llvm-project/llvm/lib/Target/X86/X86InstrSSE.td

8071 lines
390 KiB
TableGen

//===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SSE 1 & 2 Instructions Classes
//===----------------------------------------------------------------------===//
/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class
multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
RegisterClass RC, X86MemOperand x86memop,
Domain d, X86FoldableSchedWrite sched,
bit Is2Addr = 1> {
let isCommutable = 1 in {
def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, RC:$src2))], d>,
Sched<[sched]>;
}
def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], d>,
Sched<[sched.Folded, ReadAfterLd]>;
}
/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class
multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNode, RegisterClass RC,
ValueType VT, string asm, Operand memopr,
ComplexPattern mem_cpat, Domain d,
X86FoldableSchedWrite sched, bit Is2Addr = 1> {
let isCodeGenOnly = 1, hasSideEffects = 0 in {
def rr_Int : SI_Int<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (VT (OpNode RC:$src1, RC:$src2)))], d>,
Sched<[sched]>;
let mayLoad = 1 in
def rm_Int : SI_Int<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (VT (OpNode RC:$src1, mem_cpat:$src2)))], d>,
Sched<[sched.Folded, ReadAfterLd]>;
}
}
/// sse12_fp_packed - SSE 1 & 2 packed instructions class
multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
RegisterClass RC, ValueType vt,
X86MemOperand x86memop, PatFrag mem_frag,
Domain d, X86FoldableSchedWrite sched,
bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], d>,
Sched<[sched]>;
let mayLoad = 1 in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
d>,
Sched<[sched.Folded, ReadAfterLd]>;
}
/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class
multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d,
string OpcodeStr, X86MemOperand x86memop,
X86FoldableSchedWrite sched,
list<dag> pat_rr, list<dag> pat_rm,
bit Is2Addr = 1> {
let isCommutable = 1, hasSideEffects = 0 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
pat_rr, d>,
Sched<[sched]>;
let hasSideEffects = 0, mayLoad = 1 in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
pat_rm, d>,
Sched<[sched.Folded, ReadAfterLd]>;
}
// Alias instructions that map fld0 to xorps for sse or vxorps for avx.
// This is expanded by ExpandPostRAPseudos.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero] in {
def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "",
[(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1, NoAVX512]>;
def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "",
[(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2, NoAVX512]>;
}
//===----------------------------------------------------------------------===//
// AVX & SSE - Zero/One Vectors
//===----------------------------------------------------------------------===//
// Alias instruction that maps zero vector to pxor / xorp* for sse.
// This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then
// swizzled by ExecutionDomainFix to pxor.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-zeros value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero] in {
def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4f32 immAllZerosV))]>;
}
let Predicates = [NoAVX512] in
def : Pat<(v4i32 immAllZerosV), (V_SET0)>;
// The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI,
// and doesn't need it because on sandy bridge the register is set to zero
// at the rename stage without using any execution unit, so SET0PSY
// and SET0PDY can be used for vector int instructions without penalty
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, Predicates = [NoAVX512], SchedRW = [WriteZero] in {
def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v8i32 immAllZerosV))]>;
}
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-ones value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero] in {
def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4i32 immAllOnesV))]>;
let Predicates = [HasAVX1Only, OptForMinSize] in {
def AVX1_SETALLONES: I<0, Pseudo, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v8i32 immAllOnesV))]>;
}
let Predicates = [HasAVX2] in
def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v8i32 immAllOnesV))]>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move FP Scalar Instructions
//
// Move Instructions. Register-to-register movss/movsd is not used for FR32/64
// register copies because it's a partial register update; Register-to-register
// movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires
// that the insert be implementable in terms of a copy, and just mentioned, we
// don't use movss/movsd for copies.
//===----------------------------------------------------------------------===//
multiclass sse12_move_rr<SDNode OpNode, ValueType vt,
X86MemOperand x86memop, string base_opc,
string asm_opr, Domain d, string Name> {
let isCommutable = 1 in
def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(base_opc, asm_opr),
[(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))], d>,
Sched<[SchedWriteFShuffle.XMM]>;
// For the disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(base_opc, asm_opr), []>,
Sched<[SchedWriteFShuffle.XMM]>, FoldGenData<Name#rr>;
}
multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt,
X86MemOperand x86memop, string OpcodeStr,
Domain d, string Name> {
// AVX
defm V#NAME : sse12_move_rr<OpNode, vt, x86memop, OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}", d,
"V"#Name>,
VEX_4V, VEX_LIG, VEX_WIG;
def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(store RC:$src, addr:$dst)], d>,
VEX, VEX_LIG, Sched<[WriteStore]>, VEX_WIG;
// SSE1 & 2
let Constraints = "$src1 = $dst" in {
defm NAME : sse12_move_rr<OpNode, vt, x86memop, OpcodeStr,
"\t{$src2, $dst|$dst, $src2}", d, Name>;
}
def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(store RC:$src, addr:$dst)], d>,
Sched<[WriteStore]>;
}
// Loading from memory automatically zeroing upper bits.
multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_pat, string OpcodeStr, Domain d> {
def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (mem_pat addr:$src))], d>,
VEX, VEX_LIG, Sched<[WriteLoad]>, VEX_WIG;
def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (mem_pat addr:$src))], d>,
Sched<[WriteLoad]>;
}
defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss",
SSEPackedSingle, "MOVSS">, XS;
defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd",
SSEPackedDouble, "MOVSD">, XD;
let canFoldAsLoad = 1, isReMaterializable = 1 in {
defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss",
SSEPackedSingle>, XS;
let AddedComplexity = 20 in
defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd",
SSEPackedDouble>, XD;
}
// Patterns
let Predicates = [UseAVX] in {
let AddedComplexity = 20 in {
// MOVSSrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
// MOVSDrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
// Represent the same patterns above but in the form they appear for
// 256-bit types
def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
(v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
def : Pat<(v8f32 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
(v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
def : Pat<(v4f64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
}
// Extract and store.
def : Pat<(store (f32 (extractelt (v4f32 VR128:$src), (iPTR 0))),
addr:$dst),
(VMOVSSmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32))>;
// Shuffle with VMOVSS
def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
(VMOVSSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86Movss VR128:$src1, (scalar_to_vector FR32:$src2))),
(VMOVSSrr VR128:$src1, (COPY_TO_REGCLASS FR32:$src2, VR128))>;
// Shuffle with VMOVSD
def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2f64 (X86Movsd VR128:$src1, (scalar_to_vector FR64:$src2))),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS FR64:$src2, VR128))>;
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, VR128:$src2)>;
}
let Predicates = [UseSSE1] in {
let Predicates = [NoSSE41], AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVSS to the lower bits.
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(MOVSSrr (v4f32 (V_SET0)), VR128:$src)>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(MOVSSrr (v4i32 (V_SET0)), VR128:$src)>;
}
let AddedComplexity = 20 in {
// MOVSSrm already zeros the high parts of the register.
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
}
// Extract and store.
def : Pat<(store (f32 (extractelt (v4f32 VR128:$src), (iPTR 0))),
addr:$dst),
(MOVSSmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR32))>;
// Shuffle with MOVSS
def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
(MOVSSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86Movss VR128:$src1, (scalar_to_vector FR32:$src2))),
(MOVSSrr VR128:$src1, (COPY_TO_REGCLASS FR32:$src2, VR128))>;
}
let Predicates = [UseSSE2] in {
let Predicates = [NoSSE41], AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVSD to the lower bits.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(MOVSDrr (v2f64 (V_SET0)), (COPY_TO_REGCLASS FR64:$src, VR128))>;
}
let AddedComplexity = 20 in {
// MOVSDrm already zeros the high parts of the register.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
}
// Shuffle with MOVSD
def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2f64 (X86Movsd VR128:$src1, (scalar_to_vector FR64:$src2))),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS FR64:$src2, VR128))>;
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the fold because
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, VR128:$src2)>;
}
// Aliases to help the assembler pick two byte VEX encodings by swapping the
// operands relative to the normal instructions to use VEX.R instead of VEX.B.
def : InstAlias<"vmovss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
(VMOVSSrr_REV VR128L:$dst, VR128:$src1, VR128H:$src2), 0>;
def : InstAlias<"vmovsd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
(VMOVSDrr_REV VR128L:$dst, VR128:$src1, VR128H:$src2), 0>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Aligned/Unaligned FP Instructions
//===----------------------------------------------------------------------===//
multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
X86MemOperand x86memop, PatFrag ld_frag,
string asm, Domain d> {
let hasSideEffects = 0 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>,
Sched<[WriteFMove]>;
let canFoldAsLoad = 1, isReMaterializable = 1 in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (ld_frag addr:$src))], d>,
Sched<[WriteFLoad]>;
}
let Predicates = [HasAVX, NoVLX] in {
defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle>,
PS, VEX, VEX_WIG;
defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
"movapd", SSEPackedDouble>,
PD, VEX, VEX_WIG;
defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle>,
PS, VEX, VEX_WIG;
defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble>,
PD, VEX, VEX_WIG;
defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32,
"movaps", SSEPackedSingle>,
PS, VEX, VEX_L, VEX_WIG;
defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64,
"movapd", SSEPackedDouble>,
PD, VEX, VEX_L, VEX_WIG;
defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32,
"movups", SSEPackedSingle>,
PS, VEX, VEX_L, VEX_WIG;
defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64,
"movupd", SSEPackedDouble>,
PD, VEX, VEX_L, VEX_WIG;
}
let Predicates = [UseSSE1] in {
defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle>,
PS;
defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle>,
PS;
}
let Predicates = [UseSSE2] in {
defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
"movapd", SSEPackedDouble>,
PD;
defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble>,
PD;
}
let SchedRW = [WriteFStore], Predicates = [HasAVX, NoVLX] in {
def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)]>,
VEX, VEX_WIG;
def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)]>,
VEX, VEX_WIG;
def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)]>,
VEX, VEX_WIG;
def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)]>,
VEX, VEX_WIG;
def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v8f32 VR256:$src), addr:$dst)]>,
VEX, VEX_L, VEX_WIG;
def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f64 VR256:$src), addr:$dst)]>,
VEX, VEX_L, VEX_WIG;
def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v8f32 VR256:$src), addr:$dst)]>,
VEX, VEX_L, VEX_WIG;
def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v4f64 VR256:$src), addr:$dst)]>,
VEX, VEX_L, VEX_WIG;
} // SchedRW
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteFMove] in {
def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG, FoldGenData<"VMOVAPSrr">;
def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movapd\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG, FoldGenData<"VMOVAPDrr">;
def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movups\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG, FoldGenData<"VMOVUPSrr">;
def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movupd\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG, FoldGenData<"VMOVUPDrr">;
def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movaps\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPSYrr">;
def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movapd\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPDYrr">;
def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movups\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPSYrr">;
def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movupd\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPDYrr">;
}
// Aliases to help the assembler pick two byte VEX encodings by swapping the
// operands relative to the normal instructions to use VEX.R instead of VEX.B.
def : InstAlias<"vmovaps\t{$src, $dst|$dst, $src}",
(VMOVAPSrr_REV VR128L:$dst, VR128H:$src), 0>;
def : InstAlias<"vmovapd\t{$src, $dst|$dst, $src}",
(VMOVAPDrr_REV VR128L:$dst, VR128H:$src), 0>;
def : InstAlias<"vmovups\t{$src, $dst|$dst, $src}",
(VMOVUPSrr_REV VR128L:$dst, VR128H:$src), 0>;
def : InstAlias<"vmovupd\t{$src, $dst|$dst, $src}",
(VMOVUPDrr_REV VR128L:$dst, VR128H:$src), 0>;
def : InstAlias<"vmovaps\t{$src, $dst|$dst, $src}",
(VMOVAPSYrr_REV VR256L:$dst, VR256H:$src), 0>;
def : InstAlias<"vmovapd\t{$src, $dst|$dst, $src}",
(VMOVAPDYrr_REV VR256L:$dst, VR256H:$src), 0>;
def : InstAlias<"vmovups\t{$src, $dst|$dst, $src}",
(VMOVUPSYrr_REV VR256L:$dst, VR256H:$src), 0>;
def : InstAlias<"vmovupd\t{$src, $dst|$dst, $src}",
(VMOVUPDYrr_REV VR256L:$dst, VR256H:$src), 0>;
let SchedRW = [WriteFStore] in {
def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)]>;
def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)]>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)]>;
def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)]>;
} // SchedRW
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteFMove] in {
def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOVAPSrr">;
def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movapd\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOVAPDrr">;
def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movups\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOVUPSrr">;
def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movupd\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOVUPDrr">;
}
let Predicates = [HasAVX, NoVLX] in {
// 256-bit load/store need to use floating point load/store in case we don't
// have AVX2. Execution domain fixing will convert to integer if AVX2 is
// available and changing the domain is beneficial.
def : Pat<(alignedloadv4i64 addr:$src),
(VMOVAPSYrm addr:$src)>;
def : Pat<(loadv4i64 addr:$src),
(VMOVUPSYrm addr:$src)>;
def : Pat<(alignedstore (v4i64 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(alignedstore (v8i32 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(alignedstore (v16i16 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(alignedstore (v32i8 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v4i64 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v8i32 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v16i16 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v32i8 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
}
// Use movaps / movups for SSE integer load / store (one byte shorter).
// The instructions selected below are then converted to MOVDQA/MOVDQU
// during the SSE domain pass.
let Predicates = [UseSSE1] in {
def : Pat<(alignedloadv2i64 addr:$src),
(MOVAPSrm addr:$src)>;
def : Pat<(loadv2i64 addr:$src),
(MOVUPSrm addr:$src)>;
def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Low packed FP Instructions
//===----------------------------------------------------------------------===//
multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode psnode, SDNode pdnode,
string base_opc, string asm_opr> {
def PSrm : PI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
!strconcat(base_opc, "s", asm_opr),
[(set VR128:$dst,
(psnode VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))],
SSEPackedSingle>, PS,
Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>;
def PDrm : PI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
!strconcat(base_opc, "d", asm_opr),
[(set VR128:$dst, (v2f64 (pdnode VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))],
SSEPackedDouble>, PD,
Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>;
}
multiclass sse12_mov_hilo_packed<bits<8>opc, SDNode psnode, SDNode pdnode,
string base_opc> {
let Predicates = [UseAVX] in
defm V#NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}">,
VEX_4V, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
"\t{$src2, $dst|$dst, $src2}">;
}
let AddedComplexity = 20 in {
defm MOVL : sse12_mov_hilo_packed<0x12, X86Movlps, X86Movlpd, "movlp">;
}
let SchedRW = [WriteStore] in {
let Predicates = [UseAVX] in {
def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)]>,
VEX, VEX_WIG;
def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>,
VEX, VEX_WIG;
}// UseAVX
def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)]>;
def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
} // SchedRW
let Predicates = [UseAVX] in {
// Shuffle with VMOVLPS
def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
(VMOVLPSrm VR128:$src1, addr:$src2)>;
// Shuffle with VMOVLPD
def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(VMOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2f64 (X86Movsd VR128:$src1,
(v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
(VMOVLPDrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
addr:$src1),
(VMOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
addr:$src1),
(VMOVLPDmr addr:$src1, VR128:$src2)>;
}
let Predicates = [UseSSE1] in {
// (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
def : Pat<(store (i64 (extractelt (bc_v2i64 (v4f32 VR128:$src2)),
(iPTR 0))), addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
// Shuffle with MOVLPS
def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlps VR128:$src1,
(bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
}
let Predicates = [UseSSE2] in {
// Shuffle with MOVLPD
def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2f64 (X86Movsd VR128:$src1,
(v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Hi packed FP Instructions
//===----------------------------------------------------------------------===//
let AddedComplexity = 20 in {
defm MOVH : sse12_mov_hilo_packed<0x16, X86Movlhps, X86Unpckl, "movhp">;
}
let SchedRW = [WriteStore] in {
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
let Predicates = [UseAVX] in {
def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt
(X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
(bc_v2f64 (v4f32 VR128:$src))),
(iPTR 0))), addr:$dst)]>, VEX, VEX_WIG;
def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt
(v2f64 (X86Unpckh VR128:$src, VR128:$src)),
(iPTR 0))), addr:$dst)]>, VEX, VEX_WIG;
} // UseAVX
def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt
(X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
(bc_v2f64 (v4f32 VR128:$src))),
(iPTR 0))), addr:$dst)]>;
def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt
(v2f64 (X86Unpckh VR128:$src, VR128:$src)),
(iPTR 0))), addr:$dst)]>;
} // SchedRW
let Predicates = [UseAVX] in {
// VMOVHPS patterns
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (X86vzload addr:$src2)))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
// Also handle an i64 load because that may get selected as a faster way to
// load the data.
def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
(VMOVHPDrm VR128:$src1, addr:$src2)>;
def : Pat<(store (f64 (extractelt
(bc_v2f64 (v4f32 (X86Movhlps VR128:$src, VR128:$src))),
(iPTR 0))), addr:$dst),
(VMOVHPDmr addr:$dst, VR128:$src)>;
def : Pat<(store (f64 (extractelt
(v2f64 (X86VPermilpi VR128:$src, (i8 1))),
(iPTR 0))), addr:$dst),
(VMOVHPDmr addr:$dst, VR128:$src)>;
}
let Predicates = [UseSSE1] in {
// MOVHPS patterns
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (X86vzload addr:$src2)))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
}
let Predicates = [UseSSE2] in {
// MOVHPD patterns
// Also handle an i64 load because that may get selected as a faster way to
// load the data.
def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
(MOVHPDrm VR128:$src1, addr:$src2)>;
def : Pat<(store (f64 (extractelt
(bc_v2f64 (v4f32 (X86Movhlps VR128:$src, VR128:$src))),
(iPTR 0))), addr:$dst),
(MOVHPDmr addr:$dst, VR128:$src)>;
def : Pat<(store (f64 (extractelt
(v2f64 (X86Shufp VR128:$src, VR128:$src, (i8 1))),
(iPTR 0))), addr:$dst),
(MOVHPDmr addr:$dst, VR128:$src)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions
//===----------------------------------------------------------------------===//
let AddedComplexity = 20, Predicates = [UseAVX] in {
def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>,
VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG;
def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>,
VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG;
}
let Constraints = "$src1 = $dst", AddedComplexity = 20 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>,
Sched<[SchedWriteFShuffle.XMM]>;
let isCommutable = 1 in
def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>,
Sched<[SchedWriteFShuffle.XMM]>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Conversion Instructions
//===----------------------------------------------------------------------===//
// FIXME: We probably want to match the rm form only when optimizing for
// size, to avoid false depenendecies (see sse_fp_unop_s for details)
multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
string asm, X86FoldableSchedWrite sched> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[(set DstRC:$dst, (OpNode SrcRC:$src))]>,
Sched<[sched]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
[(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>,
Sched<[sched.Folded]>;
}
multiclass sse12_cvt_p<bits<8> opc, RegisterClass RC, X86MemOperand x86memop,
ValueType DstTy, ValueType SrcTy, PatFrag ld_frag,
string asm, Domain d, X86FoldableSchedWrite sched> {
let hasSideEffects = 0 in {
def rr : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src), asm,
[(set RC:$dst, (DstTy (sint_to_fp (SrcTy RC:$src))))], d>,
Sched<[sched]>;
let mayLoad = 1 in
def rm : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), asm,
[(set RC:$dst, (DstTy (sint_to_fp
(SrcTy (bitconvert (ld_frag addr:$src))))))], d>,
Sched<[sched.Folded]>;
}
}
// FIXME: We probably want to match the rm form only when optimizing for
// size, to avoid false depenendecies (see sse_fp_unop_s for details)
multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm,
X86FoldableSchedWrite sched> {
let hasSideEffects = 0, Predicates = [UseAVX] in {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
Sched<[sched]>;
let mayLoad = 1 in
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
Sched<[sched.Folded, ReadAfterLd]>;
} // hasSideEffects = 0
}
let Predicates = [UseAVX] in {
defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>,
XS, VEX, VEX_LIG;
defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>,
XS, VEX, VEX_W, VEX_LIG;
defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>,
XD, VEX, VEX_LIG;
defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>,
XD, VEX, VEX_W, VEX_LIG;
def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SIrr GR32:$dst, FR32:$src), 0, "att">;
def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0, "att">;
def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SIrr GR32:$dst, FR64:$src), 0, "att">;
def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0, "att">;
def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0, "att">;
def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0, "att">;
def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0, "att">;
def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0, "att">;
}
// The assembler can recognize rr 64-bit instructions by seeing a rxx
// register, but the same isn't true when only using memory operands,
// provide other assembly "l" and "q" forms to address this explicitly
// where appropriate to do so.
defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}",
WriteCvtI2F>, XS, VEX_4V, VEX_LIG;
defm VCVTSI642SS : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}",
WriteCvtI2F>, XS, VEX_4V, VEX_W, VEX_LIG;
defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}",
WriteCvtI2F>, XD, VEX_4V, VEX_LIG;
defm VCVTSI642SD : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}",
WriteCvtI2F>, XD, VEX_4V, VEX_W, VEX_LIG;
let Predicates = [UseAVX] in {
def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src), 0, "att">;
def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src), 0, "att">;
def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
(VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
(VCVTSI642SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
(VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
(VCVTSI642SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (sint_to_fp GR32:$src)),
(VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f32 (sint_to_fp GR64:$src)),
(VCVTSI642SSrr (f32 (IMPLICIT_DEF)), GR64:$src)>;
def : Pat<(f64 (sint_to_fp GR32:$src)),
(VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f64 (sint_to_fp GR64:$src)),
(VCVTSI642SDrr (f64 (IMPLICIT_DEF)), GR64:$src)>;
}
defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>, XS;
defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>, XS, REX_W;
defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>, XD;
defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
WriteCvtF2I>, XD, REX_W;
defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32,
"cvtsi2ss{l}\t{$src, $dst|$dst, $src}",
WriteCvtI2F>, XS;
defm CVTSI642SS : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64,
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
WriteCvtI2F>, XS, REX_W;
defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32,
"cvtsi2sd{l}\t{$src, $dst|$dst, $src}",
WriteCvtI2F>, XD;
defm CVTSI642SD : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64,
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
WriteCvtI2F>, XD, REX_W;
def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSS2SIrr GR32:$dst, FR32:$src), 0, "att">;
def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSS2SIrm GR32:$dst, f32mem:$src), 0, "att">;
def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSD2SIrr GR32:$dst, FR64:$src), 0, "att">;
def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSD2SIrm GR32:$dst, f64mem:$src), 0, "att">;
def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSS2SI64rr GR64:$dst, FR32:$src), 0, "att">;
def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0, "att">;
def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSD2SI64rr GR64:$dst, FR64:$src), 0, "att">;
def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0, "att">;
def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}",
(CVTSI2SSrm FR64:$dst, i32mem:$src), 0, "att">;
def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
(CVTSI2SDrm FR64:$dst, i32mem:$src), 0, "att">;
// Conversion Instructions Intrinsics - Match intrinsics which expect MM
// and/or XMM operand(s).
