for compound assignment.");
|
|
case BO_MulAssign: Op = BO_Mul; break;
|
|
case BO_DivAssign: Op = BO_Div; break;
|
|
case BO_RemAssign: Op = BO_Rem; break;
|
|
case BO_AddAssign: Op = BO_Add; break;
|
|
case BO_SubAssign: Op = BO_Sub; break;
|
|
case BO_ShlAssign: Op = BO_Shl; break;
|
|
case BO_ShrAssign: Op = BO_Shr; break;
|
|
case BO_AndAssign: Op = BO_And; break;
|
|
case BO_XorAssign: Op = BO_Xor; break;
|
|
case BO_OrAssign: Op = BO_Or; break;
|
|
}
|
|
|
|
// Perform a load (the LHS). This performs the checks for
|
|
// null dereferences, and so on.
|
|
ExplodedNodeSet Tmp;
|
|
SVal location = LeftV;
|
|
evalLoad(Tmp, B, LHS, *it, state, location);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
|
|
++I) {
|
|
|
|
state = (*I)->getState();
|
|
const LocationContext *LCtx = (*I)->getLocationContext();
|
|
SVal V = state->getSVal(LHS, LCtx);
|
|
|
|
// Get the computation type.
|
|
QualType CTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationResultType();
|
|
CTy = getContext().getCanonicalType(CTy);
|
|
|
|
QualType CLHSTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationLHSType();
|
|
CLHSTy = getContext().getCanonicalType(CLHSTy);
|
|
|
|
QualType LTy = getContext().getCanonicalType(LHS->getType());
|
|
|
|
// Promote LHS.
|
|
V = svalBuilder.evalCast(V, CLHSTy, LTy);
|
|
|
|
// Compute the result of the operation.
|
|
SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
|
|
B->getType(), CTy);
|
|
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
|
|
SVal LHSVal;
|
|
|
|
if (Result.isUnknown()) {
|
|
// The symbolic value is actually for the type of the left-hand side
|
|
// expression, not the computation type, as this is the value the
|
|
// LValue on the LHS will bind to.
|
|
LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
|
|
currBldrCtx->blockCount());
|
|
// However, we need to convert the symbol to the computation type.
|
|
Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
|
|
}
|
|
else {
|
|
// The left-hand side may bind to a different value then the
|
|
// computation type.
|
|
LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
|
|
}
|
|
|
|
// In C++, assignment and compound assignment operators return an
|
|
// lvalue.
|
|
if (B->isGLValue())
|
|
state = state->BindExpr(B, LCtx, location);
|
|
else
|
|
state = state->BindExpr(B, LCtx, Result);
|
|
|
|
evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
|
|
}
|
|
}
|
|
|
|
// FIXME: postvisits eventually go in ::Visit()
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
CanQualType T = getContext().getCanonicalType(BE->getType());
|
|
|
|
// Get the value of the block itself.
|
|
SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
|
|
Pred->getLocationContext());
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
// If we created a new MemRegion for the block, we should explicitly bind
|
|
// the captured variables.
|
|
if (const BlockDataRegion *BDR =
|
|
dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
|
|
|
|
BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
|
|
E = BDR->referenced_vars_end();
|
|
|
|
for (; I != E; ++I) {
|
|
const MemRegion *capturedR = I.getCapturedRegion();
|
|
const MemRegion *originalR = I.getOriginalRegion();
|
|
if (capturedR != originalR) {
|
|
SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
|
|
State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
|
|
}
|
|
}
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
|
|
Bldr.generateNode(BE, Pred,
|
|
State->BindExpr(BE, Pred->getLocationContext(), V),
|
|
0, ProgramPoint::PostLValueKind);
|
|
|
|
// FIXME: Move all post/pre visits to ::Visit().