// FIXME: We probably want to match the rm form only when optimizing for
// size, to avoid false depenendecies (see sse_fp_unop_s for details)
multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
string asm, X86FoldableSchedWrite sched> {
def rr_Int : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int SrcRC:$src))]>,
Sched<[sched]>;
def rm_Int : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int mem_cpat:$src))]>,
Sched<[sched.Folded]>;
}
multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC,
RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop,
PatFrag ld_frag, string asm, X86FoldableSchedWrite sched,
bit Is2Addr = 1> {
def rr_Int : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))]>,
Sched<[sched]>;
def rm_Int : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [UseAVX] in {
defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32,
int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si",
WriteCvtF2I>, XD, VEX, VEX_LIG;
defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si",
WriteCvtF2I>, XD, VEX, VEX_W, VEX_LIG;
}
defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
sdmem, sse_load_f64, "cvtsd2si", WriteCvtF2I>, XD;
defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64,
sdmem, sse_load_f64, "cvtsd2si", WriteCvtF2I>, XD, REX_W;
let isCodeGenOnly = 1 in {
let Predicates = [UseAVX] in {
defm VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss{l}",
WriteCvtI2F, 0>, XS, VEX_4V;
defm VCVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}",
WriteCvtI2F, 0>, XS, VEX_4V,
VEX_W;
defm VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd{l}",
WriteCvtI2F, 0>, XD, VEX_4V;
defm VCVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}",
WriteCvtI2F, 0>, XD,
VEX_4V, VEX_W;
}
let Constraints = "$src1 = $dst" in {
defm CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse_cvtsi2ss, i32mem, loadi32,
"cvtsi2ss{l}", WriteCvtI2F>, XS;
defm CVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse_cvtsi642ss, i64mem, loadi64,
"cvtsi2ss{q}", WriteCvtI2F>, XS, REX_W;
defm CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse2_cvtsi2sd, i32mem, loadi32,
"cvtsi2sd{l}", WriteCvtI2F>, XD;
defm CVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse2_cvtsi642sd, i64mem, loadi64,
"cvtsi2sd{q}", WriteCvtI2F>, XD, REX_W;
}
} // isCodeGenOnly = 1
/// SSE 1 Only
// Aliases for intrinsics
let isCodeGenOnly = 1 in {
let Predicates = [UseAVX] in {
defm VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
ssmem, sse_load_f32, "cvttss2si",
WriteCvtF2I>, XS, VEX;
defm VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
"cvttss2si", WriteCvtF2I>,
XS, VEX, VEX_W;
defm VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
sdmem, sse_load_f64, "cvttsd2si",
WriteCvtF2I>, XD, VEX;
defm VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
"cvttsd2si", WriteCvtF2I>,
XD, VEX, VEX_W;
}
defm CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
ssmem, sse_load_f32, "cvttss2si",
WriteCvtF2I>, XS;
defm CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
"cvttss2si", WriteCvtF2I>, XS, REX_W;
defm CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
sdmem, sse_load_f64, "cvttsd2si",
WriteCvtF2I>, XD;
defm CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
"cvttsd2si", WriteCvtF2I>, XD, REX_W;
} // isCodeGenOnly = 1
let Predicates = [UseAVX] in {
defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
ssmem, sse_load_f32, "cvtss2si",
WriteCvtF2I>, XS, VEX, VEX_LIG;
defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
ssmem, sse_load_f32, "cvtss2si",
WriteCvtF2I>, XS, VEX, VEX_W, VEX_LIG;
}
defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
ssmem, sse_load_f32, "cvtss2si",
WriteCvtF2I>, XS;
defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
ssmem, sse_load_f32, "cvtss2si",
WriteCvtF2I>, XS, REX_W;
defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, loadv2i64,
"vcvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle, WriteCvtI2F>,
PS, VEX, Requires<[HasAVX, NoVLX]>, VEX_WIG;
defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, i256mem, v8f32, v8i32, loadv4i64,
"vcvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle, WriteCvtI2F>,
PS, VEX, VEX_L, Requires<[HasAVX, NoVLX]>, VEX_WIG;
defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, memopv2i64,
"cvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle, WriteCvtI2F>,
PS, Requires<[UseSSE2]>;
let Predicates = [UseAVX] in {
def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">;
def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">;
def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">;
def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">;
}
def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
(CVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
(CVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">;
def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">;
def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
(CVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
(CVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">;
def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">;
/// SSE 2 Only
// Convert scalar double to scalar single
let hasSideEffects = 0, Predicates = [UseAVX] in {
def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR64:$src2),
"cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
VEX_4V, VEX_LIG,
Sched<[WriteCvtF2F]>, VEX_WIG, NotMemoryFoldable;
let mayLoad = 1 in
def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f64mem:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
XD, VEX_4V, VEX_LIG,
Sched<[WriteCvtF2FLd, ReadAfterLd]>, VEX_WIG, NotMemoryFoldable;
}
def : Pat<(f32 (fpround FR64:$src)),
(VCVTSD2SSrr (f32 (IMPLICIT_DEF)), FR64:$src)>,
Requires<[UseAVX]>;
def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fpround FR64:$src))]>,
Sched<[WriteCvtF2F]>;
def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fpround (loadf64 addr:$src)))]>,
XD,
Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
let isCodeGenOnly = 1 in {
def VCVTSD2SSrr_Int: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>,
XD, VEX_4V, VEX_WIG,
Requires<[HasAVX]>, Sched<[WriteCvtF2F]>;
def VCVTSD2SSrm_Int: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss
VR128:$src1, sse_load_f64:$src2))]>,
XD, VEX_4V, VEX_WIG,
Requires<[HasAVX]>, Sched<[WriteCvtF2FLd, ReadAfterLd]>;
let Constraints = "$src1 = $dst" in {
def CVTSD2SSrr_Int: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>,
XD, Requires<[UseSSE2]>, Sched<[WriteCvtF2F]>;
def CVTSD2SSrm_Int: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss
VR128:$src1, sse_load_f64:$src2))]>,
XD, Requires<[UseSSE2]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
}
} // isCodeGenOnly = 1
// Convert scalar single to scalar double
// SSE2 instructions with XS prefix
let hasSideEffects = 0, Predicates = [UseAVX] in {
def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
(ins FR64:$src1, FR32:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
XS, VEX_4V, VEX_LIG,
Sched<[WriteCvtF2F]>, VEX_WIG, NotMemoryFoldable;
let mayLoad = 1 in
def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f32mem:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
XS, VEX_4V, VEX_LIG,
Sched<[WriteCvtF2FLd, ReadAfterLd]>, VEX_WIG, NotMemoryFoldable;
}
def : Pat<(f64 (fpextend FR32:$src)),
(VCVTSS2SDrr (f64 (IMPLICIT_DEF)), FR32:$src)>, Requires<[UseAVX]>;
def : Pat<(fpextend (loadf32 addr:$src)),
(VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX]>;
def : Pat<(extloadf32 addr:$src),
(VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>,
Requires<[UseAVX, OptForSize]>;
def : Pat<(extloadf32 addr:$src),
(VCVTSS2SDrr (f64 (IMPLICIT_DEF)), (VMOVSSrm addr:$src))>,
Requires<[UseAVX, OptForSpeed]>;
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (fpextend FR32:$src))]>,
XS, Requires<[UseSSE2]>, Sched<[WriteCvtF2F]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (extloadf32 addr:$src))]>,
XS, Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
// extload f32 -> f64. This matches load+fpextend because we have a hack in
// the isel (PreprocessForFPConvert) that can introduce loads after dag
// combine.
// Since these loads aren't folded into the fpextend, we have to match it
// explicitly here.
def : Pat<(fpextend (loadf32 addr:$src)),
(CVTSS2SDrm addr:$src)>, Requires<[UseSSE2]>;
def : Pat<(extloadf32 addr:$src),
(CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[UseSSE2, OptForSpeed]>;
let isCodeGenOnly = 1 in {
def VCVTSS2SDrr_Int: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))]>,
XS, VEX_4V, VEX_WIG,
Requires<[HasAVX]>, Sched<[WriteCvtF2F]>;
def VCVTSS2SDrm_Int: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))]>,
XS, VEX_4V, VEX_WIG,
Requires<[HasAVX]>, Sched<[WriteCvtF2FLd, ReadAfterLd]>;
let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix
def CVTSS2SDrr_Int: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))]>,
XS, Requires<[UseSSE2]>,
Sched<[WriteCvtF2F]>;
def CVTSS2SDrm_Int: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))]>,
XS, Requires<[UseSSE2]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
}
} // isCodeGenOnly = 1
// Patterns used for matching (v)cvtsi2ss, (v)cvtsi2sd, (v)cvtsd2ss and
// (v)cvtss2sd intrinsic sequences from clang which produce unnecessary
// vmovs{s,d} instructions
let Predicates = [UseAVX] in {
def : Pat<(v4f32 (X86Movss
(v4f32 VR128:$dst),
(v4f32 (scalar_to_vector
(f32 (fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))),
(VCVTSD2SSrr_Int VR128:$dst, VR128:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128:$dst),
(v2f64 (scalar_to_vector
(f64 (fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))),
(VCVTSS2SDrr_Int VR128:$dst, VR128:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))),
(VCVTSI642SSrr_Int VR128:$dst, GR64:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))),
(VCVTSI2SSrr_Int VR128:$dst, GR32:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))),
(VCVTSI642SDrr_Int VR128:$dst, GR64:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))),
(VCVTSI2SDrr_Int VR128:$dst, GR32:$src)>;
} // Predicates = [UseAVX]
let Predicates = [UseSSE2] in {
def : Pat<(v4f32 (X86Movss
(v4f32 VR128:$dst),
(v4f32 (scalar_to_vector
(f32 (fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))),
(CVTSD2SSrr_Int VR128:$dst, VR128:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128:$dst),
(v2f64 (scalar_to_vector
(f64 (fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))),
(CVTSS2SDrr_Int VR128:$dst, VR128:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))),
(CVTSI642SDrr_Int VR128:$dst, GR64:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))),
(CVTSI2SDrr_Int VR128:$dst, GR32:$src)>;
} // Predicates = [UseSSE2]
let Predicates = [UseSSE1] in {
def : Pat<(v4f32 (X86Movss
(v4f32 VR128:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))),
(CVTSI642SSrr_Int VR128:$dst, GR64:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))),
(CVTSI2SSrr_Int VR128:$dst, GR32:$src)>;
} // Predicates = [UseSSE1]
let Predicates = [HasAVX, NoVLX] in {
// Convert packed single/double fp to doubleword
def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>,
VEX, Sched<[WriteCvtF2I]>, VEX_WIG;
def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (loadv4f32 addr:$src))))]>,
VEX, Sched<[WriteCvtF2ILd]>, VEX_WIG;
def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(v8i32 (X86cvtp2Int (v8f32 VR256:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2I]>, VEX_WIG;
def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(v8i32 (X86cvtp2Int (loadv8f32 addr:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2ILd]>, VEX_WIG;
}
def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>,
Sched<[WriteCvtF2I]>;
def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (memopv4f32 addr:$src))))]>,
Sched<[WriteCvtF2ILd]>;
// Convert Packed Double FP to Packed DW Integers
let Predicates = [HasAVX, NoVLX] in {
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>,
VEX, Sched<[WriteCvtF2I]>, VEX_WIG;
// XMM only
def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
(VCVTPD2DQrr VR128:$dst, VR128:$src), 0>;
def VCVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"vcvtpd2dq{x}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (loadv2f64 addr:$src))))]>, VEX,
Sched<[WriteCvtF2ILd]>, VEX_WIG;
def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
(VCVTPD2DQrm VR128:$dst, f128mem:$src), 0, "intel">;
// YMM only
def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (v4f64 VR256:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2I]>, VEX_WIG;
def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (loadv4f64 addr:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2ILd]>, VEX_WIG;
def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}",
(VCVTPD2DQYrr VR128:$dst, VR256:$src), 0>;
def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}",
(VCVTPD2DQYrm VR128:$dst, f256mem:$src), 0, "intel">;
}
def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (memopv2f64 addr:$src))))]>,
Sched<[WriteCvtF2ILd]>;
def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>,
Sched<[WriteCvtF2I]>;
// Convert with truncation packed single/double fp to doubleword
// SSE2 packed instructions with XS prefix
let Predicates = [HasAVX, NoVLX] in {
def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (fp_to_sint (v4f32 VR128:$src))))]>,
VEX, Sched<[WriteCvtF2I]>, VEX_WIG;
def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (fp_to_sint (loadv4f32 addr:$src))))]>,
VEX, Sched<[WriteCvtF2ILd]>, VEX_WIG;
def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(v8i32 (fp_to_sint (v8f32 VR256:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2I]>, VEX_WIG;
def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(v8i32 (fp_to_sint (loadv8f32 addr:$src))))]>,
VEX, VEX_L,
Sched<[WriteCvtF2ILd]>, VEX_WIG;
}
def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (fp_to_sint (v4f32 VR128:$src))))]>,
Sched<[WriteCvtF2I]>;
def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (fp_to_sint (memopv4f32 addr:$src))))]>,
Sched<[WriteCvtF2ILd]>;
let Predicates = [HasAVX, NoVLX] in
def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvttp2si (v2f64 VR128:$src))))]>,
VEX, Sched<[WriteCvtF2I]>, VEX_WIG;
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
// XMM only
def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
(VCVTTPD2DQrr VR128:$dst, VR128:$src), 0>;
let Predicates = [HasAVX, NoVLX] in
def VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttpd2dq{x}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvttp2si (loadv2f64 addr:$src))))]>,
VEX, Sched<[WriteCvtF2ILd]>, VEX_WIG;
def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
(VCVTTPD2DQrm VR128:$dst, f128mem:$src), 0, "intel">;
// YMM only
let Predicates = [HasAVX, NoVLX] in {
def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (fp_to_sint (v4f64 VR256:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2I]>, VEX_WIG;
def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (fp_to_sint (loadv4f64 addr:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtF2ILd]>, VEX_WIG;
}
def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}",
(VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0>;
def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}",
(VCVTTPD2DQYrm VR128:$dst, f256mem:$src), 0, "intel">;
let Predicates = [HasAVX, NoVLX] in {
let AddedComplexity = 15 in {
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2Int (v2f64 VR128:$src)))))),
(VCVTPD2DQrr VR128:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2Int (loadv2f64 addr:$src)))))),
(VCVTPD2DQrm addr:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2si (v2f64 VR128:$src)))))),
(VCVTTPD2DQrr VR128:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2si (loadv2f64 addr:$src)))))),
(VCVTTPD2DQrm addr:$src)>;
}
} // Predicates = [HasAVX, NoVLX]
def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvttp2si (v2f64 VR128:$src))))]>,
Sched<[WriteCvtF2I]>;
def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86cvttp2si (memopv2f64 addr:$src))))]>,
Sched<[WriteCvtF2ILd]>;
let Predicates = [UseSSE2] in {
let AddedComplexity = 15 in {
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2Int (v2f64 VR128:$src)))))),
(CVTPD2DQrr VR128:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2Int (memopv2f64 addr:$src)))))),
(CVTPD2DQrm addr:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2si (v2f64 VR128:$src)))))),
(CVTTPD2DQrr VR128:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2si (memopv2f64 addr:$src)))))),
(CVTTPD2DQrm addr:$src)>;
}
} // Predicates = [UseSSE2]
// Convert packed single to packed double
let Predicates = [HasAVX, NoVLX] in {
// SSE2 instructions without OpSize prefix
def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (X86vfpext (v4f32 VR128:$src))))]>,
PS, VEX, Sched<[WriteCvtF2F]>, VEX_WIG;
def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>,
PS, VEX, Sched<[WriteCvtF2FLd]>, VEX_WIG;
def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (v4f64 (fpextend (v4f32 VR128:$src))))]>,
PS, VEX, VEX_L, Sched<[WriteCvtF2F]>, VEX_WIG;
def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (v4f64 (extloadv4f32 addr:$src)))]>,
PS, VEX, VEX_L, Sched<[WriteCvtF2FLd]>, VEX_WIG;
}
let Predicates = [UseSSE2] in {
def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (X86vfpext (v4f32 VR128:$src))))]>,
PS, Sched<[WriteCvtF2F]>;
def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>,
PS, Sched<[WriteCvtF2FLd]>;
}
// Convert Packed DW Integers to Packed Double FP
let Predicates = [HasAVX, NoVLX] in {
let hasSideEffects = 0, mayLoad = 1 in
def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (X86VSintToFP (bc_v4i32 (loadv2i64 addr:$src)))))]>,
VEX, Sched<[WriteCvtI2FLd]>, VEX_WIG;
def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (X86VSintToFP (v4i32 VR128:$src))))]>,
VEX, Sched<[WriteCvtI2F]>, VEX_WIG;
def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(v4f64 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))))]>,
VEX, VEX_L, Sched<[WriteCvtI2FLd]>,
VEX_WIG;
def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(v4f64 (sint_to_fp (v4i32 VR128:$src))))]>,
VEX, VEX_L, Sched<[WriteCvtI2F]>, VEX_WIG;
}
let hasSideEffects = 0, mayLoad = 1 in
def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (X86VSintToFP (bc_v4i32 (loadv2i64 addr:$src)))))]>,
Sched<[WriteCvtI2FLd]>;
def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (X86VSintToFP (v4i32 VR128:$src))))]>,
Sched<[WriteCvtI2F]>;
// AVX register conversion intrinsics
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(VCVTDQ2PDrm addr:$src)>;
def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))),
(VCVTDQ2PDrm addr:$src)>;
} // Predicates = [HasAVX, NoVLX]
// SSE2 register conversion intrinsics
let Predicates = [UseSSE2] in {
def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(CVTDQ2PDrm addr:$src)>;
def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))),
(CVTDQ2PDrm addr:$src)>;
} // Predicates = [UseSSE2]
// Convert packed double to packed single
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
let Predicates = [HasAVX, NoVLX] in
def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (X86vfpround (v2f64 VR128:$src)))]>,
VEX, Sched<[WriteCvtF2F]>, VEX_WIG;
// XMM only
def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
(VCVTPD2PSrr VR128:$dst, VR128:$src), 0>;
let Predicates = [HasAVX, NoVLX] in
def VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2ps{x}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (X86vfpround (loadv2f64 addr:$src)))]>,
VEX, Sched<[WriteCvtF2FLd]>, VEX_WIG;
def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
(VCVTPD2PSrm VR128:$dst, f128mem:$src), 0, "intel">;
// YMM only
let Predicates = [HasAVX, NoVLX] in {
def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (fpround VR256:$src))]>,
VEX, VEX_L, Sched<[WriteCvtF2F]>, VEX_WIG;
def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (fpround (loadv4f64 addr:$src)))]>,
VEX, VEX_L, Sched<[WriteCvtF2FLd]>, VEX_WIG;
}
def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}",
(VCVTPD2PSYrr VR128:$dst, VR256:$src), 0>;
def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}",
(VCVTPD2PSYrm VR128:$dst, f256mem:$src), 0, "intel">;
def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (X86vfpround (v2f64 VR128:$src)))]>,
Sched<[WriteCvtF2F]>;
def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (X86vfpround (memopv2f64 addr:$src)))]>,
Sched<[WriteCvtF2FLd]>;
// AVX 256-bit register conversion intrinsics
// FIXME: Migrate SSE conversion intrinsics matching to use patterns as below
// whenever possible to avoid declaring two versions of each one.
let Predicates = [HasAVX, NoVLX] in {
// Match fpround and fpextend for 128/256-bit conversions
let AddedComplexity = 15 in {
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86vfpround (v2f64 VR128:$src)))))),
(VCVTPD2PSrr VR128:$src)>;
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86vfpround (loadv2f64 addr:$src)))))),
(VCVTPD2PSrm addr:$src)>;
}
}
let Predicates = [UseSSE2] in {
// Match fpround and fpextend for 128 conversions
let AddedComplexity = 15 in {
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86vfpround (v2f64 VR128:$src)))))),
(CVTPD2PSrr VR128:$src)>;
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86vfpround (memopv2f64 addr:$src)))))),
(CVTPD2PSrm addr:$src)>;
}
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Compare Instructions
//===----------------------------------------------------------------------===//
// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions
multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
Operand CC, SDNode OpNode, ValueType VT,
PatFrag ld_frag, string asm, string asm_alt,
X86FoldableSchedWrite sched> {
let isCommutable = 1 in
def rr : SIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
[(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))]>,
Sched<[sched]>;
def rm : SIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
[(set RC:$dst, (OpNode (VT RC:$src1),
(ld_frag addr:$src2), imm:$cc))]>,
Sched<[sched.Folded, ReadAfterLd]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$cc), asm_alt, []>,
Sched<[sched]>;
let mayLoad = 1 in
def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$cc), asm_alt, []>,
Sched<[sched.Folded, ReadAfterLd]>;
}
}
let ExeDomain = SSEPackedSingle in
defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32,
"cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SchedWriteFCmp.Scl>, XS, VEX_4V, VEX_LIG, VEX_WIG;
let ExeDomain = SSEPackedDouble in
defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64,
"cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SchedWriteFCmp.Scl>, // same latency as 32 bit compare
XD, VEX_4V, VEX_LIG, VEX_WIG;
let Constraints = "$src1 = $dst" in {
let ExeDomain = SSEPackedSingle in
defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32,
"cmp${cc}ss\t{$src2, $dst|$dst, $src2}",
"cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SchedWriteFCmp.Scl>, XS;
let ExeDomain = SSEPackedDouble in
defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64,
"cmp${cc}sd\t{$src2, $dst|$dst, $src2}",
"cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SchedWriteFCmp.Scl>, XD;
}
multiclass sse12_cmp_scalar_int<Operand memop, Operand CC,
Intrinsic Int, string asm, X86FoldableSchedWrite sched,
ComplexPattern mem_cpat> {
def rr_Int : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src, CC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
VR128:$src, imm:$cc))]>,
Sched<[sched]>;
let mayLoad = 1 in
def rm_Int : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, memop:$src, CC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
mem_cpat:$src, imm:$cc))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let isCodeGenOnly = 1 in {
// Aliases to match intrinsics which expect XMM operand(s).
let ExeDomain = SSEPackedSingle in
defm VCMPSS : sse12_cmp_scalar_int<ssmem, AVXCC, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
SchedWriteFCmp.Scl, sse_load_f32>, XS, VEX_4V;
let ExeDomain = SSEPackedDouble in
defm VCMPSD : sse12_cmp_scalar_int<sdmem, AVXCC, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
SchedWriteFCmp.Scl, sse_load_f64>, // same latency as f32
XD, VEX_4V;
let Constraints = "$src1 = $dst" in {
let ExeDomain = SSEPackedSingle in
defm CMPSS : sse12_cmp_scalar_int<ssmem, SSECC, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
SchedWriteFCmp.Scl, sse_load_f32>, XS;
let ExeDomain = SSEPackedDouble in
defm CMPSD : sse12_cmp_scalar_int<sdmem, SSECC, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
SchedWriteFCmp.Scl, sse_load_f64>, XD;
}
}
// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS
multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode,
ValueType vt, X86MemOperand x86memop,
PatFrag ld_frag, string OpcodeStr,
X86FoldableSchedWrite sched> {
let hasSideEffects = 0 in {
def rr: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))]>,
Sched<[sched]>;
let mayLoad = 1 in
def rm: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1),
(ld_frag addr:$src2)))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
}
// sse12_ord_cmp_int - Intrinsic version of sse12_ord_cmp
multiclass sse12_ord_cmp_int<bits<8> opc, RegisterClass RC, SDNode OpNode,
ValueType vt, Operand memop,
ComplexPattern mem_cpat, string OpcodeStr,
X86FoldableSchedWrite sched> {
def rr_Int: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))]>,
Sched<[sched]>;
let mayLoad = 1 in
def rm_Int: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1),
mem_cpat:$src2))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Defs = [EFLAGS] in {
defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
"ucomiss", WriteFCom>, PS, VEX, VEX_LIG, VEX_WIG;
defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
"ucomisd", WriteFCom>, PD, VEX, VEX_LIG, VEX_WIG;
let Pattern = []<dag> in {
defm VCOMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32,
"comiss", WriteFCom>, PS, VEX, VEX_LIG, VEX_WIG;
defm VCOMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64,
"comisd", WriteFCom>, PD, VEX, VEX_LIG, VEX_WIG;
}
let isCodeGenOnly = 1 in {
defm VUCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem,
sse_load_f32, "ucomiss", WriteFCom>, PS, VEX, VEX_WIG;
defm VUCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem,
sse_load_f64, "ucomisd", WriteFCom>, PD, VEX, VEX_WIG;
defm VCOMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem,
sse_load_f32, "comiss", WriteFCom>, PS, VEX, VEX_WIG;
defm VCOMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem,
sse_load_f64, "comisd", WriteFCom>, PD, VEX, VEX_WIG;
}
defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
"ucomiss", WriteFCom>, PS;
defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
"ucomisd", WriteFCom>, PD;
let Pattern = []<dag> in {
defm COMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32,
"comiss", WriteFCom>, PS;
defm COMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64,
"comisd", WriteFCom>, PD;
}
let isCodeGenOnly = 1 in {
defm UCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem,
sse_load_f32, "ucomiss", WriteFCom>, PS;
defm UCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem,
sse_load_f64, "ucomisd", WriteFCom>, PD;
defm COMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem,
sse_load_f32, "comiss", WriteFCom>, PS;
defm COMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem,
sse_load_f64, "comisd", WriteFCom>, PD;
}
} // Defs = [EFLAGS]
// sse12_cmp_packed - sse 1 & 2 compare packed instructions
multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
Operand CC, ValueType VT, string asm,
string asm_alt, X86FoldableSchedWrite sched,
Domain d, PatFrag ld_frag> {
let isCommutable = 1 in
def rri : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
[(set RC:$dst, (VT (X86cmpp RC:$src1, RC:$src2, imm:$cc)))], d>,
Sched<[sched]>;
def rmi : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
[(set RC:$dst,
(VT (X86cmpp RC:$src1, (ld_frag addr:$src2), imm:$cc)))], d>,
Sched<[sched.Folded, ReadAfterLd]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rri_alt : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$cc),
asm_alt, [], d>, Sched<[sched]>;
let mayLoad = 1 in
def rmi_alt : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$cc),
asm_alt, [], d>, Sched<[sched.Folded, ReadAfterLd]>;
}
}
defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, v4f32,
"cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SchedWriteFCmp.XMM, SSEPackedSingle, loadv4f32>, PS, VEX_4V, VEX_WIG;
defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, v2f64,
"cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SchedWriteFCmp.XMM, SSEPackedDouble, loadv2f64>, PD, VEX_4V, VEX_WIG;
defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, v8f32,
"cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SchedWriteFCmp.YMM, SSEPackedSingle, loadv8f32>, PS, VEX_4V, VEX_L, VEX_WIG;
defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, v4f64,
"cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SchedWriteFCmp.YMM, SSEPackedDouble, loadv4f64>, PD, VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in {
defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, v4f32,
"cmp${cc}ps\t{$src2, $dst|$dst, $src2}",
"cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SchedWriteFCmp.XMM, SSEPackedSingle, memopv4f32>, PS;
defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, v2f64,
"cmp${cc}pd\t{$src2, $dst|$dst, $src2}",
"cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SchedWriteFCmp.XMM, SSEPackedDouble, memopv2f64>, PD;
}
def CommutableCMPCC : PatLeaf<(imm), [{
uint64_t Imm = N->getZExtValue() & 0x7;
return (Imm == 0x00 || Imm == 0x03 || Imm == 0x04 || Imm == 0x07);
}]>;
// Patterns to select compares with loads in first operand.
let Predicates = [HasAVX] in {
def : Pat<(v4f64 (X86cmpp (loadv4f64 addr:$src2), VR256:$src1,
CommutableCMPCC:$cc)),
(VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>;
def : Pat<(v8f32 (X86cmpp (loadv8f32 addr:$src2), VR256:$src1,
CommutableCMPCC:$cc)),
(VCMPPSYrmi VR256:$src1, addr:$src2, imm:$cc)>;
def : Pat<(v2f64 (X86cmpp (loadv2f64 addr:$src2), VR128:$src1,
CommutableCMPCC:$cc)),
(VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
def : Pat<(v4f32 (X86cmpp (loadv4f32 addr:$src2), VR128:$src1,
CommutableCMPCC:$cc)),
(VCMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>;
def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1,
CommutableCMPCC:$cc)),
(VCMPSDrm FR64:$src1, addr:$src2, imm:$cc)>;
def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1,
CommutableCMPCC:$cc)),
(VCMPSSrm FR32:$src1, addr:$src2, imm:$cc)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(v2f64 (X86cmpp (memopv2f64 addr:$src2), VR128:$src1,
CommutableCMPCC:$cc)),
(CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1,
CommutableCMPCC:$cc)),
(CMPSDrm FR64:$src1, addr:$src2, imm:$cc)>;
}
let Predicates = [UseSSE1] in {
def : Pat<(v4f32 (X86cmpp (memopv4f32 addr:$src2), VR128:$src1,
CommutableCMPCC:$cc)),
(CMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>;
def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1,
CommutableCMPCC:$cc)),
(CMPSSrm FR32:$src1, addr:$src2, imm:$cc)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Shuffle Instructions
//===----------------------------------------------------------------------===//
/// sse12_shuffle - sse 1 & 2 fp shuffle instructions
multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
ValueType vt, string asm, PatFrag mem_frag,
X86FoldableSchedWrite sched, Domain d> {
def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$src3), asm,
[(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
(i8 imm:$src3))))], d>,
Sched<[sched.Folded, ReadAfterLd]>;
def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3), asm,
[(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
(i8 imm:$src3))))], d>,
Sched<[sched]>;
}
let Predicates = [HasAVX, NoVLX] in {
defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv4f32, SchedWriteFShuffle.XMM, SSEPackedSingle>,
PS, VEX_4V, VEX_WIG;
defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32,
"shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv8f32, SchedWriteFShuffle.YMM, SSEPackedSingle>,
PS, VEX_4V, VEX_L, VEX_WIG;
defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv2f64, SchedWriteFShuffle.XMM, SSEPackedDouble>,
PD, VEX_4V, VEX_WIG;
defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
"shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv4f64, SchedWriteFShuffle.YMM, SSEPackedDouble>,
PD, VEX_4V, VEX_L, VEX_WIG;
}
let Constraints = "$src1 = $dst" in {
defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
memopv4f32, SchedWriteFShuffle.XMM, SSEPackedSingle>, PS;
defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
memopv2f64, SchedWriteFShuffle.XMM, SSEPackedDouble>, PD;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Unpack FP Instructions
//===----------------------------------------------------------------------===//
/// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave
multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt,
PatFrag mem_frag, RegisterClass RC,
X86MemOperand x86memop, string asm,
X86FoldableSchedWrite sched, Domain d,
bit IsCommutable = 0> {
let isCommutable = IsCommutable in
def rr : PI<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
asm, [(set RC:$dst,
(vt (OpNode RC:$src1, RC:$src2)))], d>,
Sched<[sched]>;
def rm : PI<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
asm, [(set RC:$dst,
(vt (OpNode RC:$src1,
(mem_frag addr:$src2))))], d>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoVLX] in {
defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, loadv4f32,
VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG;
defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, loadv2f64,
VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.XMM, SSEPackedDouble>, PD, VEX_4V, VEX_WIG;
defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, loadv4f32,
VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG;
defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, loadv2f64,
VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.XMM, SSEPackedDouble>, PD, VEX_4V, VEX_WIG;
defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, loadv8f32,
VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG;
defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, loadv4f64,
VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG;
defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, loadv8f32,
VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG;
defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, loadv4f64,
VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG;
}// Predicates = [HasAVX, NoVLX]
let Constraints = "$src1 = $dst" in {
defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32,
VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}",
SchedWriteFShuffle.XMM, SSEPackedSingle>, PS;
defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memopv2f64,
VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}",
SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD;
defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memopv4f32,
VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}",
SchedWriteFShuffle.XMM, SSEPackedSingle>, PS;
defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memopv2f64,
VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}",
SchedWriteFShuffle.XMM, SSEPackedDouble>, PD;
} // Constraints = "$src1 = $dst"
let Predicates = [HasAVX1Only] in {
def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
(VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)),
(VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
(VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)),
(VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))),
(VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)),
(VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))),
(VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)),
(VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Extract Floating-Point Sign mask
//===----------------------------------------------------------------------===//
/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave
multiclass sse12_extr_sign_mask<RegisterClass RC, ValueType vt,
string asm, Domain d> {
def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set GR32orGR64:$dst, (X86movmsk (vt RC:$src)))], d>,
Sched<[WriteFMOVMSK]>;
}
let Predicates = [HasAVX] in {
defm VMOVMSKPS : sse12_extr_sign_mask<VR128, v4f32, "movmskps",
SSEPackedSingle>, PS, VEX, VEX_WIG;
defm VMOVMSKPD : sse12_extr_sign_mask<VR128, v2f64, "movmskpd",
SSEPackedDouble>, PD, VEX, VEX_WIG;
defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, v8f32, "movmskps",
SSEPackedSingle>, PS, VEX, VEX_L, VEX_WIG;
defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, v4f64, "movmskpd",
SSEPackedDouble>, PD, VEX, VEX_L, VEX_WIG;
}
defm MOVMSKPS : sse12_extr_sign_mask<VR128, v4f32, "movmskps",
SSEPackedSingle>, PS;
defm MOVMSKPD : sse12_extr_sign_mask<VR128, v2f64, "movmskpd",
SSEPackedDouble>, PD;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Logical Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, X86FoldableSchedWrite sched,
bit IsCommutable, bit Is2Addr> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1,
(bitconvert (memop_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
} // ExeDomain = SSEPackedInt
multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode,
ValueType OpVT128, ValueType OpVT256,
X86SchedWriteWidths sched, bit IsCommutable,
Predicate prd> {
let Predicates = [HasAVX, prd] in
defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128,
VR128, loadv2i64, i128mem, sched.XMM,
IsCommutable, 0>, VEX_4V, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128,
memopv2i64, i128mem, sched.XMM, IsCommutable, 1>;
let Predicates = [HasAVX2, prd] in
defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode,
OpVT256, VR256, loadv4i64, i256mem, sched.YMM,
IsCommutable, 0>, VEX_4V, VEX_L, VEX_WIG;
}
// These are ordered here for pattern ordering requirements with the fp versions
defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64,
SchedWriteVecLogic, 1, NoVLX>;
defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64,
SchedWriteVecLogic, 1, NoVLX>;
defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64,
SchedWriteVecLogic, 1, NoVLX>;
defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64,
SchedWriteVecLogic, 0, NoVLX>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Logical Instructions
//===----------------------------------------------------------------------===//
/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops
///
/// There are no patterns here because isel prefers integer versions for SSE2
/// and later. There are SSE1 v4f32 patterns later.
multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
let Predicates = [HasAVX, NoVLX] in {
defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f256mem, sched.YMM,
[], [], 0>, PS, VEX_4V, VEX_L, VEX_WIG;
defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f256mem, sched.YMM,
[], [], 0>, PD, VEX_4V, VEX_L, VEX_WIG;
defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f128mem, sched.XMM,
[], [], 0>, PS, VEX_4V, VEX_WIG;
defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f128mem, sched.XMM,
[], [], 0>, PD, VEX_4V, VEX_WIG;
}
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f128mem, sched.XMM,
[], []>, PS;
defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f128mem, sched.XMM,
[], []>, PD;
}
}
defm AND : sse12_fp_packed_logical<0x54, "and", and, SchedWriteFLogic>;
defm OR : sse12_fp_packed_logical<0x56, "or", or, SchedWriteFLogic>;
defm XOR : sse12_fp_packed_logical<0x57, "xor", xor, SchedWriteFLogic>;
let isCommutable = 0 in
defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp, SchedWriteFLogic>;
// If only AVX1 is supported, we need to handle integer operations with
// floating point instructions since the integer versions aren't available.
let Predicates = [HasAVX1Only] in {
def : Pat<(v4i64 (and VR256:$src1, VR256:$src2)),
(VANDPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (or VR256:$src1, VR256:$src2)),
(VORPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (xor VR256:$src1, VR256:$src2)),
(VXORPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (X86andnp VR256:$src1, VR256:$src2)),
(VANDNPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(and VR256:$src1, (loadv4i64 addr:$src2)),
(VANDPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(or VR256:$src1, (loadv4i64 addr:$src2)),
(VORPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(xor VR256:$src1, (loadv4i64 addr:$src2)),
(VXORPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(X86andnp VR256:$src1, (loadv4i64 addr:$src2)),
(VANDNPSYrm VR256:$src1, addr:$src2)>;
}
let Predicates = [HasAVX, NoVLX_Or_NoDQI] in {
// Use packed logical operations for scalar ops.
def : Pat<(f64 (X86fand FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (VANDPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f64 (X86for FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (VORPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f64 (X86fxor FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (VXORPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f64 (X86fandn FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (VANDNPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f32 (X86fand FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (VANDPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
def : Pat<(f32 (X86for FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (VORPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
def : Pat<(f32 (X86fxor FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (VXORPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
def : Pat<(f32 (X86fandn FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (VANDNPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
}
let Predicates = [UseSSE1] in {
// Use packed logical operations for scalar ops.
def : Pat<(f32 (X86fand FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (ANDPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
def : Pat<(f32 (X86for FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (ORPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
def : Pat<(f32 (X86fxor FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (XORPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
def : Pat<(f32 (X86fandn FR32:$src1, FR32:$src2)),
(COPY_TO_REGCLASS (ANDNPSrr
(COPY_TO_REGCLASS FR32:$src1, VR128),
(COPY_TO_REGCLASS FR32:$src2, VR128)), FR32)>;
}
let Predicates = [UseSSE2] in {
// Use packed logical operations for scalar ops.
def : Pat<(f64 (X86fand FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (ANDPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f64 (X86for FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (ORPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f64 (X86fxor FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (XORPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
def : Pat<(f64 (X86fandn FR64:$src1, FR64:$src2)),
(COPY_TO_REGCLASS (ANDNPDrr
(COPY_TO_REGCLASS FR64:$src1, VR128),
(COPY_TO_REGCLASS FR64:$src2, VR128)), FR64)>;
}
// Patterns for packed operations when we don't have integer type available.
def : Pat<(v4f32 (X86fand VR128:$src1, VR128:$src2)),
(ANDPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86for VR128:$src1, VR128:$src2)),
(ORPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86fxor VR128:$src1, VR128:$src2)),
(XORPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4f32 (X86fandn VR128:$src1, VR128:$src2)),
(ANDNPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(X86fand VR128:$src1, (memopv4f32 addr:$src2)),
(ANDPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86for VR128:$src1, (memopv4f32 addr:$src2)),
(ORPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86fxor VR128:$src1, (memopv4f32 addr:$src2)),
(XORPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86fandn VR128:$src1, (memopv4f32 addr:$src2)),
(ANDNPSrm VR128:$src1, addr:$src2)>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Arithmetic Instructions
//===----------------------------------------------------------------------===//
/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and
/// vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements unmodified (therefore these cannot be commuted).
///
/// These three forms can each be reg+reg or reg+mem.
///
/// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those
/// classes below
multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
let Predicates = [HasAVX, NoVLX] in {
defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
VR128, v4f32, f128mem, loadv4f32,
SSEPackedSingle, sched.XMM, 0>, PS, VEX_4V, VEX_WIG;
defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
VR128, v2f64, f128mem, loadv2f64,
SSEPackedDouble, sched.XMM, 0>, PD, VEX_4V, VEX_WIG;
defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"),
OpNode, VR256, v8f32, f256mem, loadv8f32,
SSEPackedSingle, sched.YMM, 0>, PS, VEX_4V, VEX_L, VEX_WIG;
defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"),
OpNode, VR256, v4f64, f256mem, loadv4f64,
SSEPackedDouble, sched.YMM, 0>, PD, VEX_4V, VEX_L, VEX_WIG;
}
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
v4f32, f128mem, memopv4f32, SSEPackedSingle,
sched.XMM>, PS;
defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
v2f64, f128mem, memopv2f64, SSEPackedDouble,
sched.XMM>, PD;
}
}
multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
defm V#NAME#SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
OpNode, FR32, f32mem, SSEPackedSingle, sched.Scl, 0>,
XS, VEX_4V, VEX_LIG, VEX_WIG;
defm V#NAME#SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
OpNode, FR64, f64mem, SSEPackedDouble, sched.Scl, 0>,
XD, VEX_4V, VEX_LIG, VEX_WIG;
let Constraints = "$src1 = $dst" in {
defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
OpNode, FR32, f32mem, SSEPackedSingle,
sched.Scl>, XS;
defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
OpNode, FR64, f64mem, SSEPackedDouble,
sched.Scl>, XD;
}
}
multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNode,
X86SchedWriteWidths sched> {
defm V#NAME#SS : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v4f32,
!strconcat(OpcodeStr, "ss"), ssmem, sse_load_f32,
SSEPackedSingle, sched.Scl, 0>, XS, VEX_4V, VEX_LIG, VEX_WIG;
defm V#NAME#SD : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v2f64,
!strconcat(OpcodeStr, "sd"), sdmem, sse_load_f64,
SSEPackedDouble, sched.Scl, 0>, XD, VEX_4V, VEX_LIG, VEX_WIG;
let Constraints = "$src1 = $dst" in {
defm SS : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v4f32,
!strconcat(OpcodeStr, "ss"), ssmem, sse_load_f32,
SSEPackedSingle, sched.Scl>, XS;
defm SD : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v2f64,
!strconcat(OpcodeStr, "sd"), sdmem, sse_load_f64,
SSEPackedDouble, sched.Scl>, XD;
}
}
// Binary Arithmetic instructions
defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SchedWriteFAdd>,
basic_sse12_fp_binop_s<0x58, "add", fadd, SchedWriteFAdd>,
basic_sse12_fp_binop_s_int<0x58, "add", null_frag, SchedWriteFAdd>;
defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SchedWriteFMul>,
basic_sse12_fp_binop_s<0x59, "mul", fmul, SchedWriteFMul>,
basic_sse12_fp_binop_s_int<0x59, "mul", null_frag, SchedWriteFMul>;
let isCommutable = 0 in {
defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SchedWriteFAdd>,
basic_sse12_fp_binop_s<0x5C, "sub", fsub, SchedWriteFAdd>,
basic_sse12_fp_binop_s_int<0x5C, "sub", null_frag, SchedWriteFAdd>;
defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SchedWriteFDiv>,
basic_sse12_fp_binop_s<0x5E, "div", fdiv, SchedWriteFDiv>,
basic_sse12_fp_binop_s_int<0x5E, "div", null_frag, SchedWriteFDiv>;
defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SchedWriteFCmp>,
basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SchedWriteFCmp>,
basic_sse12_fp_binop_s_int<0x5F, "max", X86fmaxs, SchedWriteFCmp>;
defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SchedWriteFCmp>,
basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SchedWriteFCmp>,
basic_sse12_fp_binop_s_int<0x5D, "min", X86fmins, SchedWriteFCmp>;
}
let isCodeGenOnly = 1 in {
defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SchedWriteFCmp>,
basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SchedWriteFCmp>;
defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SchedWriteFCmp>,
basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SchedWriteFCmp>;
}
// Patterns used to select SSE scalar fp arithmetic instructions from
// either:
//
// (1) a scalar fp operation followed by a blend
//
// The effect is that the backend no longer emits unnecessary vector
// insert instructions immediately after SSE scalar fp instructions
// like addss or mulss.
//
// For example, given the following code:
// __m128 foo(__m128 A, __m128 B) {
// A[0] += B[0];
// return A;
// }
//
// Previously we generated:
// addss %xmm0, %xmm1
// movss %xmm1, %xmm0
//
// We now generate:
// addss %xmm1, %xmm0
//
// (2) a vector packed single/double fp operation followed by a vector insert
//
// The effect is that the backend converts the packed fp instruction
// followed by a vector insert into a single SSE scalar fp instruction.