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
|
|
ExplodedNodeSet dstPreStmt;
|
|
getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
|
|
|
|
if (CastE->getCastKind() == CK_LValueToRValue) {
|
|
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *subExprNode = *I;
|
|
ProgramStateRef state = subExprNode->getState();
|
|
const LocationContext *LCtx = subExprNode->getLocationContext();
|
|
evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// All other casts.
|
|
QualType T = CastE->getType();
|
|
QualType ExTy = Ex->getType();
|
|
|
|
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
|
|
T = ExCast->getTypeAsWritten();
|
|
|
|
StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
|
|
I != E; ++I) {
|
|
|
|
Pred = *I;
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
switch (CastE->getCastKind()) {
|
|
case CK_LValueToRValue:
|
|
llvm_unreachable("LValueToRValue casts handled earlier.");
|
|
case CK_ToVoid:
|
|
continue;
|
|
// The analyzer doesn't do anything special with these casts,
|
|
// since it understands retain/release semantics already.
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject: // Fall-through.
|
|
case CK_CopyAndAutoreleaseBlockObject:
|
|
// The analyser can ignore atomic casts for now, although some future
|
|
// checkers may want to make certain that you're not modifying the same
|
|
// value through atomic and nonatomic pointers.
|
|
case CK_AtomicToNonAtomic:
|
|
case CK_NonAtomicToAtomic:
|
|
// True no-ops.
|
|
case CK_NoOp:
|
|
case CK_ConstructorConversion:
|
|
case CK_UserDefinedConversion:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_BuiltinFnToFnPtr: {
|
|
// Copy the SVal of Ex to CastE.
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_MemberPointerToBoolean:
|
|
// FIXME: For now, member pointers are represented by void *.
|
|
// FALLTHROUGH
|
|
case CK_Dependent:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_BitCast:
|
|
case CK_IntegralCast:
|
|
case CK_NullToPointer:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCObjectLValueCast:
|
|
case CK_ZeroToOCLEvent: {
|
|
// Delegate to SValBuilder to process.
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
V = svalBuilder.evalCast(V, T, ExTy);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase: {
|
|
// For DerivedToBase cast, delegate to the store manager.
|
|
SVal val = state->getSVal(Ex, LCtx);
|
|
val = getStoreManager().evalDerivedToBase(val, CastE);
|
|
state = state->BindExpr(CastE, LCtx, val);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Handle C++ dyn_cast.
|
|
case CK_Dynamic: {
|
|
SVal val = state->getSVal(Ex, LCtx);
|
|
|
|
// Compute the type of the result.
|
|
QualType resultType = CastE->getType();
|
|
if (CastE->isGLValue())
|
|
resultType = getContext().getPointerType(resultType);
|
|
|
|
bool Failed = false;
|
|
|
|
// Check if the value being cast evaluates to 0.
|
|
if (val.isZeroConstant())
|
|
Failed = true;
|
|
// Else, evaluate the cast.
|
|
else
|
|
val = getStoreManager().evalDynamicCast(val, T, Failed);
|
|
|
|
if (Failed) {
|
|
if (T->isReferenceType()) {
|
|
// A bad_cast exception is thrown if input value is a reference.
|
|
// Currently, we model this, by generating a sink.
|
|
Bldr.generateSink(CastE, Pred, state);
|
|
continue;
|
|
} else {
|
|
// If the cast fails on a pointer, bind to 0.
|
|
state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
|
|
}
|
|
} else {
|
|
// If we don't know if the cast succeeded, conjure a new symbol.
|
|
if (val.isUnknown()) {
|
|
DefinedOrUnknownSVal NewSym =
|
|
svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
|
|
currBldrCtx->blockCount());
|
|
state = state->BindExpr(CastE, LCtx, NewSym);
|
|
} else
|
|
// Else, bind to the derived region value.
|
|
state = state->BindExpr(CastE, LCtx, val);
|
|
}
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_NullToMemberPointer: {
|
|
// FIXME: For now, member pointers are represented by void *.
|
|
SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
|
|
state = state->BindExpr(CastE, LCtx, V);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Various C++ casts that are not handled yet.
|
|
case CK_ToUnion:
|
|
case CK_BaseToDerived:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_ReinterpretMemberPointer:
|
|
case CK_VectorSplat:
|
|
case CK_LValueBitCast: {
|
|
// Recover some path-sensitivty by conjuring a new value.