//
// For example, given the following code:
// __m128 foo(__m128 A, __m128 B) {
// __m128 C = A + B;
// return (__m128) {c[0], a[1], a[2], a[3]};
// }
//
// Previously we generated:
// addps %xmm0, %xmm1
// movss %xmm1, %xmm0
//
// We now generate:
// addss %xmm1, %xmm0
// TODO: Some canonicalization in lowering would simplify the number of
// patterns we have to try to match.
multiclass scalar_math_f32_patterns<SDNode Op, string OpcPrefix> {
let Predicates = [UseSSE1] in {
// extracted scalar math op with insert via movss
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(Op (f32 (extractelt (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))))),
(!cast<I>(OpcPrefix#SSrr_Int) v4f32:$dst,
(COPY_TO_REGCLASS FR32:$src, VR128))>;
// vector math op with insert via movss
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(Op (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(!cast<I>(OpcPrefix#SSrr_Int) v4f32:$dst, v4f32:$src)>;
}
// Repeat everything for AVX.
let Predicates = [UseAVX] in {
// extracted scalar math op with insert via movss
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(Op (f32 (extractelt (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))))),
(!cast<I>("V"#OpcPrefix#SSrr_Int) v4f32:$dst,
(COPY_TO_REGCLASS FR32:$src, VR128))>;
// vector math op with insert via movss
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(Op (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(!cast<I>("V"#OpcPrefix#SSrr_Int) v4f32:$dst, v4f32:$src)>;
}
}
defm : scalar_math_f32_patterns<fadd, "ADD">;
defm : scalar_math_f32_patterns<fsub, "SUB">;
defm : scalar_math_f32_patterns<fmul, "MUL">;
defm : scalar_math_f32_patterns<fdiv, "DIV">;
multiclass scalar_math_f64_patterns<SDNode Op, string OpcPrefix> {
let Predicates = [UseSSE2] in {
// extracted scalar math op with insert via movsd
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector
(Op (f64 (extractelt (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(!cast<I>(OpcPrefix#SDrr_Int) v2f64:$dst,
(COPY_TO_REGCLASS FR64:$src, VR128))>;
// vector math op with insert via movsd
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(Op (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(!cast<I>(OpcPrefix#SDrr_Int) v2f64:$dst, v2f64:$src)>;
}
// Repeat everything for AVX.
let Predicates = [UseAVX] in {
// extracted scalar math op with insert via movsd
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector
(Op (f64 (extractelt (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(!cast<I>("V"#OpcPrefix#SDrr_Int) v2f64:$dst,
(COPY_TO_REGCLASS FR64:$src, VR128))>;
// vector math op with insert via movsd
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(Op (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(!cast<I>("V"#OpcPrefix#SDrr_Int) v2f64:$dst, v2f64:$src)>;
}
}
defm : scalar_math_f64_patterns<fadd, "ADD">;
defm : scalar_math_f64_patterns<fsub, "SUB">;
defm : scalar_math_f64_patterns<fmul, "MUL">;
defm : scalar_math_f64_patterns<fdiv, "DIV">;
/// Unop Arithmetic
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
/// sse_fp_unop_s - SSE1 unops in scalar form
/// For the non-AVX defs, we need $src1 to be tied to $dst because
/// the HW instructions are 2 operand / destructive.
multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
ValueType vt, ValueType ScalarVT,
X86MemOperand x86memop,
Operand intmemop, ComplexPattern int_cpat,
Intrinsic Intr, SDNode OpNode, Domain d,
X86FoldableSchedWrite sched,
Predicate target, string Suffix> {
let hasSideEffects = 0 in {
def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1),
!strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"),
[(set RC:$dst, (OpNode RC:$src1))], d>, Sched<[sched]>,
Requires<[target]>;
let mayLoad = 1 in
def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1),
!strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"),
[(set RC:$dst, (OpNode (load addr:$src1)))], d>,
Sched<[sched.Folded, ReadAfterLd]>,
Requires<[target, OptForSize]>;
let isCodeGenOnly = 1, Constraints = "$src1 = $dst", ExeDomain = d in {
def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), []>,
Sched<[sched]>;
let mayLoad = 1 in
def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, intmemop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), []>,
Sched<[sched.Folded, ReadAfterLd]>;
}
}
let Predicates = [target] in {
// These are unary operations, but they are modeled as having 2 source operands
// because the high elements of the destination are unchanged in SSE.
def : Pat<(Intr VR128:$src),
(!cast<Instruction>(NAME#Suffix##r_Int) VR128:$src, VR128:$src)>;
}
// We don't want to fold scalar loads into these instructions unless
// optimizing for size. This is because the folded instruction will have a
// partial register update, while the unfolded sequence will not, e.g.
// movss mem, %xmm0
// rcpss %xmm0, %xmm0
// which has a clobber before the rcp, vs.
// rcpss mem, %xmm0
let Predicates = [target, OptForSize] in {
def : Pat<(Intr int_cpat:$src2),
(!cast<Instruction>(NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), addr:$src2)>;
}
}
multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
ValueType vt, ValueType ScalarVT,
X86MemOperand x86memop,
Operand intmemop, ComplexPattern int_cpat,
Intrinsic Intr, SDNode OpNode, Domain d,
X86FoldableSchedWrite sched, Predicate target,
string Suffix> {
let hasSideEffects = 0 in {
def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[], d>, Sched<[sched]>;
let mayLoad = 1 in
def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[], d>, Sched<[sched.Folded, ReadAfterLd]>;
let isCodeGenOnly = 1, ExeDomain = d in {
def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, intmemop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[sched.Folded, ReadAfterLd]>;
}
}
// We don't want to fold scalar loads into these instructions unless
// optimizing for size. This is because the folded instruction will have a
// partial register update, while the unfolded sequence will not, e.g.
// vmovss mem, %xmm0
// vrcpss %xmm0, %xmm0, %xmm0
// which has a clobber before the rcp, vs.
// vrcpss mem, %xmm0, %xmm0
// TODO: In theory, we could fold the load, and avoid the stall caused by
// the partial register store, either in BreakFalseDeps or with smarter RA.
let Predicates = [target] in {
def : Pat<(OpNode RC:$src), (!cast<Instruction>("V"#NAME#Suffix##r)
(ScalarVT (IMPLICIT_DEF)), RC:$src)>;
def : Pat<(Intr VR128:$src),
(!cast<Instruction>("V"#NAME#Suffix##r_Int) VR128:$src,
VR128:$src)>;
}
let Predicates = [target, OptForSize] in {
def : Pat<(Intr int_cpat:$src2),
(!cast<Instruction>("V"#NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), addr:$src2)>;
def : Pat<(ScalarVT (OpNode (load addr:$src))),
(!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
addr:$src)>;
}
}
/// sse1_fp_unop_p - SSE1 unops in packed form.
multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, list<Predicate> prds> {
let Predicates = prds in {
def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>,
VEX, Sched<[sched.XMM]>, VEX_WIG;
def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (loadv4f32 addr:$src)))]>,
VEX, Sched<[sched.XMM.Folded]>, VEX_WIG;
def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v8f32 (OpNode VR256:$src)))]>,
VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG;
def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (OpNode (loadv8f32 addr:$src)))]>,
VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG;
}
def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>,
Sched<[sched.XMM]>;
def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>,
Sched<[sched.XMM.Folded]>;
}
/// sse2_fp_unop_p - SSE2 unops in vector forms.
multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
let Predicates = [HasAVX, NoVLX] in {
def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>,
VEX, Sched<[sched.XMM]>, VEX_WIG;
def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (loadv2f64 addr:$src)))]>,
VEX, Sched<[sched.XMM.Folded]>, VEX_WIG;
def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v4f64 (OpNode VR256:$src)))]>,
VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG;
def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (OpNode (loadv4f64 addr:$src)))]>,
VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG;
}
def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>,
Sched<[sched.XMM]>;
def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>,
Sched<[sched.XMM.Folded]>;
}
multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, Predicate AVXTarget> {
defm SS : sse_fp_unop_s<opc, OpcodeStr##ss, FR32, v4f32, f32, f32mem,
ssmem, sse_load_f32,
!cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss), OpNode,
SSEPackedSingle, sched.Scl, UseSSE1, "SS">, XS;
defm V#NAME#SS : avx_fp_unop_s<opc, "v"#OpcodeStr##ss, FR32, v4f32, f32,
f32mem, ssmem, sse_load_f32,
!cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss), OpNode,
SSEPackedSingle, sched.Scl, AVXTarget, "SS">, XS, VEX_4V,
VEX_LIG, VEX_WIG, NotMemoryFoldable;
}
multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, Predicate AVXTarget> {
defm SD : sse_fp_unop_s<opc, OpcodeStr##sd, FR64, v2f64, f64, f64mem,
sdmem, sse_load_f64,
!cast<Intrinsic>("int_x86_sse2_"##OpcodeStr##_sd),
OpNode, SSEPackedDouble, sched.Scl, UseSSE2, "SD">, XD;
defm V#NAME#SD : avx_fp_unop_s<opc, "v"#OpcodeStr##sd, FR64, v2f64, f64,
f64mem, sdmem, sse_load_f64,
!cast<Intrinsic>("int_x86_sse2_"##OpcodeStr##_sd),
OpNode, SSEPackedDouble, sched.Scl, AVXTarget, "SD">,
XD, VEX_4V, VEX_LIG, VEX_WIG, NotMemoryFoldable;
}
// Square root.
defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, SchedWriteFSqrt, UseAVX>,
sse1_fp_unop_p<0x51, "sqrt", fsqrt, SchedWriteFSqrt, [HasAVX, NoVLX]>,
sse2_fp_unop_s<0x51, "sqrt", fsqrt, SchedWriteFSqrt, UseAVX>,
sse2_fp_unop_p<0x51, "sqrt", fsqrt, SchedWriteFSqrt>;
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>,
sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, [HasAVX]>;
defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>,
sse1_fp_unop_p<0x53, "rcp", X86frcp, SchedWriteFRcp, [HasAVX]>;
// There is no f64 version of the reciprocal approximation instructions.
// TODO: We should add *scalar* op patterns for these just like we have for
// the binops above. If the binop and unop patterns could all be unified
// that would be even better.
multiclass scalar_unary_math_patterns<Intrinsic Intr, string OpcPrefix,
SDNode Move, ValueType VT,
Predicate BasePredicate> {
let Predicates = [BasePredicate] in {
def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
(!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
}
// Repeat for AVX versions of the instructions.
let Predicates = [HasAVX] in {
def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
(!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
}
}
defm : scalar_unary_math_patterns<int_x86_sse_rcp_ss, "RCPSS", X86Movss,
v4f32, UseSSE1>;
defm : scalar_unary_math_patterns<int_x86_sse_rsqrt_ss, "RSQRTSS", X86Movss,
v4f32, UseSSE1>;
defm : scalar_unary_math_patterns<int_x86_sse_sqrt_ss, "SQRTSS", X86Movss,
v4f32, UseSSE1>;
defm : scalar_unary_math_patterns<int_x86_sse2_sqrt_sd, "SQRTSD", X86Movsd,
v2f64, UseSSE2>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Non-temporal stores
//===----------------------------------------------------------------------===//
let AddedComplexity = 400 in { // Prefer non-temporal versions
let Predicates = [HasAVX, NoVLX] in {
let SchedRW = [WriteFStore] in {
def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src),
addr:$dst)]>, VEX, VEX_WIG;
def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2f64 VR128:$src),
addr:$dst)]>, VEX, VEX_WIG;
def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v8f32 VR256:$src),
addr:$dst)]>, VEX, VEX_L, VEX_WIG;
def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f64 VR256:$src),
addr:$dst)]>, VEX, VEX_L, VEX_WIG;
} // SchedRW
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecStore] in {
def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2i64 VR128:$src),
addr:$dst)]>, VEX, VEX_WIG;
def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs),
(ins i256mem:$dst, VR256:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4i64 VR256:$src),
addr:$dst)]>, VEX, VEX_L, VEX_WIG;
} // ExeDomain, SchedRW
} // Predicates
let SchedRW = [WriteVecStore] in {
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>;
def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>;
} // SchedRW
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecStore] in
def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)]>;
let SchedRW = [WriteStore] in {
// There is no AVX form for instructions below this point
def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"movnti{l}\t{$src, $dst|$dst, $src}",
[(nontemporalstore (i32 GR32:$src), addr:$dst)]>,
PS, Requires<[HasSSE2]>;
def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"movnti{q}\t{$src, $dst|$dst, $src}",
[(nontemporalstore (i64 GR64:$src), addr:$dst)]>,
PS, Requires<[HasSSE2]>;
} // SchedRW = [WriteStore]
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(alignednontemporalstore (v8i32 VR256:$src), addr:$dst),
(VMOVNTDQYmr addr:$dst, VR256:$src)>;
def : Pat<(alignednontemporalstore (v16i16 VR256:$src), addr:$dst),
(VMOVNTDQYmr addr:$dst, VR256:$src)>;
def : Pat<(alignednontemporalstore (v32i8 VR256:$src), addr:$dst),
(VMOVNTDQYmr addr:$dst, VR256:$src)>;
def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst),
(VMOVNTDQmr addr:$dst, VR128:$src)>;
def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst),
(VMOVNTDQmr addr:$dst, VR128:$src)>;
def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst),
(VMOVNTDQmr addr:$dst, VR128:$src)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst),
(MOVNTDQmr addr:$dst, VR128:$src)>;
def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst),
(MOVNTDQmr addr:$dst, VR128:$src)>;
def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst),
(MOVNTDQmr addr:$dst, VR128:$src)>;
}
} // AddedComplexity
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Prefetch and memory fence
//===----------------------------------------------------------------------===//
// Prefetch intrinsic.
let Predicates = [HasSSEPrefetch], SchedRW = [WriteLoad] in {
def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src),
"prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))]>, TB;
def PREFETCHT1 : I<0x18, MRM2m, (outs), (ins i8mem:$src),
"prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))]>, TB;
def PREFETCHT2 : I<0x18, MRM3m, (outs), (ins i8mem:$src),
"prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))]>, TB;
def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src),
"prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))]>, TB;
}
// FIXME: How should flush instruction be modeled?
let SchedRW = [WriteLoad] in {
// Flush cache
def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
"clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>,
PS, Requires<[HasSSE2]>;
}
let SchedRW = [WriteNop] in {
// Pause. This "instruction" is encoded as "rep; nop", so even though it
// was introduced with SSE2, it's backward compatible.
def PAUSE : I<0x90, RawFrm, (outs), (ins),
"pause", [(int_x86_sse2_pause)]>, OBXS;
}
let SchedRW = [WriteFence] in {
// Load, store, and memory fence
// TODO: As with mfence, we may want to ease the availablity of sfence/lfence
// to include any 64-bit target.
def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>,
PS, Requires<[HasSSE1]>;
def LFENCE : I<0xAE, MRM_E8, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>,
PS, Requires<[HasSSE2]>;
def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>,
PS, Requires<[HasMFence]>;
} // SchedRW
def : Pat<(X86MFence), (MFENCE)>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Load/Store XCSR register
//===----------------------------------------------------------------------===//
def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>,
VEX, Sched<[WriteLDMXCSR]>, VEX_WIG;
def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>,
VEX, Sched<[WriteSTMXCSR]>, VEX_WIG;
def LDMXCSR : I<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>,
TB, Sched<[WriteLDMXCSR]>;
def STMXCSR : I<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>,
TB, Sched<[WriteSTMXCSR]>;
//===---------------------------------------------------------------------===//
// SSE2 - Move Aligned/Unaligned Packed Integer Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
let hasSideEffects = 0, SchedRW = [WriteVecMove] in {
def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG;
def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L, VEX_WIG;
def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG;
def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L, VEX_WIG;
}
// For Disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteVecMove] in {
def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG, FoldGenData<"VMOVDQArr">;
def VMOVDQAYrr_REV : VPDI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQAYrr">;
def VMOVDQUrr_REV : VSSI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG, FoldGenData<"VMOVDQUrr">;
def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQUYrr">;
}
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
hasSideEffects = 0, SchedRW = [WriteVecLoad], Predicates = [HasAVX,NoVLX] in {
def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (alignedloadv2i64 addr:$src))]>,
VEX, VEX_WIG;
def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG;
def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (loadv2i64 addr:$src))]>,
XS, VEX, VEX_WIG;
def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vmovdqu\t{$src, $dst|$dst, $src}", []>,
XS, VEX, VEX_L, VEX_WIG;
}
let mayStore = 1, hasSideEffects = 0, SchedRW = [WriteVecStore],
Predicates = [HasAVX,NoVLX] in {
def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[(alignedstore (v2i64 VR128:$src), addr:$dst)]>,
VEX, VEX_WIG;
def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i256mem:$dst, VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG;
def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",
[(store (v2i64 VR128:$src), addr:$dst)]>,
XS, VEX, VEX_WIG;
def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[]>,
XS, VEX, VEX_L, VEX_WIG;
}
let SchedRW = [WriteVecMove] in {
let hasSideEffects = 0 in {
def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>;
def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>,
XS, Requires<[UseSSE2]>;
}
// For Disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>,
FoldGenData<"MOVDQArr">;
def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>,
XS, Requires<[UseSSE2]>, FoldGenData<"MOVDQUrr">;
}
} // SchedRW
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
hasSideEffects = 0, SchedRW = [WriteVecLoad] in {
def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>;
def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>,
XS, Requires<[UseSSE2]>;
}
let mayStore = 1, hasSideEffects = 0, SchedRW = [WriteVecStore] in {
def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>;
def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(store (v2i64 VR128:$src), addr:$dst)*/]>,
XS, Requires<[UseSSE2]>;
}
} // ExeDomain = SSEPackedInt
// Aliases to help the assembler pick two byte VEX encodings by swapping the
// operands relative to the normal instructions to use VEX.R instead of VEX.B.
def : InstAlias<"vmovdqa\t{$src, $dst|$dst, $src}",
(VMOVDQArr_REV VR128L:$dst, VR128H:$src), 0>;
def : InstAlias<"vmovdqa\t{$src, $dst|$dst, $src}",
(VMOVDQAYrr_REV VR256L:$dst, VR256H:$src), 0>;
def : InstAlias<"vmovdqu\t{$src, $dst|$dst, $src}",
(VMOVDQUrr_REV VR128L:$dst, VR128H:$src), 0>;
def : InstAlias<"vmovdqu\t{$src, $dst|$dst, $src}",
(VMOVDQUYrr_REV VR256L:$dst, VR256H:$src), 0>;
let Predicates = [HasAVX, NoVLX] in {
// Additional patterns for other integer sizes.
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(VMOVDQAmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(VMOVDQAmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(VMOVDQAmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(VMOVDQUmr addr:$dst, VR128:$src)>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(VMOVDQUmr addr:$dst, VR128:$src)>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(VMOVDQUmr addr:$dst, VR128:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Arithmetic Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
/// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types
multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType DstVT, ValueType SrcVT, RegisterClass RC,
PatFrag memop_frag, X86MemOperand x86memop,
X86FoldableSchedWrite sched, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>,
Sched<[sched]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1),
(bitconvert (memop_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
} // ExeDomain = SSEPackedInt
defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32,
SchedWriteVecALU, 1, NoVLX>;
defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64,
SchedWriteVecALU, 1, NoVLX>;
defm PADDSB : PDI_binop_all<0xEC, "paddsb", X86adds, v16i8, v32i8,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PADDSW : PDI_binop_all<0xED, "paddsw", X86adds, v8i16, v16i16,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PADDUSB : PDI_binop_all<0xDC, "paddusb", X86addus, v16i8, v32i8,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PADDUSW : PDI_binop_all<0xDD, "paddusw", X86addus, v8i16, v16i16,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16,
SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>;
defm PMULHUW : PDI_binop_all<0xE4, "pmulhuw", mulhu, v8i16, v16i16,
SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>;
defm PMULHW : PDI_binop_all<0xE5, "pmulhw", mulhs, v8i16, v16i16,
SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>;
defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8,
SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16,
SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32,
SchedWriteVecALU, 0, NoVLX>;
defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64,
SchedWriteVecALU, 0, NoVLX>;
defm PSUBSB : PDI_binop_all<0xE8, "psubsb", X86subs, v16i8, v32i8,
SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
defm PSUBSW : PDI_binop_all<0xE9, "psubsw", X86subs, v8i16, v16i16,
SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", X86subus, v16i8, v32i8,
SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", X86subus, v8i16, v16i16,
SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
defm PMINUB : PDI_binop_all<0xDA, "pminub", umin, v16i8, v32i8,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PMINSW : PDI_binop_all<0xEA, "pminsw", smin, v8i16, v16i16,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", umax, v16i8, v32i8,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", smax, v8i16, v16i16,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PAVGB : PDI_binop_all<0xE0, "pavgb", X86avg, v16i8, v32i8,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PAVGW : PDI_binop_all<0xE3, "pavgw", X86avg, v8i16, v16i16,
SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
defm PMULUDQ : PDI_binop_all<0xF4, "pmuludq", X86pmuludq, v2i64, v4i64,
SchedWriteVecIMul, 1, NoVLX>;
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
defm VPMADDWD : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v4i32, v8i16, VR128,
loadv2i64, i128mem, SchedWriteVecIMul.XMM, 0>,
VEX_4V, VEX_WIG;
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
defm VPMADDWDY : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v8i32, v16i16,
VR256, loadv4i64, i256mem, SchedWriteVecIMul.YMM,
0>, VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm PMADDWD : PDI_binop_rm2<0xF5, "pmaddwd", X86vpmaddwd, v4i32, v8i16, VR128,
memopv2i64, i128mem, SchedWriteVecIMul.XMM>;
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
defm VPSADBW : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v2i64, v16i8, VR128,
loadv2i64, i128mem, SchedWritePSADBW.XMM, 0>,
VEX_4V, VEX_WIG;
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
defm VPSADBWY : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v4i64, v32i8, VR256,
loadv4i64, i256mem, SchedWritePSADBW.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm PSADBW : PDI_binop_rm2<0xF6, "psadbw", X86psadbw, v2i64, v16i8, VR128,
memopv2i64, i128mem, SchedWritePSADBW.XMM>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Logical Instructions
//===---------------------------------------------------------------------===//
multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr, SDNode OpNode,
SDNode OpNode2, RegisterClass RC,
X86FoldableSchedWrite sched,
ValueType DstVT, ValueType SrcVT,
PatFrag ld_frag, bit Is2Addr = 1> {
// src2 is always 128-bit
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode RC:$src1, (SrcVT VR128:$src2))))]>,
Sched<[sched]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode RC:$src1,
(SrcVT (bitconvert (ld_frag addr:$src2))))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
def ri : PDIi8<opc2, ImmForm, (outs RC:$dst),
(ins RC:$src1, u8imm:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i8 imm:$src2))))]>,
Sched<[sched]>;
}
multiclass PDI_binop_rmi_all<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr, SDNode OpNode,
SDNode OpNode2, ValueType DstVT128,
ValueType DstVT256, ValueType SrcVT,
X86SchedWriteWidths sched, Predicate prd> {
let Predicates = [HasAVX, prd] in
defm V#NAME : PDI_binop_rmi<opc, opc2, ImmForm, !strconcat("v", OpcodeStr),
OpNode, OpNode2, VR128, sched.XMM, DstVT128,
SrcVT, loadv2i64, 0>, VEX_4V, VEX_WIG;
let Predicates = [HasAVX2, prd] in
defm V#NAME#Y : PDI_binop_rmi<opc, opc2, ImmForm, !strconcat("v", OpcodeStr),
OpNode, OpNode2, VR256, sched.YMM, DstVT256,
SrcVT, loadv2i64, 0>, VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm NAME : PDI_binop_rmi<opc, opc2, ImmForm, OpcodeStr, OpNode, OpNode2,
VR128, sched.XMM, DstVT128, SrcVT, memopv2i64>;
}
multiclass PDI_binop_ri<bits<8> opc, Format ImmForm, string OpcodeStr,
SDNode OpNode, RegisterClass RC, ValueType VT,
X86FoldableSchedWrite sched, bit Is2Addr = 1> {
def ri : PDIi8<opc, ImmForm, (outs RC:$dst), (ins RC:$src1, u8imm:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (VT (OpNode RC:$src1, (i8 imm:$src2))))]>,
Sched<[sched]>;
}
multiclass PDI_binop_ri_all<bits<8> opc, Format ImmForm, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
defm V#NAME : PDI_binop_ri<opc, ImmForm, !strconcat("v", OpcodeStr), OpNode,
VR128, v16i8, sched.XMM, 0>, VEX_4V, VEX_WIG;
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
defm V#NAME#Y : PDI_binop_ri<opc, ImmForm, !strconcat("v", OpcodeStr), OpNode,
VR256, v32i8, sched.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm NAME : PDI_binop_ri<opc, ImmForm, OpcodeStr, OpNode, VR128, v16i8,
sched.XMM>;
}
let ExeDomain = SSEPackedInt in {
defm PSLLW : PDI_binop_rmi_all<0xF1, 0x71, MRM6r, "psllw", X86vshl, X86vshli,
v8i16, v16i16, v8i16, SchedWriteVecShift,
NoVLX_Or_NoBWI>;
defm PSLLD : PDI_binop_rmi_all<0xF2, 0x72, MRM6r, "pslld", X86vshl, X86vshli,
v4i32, v8i32, v4i32, SchedWriteVecShift, NoVLX>;
defm PSLLQ : PDI_binop_rmi_all<0xF3, 0x73, MRM6r, "psllq", X86vshl, X86vshli,
v2i64, v4i64, v2i64, SchedWriteVecShift, NoVLX>;
defm PSRLW : PDI_binop_rmi_all<0xD1, 0x71, MRM2r, "psrlw", X86vsrl, X86vsrli,
v8i16, v16i16, v8i16, SchedWriteVecShift,
NoVLX_Or_NoBWI>;
defm PSRLD : PDI_binop_rmi_all<0xD2, 0x72, MRM2r, "psrld", X86vsrl, X86vsrli,
v4i32, v8i32, v4i32, SchedWriteVecShift, NoVLX>;
defm PSRLQ : PDI_binop_rmi_all<0xD3, 0x73, MRM2r, "psrlq", X86vsrl, X86vsrli,
v2i64, v4i64, v2i64, SchedWriteVecShift, NoVLX>;
defm PSRAW : PDI_binop_rmi_all<0xE1, 0x71, MRM4r, "psraw", X86vsra, X86vsrai,
v8i16, v16i16, v8i16, SchedWriteVecShift,
NoVLX_Or_NoBWI>;
defm PSRAD : PDI_binop_rmi_all<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai,
v4i32, v8i32, v4i32, SchedWriteVecShift, NoVLX>;
defm PSLLDQ : PDI_binop_ri_all<0x73, MRM7r, "pslldq", X86vshldq,
SchedWriteShuffle>;
defm PSRLDQ : PDI_binop_ri_all<0x73, MRM3r, "psrldq", X86vshrdq,
SchedWriteShuffle>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Comparison Instructions
//===---------------------------------------------------------------------===//
defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8,
SchedWriteVecALU, 1, TruePredicate>;
defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16,
SchedWriteVecALU, 1, TruePredicate>;
defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32,
SchedWriteVecALU, 1, TruePredicate>;
defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8,
SchedWriteVecALU, 0, TruePredicate>;
defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16,
SchedWriteVecALU, 0, TruePredicate>;
defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32,
SchedWriteVecALU, 0, TruePredicate>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Shuffle Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pshuffle<string OpcodeStr, ValueType vt128, ValueType vt256,
SDNode OpNode, X86SchedWriteWidths sched,
Predicate prd> {
let Predicates = [HasAVX, prd] in {
def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, u8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1, (i8 imm:$src2))))]>,
VEX, Sched<[sched.XMM]>, VEX_WIG;
def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, u8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode (bitconvert (loadv2i64 addr:$src1)),
(i8 imm:$src2))))]>, VEX,
Sched<[sched.XMM.Folded]>, VEX_WIG;
}
let Predicates = [HasAVX2, prd] in {
def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, u8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode VR256:$src1, (i8 imm:$src2))))]>,
VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG;
def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst),
(ins i256mem:$src1, u8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode (bitconvert (loadv4i64 addr:$src1)),
(i8 imm:$src2))))]>, VEX, VEX_L,
Sched<[sched.YMM.Folded]>, VEX_WIG;
}
let Predicates = [UseSSE2] in {
def ri : Ii8<0x70, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1, (i8 imm:$src2))))]>,
Sched<[sched.XMM]>;
def mi : Ii8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)),
(i8 imm:$src2))))]>,
Sched<[sched.XMM.Folded]>;
}
}
} // ExeDomain = SSEPackedInt
defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd,
SchedWriteShuffle, NoVLX>, PD;
defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw,
SchedWriteShuffle, NoVLX_Or_NoBWI>, XS;
defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw,
SchedWriteShuffle, NoVLX_Or_NoBWI>, XD;
//===---------------------------------------------------------------------===//
// Packed Integer Pack Instructions (SSE & AVX)
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
ValueType ArgVT, SDNode OpNode, RegisterClass RC,
X86MemOperand x86memop, X86FoldableSchedWrite sched,
PatFrag ld_frag, bit Is2Addr = 1> {
def rr : PDI<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OutVT (OpNode (ArgVT RC:$src1), RC:$src2)))]>,
Sched<[sched]>;
def rm : PDI<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OutVT (OpNode (ArgVT RC:$src1),
(bitconvert (ld_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
multiclass sse4_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
ValueType ArgVT, SDNode OpNode, RegisterClass RC,
X86MemOperand x86memop, X86FoldableSchedWrite sched,
PatFrag ld_frag, bit Is2Addr = 1> {
def rr : SS48I<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OutVT (OpNode (ArgVT RC:$src1), RC:$src2)))]>,
Sched<[sched]>;
def rm : SS48I<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OutVT (OpNode (ArgVT RC:$src1),
(bitconvert (ld_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
defm VPACKSSWB : sse2_pack<0x63, "vpacksswb", v16i8, v8i16, X86Packss, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPACKSSDW : sse2_pack<0x6B, "vpackssdw", v8i16, v4i32, X86Packss, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPACKUSWB : sse2_pack<0x67, "vpackuswb", v16i8, v8i16, X86Packus, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPACKUSDW : sse4_pack<0x2B, "vpackusdw", v8i16, v4i32, X86Packus, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V;
}
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
defm VPACKSSWBY : sse2_pack<0x63, "vpacksswb", v32i8, v16i16, X86Packss, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPACKSSDWY : sse2_pack<0x6B, "vpackssdw", v16i16, v8i32, X86Packss, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPACKUSWBY : sse2_pack<0x67, "vpackuswb", v32i8, v16i16, X86Packus, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPACKUSDWY : sse4_pack<0x2B, "vpackusdw", v16i16, v8i32, X86Packus, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L;
}
let Constraints = "$src1 = $dst" in {
defm PACKSSWB : sse2_pack<0x63, "packsswb", v16i8, v8i16, X86Packss, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PACKSSDW : sse2_pack<0x6B, "packssdw", v8i16, v4i32, X86Packss, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PACKUSWB : sse2_pack<0x67, "packuswb", v16i8, v8i16, X86Packus, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PACKUSDW : sse4_pack<0x2B, "packusdw", v8i16, v4i32, X86Packus, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
}
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Unpack Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt,
SDNode OpNode, RegisterClass RC, X86MemOperand x86memop,
X86FoldableSchedWrite sched, PatFrag ld_frag,
bit Is2Addr = 1> {
def rr : PDI<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : PDI<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1,
(bitconvert (ld_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
}
let Predicates = [HasAVX, NoVLX] in {
defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
VEX_4V, VEX_WIG;
}
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
defm VPUNPCKLBWY : sse2_unpack<0x60, "vpunpcklbw", v32i8, X86Unpckl, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPUNPCKLWDY : sse2_unpack<0x61, "vpunpcklwd", v16i16, X86Unpckl, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPUNPCKHBWY : sse2_unpack<0x68, "vpunpckhbw", v32i8, X86Unpckh, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPUNPCKHWDY : sse2_unpack<0x69, "vpunpckhwd", v16i16, X86Unpckh, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
}
let Predicates = [HasAVX2, NoVLX] in {
defm VPUNPCKLDQY : sse2_unpack<0x62, "vpunpckldq", v8i32, X86Unpckl, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPUNPCKLQDQY : sse2_unpack<0x6C, "vpunpcklqdq", v4i64, X86Unpckl, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPUNPCKHDQY : sse2_unpack<0x6A, "vpunpckhdq", v8i32, X86Unpckh, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPUNPCKHQDQY : sse2_unpack<0x6D, "vpunpckhqdq", v4i64, X86Unpckh, VR256,
i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
VEX_4V, VEX_L, VEX_WIG;
}
let Constraints = "$src1 = $dst" in {
defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh, VR128,
i128mem, SchedWriteShuffle.XMM, memopv2i64>;
}
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Extract and Insert
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pinsrw<bit Is2Addr = 1> {
def rr : Ii8<0xC4, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1,
GR32orGR64:$src2, u8imm:$src3),
!if(Is2Addr,
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrw VR128:$src1, GR32orGR64:$src2, imm:$src3))]>,
Sched<[WriteVecInsert]>;
def rm : Ii8<0xC4, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
i16mem:$src2, u8imm:$src3),
!if(Is2Addr,
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
imm:$src3))]>,
Sched<[WriteVecInsertLd, ReadAfterLd]>;
}
// Extract
let Predicates = [HasAVX, NoBWI] in
def VPEXTRWrr : Ii8<0xC5, MRMSrcReg,
(outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2),
"vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))]>,
PD, VEX, Sched<[WriteVecExtract]>;
def PEXTRWrr : PDIi8<0xC5, MRMSrcReg,
(outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2),
"pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))]>,
Sched<[WriteVecExtract]>;
// Insert
let Predicates = [HasAVX, NoBWI] in
defm VPINSRW : sse2_pinsrw<0>, PD, VEX_4V;
let Predicates = [UseSSE2], Constraints = "$src1 = $dst" in
defm PINSRW : sse2_pinsrw, PD;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Mask Creation
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecMOVMSK] in {
def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
(ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>,
VEX, VEX_WIG;
let Predicates = [HasAVX2] in {
def VPMOVMSKBYrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
(ins VR256:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32orGR64:$dst, (X86movmsk (v32i8 VR256:$src)))]>,
VEX, VEX_L, VEX_WIG;
}
def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Conditional Store
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecStore] in {
let Uses = [EDI], Predicates = [HasAVX,Not64BitMode] in
def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs),
(ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>,
VEX, VEX_WIG;
let Uses = [RDI], Predicates = [HasAVX,In64BitMode] in
def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs),
(ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>,
VEX, VEX_WIG;
let Uses = [EDI], Predicates = [UseSSE2,Not64BitMode] in
def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>;
let Uses = [RDI], Predicates = [UseSSE2,In64BitMode] in
def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Move Doubleword/Quadword
//===---------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Move Int Doubleword to Packed Double Int
//
let ExeDomain = SSEPackedInt in {
def VMOVDI2PDIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>,
VEX, Sched<[WriteMove]>;
def VMOVDI2PDIrm : VS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>,
VEX, Sched<[WriteLoad]>;
def VMOV64toPQIrr : VRS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))]>,
VEX, Sched<[WriteMove]>;
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in
def VMOV64toPQIrm : VRS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}", []>,
VEX, Sched<[WriteLoad]>;
let isCodeGenOnly = 1 in
def VMOV64toSDrr : VRS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))]>,
VEX, Sched<[WriteMove]>;
def MOVDI2PDIrr : S2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>,
Sched<[WriteMove]>;
def MOVDI2PDIrm : S2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>,
Sched<[WriteLoad]>;
def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))]>,
Sched<[WriteMove]>;
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in
def MOV64toPQIrm : RS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteLoad]>;
let isCodeGenOnly = 1 in
def MOV64toSDrr : RS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))]>,
Sched<[WriteMove]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// Move Int Doubleword to Single Scalar
//
let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
def VMOVDI2SSrr : VS2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))]>,
VEX, Sched<[WriteMove]>;
def VMOVDI2SSrm : VS2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>,
VEX, Sched<[WriteLoad]>;
def MOVDI2SSrr : S2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))]>,
Sched<[WriteMove]>;
def MOVDI2SSrm : S2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>,
Sched<[WriteLoad]>;
} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
//===---------------------------------------------------------------------===//
// Move Packed Doubleword Int to Packed Double Int
//
let ExeDomain = SSEPackedInt in {
def VMOVPDI2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (extractelt (v4i32 VR128:$src),
(iPTR 0)))]>, VEX,
Sched<[WriteMove]>;
def VMOVPDI2DImr : VS2I<0x7E, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (extractelt (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)]>,
VEX, Sched<[WriteStore]>;
def MOVPDI2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (extractelt (v4i32 VR128:$src),
(iPTR 0)))]>,
Sched<[WriteMove]>;
def MOVPDI2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (extractelt (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)]>,
Sched<[WriteStore]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// Move Packed Doubleword Int first element to Doubleword Int
//
let ExeDomain = SSEPackedInt in {
let SchedRW = [WriteMove] in {
def VMOVPQIto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (extractelt (v2i64 VR128:$src),
(iPTR 0)))]>,
VEX;
def MOVPQIto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (extractelt (v2i64 VR128:$src),
(iPTR 0)))]>;
} //SchedRW
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in
def VMOVPQIto64mr : VRS2I<0x7E, MRMDestMem, (outs),
(ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}", []>,
VEX, Sched<[WriteStore]>;
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in
def MOVPQIto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteStore]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// Bitcast FR64 <-> GR64
//
let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
let Predicates = [UseAVX] in
def VMOV64toSDrm : VS2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>,
VEX, Sched<[WriteLoad]>;
def VMOVSDto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))]>,
VEX, Sched<[WriteMove]>;
def VMOVSDto64mr : VRS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)]>,
VEX, Sched<[WriteStore]>;
def MOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>,
Sched<[WriteLoad]>;
def MOVSDto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))]>,
Sched<[WriteMove]>;
def MOVSDto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)]>,
Sched<[WriteStore]>;
} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
//===---------------------------------------------------------------------===//
// Move Scalar Single to Double Int
//
let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
def VMOVSS2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))]>,
VEX, Sched<[WriteMove]>;
def VMOVSS2DImr : VS2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)]>,
VEX, Sched<[WriteStore]>;
def MOVSS2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))]>,
Sched<[WriteMove]>;
def MOVSS2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)]>,
Sched<[WriteStore]>;
} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
let Predicates = [UseAVX] in {
let AddedComplexity = 15 in {
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
(VMOVDI2PDIrr GR32:$src)>;
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))),
(VMOV64toPQIrr GR64:$src)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i64 0), (VMOV64toPQIrr GR64:$src), sub_xmm)>;
}
// AVX 128-bit movd/movq instructions write zeros in the high 128-bit part.
// These instructions also write zeros in the high part of a 256-bit register.
let AddedComplexity = 20 in {
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzload addr:$src)),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVDI2PDIrm addr:$src), sub_xmm)>;
def : Pat<(v8i32 (X86vzload addr:$src)),
(SUBREG_TO_REG (i64 0), (VMOVDI2PDIrm addr:$src), sub_xmm)>;
}
// Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext.
def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src), sub_xmm)>;
}
let Predicates = [UseSSE2] in {
let AddedComplexity = 15 in {
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
(MOVDI2PDIrr GR32:$src)>;
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))),
(MOV64toPQIrr GR64:$src)>;
}
let AddedComplexity = 20 in {
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))),
(MOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(MOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(MOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(MOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzload addr:$src)),
(MOVDI2PDIrm addr:$src)>;
}
}
// Before the MC layer of LLVM existed, clang emitted "movd" assembly instead of
// "movq" due to MacOS parsing limitation. In order to parse old assembly, we add
// these aliases.
def : InstAlias<"movd\t{$src, $dst|$dst, $src}",
(MOV64toPQIrr VR128:$dst, GR64:$src), 0>;
def : InstAlias<"movd\t{$src, $dst|$dst, $src}",
(MOVPQIto64rr GR64:$dst, VR128:$src), 0>;
// Allow "vmovd" but print "vmovq" since we don't need compatibility for AVX.
def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
(VMOV64toPQIrr VR128:$dst, GR64:$src), 0>;
def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
(VMOVPQIto64rr GR64:$dst, VR128:$src), 0>;
//===---------------------------------------------------------------------===//
// SSE2 - Move Quadword
//===---------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Move Quadword Int to Packed Quadword Int
//
let ExeDomain = SSEPackedInt, SchedRW = [WriteLoad] in {
def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
VEX, Requires<[UseAVX]>, VEX_WIG;
def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>,
XS, Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix
} // ExeDomain, SchedRW
//===---------------------------------------------------------------------===//
// Move Packed Quadword Int to Quadword Int
//
let ExeDomain = SSEPackedInt, SchedRW = [WriteStore] in {
def VMOVPQI2QImr : VS2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (extractelt (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)]>,
VEX, VEX_WIG;
def MOVPQI2QImr : S2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (extractelt (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
} // ExeDomain, SchedRW
// For disassembler only
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [SchedWriteVecLogic.XMM] in {
def VMOVPQI2QIrr : VS2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG;
def MOVPQI2QIrr : S2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}", []>;
}
// Aliases to help the assembler pick two byte VEX encodings by swapping the
// operands relative to the normal instructions to use VEX.R instead of VEX.B.
def : InstAlias<"vmovq\t{$src, $dst|$dst, $src}",
(VMOVPQI2QIrr VR128L:$dst, VR128H:$src), 0>;
let Predicates = [UseAVX], AddedComplexity = 20 in {
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(VMOVQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
(VMOVQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
(VMOVQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)),
(VMOVQI2PQIrm addr:$src)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i64 0), (VMOVQI2PQIrm addr:$src), sub_xmm)>;
def : Pat<(v4i64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i64 0), (VMOVQI2PQIrm addr:$src), sub_xmm)>;
}
let Predicates = [UseSSE2], AddedComplexity = 20 in {
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(MOVQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
(MOVQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
(MOVQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)), (MOVQI2PQIrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in
// IA32 document. movq xmm1, xmm2 does clear the high bits.