|
|
QualType resultType = CastE->getType();
|
|
if (CastE->isGLValue())
|
|
resultType = getContext().getPointerType(resultType);
|
|
SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
|
|
resultType,
|
|
currBldrCtx->blockCount());
|
|
state = state->BindExpr(CastE, LCtx, result);
|
|
Bldr.generateNode(CastE, Pred, state);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
|
|
const InitListExpr *ILE
|
|
= cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
state = state->bindCompoundLiteral(CL, LC, ILV);
|
|
|
|
// Compound literal expressions are a GNU extension in C++.
|
|
// Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
|
|
// and like temporary objects created by the functional notation T()
|
|
// CLs are destroyed at the end of the containing full-expression.
|
|
// HOWEVER, an rvalue of array type is not something the analyzer can
|
|
// reason about, since we expect all regions to be wrapped in Locs.
|
|
// So we treat array CLs as lvalues as well, knowing that they will decay
|
|
// to pointers as soon as they are used.
|
|
if (CL->isGLValue() || CL->getType()->isArrayType())
|
|
B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
|
|
else
|
|
B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
|
|
}
|
|
|
|
/// The GDM component containing the set of global variables which have been
|
|
/// previously initialized with explicit initializers.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
|
|
llvm::ImmutableSet<const VarDecl *> )
|
|
|
|
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// Assumption: The CFG has one DeclStmt per Decl.
|
|
const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
|
|
|
|
if (!VD) {
|
|
//TODO:AZ: remove explicit insertion after refactoring is done.
|
|
Dst.insert(Pred);
|
|
return;
|
|
}
|
|
|
|
// Check if a value has been previously initialized. There will be an entry in
|
|
// the set for variables with global storage which have been previously
|
|
// initialized.
|
|
if (VD->hasGlobalStorage())
|
|
if (Pred->getState()->contains<InitializedGlobalsSet>(VD)) {
|
|
Dst.insert(Pred);
|
|
return;
|
|
}
|
|
|
|
// FIXME: all pre/post visits should eventually be handled by ::Visit().
|
|
ExplodedNodeSet dstPreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
|
|
|
|
StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
ProgramStateRef state = N->getState();
|
|
const LocationContext *LC = N->getLocationContext();
|
|
|
|
// Decls without InitExpr are not initialized explicitly.
|
|
if (const Expr *InitEx = VD->getInit()) {
|
|
|
|
// Note in the state that the initialization has occurred.
|
|
ExplodedNode *UpdatedN = N;
|
|
if (VD->hasGlobalStorage()) {
|
|
state = state->add<InitializedGlobalsSet>(VD);
|
|
UpdatedN = B.generateNode(DS, N, state);
|
|
}
|
|
|
|
SVal InitVal = state->getSVal(InitEx, LC);
|
|
|
|
if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
|
|
// We constructed the object directly in the variable.
|
|
// No need to bind anything.
|
|
B.generateNode(DS, UpdatedN, state);
|
|
} else {
|
|
// We bound the temp obj region to the CXXConstructExpr. Now recover
|
|
// the lazy compound value when the variable is not a reference.
|
|
if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
|
|
!VD->getType()->isReferenceType()) {
|
|
if (Optional<loc::MemRegionVal> M =
|
|
InitVal.getAs<loc::MemRegionVal>()) {
|
|
InitVal = state->getSVal(M->getRegion());
|
|
assert(InitVal.getAs<nonloc::LazyCompoundVal>());
|
|
}
|
|
}
|
|
|
|
// Recover some path-sensitivity if a scalar value evaluated to
|
|
// UnknownVal.
|
|
if (InitVal.isUnknown()) {
|
|
QualType Ty = InitEx->getType();
|
|
if (InitEx->isGLValue()) {
|
|
Ty = getContext().getPointerType(Ty);
|
|
}
|
|
|
|
InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
|
|
currBldrCtx->blockCount());
|
|
}
|
|
|
|
|
|
B.takeNodes(UpdatedN);
|
|
ExplodedNodeSet Dst2;
|
|
evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
|
|
B.addNodes(Dst2);
|
|
}
|
|
}
|
|
else {
|
|
B.generateNode(DS, N, state);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
assert(B->getOpcode() == BO_LAnd ||
|
|
B->getOpcode() == BO_LOr);
|
|
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
ProgramStateRef state = Pred->getState();
|
|
|
|
ExplodedNode *N = Pred;
|
|
while (!N->getLocation().getAs<BlockEntrance>()) {
|
|
ProgramPoint P = N->getLocation();
|
|
assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
|
|
(void) P;
|
|
assert(N->pred_size() == 1);
|
|
N = *N->pred_begin();
|
|
}
|
|
assert(N->pred_size() == 1);
|
|
N = *N->pred_begin();
|
|
BlockEdge BE = N->getLocation().castAs<BlockEdge>();
|
|
SVal X;
|
|
|
|
// Determine the value of the expression by introspecting how we
|
|
// got this location in the CFG. This requires looking at the previous
|
|
// block we were in and what kind of control-flow transfer was involved.
|
|
const CFGBlock *SrcBlock = BE.getSrc();
|
|
// The only terminator (if there is one) that makes sense is a logical op.
|
|
CFGTerminator T = SrcBlock->getTerminator();
|
|
if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
|
|
(void) Term;
|
|
assert(Term->isLogicalOp());
|
|
assert(SrcBlock->succ_size() == 2);
|
|
// Did we take the true or false branch?
|
|
unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
|
|
X = svalBuilder.makeIntVal(constant, B->getType());
|
|
}
|
|
else {
|
|
// If there is no terminator, by construction the last statement
|
|
// in SrcBlock is the value of the enclosing expression.
|
|
// However, we still need to constrain that value to be 0 or 1.
|
|
assert(!SrcBlock->empty());
|
|
CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
|
|
const Expr *RHS = cast<Expr>(Elem.getStmt());
|
|
SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
|
|
|
|
if (RHSVal.isUndef()) {
|
|
X = RHSVal;
|
|
} else {
|
|
DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
|
|
ProgramStateRef StTrue, StFalse;
|
|
llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
|
|
if (StTrue) {
|
|
if (StFalse) {
|
|
// We can't constrain the value to 0 or 1.
|
|
// The best we can do is a cast.
|
|
X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
|
|
} else {
|
|
// The value is known to be true.
|
|
X = getSValBuilder().makeIntVal(1, B->getType());
|
|
}
|
|
} else {
|
|
// The value is known to be false.
|
|
assert(StFalse && "Infeasible path!");
|
|
X = getSValBuilder().makeIntVal(0, B->getType());
|
|
}
|
|
}
|
|
}
|
|
Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
|
|
}
|
|
|
|
void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
QualType T = getContext().getCanonicalType(IE->getType());
|
|
unsigned NumInitElements = IE->getNumInits();
|
|
|
|
if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
|
|
T->isAnyComplexType()) {
|
|
llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
|
|
|
|
// Handle base case where the initializer has no elements.
|
|
// e.g: static int* myArray[] = {};
|
|
if (NumInitElements == 0) {
|
|
SVal V = svalBuilder.makeCompoundVal(T, vals);
|
|
B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
|
|
return;
|
|
}
|
|
|
|
for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
|
|
ei = IE->rend(); it != ei; ++it) {
|
|
SVal V = state->getSVal(cast<Expr>(*it), LCtx);
|
|
if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
|
|
V = UnknownVal();
|
|
vals = getBasicVals().consVals(V, vals);
|
|
}
|
|
|
|
B.generateNode(IE, Pred,
|
|
state->BindExpr(IE, LCtx,
|
|
svalBuilder.makeCompoundVal(T, vals)));
|
|
return;
|
|
}
|
|
|
|
// Handle scalars: int{5} and int{}.
|
|
assert(NumInitElements <= 1);
|
|
|
|
SVal V;
|
|
if (NumInitElements == 0)
|
|
V = getSValBuilder().makeZeroVal(T);
|
|
else
|
|
V = state->getSVal(IE->getInit(0), LCtx);
|
|
|
|
B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
|
|
}
|
|
|
|
void ExprEngine::VisitGuardedExpr(const Expr *Ex,
|
|
const Expr *L,
|
|
const Expr *R,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
const CFGBlock *SrcBlock = 0;
|
|
|
|
for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
|
|
ProgramPoint PP = N->getLocation();
|
|
if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
|
|
assert(N->pred_size() == 1);
|
|
continue;
|
|
}
|
|
SrcBlock = PP.castAs<BlockEdge>().getSrc();
|
|
break;
|
|
}
|
|
|
|
// Find the last expression in the predecessor block. That is the
|
|
// expression that is used for the value of the ternary expression.