//
let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecLogic.XMM] in {
let AddedComplexity = 15 in
def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
XS, VEX, Requires<[UseAVX]>, VEX_WIG;
let AddedComplexity = 15 in
def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
XS, Requires<[UseSSE2]>;
} // ExeDomain, SchedRW
let AddedComplexity = 20 in {
let Predicates = [UseAVX] in {
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
(VMOVZPQILo2PQIrr VR128:$src)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
(MOVZPQILo2PQIrr VR128:$src)>;
}
}
//===---------------------------------------------------------------------===//
// SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP
//===---------------------------------------------------------------------===//
multiclass sse3_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr,
ValueType vt, RegisterClass RC, PatFrag mem_frag,
X86MemOperand x86memop, X86FoldableSchedWrite sched> {
def rr : S3SI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (vt (OpNode RC:$src)))]>,
Sched<[sched]>;
def rm : S3SI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (OpNode (mem_frag addr:$src)))]>,
Sched<[sched.Folded]>;
}
let Predicates = [HasAVX, NoVLX] in {
defm VMOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
v4f32, VR128, loadv4f32, f128mem,
SchedWriteFShuffle.XMM>, VEX, VEX_WIG;
defm VMOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
v4f32, VR128, loadv4f32, f128mem,
SchedWriteFShuffle.XMM>, VEX, VEX_WIG;
defm VMOVSHDUPY : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
v8f32, VR256, loadv8f32, f256mem,
SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG;
defm VMOVSLDUPY : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
v8f32, VR256, loadv8f32, f256mem,
SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG;
}
defm MOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "movshdup", v4f32, VR128,
memopv4f32, f128mem, SchedWriteFShuffle.XMM>;
defm MOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "movsldup", v4f32, VR128,
memopv4f32, f128mem, SchedWriteFShuffle.XMM>;
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4i32 (X86Movshdup VR128:$src)),
(VMOVSHDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (loadv2i64 addr:$src)))),
(VMOVSHDUPrm addr:$src)>;
def : Pat<(v4i32 (X86Movsldup VR128:$src)),
(VMOVSLDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (loadv2i64 addr:$src)))),
(VMOVSLDUPrm addr:$src)>;
def : Pat<(v8i32 (X86Movshdup VR256:$src)),
(VMOVSHDUPYrr VR256:$src)>;
def : Pat<(v8i32 (X86Movshdup (bc_v8i32 (loadv4i64 addr:$src)))),
(VMOVSHDUPYrm addr:$src)>;
def : Pat<(v8i32 (X86Movsldup VR256:$src)),
(VMOVSLDUPYrr VR256:$src)>;
def : Pat<(v8i32 (X86Movsldup (bc_v8i32 (loadv4i64 addr:$src)))),
(VMOVSLDUPYrm addr:$src)>;
}
let Predicates = [UseSSE3] in {
def : Pat<(v4i32 (X86Movshdup VR128:$src)),
(MOVSHDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (memopv2i64 addr:$src)))),
(MOVSHDUPrm addr:$src)>;
def : Pat<(v4i32 (X86Movsldup VR128:$src)),
(MOVSLDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (memopv2i64 addr:$src)))),
(MOVSLDUPrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE3 - Replicate Double FP - MOVDDUP
//===---------------------------------------------------------------------===//
multiclass sse3_replicate_dfp<string OpcodeStr, X86SchedWriteWidths sched> {
def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (X86Movddup VR128:$src)))]>,
Sched<[sched.XMM]>;
def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(v2f64 (X86Movddup
(scalar_to_vector (loadf64 addr:$src)))))]>,
Sched<[sched.XMM.Folded]>;
}
// FIXME: Merge with above classes when there are patterns for the ymm version
multiclass sse3_replicate_dfp_y<string OpcodeStr, X86SchedWriteWidths sched> {
def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>,
Sched<[sched.YMM]>;
def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(v4f64 (X86Movddup (loadv4f64 addr:$src))))]>,
Sched<[sched.YMM.Folded]>;
}
let Predicates = [HasAVX, NoVLX] in {
defm VMOVDDUP : sse3_replicate_dfp<"vmovddup", SchedWriteFShuffle>,
VEX, VEX_WIG;
defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup", SchedWriteFShuffle>,
VEX, VEX_L, VEX_WIG;
}
defm MOVDDUP : sse3_replicate_dfp<"movddup", SchedWriteFShuffle>;
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(X86Movddup (loadv2f64 addr:$src)),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
}
let Predicates = [UseSSE3] in {
// No need for aligned memory as this only loads 64-bits.
def : Pat<(X86Movddup (loadv2f64 addr:$src)),
(MOVDDUPrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE3 - Move Unaligned Integer
//===---------------------------------------------------------------------===//
let SchedRW = [WriteVecLoad] in {
let Predicates = [HasAVX] in {
def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vlddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>,
VEX, VEX_WIG;
def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vlddqu\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>,
VEX, VEX_L, VEX_WIG;
} // Predicates
def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"lddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>;
} // SchedRW
//===---------------------------------------------------------------------===//
// SSE3 - Arithmetic
//===---------------------------------------------------------------------===//
multiclass sse3_addsub<string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, X86FoldableSchedWrite sched,
PatFrag ld_frag, bit Is2Addr = 1> {
def rr : I<0xD0, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (X86Addsub RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : I<0xD0, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (X86Addsub RC:$src1, (ld_frag addr:$src2))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedSingle in {
defm VADDSUBPS : sse3_addsub<"vaddsubps", v4f32, VR128, f128mem,
SchedWriteFAdd.XMM, loadv4f32, 0>,
XD, VEX_4V, VEX_WIG;
defm VADDSUBPSY : sse3_addsub<"vaddsubps", v8f32, VR256, f256mem,
SchedWriteFAdd.YMM, loadv8f32, 0>,
XD, VEX_4V, VEX_L, VEX_WIG;
}
let ExeDomain = SSEPackedDouble in {
defm VADDSUBPD : sse3_addsub<"vaddsubpd", v2f64, VR128, f128mem,
SchedWriteFAdd.XMM, loadv2f64, 0>,
PD, VEX_4V, VEX_WIG;
defm VADDSUBPDY : sse3_addsub<"vaddsubpd", v4f64, VR256, f256mem,
SchedWriteFAdd.YMM, loadv4f64, 0>,
PD, VEX_4V, VEX_L, VEX_WIG;
}
}
let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in {
let ExeDomain = SSEPackedSingle in
defm ADDSUBPS : sse3_addsub<"addsubps", v4f32, VR128, f128mem,
SchedWriteFAdd.XMM, memopv4f32>, XD;
let ExeDomain = SSEPackedDouble in
defm ADDSUBPD : sse3_addsub<"addsubpd", v2f64, VR128, f128mem,
SchedWriteFAdd.XMM, memopv2f64>, PD;
}
//===---------------------------------------------------------------------===//
// SSE3 Instructions
//===---------------------------------------------------------------------===//
// Horizontal ops
multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag ld_frag,
bit Is2Addr = 1> {
def rr : S3DI<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, (ld_frag addr:$src2))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag ld_frag,
bit Is2Addr = 1> {
def rr : S3I<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, (ld_frag addr:$src2))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedSingle in {
defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem,
X86fhadd, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG;
defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem,
X86fhsub, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG;
defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem,
X86fhadd, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG;
defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem,
X86fhsub, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG;
}
let ExeDomain = SSEPackedDouble in {
defm VHADDPD : S3_Int<0x7C, "vhaddpd", v2f64, VR128, f128mem,
X86fhadd, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG;
defm VHSUBPD : S3_Int<0x7D, "vhsubpd", v2f64, VR128, f128mem,
X86fhsub, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG;
defm VHADDPDY : S3_Int<0x7C, "vhaddpd", v4f64, VR256, f256mem,
X86fhadd, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG;
defm VHSUBPDY : S3_Int<0x7D, "vhsubpd", v4f64, VR256, f256mem,
X86fhsub, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG;
}
}
let Constraints = "$src1 = $dst" in {
let ExeDomain = SSEPackedSingle in {
defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, X86fhadd,
WriteFHAdd, memopv4f32>;
defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, X86fhsub,
WriteFHAdd, memopv4f32>;
}
let ExeDomain = SSEPackedDouble in {
defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, X86fhadd,
WriteFHAdd, memopv2f64>;
defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, X86fhsub,
WriteFHAdd, memopv2f64>;
}
}
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Absolute Instructions
//===---------------------------------------------------------------------===//
/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm<bits<8> opc, string OpcodeStr, ValueType vt,
SDNode OpNode, X86SchedWriteWidths sched, PatFrag ld_frag> {
def rr : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (vt (OpNode VR128:$src)))]>,
Sched<[sched.XMM]>;
def rm : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(vt (OpNode (bitconvert (ld_frag addr:$src)))))]>,
Sched<[sched.XMM.Folded]>;
}
/// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm_y<bits<8> opc, string OpcodeStr, ValueType vt,
SDNode OpNode, X86SchedWriteWidths sched> {
def Yrr : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (vt (OpNode VR256:$src)))]>,
Sched<[sched.YMM]>;
def Yrm : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
(ins i256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(vt (OpNode (bitconvert (loadv4i64 addr:$src)))))]>,
Sched<[sched.YMM.Folded]>;
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
defm VPABSB : SS3I_unop_rm<0x1C, "vpabsb", v16i8, abs, SchedWriteVecALU,
loadv2i64>, VEX, VEX_WIG;
defm VPABSW : SS3I_unop_rm<0x1D, "vpabsw", v8i16, abs, SchedWriteVecALU,
loadv2i64>, VEX, VEX_WIG;
}
let Predicates = [HasAVX, NoVLX] in {
defm VPABSD : SS3I_unop_rm<0x1E, "vpabsd", v4i32, abs, SchedWriteVecALU,
loadv2i64>, VEX, VEX_WIG;
}
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
defm VPABSB : SS3I_unop_rm_y<0x1C, "vpabsb", v32i8, abs, SchedWriteVecALU>,
VEX, VEX_L, VEX_WIG;
defm VPABSW : SS3I_unop_rm_y<0x1D, "vpabsw", v16i16, abs, SchedWriteVecALU>,
VEX, VEX_L, VEX_WIG;
}
let Predicates = [HasAVX2, NoVLX] in {
defm VPABSD : SS3I_unop_rm_y<0x1E, "vpabsd", v8i32, abs, SchedWriteVecALU>,
VEX, VEX_L, VEX_WIG;
}
defm PABSB : SS3I_unop_rm<0x1C, "pabsb", v16i8, abs, SchedWriteVecALU,
memopv2i64>;
defm PABSW : SS3I_unop_rm<0x1D, "pabsw", v8i16, abs, SchedWriteVecALU,
memopv2i64>;
defm PABSD : SS3I_unop_rm<0x1E, "pabsd", v4i32, abs, SchedWriteVecALU,
memopv2i64>;
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Binary Operator Instructions
//===---------------------------------------------------------------------===//
/// SS3I_binop_rm - Simple SSSE3 bin op
multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType DstVT, ValueType OpVT, RegisterClass RC,
PatFrag memop_frag, X86MemOperand x86memop,
X86FoldableSchedWrite sched, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : SS38I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (OpVT RC:$src1), RC:$src2)))]>,
Sched<[sched]>;
def rm : SS38I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(DstVT (OpNode (OpVT RC:$src1),
(bitconvert (memop_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}.
multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, X86FoldableSchedWrite sched,
PatFrag ld_frag, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
Sched<[sched]>;
def rm : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (ld_frag addr:$src2))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId256,
X86FoldableSchedWrite sched> {
let isCommutable = 1 in
def Yrr : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>,
Sched<[sched]>;
def Yrm : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let ImmT = NoImm, Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
let isCommutable = 0 in {
defm VPSHUFB : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v16i8, v16i8,
VR128, loadv2i64, i128mem,
SchedWriteVarShuffle.XMM, 0>, VEX_4V, VEX_WIG;
defm VPMADDUBSW : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v8i16,
v16i8, VR128, loadv2i64, i128mem,
SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG;
}
defm VPMULHRSW : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v8i16, v8i16,
VR128, loadv2i64, i128mem,
SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG;
}
let ImmT = NoImm, Predicates = [HasAVX] in {
let isCommutable = 0 in {
defm VPHADDW : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v8i16, v8i16, VR128,
loadv2i64, i128mem,
WritePHAdd, 0>, VEX_4V, VEX_WIG;
defm VPHADDD : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v4i32, v4i32, VR128,
loadv2i64, i128mem,
WritePHAdd, 0>, VEX_4V, VEX_WIG;
defm VPHSUBW : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v8i16, v8i16, VR128,
loadv2i64, i128mem,
WritePHAdd, 0>, VEX_4V, VEX_WIG;
defm VPHSUBD : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v4i32, v4i32, VR128,
loadv2i64, i128mem,
WritePHAdd, 0>, VEX_4V;
defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb",
int_x86_ssse3_psign_b_128,
SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw",
int_x86_ssse3_psign_w_128,
SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd",
int_x86_ssse3_psign_d_128,
SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw",
int_x86_ssse3_phadd_sw_128,
WritePHAdd, loadv2i64, 0>, VEX_4V, VEX_WIG;
defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw",
int_x86_ssse3_phsub_sw_128,
WritePHAdd, loadv2i64, 0>, VEX_4V, VEX_WIG;
}
}
let ImmT = NoImm, Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
let isCommutable = 0 in {
defm VPSHUFBY : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v32i8, v32i8,
VR256, loadv4i64, i256mem,
SchedWriteVarShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
defm VPMADDUBSWY : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v16i16,
v32i8, VR256, loadv4i64, i256mem,
SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
}
defm VPMULHRSWY : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v16i16, v16i16,
VR256, loadv4i64, i256mem,
SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
}
let ImmT = NoImm, Predicates = [HasAVX2] in {
let isCommutable = 0 in {
defm VPHADDWY : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v16i16, v16i16,
VR256, loadv4i64, i256mem,
WritePHAdd, 0>, VEX_4V, VEX_L, VEX_WIG;
defm VPHADDDY : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v8i32, v8i32, VR256,
loadv4i64, i256mem,
WritePHAdd, 0>, VEX_4V, VEX_L, VEX_WIG;
defm VPHSUBWY : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v16i16, v16i16,
VR256, loadv4i64, i256mem,
WritePHAdd, 0>, VEX_4V, VEX_L, VEX_WIG;
defm VPHSUBDY : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v8i32, v8i32, VR256,
loadv4i64, i256mem,
WritePHAdd, 0>, VEX_4V, VEX_L;
defm VPSIGNB : SS3I_binop_rm_int_y<0x08, "vpsignb", int_x86_avx2_psign_b,
SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG;
defm VPSIGNW : SS3I_binop_rm_int_y<0x09, "vpsignw", int_x86_avx2_psign_w,
SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG;
defm VPSIGND : SS3I_binop_rm_int_y<0x0A, "vpsignd", int_x86_avx2_psign_d,
SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG;
defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw",
int_x86_avx2_phadd_sw,
WritePHAdd>, VEX_4V, VEX_L, VEX_WIG;
defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw",
int_x86_avx2_phsub_sw,
WritePHAdd>, VEX_4V, VEX_L, VEX_WIG;
}
}
// None of these have i8 immediate fields.
let ImmT = NoImm, Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
defm PHADDW : SS3I_binop_rm<0x01, "phaddw", X86hadd, v8i16, v8i16, VR128,
memopv2i64, i128mem, WritePHAdd>;
defm PHADDD : SS3I_binop_rm<0x02, "phaddd", X86hadd, v4i32, v4i32, VR128,
memopv2i64, i128mem, WritePHAdd>;
defm PHSUBW : SS3I_binop_rm<0x05, "phsubw", X86hsub, v8i16, v8i16, VR128,
memopv2i64, i128mem, WritePHAdd>;
defm PHSUBD : SS3I_binop_rm<0x06, "phsubd", X86hsub, v4i32, v4i32, VR128,
memopv2i64, i128mem, WritePHAdd>;
defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", int_x86_ssse3_psign_b_128,
SchedWriteVecALU.XMM, memopv2i64>;
defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", int_x86_ssse3_psign_w_128,
SchedWriteVecALU.XMM, memopv2i64>;
defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", int_x86_ssse3_psign_d_128,
SchedWriteVecALU.XMM, memopv2i64>;
defm PSHUFB : SS3I_binop_rm<0x00, "pshufb", X86pshufb, v16i8, v16i8, VR128,
memopv2i64, i128mem, SchedWriteVarShuffle.XMM>;
defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw",
int_x86_ssse3_phadd_sw_128,
WritePHAdd, memopv2i64>;
defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw",
int_x86_ssse3_phsub_sw_128,
WritePHAdd, memopv2i64>;
defm PMADDUBSW : SS3I_binop_rm<0x04, "pmaddubsw", X86vpmaddubsw, v8i16,
v16i8, VR128, memopv2i64, i128mem,
SchedWriteVecIMul.XMM>;
}
defm PMULHRSW : SS3I_binop_rm<0x0B, "pmulhrsw", X86mulhrs, v8i16, v8i16,
VR128, memopv2i64, i128mem, SchedWriteVecIMul.XMM>;
}
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Align Instruction Patterns
//===---------------------------------------------------------------------===//
multiclass ssse3_palignr<string asm, ValueType VT, RegisterClass RC,
PatFrag memop_frag, X86MemOperand x86memop,
X86FoldableSchedWrite sched, bit Is2Addr = 1> {
let hasSideEffects = 0 in {
def rri : SS3AI<0x0F, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (VT (X86PAlignr RC:$src1, RC:$src2, (i8 imm:$src3))))]>,
Sched<[sched]>;
let mayLoad = 1 in
def rmi : SS3AI<0x0F, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (VT (X86PAlignr RC:$src1,
(bitconvert (memop_frag addr:$src2)),
(i8 imm:$src3))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
defm VPALIGNR : ssse3_palignr<"vpalignr", v16i8, VR128, loadv2i64, i128mem,
SchedWriteShuffle.XMM, 0>, VEX_4V, VEX_WIG;
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
defm VPALIGNRY : ssse3_palignr<"vpalignr", v32i8, VR256, loadv4i64, i256mem,
SchedWriteShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in
defm PALIGNR : ssse3_palignr<"palignr", v16i8, VR128, memopv2i64, i128mem,
SchedWriteShuffle.XMM>;
//===---------------------------------------------------------------------===//
// SSSE3 - Thread synchronization
//===---------------------------------------------------------------------===//
let SchedRW = [WriteSystem] in {
let usesCustomInserter = 1 in {
def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3),
[(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>,
Requires<[HasSSE3]>;
}
let Uses = [EAX, ECX, EDX] in
def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>,
TB, Requires<[HasSSE3]>;
let Uses = [ECX, EAX] in
def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait",
[(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>;
} // SchedRW
def : InstAlias<"mwait\t{%eax, %ecx|ecx, eax}", (MWAITrr)>, Requires<[Not64BitMode]>;
def : InstAlias<"mwait\t{%rax, %rcx|rcx, rax}", (MWAITrr)>, Requires<[In64BitMode]>;
def : InstAlias<"monitor\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITORrrr)>,
Requires<[Not64BitMode]>;
def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORrrr)>,
Requires<[In64BitMode]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Move with Sign/Zero Extend
//===----------------------------------------------------------------------===//
multiclass SS41I_pmovx_rrrm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp,
RegisterClass OutRC, RegisterClass InRC,
X86FoldableSchedWrite sched> {
def rr : SS48I<opc, MRMSrcReg, (outs OutRC:$dst), (ins InRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
Sched<[sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs OutRC:$dst), (ins MemOp:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
Sched<[sched.Folded]>;
}
// FIXME: YMM cases should use SchedWriteShuffle.YMM.
multiclass SS41I_pmovx_rm_all<bits<8> opc, string OpcodeStr,
X86MemOperand MemOp, X86MemOperand MemYOp,
X86SchedWriteWidths sched, Predicate prd> {
defm NAME : SS41I_pmovx_rrrm<opc, OpcodeStr, MemOp, VR128, VR128, sched.XMM>;
let Predicates = [HasAVX, prd] in
defm V#NAME : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemOp,
VR128, VR128, sched.XMM>, VEX, VEX_WIG;
let Predicates = [HasAVX2, prd] in
defm V#NAME#Y : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemYOp,
VR256, VR128, sched.XMM>, VEX, VEX_L, VEX_WIG;
}
multiclass SS41I_pmovx_rm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp,
X86MemOperand MemYOp, Predicate prd> {
defm PMOVSX#NAME : SS41I_pmovx_rm_all<opc, !strconcat("pmovsx", OpcodeStr),
MemOp, MemYOp, SchedWriteShuffle, prd>;
defm PMOVZX#NAME : SS41I_pmovx_rm_all<!add(opc, 0x10),
!strconcat("pmovzx", OpcodeStr),
MemOp, MemYOp, SchedWriteShuffle, prd>;
}
defm BW : SS41I_pmovx_rm<0x20, "bw", i64mem, i128mem, NoVLX_Or_NoBWI>;
defm WD : SS41I_pmovx_rm<0x23, "wd", i64mem, i128mem, NoVLX>;
defm DQ : SS41I_pmovx_rm<0x25, "dq", i64mem, i128mem, NoVLX>;
defm BD : SS41I_pmovx_rm<0x21, "bd", i32mem, i64mem, NoVLX>;
defm WQ : SS41I_pmovx_rm<0x24, "wq", i32mem, i64mem, NoVLX>;
defm BQ : SS41I_pmovx_rm<0x22, "bq", i16mem, i32mem, NoVLX>;
// AVX2 Patterns
multiclass SS41I_pmovx_avx2_patterns<string OpcPrefix, string ExtTy, SDNode ExtOp> {
// Register-Register patterns
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
def : Pat<(v16i16 (ExtOp (v16i8 VR128:$src))),
(!cast<I>(OpcPrefix#BWYrr) VR128:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v8i32 (ExtOp (v16i8 VR128:$src))),
(!cast<I>(OpcPrefix#BDYrr) VR128:$src)>;
def : Pat<(v4i64 (ExtOp (v16i8 VR128:$src))),
(!cast<I>(OpcPrefix#BQYrr) VR128:$src)>;
def : Pat<(v8i32 (ExtOp (v8i16 VR128:$src))),
(!cast<I>(OpcPrefix#WDYrr) VR128:$src)>;
def : Pat<(v4i64 (ExtOp (v8i16 VR128:$src))),
(!cast<I>(OpcPrefix#WQYrr) VR128:$src)>;
def : Pat<(v4i64 (ExtOp (v4i32 VR128:$src))),
(!cast<I>(OpcPrefix#DQYrr) VR128:$src)>;
}
// Simple Register-Memory patterns
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
def : Pat<(v16i16 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
(!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v8i32 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
(!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
(!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
def : Pat<(v8i32 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
(!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
(!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi32") addr:$src)),
(!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
}
// AVX2 Register-Memory patterns
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v8i32 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
(!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
}
}
defm : SS41I_pmovx_avx2_patterns<"VPMOVSX", "s", X86vsext>;
defm : SS41I_pmovx_avx2_patterns<"VPMOVZX", "z", X86vzext>;
// SSE4.1/AVX patterns.
multiclass SS41I_pmovx_patterns<string OpcPrefix, string ExtTy,
SDNode ExtOp> {
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
def : Pat<(v8i16 (ExtOp (v16i8 VR128:$src))),
(!cast<I>(OpcPrefix#BWrr) VR128:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4i32 (ExtOp (v16i8 VR128:$src))),
(!cast<I>(OpcPrefix#BDrr) VR128:$src)>;
def : Pat<(v2i64 (ExtOp (v16i8 VR128:$src))),
(!cast<I>(OpcPrefix#BQrr) VR128:$src)>;
def : Pat<(v4i32 (ExtOp (v8i16 VR128:$src))),
(!cast<I>(OpcPrefix#WDrr) VR128:$src)>;
def : Pat<(v2i64 (ExtOp (v8i16 VR128:$src))),
(!cast<I>(OpcPrefix#WQrr) VR128:$src)>;
def : Pat<(v2i64 (ExtOp (v4i32 VR128:$src))),
(!cast<I>(OpcPrefix#DQrr) VR128:$src)>;
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
def : Pat<(v8i16 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
(!cast<I>(OpcPrefix#BWrm) addr:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4i32 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
(!cast<I>(OpcPrefix#BDrm) addr:$src)>;
def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
(!cast<I>(OpcPrefix#BQrm) addr:$src)>;
def : Pat<(v4i32 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
(!cast<I>(OpcPrefix#WDrm) addr:$src)>;
def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
(!cast<I>(OpcPrefix#WQrm) addr:$src)>;
def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi32") addr:$src)),
(!cast<I>(OpcPrefix#DQrm) addr:$src)>;
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#BWrm) addr:$src)>;
def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
(!cast<I>(OpcPrefix#BWrm) addr:$src)>;
def : Pat<(v8i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWrm) addr:$src)>;
def : Pat<(v8i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWrm) addr:$src)>;
def : Pat<(v8i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWrm) addr:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4i32 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
(!cast<I>(OpcPrefix#BDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#BDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (extloadi32i16 addr:$src)))))),
(!cast<I>(OpcPrefix#BQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#BQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BQrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#WDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
(!cast<I>(OpcPrefix#WDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDrm) addr:$src)>;
def : Pat<(v4i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
(!cast<I>(OpcPrefix#WQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (v8i16 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#WQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#DQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
(!cast<I>(OpcPrefix#DQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQrm) addr:$src)>;
def : Pat<(v2i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQrm) addr:$src)>;
}
}
defm : SS41I_pmovx_patterns<"VPMOVSX", "s", sext_invec>;
defm : SS41I_pmovx_patterns<"VPMOVZX", "z", zext_invec>;
let Predicates = [UseSSE41] in {
defm : SS41I_pmovx_patterns<"PMOVSX", "s", sext_invec>;
defm : SS41I_pmovx_patterns<"PMOVZX", "z", zext_invec>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Extract Instructions
//===----------------------------------------------------------------------===//
/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem
multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
(ins VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32orGR64:$dst, (X86pextrb (v16i8 VR128:$src1),
imm:$src2))]>,
Sched<[WriteVecExtract]>;
let hasSideEffects = 0, mayStore = 1 in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i8mem:$dst, VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))),
addr:$dst)]>, Sched<[WriteVecExtractSt]>;
}
let Predicates = [HasAVX, NoBWI] in
defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX;
defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination
multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def rr_REV : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
(ins VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
Sched<[WriteVecExtract]>, FoldGenData<NAME#ri>;
let hasSideEffects = 0, mayStore = 1 in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i16mem:$dst, VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (i16 (trunc (X86pextrw (v8i16 VR128:$src1), imm:$src2))),
addr:$dst)]>, Sched<[WriteVecExtractSt]>;
}
let Predicates = [HasAVX, NoBWI] in
defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX;
defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (v4i32 VR128:$src1), imm:$src2))]>,
Sched<[WriteVecExtract]>;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v4i32 VR128:$src1), imm:$src2),
addr:$dst)]>, Sched<[WriteVecExtractSt]>;
}
let Predicates = [HasAVX, NoDQI] in
defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX;
defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
(ins VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR64:$dst,
(extractelt (v2i64 VR128:$src1), imm:$src2))]>,
Sched<[WriteVecExtract]>;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i64mem:$dst, VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v2i64 VR128:$src1), imm:$src2),
addr:$dst)]>, Sched<[WriteVecExtractSt]>;
}
let Predicates = [HasAVX, NoDQI] in
defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W;
defm PEXTRQ : SS41I_extract64<0x16, "pextrq">, REX_W;
/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory
/// destination
multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
(ins VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32orGR64:$dst,
(extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))]>,
Sched<[WriteVecExtract]>;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins f32mem:$dst, VR128:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
addr:$dst)]>, Sched<[WriteVecExtractSt]>;
}
let ExeDomain = SSEPackedSingle in {
let Predicates = [UseAVX] in
defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX, VEX_WIG;
defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">;
}
// Also match an EXTRACTPS store when the store is done as f32 instead of i32.
def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
imm:$src2))),
addr:$dst),
(VEXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
Requires<[HasAVX]>;
def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
imm:$src2))),
addr:$dst),
(EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
Requires<[UseSSE41]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Insert Instructions
//===----------------------------------------------------------------------===//
multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32orGR64:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, GR32orGR64:$src2, imm:$src3))]>,
Sched<[WriteVecInsert]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i8mem:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
imm:$src3))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoBWI] in
defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PINSRB : SS41I_insert8<0x20, "pinsrb">;
multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
Sched<[WriteVecInsert]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i32mem:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
imm:$src3)))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoDQI] in
defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR64:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
Sched<[WriteVecInsert]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i64mem:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
imm:$src3)))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoDQI] in
defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W;
let Constraints = "$src1 = $dst" in
defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W;
// insertps has a few different modes, there's the first two here below which
// are optimized inserts that won't zero arbitrary elements in the destination
// vector. The next one matches the intrinsic and could zero arbitrary elements
// in the target vector.
multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86insertps VR128:$src1, VR128:$src2, imm:$src3))]>,
Sched<[SchedWriteFShuffle.XMM]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f32mem:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86insertps VR128:$src1,
(v4f32 (scalar_to_vector (loadf32 addr:$src2))),
imm:$src3))]>,
Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>;
}
let ExeDomain = SSEPackedSingle in {
let Predicates = [UseAVX] in
defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>,
VEX_4V, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm INSERTPS : SS41I_insertf32<0x21, "insertps", 1>;
}
let Predicates = [UseAVX] in {
// If we're inserting an element from a vbroadcast of a load, fold the
// load into the X86insertps instruction.
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
(X86VBroadcast (loadf32 addr:$src2)), imm:$src3)),
(VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
(X86VBroadcast (loadv4f32 addr:$src2)), imm:$src3)),
(VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Round Instructions
//===----------------------------------------------------------------------===//
multiclass sse41_fp_unop_p<bits<8> opc, string OpcodeStr,
X86MemOperand x86memop, RegisterClass RC,
ValueType VT, PatFrag mem_frag, SDNode OpNode,
X86FoldableSchedWrite sched> {
// Intrinsic operation, reg.
// Vector intrinsic operation, reg
def r : SS4AIi8<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (VT (OpNode RC:$src1, imm:$src2)))]>,
Sched<[sched]>;
// Vector intrinsic operation, mem
def m : SS4AIi8<opc, MRMSrcMem,
(outs RC:$dst), (ins x86memop:$src1, i32u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(VT (OpNode (mem_frag addr:$src1),imm:$src2)))]>,
Sched<[sched.Folded]>;
}
multiclass avx_fp_unop_rm<bits<8> opcss, bits<8> opcsd,
string OpcodeStr, X86FoldableSchedWrite sched> {
let ExeDomain = SSEPackedSingle, hasSideEffects = 0 in {
def SSr : SS4AIi8<opcss, MRMSrcReg,
(outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32u8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def SSm : SS4AIi8<opcss, MRMSrcMem,
(outs FR32:$dst), (ins FR32:$src1, f32mem:$src2, i32u8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, Sched<[sched.Folded, ReadAfterLd]>;
} // ExeDomain = SSEPackedSingle, hasSideEffects = 0
let ExeDomain = SSEPackedDouble, hasSideEffects = 0 in {
def SDr : SS4AIi8<opcsd, MRMSrcReg,
(outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32u8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def SDm : SS4AIi8<opcsd, MRMSrcMem,
(outs FR64:$dst), (ins FR64:$src1, f64mem:$src2, i32u8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, Sched<[sched.Folded, ReadAfterLd]>;
} // ExeDomain = SSEPackedDouble, hasSideEffects = 0
}
multiclass sse41_fp_unop_s<bits<8> opcss, bits<8> opcsd,
string OpcodeStr, X86FoldableSchedWrite sched> {
let ExeDomain = SSEPackedSingle, hasSideEffects = 0 in {
def SSr : SS4AIi8<opcss, MRMSrcReg,
(outs FR32:$dst), (ins FR32:$src1, i32u8imm:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def SSm : SS4AIi8<opcss, MRMSrcMem,
(outs FR32:$dst), (ins f32mem:$src1, i32u8imm:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[sched.Folded, ReadAfterLd]>;
} // ExeDomain = SSEPackedSingle, hasSideEffects = 0
let ExeDomain = SSEPackedDouble, hasSideEffects = 0 in {
def SDr : SS4AIi8<opcsd, MRMSrcReg,
(outs FR64:$dst), (ins FR64:$src1, i32u8imm:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def SDm : SS4AIi8<opcsd, MRMSrcMem,
(outs FR64:$dst), (ins f64mem:$src1, i32u8imm:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[sched.Folded, ReadAfterLd]>;
} // ExeDomain = SSEPackedDouble, hasSideEffects = 0
}
multiclass sse41_fp_binop_s<bits<8> opcss, bits<8> opcsd,
string OpcodeStr, X86FoldableSchedWrite sched,
ValueType VT32, ValueType VT64,
SDNode OpNode, bit Is2Addr = 1> {
let ExeDomain = SSEPackedSingle, isCodeGenOnly = 1 in {
def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst, (VT32 (OpNode VR128:$src1, VR128:$src2, imm:$src3)))]>,
Sched<[sched]>;
def SSm_Int : SS4AIi8<opcss, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(OpNode VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
Sched<[sched.Folded, ReadAfterLd]>;
} // ExeDomain = SSEPackedSingle, isCodeGenOnly = 1
let ExeDomain = SSEPackedDouble, isCodeGenOnly = 1 in {
def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst, (VT64 (OpNode VR128:$src1, VR128:$src2, imm:$src3)))]>,
Sched<[sched]>;
def SDm_Int : SS4AIi8<opcsd, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(OpNode VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
Sched<[sched.Folded, ReadAfterLd]>;
} // ExeDomain = SSEPackedDouble, isCodeGenOnly = 1
}
// FP round - roundss, roundps, roundsd, roundpd
let Predicates = [HasAVX, NoVLX] in {
let ExeDomain = SSEPackedSingle in {
// Intrinsic form
defm VROUNDPS : sse41_fp_unop_p<0x08, "vroundps", f128mem, VR128, v4f32,
loadv4f32, X86VRndScale, SchedWriteFAdd.XMM>,
VEX, VEX_WIG;
defm VROUNDPSY : sse41_fp_unop_p<0x08, "vroundps", f256mem, VR256, v8f32,
loadv8f32, X86VRndScale, SchedWriteFAdd.YMM>,
VEX, VEX_L, VEX_WIG;
}
let ExeDomain = SSEPackedDouble in {
defm VROUNDPD : sse41_fp_unop_p<0x09, "vroundpd", f128mem, VR128, v2f64,
loadv2f64, X86VRndScale, SchedWriteFAdd.XMM>,
VEX, VEX_WIG;
defm VROUNDPDY : sse41_fp_unop_p<0x09, "vroundpd", f256mem, VR256, v4f64,
loadv4f64, X86VRndScale, SchedWriteFAdd.YMM>,
VEX, VEX_L, VEX_WIG;
}
}
let Predicates = [HasAVX, NoAVX512] in {
defm VROUND : sse41_fp_binop_s<0x0A, 0x0B, "vround", SchedWriteFAdd.Scl,
v4f32, v2f64, X86RndScales, 0>,
VEX_4V, VEX_LIG, VEX_WIG;
defm VROUND : avx_fp_unop_rm<0x0A, 0x0B, "vround", SchedWriteFAdd.Scl>,
VEX_4V, VEX_LIG, VEX_WIG;
}
let Predicates = [UseAVX] in {
def : Pat<(ffloor FR32:$src),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x9))>;
def : Pat<(f64 (ffloor FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x9))>;
def : Pat<(f32 (fnearbyint FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
def : Pat<(f64 (fnearbyint FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
def : Pat<(f32 (fceil FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xA))>;
def : Pat<(f64 (fceil FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xA))>;
def : Pat<(f32 (frint FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
def : Pat<(f64 (frint FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
def : Pat<(f32 (ftrunc FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xB))>;
def : Pat<(f64 (ftrunc FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xB))>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4f32 (ffloor VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0x9))>;
def : Pat<(v4f32 (fnearbyint VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0xC))>;
def : Pat<(v4f32 (fceil VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0xA))>;
def : Pat<(v4f32 (frint VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0x4))>;
def : Pat<(v4f32 (ftrunc VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0xB))>;
def : Pat<(v2f64 (ffloor VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0x9))>;
def : Pat<(v2f64 (fnearbyint VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0xC))>;
def : Pat<(v2f64 (fceil VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0xA))>;
def : Pat<(v2f64 (frint VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0x4))>;
def : Pat<(v2f64 (ftrunc VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0xB))>;
def : Pat<(v8f32 (ffloor VR256:$src)),
(VROUNDPSYr VR256:$src, (i32 0x9))>;
def : Pat<(v8f32 (fnearbyint VR256:$src)),
(VROUNDPSYr VR256:$src, (i32 0xC))>;
def : Pat<(v8f32 (fceil VR256:$src)),
(VROUNDPSYr VR256:$src, (i32 0xA))>;
def : Pat<(v8f32 (frint VR256:$src)),
(VROUNDPSYr VR256:$src, (i32 0x4))>;
def : Pat<(v8f32 (ftrunc VR256:$src)),
(VROUNDPSYr VR256:$src, (i32 0xB))>;
def : Pat<(v4f64 (ffloor VR256:$src)),
(VROUNDPDYr VR256:$src, (i32 0x9))>;
def : Pat<(v4f64 (fnearbyint VR256:$src)),
(VROUNDPDYr VR256:$src, (i32 0xC))>;
def : Pat<(v4f64 (fceil VR256:$src)),
(VROUNDPDYr VR256:$src, (i32 0xA))>;
def : Pat<(v4f64 (frint VR256:$src)),
(VROUNDPDYr VR256:$src, (i32 0x4))>;
def : Pat<(v4f64 (ftrunc VR256:$src)),
(VROUNDPDYr VR256:$src, (i32 0xB))>;
}
let ExeDomain = SSEPackedSingle in
defm ROUNDPS : sse41_fp_unop_p<0x08, "roundps", f128mem, VR128, v4f32,
memopv4f32, X86VRndScale, SchedWriteFAdd.XMM>;
let ExeDomain = SSEPackedDouble in
defm ROUNDPD : sse41_fp_unop_p<0x09, "roundpd", f128mem, VR128, v2f64,
memopv2f64, X86VRndScale, SchedWriteFAdd.XMM>;
defm ROUND : sse41_fp_unop_s<0x0A, 0x0B, "round", SchedWriteFAdd.Scl>;
let Constraints = "$src1 = $dst" in
defm ROUND : sse41_fp_binop_s<0x0A, 0x0B, "round", SchedWriteFAdd.Scl,
v4f32, v2f64, X86RndScales>;
let Predicates = [UseSSE41] in {
def : Pat<(ffloor FR32:$src),
(ROUNDSSr FR32:$src, (i32 0x9))>;
def : Pat<(f64 (ffloor FR64:$src)),
(ROUNDSDr FR64:$src, (i32 0x9))>;
def : Pat<(f32 (fnearbyint FR32:$src)),
(ROUNDSSr FR32:$src, (i32 0xC))>;
def : Pat<(f64 (fnearbyint FR64:$src)),
(ROUNDSDr FR64:$src, (i32 0xC))>;
def : Pat<(f32 (fceil FR32:$src)),
(ROUNDSSr FR32:$src, (i32 0xA))>;
def : Pat<(f64 (fceil FR64:$src)),
(ROUNDSDr FR64:$src, (i32 0xA))>;
def : Pat<(f32 (frint FR32:$src)),
(ROUNDSSr FR32:$src, (i32 0x4))>;
def : Pat<(f64 (frint FR64:$src)),
(ROUNDSDr FR64:$src, (i32 0x4))>;
def : Pat<(f32 (ftrunc FR32:$src)),
(ROUNDSSr FR32:$src, (i32 0xB))>;
def : Pat<(f64 (ftrunc FR64:$src)),
(ROUNDSDr FR64:$src, (i32 0xB))>;
def : Pat<(v4f32 (ffloor VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0x9))>;
def : Pat<(v4f32 (fnearbyint VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0xC))>;
def : Pat<(v4f32 (fceil VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0xA))>;
def : Pat<(v4f32 (frint VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0x4))>;
def : Pat<(v4f32 (ftrunc VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0xB))>;
def : Pat<(v2f64 (ffloor VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0x9))>;
def : Pat<(v2f64 (fnearbyint VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0xC))>;
def : Pat<(v2f64 (fceil VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0xA))>;
def : Pat<(v2f64 (frint VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0x4))>;
def : Pat<(v2f64 (ftrunc VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0xB))>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Bit Test
//===----------------------------------------------------------------------===//
// ptest instruction we'll lower to this in X86ISelLowering primarily from
// the intel intrinsic that corresponds to this.
let Defs = [EFLAGS], Predicates = [HasAVX] in {
def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
Sched<[SchedWriteVecLogic.XMM]>, VEX, VEX_WIG;
def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS,(X86ptest VR128:$src1, (loadv2i64 addr:$src2)))]>,
Sched<[SchedWriteVecLogic.XMM.Folded, ReadAfterLd]>,
VEX, VEX_WIG;
def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>,
Sched<[SchedWriteVecLogic.YMM]>, VEX, VEX_L, VEX_WIG;
def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS,(X86ptest VR256:$src1, (loadv4i64 addr:$src2)))]>,
Sched<[SchedWriteVecLogic.YMM.Folded, ReadAfterLd]>,
VEX, VEX_L, VEX_WIG;
}
let Defs = [EFLAGS] in {
def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"ptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
Sched<[SchedWriteVecLogic.XMM]>;
def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"ptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (memopv2i64 addr:$src2)))]>,
Sched<[SchedWriteVecLogic.XMM.Folded, ReadAfterLd]>;
}
// The bit test instructions below are AVX only
multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, PatFrag mem_frag, ValueType vt,
X86FoldableSchedWrite sched> {
def rr : SS48I<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (X86testp RC:$src1, (vt RC:$src2)))]>,
Sched<[sched]>, VEX;
def rm : SS48I<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (X86testp RC:$src1, (mem_frag addr:$src2)))]>,
Sched<[sched.Folded, ReadAfterLd]>, VEX;
}
let Defs = [EFLAGS], Predicates = [HasAVX] in {
let ExeDomain = SSEPackedSingle in {
defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, loadv4f32, v4f32,
SchedWriteVecLogic.XMM>;
defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, loadv8f32, v8f32,
SchedWriteVecLogic.YMM>, VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, loadv2f64, v2f64,
SchedWriteVecLogic.XMM>;
defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, loadv4f64, v4f64,
SchedWriteVecLogic.YMM>, VEX_L;
}
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Misc Instructions
//===----------------------------------------------------------------------===//
let Defs = [EFLAGS], Predicates = [HasPOPCNT] in {
def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctpop GR16:$src)), (implicit EFLAGS)]>,
Sched<[WritePOPCNT]>, OpSize16, XS;
def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctpop (loadi16 addr:$src))),
(implicit EFLAGS)]>,
Sched<[WritePOPCNT.Folded]>, OpSize16, XS;
def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctpop GR32:$src)), (implicit EFLAGS)]>,
Sched<[WritePOPCNT]>, OpSize32, XS;
def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctpop (loadi32 addr:$src))),
(implicit EFLAGS)]>,
Sched<[WritePOPCNT.Folded]>, OpSize32, XS;
def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"popcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctpop GR64:$src)), (implicit EFLAGS)]>,
Sched<[WritePOPCNT]>, XS;
def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"popcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctpop (loadi64 addr:$src))),
(implicit EFLAGS)]>,
Sched<[WritePOPCNT.Folded]>, XS;
}
// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16.
multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
SDNode OpNode, PatFrag ld_frag,
X86FoldableSchedWrite Sched> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v8i16 (OpNode (v8i16 VR128:$src))))]>,
Sched<[Sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(v8i16 (OpNode (v8i16 (bitconvert (ld_frag addr:$src))))))]>,
Sched<[Sched.Folded]>;
}
// PHMIN has the same profile as PSAD, thus we use the same scheduling
// model, although the naming is misleading.
let Predicates = [HasAVX] in
defm VPHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "vphminposuw",
X86phminpos, loadv2i64,
WritePHMINPOS>, VEX, VEX_WIG;
defm PHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "phminposuw",
X86phminpos, memopv2i64,
WritePHMINPOS>;
/// SS48I_binop_rm - Simple SSE41 binary operator.
multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, X86FoldableSchedWrite sched,
bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, (bitconvert (memop_frag addr:$src2)))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX, NoVLX] in {
defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", smin, v4i32, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", umin, v4i32, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v4i32, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", umax, v4i32, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMULDQ : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v2i64, VR128,
loadv2i64, i128mem, SchedWriteVecIMul.XMM, 0>,
VEX_4V, VEX_WIG;
}
let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", smin, v16i8, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", umin, v8i16, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v16i8, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v8i16, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
}
let Predicates = [HasAVX2, NoVLX] in {
defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", smin, v8i32, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", umin, v8i32, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v8i32, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", umax, v8i32, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMULDQY : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v4i64, VR256,
loadv4i64, i256mem, SchedWriteVecIMul.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
}
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", smin, v32i8, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", umin, v16i16, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v32i8, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v16i16, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
}
let Constraints = "$src1 = $dst" in {
defm PMINSB : SS48I_binop_rm<0x38, "pminsb", smin, v16i8, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMINSD : SS48I_binop_rm<0x39, "pminsd", smin, v4i32, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMINUD : SS48I_binop_rm<0x3B, "pminud", umin, v4i32, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", umin, v8i16, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", smax, v16i8, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", smax, v4i32, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", umax, v4i32, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", umax, v8i16, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
defm PMULDQ : SS48I_binop_rm<0x28, "pmuldq", X86pmuldq, v2i64, VR128,
memopv2i64, i128mem, SchedWriteVecIMul.XMM, 1>;
}
let Predicates = [HasAVX, NoVLX] in
defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128,
loadv2i64, i128mem, SchedWritePMULLD.XMM, 0>,
VEX_4V, VEX_WIG;
let Predicates = [HasAVX] in
defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
let Predicates = [HasAVX2, NoVLX] in
defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256,
loadv4i64, i256mem, SchedWritePMULLD.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
let Predicates = [HasAVX2] in
defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in {
defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, VR128,
memopv2i64, i128mem, SchedWritePMULLD.XMM, 1>;
defm PCMPEQQ : SS48I_binop_rm<0x29, "pcmpeqq", X86pcmpeq, v2i64, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
}
/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate
multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr,
X86FoldableSchedWrite sched> {
let isCommutable = 1 in
def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>,
Sched<[sched]>;
def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst,
(IntId RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
/// SS41I_binop_rmi - SSE 4.1 binary operator with 8-bit immediate
multiclass SS41I_binop_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr,
X86FoldableSchedWrite sched> {
let isCommutable = 1 in
def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>,
Sched<[sched]>;
def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3)))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
def BlendCommuteImm2 : SDNodeXForm<imm, [{
uint8_t Imm = N->getZExtValue() & 0x03;
return getI8Imm(Imm ^ 0x03, SDLoc(N));
}]>;
def BlendCommuteImm4 : SDNodeXForm<imm, [{
uint8_t Imm = N->getZExtValue() & 0x0f;
return getI8Imm(Imm ^ 0x0f, SDLoc(N));
}]>;
def BlendCommuteImm8 : SDNodeXForm<imm, [{
uint8_t Imm = N->getZExtValue() & 0xff;
return getI8Imm(Imm ^ 0xff, SDLoc(N));
}]>;
let Predicates = [HasAVX] in {
let isCommutable = 0 in {
defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
VR128, loadv2i64, i128mem, 0,
SchedWriteMPSAD.XMM>, VEX_4V, VEX_WIG;
}
let ExeDomain = SSEPackedSingle in
defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
VR128, loadv4f32, f128mem, 0,
SchedWriteFAdd.XMM>, VEX_4V, VEX_WIG;
let ExeDomain = SSEPackedDouble in
defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd,
VR128, loadv2f64, f128mem, 0,
SchedWriteFAdd.XMM>, VEX_4V, VEX_WIG;
let ExeDomain = SSEPackedSingle in
defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256,
VR256, loadv8f32, i256mem, 0,
SchedWriteFAdd.YMM>, VEX_4V, VEX_L, VEX_WIG;
}
let Predicates = [HasAVX2] in {
let isCommutable = 0 in {
defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw,
VR256, loadv4i64, i256mem, 0,
SchedWriteMPSAD.YMM>, VEX_4V, VEX_L, VEX_WIG;
}
}
let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
VR128, memopv2i64, i128mem, 1,
SchedWriteMPSAD.XMM>;
}
let ExeDomain = SSEPackedSingle in
defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
VR128, memopv4f32, f128mem, 1,
SchedWriteFAdd.XMM>;
let ExeDomain = SSEPackedDouble in
defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd,
VR128, memopv2f64, f128mem, 1,
SchedWriteFAdd.XMM>;
}
/// SS41I_blend_rmi - SSE 4.1 blend with 8-bit immediate
multiclass SS41I_blend_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr, Domain d,
X86FoldableSchedWrite sched, SDNodeXForm commuteXForm> {
let ExeDomain = d, Constraints = !if(Is2Addr, "$src1 = $dst", "") in {
let isCommutable = 1 in
def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>,
Sched<[sched]>;
def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3)))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
// Pattern to commute if load is in first source.