|
|
bool hasValue = false;
|
|
SVal V;
|
|
|
|
for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
|
|
E = SrcBlock->rend(); I != E; ++I) {
|
|
CFGElement CE = *I;
|
|
if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
|
|
const Expr *ValEx = cast<Expr>(CS->getStmt());
|
|
hasValue = true;
|
|
V = state->getSVal(ValEx, LCtx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(hasValue);
|
|
(void) hasValue;
|
|
|
|
// Generate a new node with the binding from the appropriate path.
|
|
B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
|
|
}
|
|
|
|
void ExprEngine::
|
|
VisitOffsetOfExpr(const OffsetOfExpr *OOE,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
|
|
APSInt IV;
|
|
if (OOE->EvaluateAsInt(IV, getContext())) {
|
|
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
|
|
assert(OOE->getType()->isIntegerType());
|
|
assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
|
|
SVal X = svalBuilder.makeIntVal(IV);
|
|
B.generateNode(OOE, Pred,
|
|
Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
|
|
X));
|
|
}
|
|
// FIXME: Handle the case where __builtin_offsetof is not a constant.
|
|
}
|
|
|
|
|
|
void ExprEngine::
|
|
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
|
|
QualType T = Ex->getTypeOfArgument();
|
|
|
|
if (Ex->getKind() == UETT_SizeOf) {
|
|
if (!T->isIncompleteType() && !T->isConstantSizeType()) {
|
|
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
|
|
|
|
// FIXME: Add support for VLA type arguments and VLA expressions.
|
|
// When that happens, we should probably refactor VLASizeChecker's code.
|
|
return;
|
|
}
|
|
else if (T->getAs<ObjCObjectType>()) {
|
|
// Some code tries to take the sizeof an ObjCObjectType, relying that
|
|
// the compiler has laid out its representation. Just report Unknown
|
|
// for these.
|
|
return;
|
|
}
|
|
}
|
|
|
|
APSInt Value = Ex->EvaluateKnownConstInt(getContext());
|
|
CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
state = state->BindExpr(Ex, Pred->getLocationContext(),
|
|
svalBuilder.makeIntVal(amt.getQuantity(),
|
|
Ex->getType()));
|
|
Bldr.generateNode(Ex, Pred, state);
|
|
}
|
|
|
|
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
switch (U->getOpcode()) {
|
|
default: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet Tmp;
|
|
VisitIncrementDecrementOperator(U, Pred, Tmp);
|
|
Bldr.addNodes(Tmp);
|
|
}
|
|
break;
|
|
case UO_Real: {
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
break;
|
|
}
|
|
|
|
// For all other types, UO_Real is an identity operation.
|
|
assert (U->getType() == Ex->getType());
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
|
|
state->getSVal(Ex, LCtx)));
|
|
break;
|
|
}
|
|
|
|
case UO_Imag: {
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
break;
|
|
}
|
|
// For all other types, UO_Imag returns 0.
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
SVal X = svalBuilder.makeZeroVal(Ex->getType());
|
|
Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
|
|
break;
|
|
}
|
|
|
|
case UO_Plus:
|
|
assert(!U->isGLValue());
|
|
// FALL-THROUGH.
|
|
case UO_Deref:
|
|
case UO_AddrOf:
|
|
case UO_Extension: {
|
|
// FIXME: We can probably just have some magic in Environment::getSVal()
|
|
// that propagates values, instead of creating a new node here.
|
|
//
|
|
// Unary "+" is a no-op, similar to a parentheses. We still have places
|
|
// where it may be a block-level expression, so we need to
|
|
// generate an extra node that just propagates the value of the
|
|
// subexpression.
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
|
|
state->getSVal(Ex, LCtx)));
|
|
break;
|
|
}
|
|
|
|
case UO_LNot:
|
|
case UO_Minus:
|
|
case UO_Not: {
|
|
assert (!U->isGLValue());
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
// Get the value of the subexpression.
|
|
SVal V = state->getSVal(Ex, LCtx);
|
|
|
|
if (V.isUnknownOrUndef()) {
|
|
Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
|
|
break;
|
|
}
|
|
|
|
switch (U->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid Opcode.");
|
|
case UO_Not:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
|
|
break;
|
|
case UO_Minus:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
|
|
break;
|
|
case UO_LNot:
|
|
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
|
|
//
|
|
// Note: technically we do "E == 0", but this is the same in the
|
|
// transfer functions as "0 == E".
|
|
SVal Result;
|
|
if (Optional<Loc> LV = V.getAs<Loc>()) {
|
|
Loc X = svalBuilder.makeNull();
|
|
Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
|
|
}
|
|
else if (Ex->getType()->isFloatingType()) {
|
|
// FIXME: handle floating point types.
|
|
Result = UnknownVal();
|
|
} else {
|
|
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
|
|
Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
|
|
U->getType());
|
|
}
|
|
|
|
state = state->BindExpr(U, LCtx, Result);
|
|
break;
|
|
}
|
|
Bldr.generateNode(U, Pred, state);
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// Handle ++ and -- (both pre- and post-increment).
|
|
assert (U->isIncrementDecrementOp());
|
|
const Expr *Ex = U->getSubExpr()->IgnoreParens();
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal loc = state->getSVal(Ex, LCtx);
|
|
|
|
// Perform a load.
|
|
ExplodedNodeSet Tmp;
|
|
evalLoad(Tmp, U, Ex, Pred, state, loc);
|
|
|
|
ExplodedNodeSet Dst2;
|
|
StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
|
|
|
|
state = (*I)->getState();
|
|
assert(LCtx == (*I)->getLocationContext());
|
|
SVal V2_untested = state->getSVal(Ex, LCtx);
|
|
|
|
// Propagate unknown and undefined values.
|
|
if (V2_untested.isUnknownOrUndef()) {
|
|
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
|
|
continue;
|
|
}
|
|
DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
|
|
|
|
// Handle all other values.
|
|
BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
|
|
|
|
// If the UnaryOperator has non-location type, use its type to create the
|
|
// constant value. If the UnaryOperator has location type, create the
|
|
// constant with int type and pointer width.
|
|
SVal RHS;
|
|
|
|
if (U->getType()->isAnyPointerType())
|
|
RHS = svalBuilder.makeArrayIndex(1);
|
|
else if (U->getType()->isIntegralOrEnumerationType())
|
|
RHS = svalBuilder.makeIntVal(1, U->getType());
|
|
else
|
|
RHS = UnknownVal();
|
|
|
|
SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
|
|
|
|
// Conjure a new symbol if necessary to recover precision.
|
|
if (Result.isUnknown()){
|
|
DefinedOrUnknownSVal SymVal =
|
|
svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
|
|
Result = SymVal;
|
|
|
|
// If the value is a location, ++/-- should always preserve
|
|
// non-nullness. Check if the original value was non-null, and if so
|
|
// propagate that constraint.
|
|
if (Loc::isLocType(U->getType())) {
|
|
DefinedOrUnknownSVal Constraint =
|
|
svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
|
|
|
|
if (!state->assume(Constraint, true)) {
|
|
// It isn't feasible for the original value to be null.
|
|
// Propagate this constraint.
|
|
Constraint = svalBuilder.evalEQ(state, SymVal,
|
|
svalBuilder.makeZeroVal(U->getType()));
|
|
|
|
|
|
state = state->assume(Constraint, false);
|
|
assert(state);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Since the lvalue-to-rvalue conversion is explicit in the AST,
|
|
// we bind an l-value if the operator is prefix and an lvalue (in C++).
|
|
if (U->isGLValue())
|
|
state = state->BindExpr(U, LCtx, loc);
|
|
else
|
|
state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
|
|
|
|
// Perform the store.
|
|
Bldr.takeNodes(*I);
|
|
ExplodedNodeSet Dst3;
|
|
evalStore(Dst3, U, U, *I, state, loc, Result);
|
|
Bldr.addNodes(Dst3);
|
|
}
|
|
Dst.insert(Dst2);
|
|
}
|