def : Pat<(OpVT (OpNode (bitconvert (memop_frag addr:$src2)),
RC:$src1, imm:$src3)),
(!cast<Instruction>(NAME#"rmi") RC:$src1, addr:$src2,
(commuteXForm imm:$src3))>;
}
let Predicates = [HasAVX] in {
defm VBLENDPS : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v4f32,
VR128, loadv4f32, f128mem, 0, SSEPackedSingle,
SchedWriteFBlend.XMM, BlendCommuteImm4>,
VEX_4V, VEX_WIG;
defm VBLENDPSY : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v8f32,
VR256, loadv8f32, f256mem, 0, SSEPackedSingle,
SchedWriteFBlend.YMM, BlendCommuteImm8>,
VEX_4V, VEX_L, VEX_WIG;
defm VBLENDPD : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v2f64,
VR128, loadv2f64, f128mem, 0, SSEPackedDouble,
SchedWriteFBlend.XMM, BlendCommuteImm2>,
VEX_4V, VEX_WIG;
defm VBLENDPDY : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v4f64,
VR256, loadv4f64, f256mem, 0, SSEPackedDouble,
SchedWriteFBlend.YMM, BlendCommuteImm4>,
VEX_4V, VEX_L, VEX_WIG;
defm VPBLENDW : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v8i16,
VR128, loadv2i64, i128mem, 0, SSEPackedInt,
SchedWriteBlend.XMM, BlendCommuteImm8>,
VEX_4V, VEX_WIG;
}
let Predicates = [HasAVX2] in {
defm VPBLENDWY : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v16i16,
VR256, loadv4i64, i256mem, 0, SSEPackedInt,
SchedWriteBlend.YMM, BlendCommuteImm8>,
VEX_4V, VEX_L, VEX_WIG;
}
defm BLENDPS : SS41I_blend_rmi<0x0C, "blendps", X86Blendi, v4f32,
VR128, memopv4f32, f128mem, 1, SSEPackedSingle,
SchedWriteFBlend.XMM, BlendCommuteImm4>;
defm BLENDPD : SS41I_blend_rmi<0x0D, "blendpd", X86Blendi, v2f64,
VR128, memopv2f64, f128mem, 1, SSEPackedDouble,
SchedWriteFBlend.XMM, BlendCommuteImm2>;
defm PBLENDW : SS41I_blend_rmi<0x0E, "pblendw", X86Blendi, v8i16,
VR128, memopv2i64, i128mem, 1, SSEPackedInt,
SchedWriteBlend.XMM, BlendCommuteImm8>;
// For insertion into the zero index (low half) of a 256-bit vector, it is
// more efficient to generate a blend with immediate instead of an insert*128.
let Predicates = [HasAVX] in {
def : Pat<(insert_subvector (v4f64 VR256:$src1), (v2f64 VR128:$src2), (iPTR 0)),
(VBLENDPDYrri VR256:$src1,
(INSERT_SUBREG (v4f64 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0x3)>;
def : Pat<(insert_subvector (v8f32 VR256:$src1), (v4f32 VR128:$src2), (iPTR 0)),
(VBLENDPSYrri VR256:$src1,
(INSERT_SUBREG (v8f32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
}
/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators
multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_frag, Intrinsic IntId,
X86FoldableSchedWrite sched> {
def rr : Ii8Reg<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))],
SSEPackedInt>, TAPD, VEX_4V,
Sched<[sched]>;
def rm : Ii8Reg<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(IntId RC:$src1, (bitconvert (mem_frag addr:$src2)),
RC:$src3))], SSEPackedInt>, TAPD, VEX_4V,
Sched<[sched.Folded, ReadAfterLd,
// x86memop:$src2
ReadDefault, ReadDefault, ReadDefault, ReadDefault,
ReadDefault,
// RC::$src3
ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedDouble in {
defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, f128mem,
loadv2f64, int_x86_sse41_blendvpd,
SchedWriteFVarBlend.XMM>;
defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, f256mem,
loadv4f64, int_x86_avx_blendv_pd_256,
SchedWriteFVarBlend.YMM>, VEX_L;
} // ExeDomain = SSEPackedDouble
let ExeDomain = SSEPackedSingle in {
defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, f128mem,
loadv4f32, int_x86_sse41_blendvps,
SchedWriteFVarBlend.XMM>;
defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, f256mem,
loadv8f32, int_x86_avx_blendv_ps_256,
SchedWriteFVarBlend.YMM>, VEX_L;
} // ExeDomain = SSEPackedSingle
defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem,
loadv2i64, int_x86_sse41_pblendvb,
SchedWriteVarBlend.XMM>;
}
let Predicates = [HasAVX2] in {
defm VPBLENDVBY : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR256, i256mem,
loadv4i64, int_x86_avx2_pblendvb,
SchedWriteVarBlend.YMM>, VEX_L;
}
let Predicates = [HasAVX] in {
def : Pat<(v16i8 (vselect (v16i8 VR128:$mask), (v16i8 VR128:$src1),
(v16i8 VR128:$src2))),
(VPBLENDVBrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v4i32 (vselect (v4i32 VR128:$mask), (v4i32 VR128:$src1),
(v4i32 VR128:$src2))),
(VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v4f32 (vselect (v4i32 VR128:$mask), (v4f32 VR128:$src1),
(v4f32 VR128:$src2))),
(VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v2i64 (vselect (v2i64 VR128:$mask), (v2i64 VR128:$src1),
(v2i64 VR128:$src2))),
(VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v2f64 (vselect (v2i64 VR128:$mask), (v2f64 VR128:$src1),
(v2f64 VR128:$src2))),
(VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v8i32 (vselect (v8i32 VR256:$mask), (v8i32 VR256:$src1),
(v8i32 VR256:$src2))),
(VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v8f32 (vselect (v8i32 VR256:$mask), (v8f32 VR256:$src1),
(v8f32 VR256:$src2))),
(VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v4i64 (vselect (v4i64 VR256:$mask), (v4i64 VR256:$src1),
(v4i64 VR256:$src2))),
(VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v4f64 (vselect (v4i64 VR256:$mask), (v4f64 VR256:$src1),
(v4f64 VR256:$src2))),
(VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
}
let Predicates = [HasAVX2] in {
def : Pat<(v32i8 (vselect (v32i8 VR256:$mask), (v32i8 VR256:$src1),
(v32i8 VR256:$src2))),
(VPBLENDVBYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
}
// Patterns
// FIXME: Prefer a movss or movsd over a blendps when optimizing for size or
// on targets where they have equal performance. These were changed to use
// blends because blends have better throughput on SandyBridge and Haswell, but
// movs[s/d] are 1-2 byte shorter instructions.
let Predicates = [UseAVX] in {
let AddedComplexity = 15 in {
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(VBLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(VPBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>;
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(VMOVSDrr (v2f64 (V_SET0)), (COPY_TO_REGCLASS FR64:$src, VR128))>;
// Move low f32 and clear high bits.
def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
(VBLENDPSYrri (v8f32 (AVX_SET0)), VR256:$src, (i8 1))>;
// Move low f64 and clear high bits.
def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
(VBLENDPDYrri (v4f64 (AVX_SET0)), VR256:$src, (i8 1))>;
}
// These will incur an FP/int domain crossing penalty, but it may be the only
// way without AVX2. Do not add any complexity because we may be able to match
// more optimal patterns defined earlier in this file.
def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
(VBLENDPSYrri (v8i32 (AVX_SET0)), VR256:$src, (i8 1))>;
def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
(VBLENDPDYrri (v4i64 (AVX_SET0)), VR256:$src, (i8 1))>;
}
// FIXME: Prefer a movss or movsd over a blendps when optimizing for size or
// on targets where they have equal performance. These were changed to use
// blends because blends have better throughput on SandyBridge and Haswell, but
// movs[s/d] are 1-2 byte shorter instructions.
let Predicates = [UseSSE41], AddedComplexity = 15 in {
// With SSE41 we can use blends for these patterns.
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(BLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(PBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>;
}
/// SS41I_ternary_int - SSE 4.1 ternary operator
let Uses = [XMM0], Constraints = "$src1 = $dst" in {
multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
X86MemOperand x86memop, Intrinsic IntId,
X86FoldableSchedWrite sched> {
def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr,
"\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>,
Sched<[sched]>;
def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, x86memop:$src2),
!strconcat(OpcodeStr,
"\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
[(set VR128:$dst,
(IntId VR128:$src1,
(bitconvert (mem_frag addr:$src2)), XMM0))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
}
let ExeDomain = SSEPackedDouble in
defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64, f128mem,
int_x86_sse41_blendvpd, SchedWriteFVarBlend.XMM>;
let ExeDomain = SSEPackedSingle in
defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32, f128mem,
int_x86_sse41_blendvps, SchedWriteFVarBlend.XMM>;
defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64, i128mem,
int_x86_sse41_pblendvb, SchedWriteVarBlend.XMM>;
// Aliases with the implicit xmm0 argument
def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}",
(BLENDVPDrr0 VR128:$dst, VR128:$src2), 0>;
def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}",
(BLENDVPDrm0 VR128:$dst, f128mem:$src2), 0>;
def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}",
(BLENDVPSrr0 VR128:$dst, VR128:$src2), 0>;
def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}",
(BLENDVPSrm0 VR128:$dst, f128mem:$src2), 0>;
def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}",
(PBLENDVBrr0 VR128:$dst, VR128:$src2), 0>;
def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}",
(PBLENDVBrm0 VR128:$dst, i128mem:$src2), 0>;
let Predicates = [UseSSE41] in {
def : Pat<(v16i8 (vselect (v16i8 XMM0), (v16i8 VR128:$src1),
(v16i8 VR128:$src2))),
(PBLENDVBrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v4i32 (vselect (v4i32 XMM0), (v4i32 VR128:$src1),
(v4i32 VR128:$src2))),
(BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v4f32 (vselect (v4i32 XMM0), (v4f32 VR128:$src1),
(v4f32 VR128:$src2))),
(BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v2i64 (vselect (v2i64 XMM0), (v2i64 VR128:$src1),
(v2i64 VR128:$src2))),
(BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v2f64 (vselect (v2i64 XMM0), (v2f64 VR128:$src1),
(v2f64 VR128:$src2))),
(BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
}
let AddedComplexity = 400 in { // Prefer non-temporal versions
let SchedRW = [WriteVecLoad] in {
let Predicates = [HasAVX, NoVLX] in
def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_WIG;
let Predicates = [HasAVX2, NoVLX] in
def VMOVNTDQAYrm : SS48I<0x2A, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}", []>,
VEX, VEX_L, VEX_WIG;
def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movntdqa\t{$src, $dst|$dst, $src}", []>;
} // SchedRW
let Predicates = [HasAVX2, NoVLX] in {
def : Pat<(v8f32 (alignednontemporalload addr:$src)),
(VMOVNTDQAYrm addr:$src)>;
def : Pat<(v4f64 (alignednontemporalload addr:$src)),
(VMOVNTDQAYrm addr:$src)>;
def : Pat<(v4i64 (alignednontemporalload addr:$src)),
(VMOVNTDQAYrm addr:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4f32 (alignednontemporalload addr:$src)),
(VMOVNTDQArm addr:$src)>;
def : Pat<(v2f64 (alignednontemporalload addr:$src)),
(VMOVNTDQArm addr:$src)>;
def : Pat<(v2i64 (alignednontemporalload addr:$src)),
(VMOVNTDQArm addr:$src)>;
}
let Predicates = [UseSSE41] in {
def : Pat<(v4f32 (alignednontemporalload addr:$src)),
(MOVNTDQArm addr:$src)>;
def : Pat<(v2f64 (alignednontemporalload addr:$src)),
(MOVNTDQArm addr:$src)>;
def : Pat<(v2i64 (alignednontemporalload addr:$src)),
(MOVNTDQArm addr:$src)>;
}
} // AddedComplexity
//===----------------------------------------------------------------------===//
// SSE4.2 - Compare Instructions
//===----------------------------------------------------------------------===//
/// SS42I_binop_rm - Simple SSE 4.2 binary operator
multiclass SS42I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, X86FoldableSchedWrite sched,
bit Is2Addr = 1> {
def rr : SS428I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
Sched<[sched]>;
def rm : SS428I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, (memop_frag addr:$src2))))]>,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in
defm VPCMPGTQ : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v2i64, VR128,
loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
VEX_4V, VEX_WIG;
let Predicates = [HasAVX2] in
defm VPCMPGTQY : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v4i64, VR256,
loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
VEX_4V, VEX_L, VEX_WIG;
let Constraints = "$src1 = $dst" in
defm PCMPGTQ : SS42I_binop_rm<0x37, "pcmpgtq", X86pcmpgt, v2i64, VR128,
memopv2i64, i128mem, SchedWriteVecALU.XMM>;
//===----------------------------------------------------------------------===//
// SSE4.2 - String/text Processing Instructions
//===----------------------------------------------------------------------===//
multiclass pcmpistrm_SS42AI<string asm> {
def rr : SS42AI<0x62, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, u8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrM]>;
let mayLoad = 1 in
def rm :SS42AI<0x62, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, u8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrM.Folded, ReadAfterLd]>;
}
let Defs = [XMM0, EFLAGS], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPISTRM : pcmpistrm_SS42AI<"vpcmpistrm">, VEX;
defm PCMPISTRM : pcmpistrm_SS42AI<"pcmpistrm"> ;
}
multiclass SS42AI_pcmpestrm<string asm> {
def rr : SS42AI<0x60, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, u8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrM]>;
let mayLoad = 1 in
def rm : SS42AI<0x60, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, u8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrM.Folded, ReadAfterLd]>;
}
let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPESTRM : SS42AI_pcmpestrm<"vpcmpestrm">, VEX;
defm PCMPESTRM : SS42AI_pcmpestrm<"pcmpestrm">;
}
multiclass SS42AI_pcmpistri<string asm> {
def rr : SS42AI<0x63, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, u8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrI]>;
let mayLoad = 1 in
def rm : SS42AI<0x63, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, u8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrI.Folded, ReadAfterLd]>;
}
let Defs = [ECX, EFLAGS], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX;
defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">;
}
multiclass SS42AI_pcmpestri<string asm> {
def rr : SS42AI<0x61, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, u8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrI]>;
let mayLoad = 1 in
def rm : SS42AI<0x61, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, u8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrI.Folded, ReadAfterLd]>;
}
let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in {
let Predicates = [HasAVX] in
defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX;
defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">;
}
//===----------------------------------------------------------------------===//
// SSE4.2 - CRC Instructions
//===----------------------------------------------------------------------===//
// No CRC instructions have AVX equivalents
// crc intrinsic instruction
// This set of instructions are only rm, the only difference is the size
// of r and m.
class SS42I_crc32r<bits<8> opc, string asm, RegisterClass RCOut,
RegisterClass RCIn, SDPatternOperator Int> :
SS42FI<opc, MRMSrcReg, (outs RCOut:$dst), (ins RCOut:$src1, RCIn:$src2),
!strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
[(set RCOut:$dst, (Int RCOut:$src1, RCIn:$src2))]>,
Sched<[WriteCRC32]>;
class SS42I_crc32m<bits<8> opc, string asm, RegisterClass RCOut,
X86MemOperand x86memop, SDPatternOperator Int> :
SS42FI<opc, MRMSrcMem, (outs RCOut:$dst), (ins RCOut:$src1, x86memop:$src2),
!strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
[(set RCOut:$dst, (Int RCOut:$src1, (load addr:$src2)))]>,
Sched<[WriteCRC32.Folded, ReadAfterLd]>;
let Constraints = "$src1 = $dst" in {
def CRC32r32m8 : SS42I_crc32m<0xF0, "crc32{b}", GR32, i8mem,
int_x86_sse42_crc32_32_8>;
def CRC32r32r8 : SS42I_crc32r<0xF0, "crc32{b}", GR32, GR8,
int_x86_sse42_crc32_32_8>;
def CRC32r32m16 : SS42I_crc32m<0xF1, "crc32{w}", GR32, i16mem,
int_x86_sse42_crc32_32_16>, OpSize16;
def CRC32r32r16 : SS42I_crc32r<0xF1, "crc32{w}", GR32, GR16,
int_x86_sse42_crc32_32_16>, OpSize16;
def CRC32r32m32 : SS42I_crc32m<0xF1, "crc32{l}", GR32, i32mem,
int_x86_sse42_crc32_32_32>, OpSize32;
def CRC32r32r32 : SS42I_crc32r<0xF1, "crc32{l}", GR32, GR32,
int_x86_sse42_crc32_32_32>, OpSize32;
def CRC32r64m64 : SS42I_crc32m<0xF1, "crc32{q}", GR64, i64mem,
int_x86_sse42_crc32_64_64>, REX_W;
def CRC32r64r64 : SS42I_crc32r<0xF1, "crc32{q}", GR64, GR64,
int_x86_sse42_crc32_64_64>, REX_W;
let hasSideEffects = 0 in {
let mayLoad = 1 in
def CRC32r64m8 : SS42I_crc32m<0xF0, "crc32{b}", GR64, i8mem,
null_frag>, REX_W;
def CRC32r64r8 : SS42I_crc32r<0xF0, "crc32{b}", GR64, GR8,
null_frag>, REX_W;
}
}
//===----------------------------------------------------------------------===//
// SHA-NI Instructions
//===----------------------------------------------------------------------===//
// FIXME: Is there a better scheduler class for SHA than WriteVecIMul?
multiclass SHAI_binop<bits<8> Opc, string OpcodeStr, Intrinsic IntId,
X86FoldableSchedWrite sched, bit UsesXMM0 = 0> {
def rr : I<Opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(UsesXMM0,
!strconcat(OpcodeStr, "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}")),
[!if(UsesXMM0,
(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0)),
(set VR128:$dst, (IntId VR128:$src1, VR128:$src2)))]>,
T8, Sched<[sched]>;
def rm : I<Opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(UsesXMM0,
!strconcat(OpcodeStr, "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}")),
[!if(UsesXMM0,
(set VR128:$dst, (IntId VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)), XMM0)),
(set VR128:$dst, (IntId VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)))))]>, T8,
Sched<[sched.Folded, ReadAfterLd]>;
}
let Constraints = "$src1 = $dst", Predicates = [HasSHA] in {
def SHA1RNDS4rri : Ii8<0xCC, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, u8imm:$src3),
"sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_sha1rnds4 VR128:$src1, VR128:$src2,
(i8 imm:$src3)))]>, TA,
Sched<[SchedWriteVecIMul.XMM]>;
def SHA1RNDS4rmi : Ii8<0xCC, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, u8imm:$src3),
"sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_sha1rnds4 VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)),
(i8 imm:$src3)))]>, TA,
Sched<[SchedWriteVecIMul.XMM.Folded, ReadAfterLd]>;
defm SHA1NEXTE : SHAI_binop<0xC8, "sha1nexte", int_x86_sha1nexte,
SchedWriteVecIMul.XMM>;
defm SHA1MSG1 : SHAI_binop<0xC9, "sha1msg1", int_x86_sha1msg1,
SchedWriteVecIMul.XMM>;
defm SHA1MSG2 : SHAI_binop<0xCA, "sha1msg2", int_x86_sha1msg2,
SchedWriteVecIMul.XMM>;
let Uses=[XMM0] in
defm SHA256RNDS2 : SHAI_binop<0xCB, "sha256rnds2", int_x86_sha256rnds2,
SchedWriteVecIMul.XMM, 1>;
defm SHA256MSG1 : SHAI_binop<0xCC, "sha256msg1", int_x86_sha256msg1,
SchedWriteVecIMul.XMM>;
defm SHA256MSG2 : SHAI_binop<0xCD, "sha256msg2", int_x86_sha256msg2,
SchedWriteVecIMul.XMM>;
}
// Aliases with explicit %xmm0
def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}",
(SHA256RNDS2rr VR128:$dst, VR128:$src2), 0>;
def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}",
(SHA256RNDS2rm VR128:$dst, i128mem:$src2), 0>;
//===----------------------------------------------------------------------===//
// AES-NI Instructions
//===----------------------------------------------------------------------===//
multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId, PatFrag ld_frag,
bit Is2Addr = 0, RegisterClass RC = VR128,
X86MemOperand MemOp = i128mem> {
let AsmString = OpcodeStr##
!if(Is2Addr, "\t{$src2, $dst|$dst, $src2}",
"\t{$src2, $src1, $dst|$dst, $src1, $src2}") in {
def rr : AES8I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2), "",
[(set RC:$dst, (IntId RC:$src1, RC:$src2))]>,
Sched<[WriteAESDecEnc]>;
def rm : AES8I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, MemOp:$src2), "",
[(set RC:$dst, (IntId RC:$src1, (ld_frag addr:$src2)))]>,
Sched<[WriteAESDecEnc.Folded, ReadAfterLd]>;
}
}
// Perform One Round of an AES Encryption/Decryption Flow
let Predicates = [HasAVX, NoVLX_Or_NoVAES, HasAES] in {
defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc",
int_x86_aesni_aesenc, loadv2i64>, VEX_4V, VEX_WIG;
defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast",
int_x86_aesni_aesenclast, loadv2i64>, VEX_4V, VEX_WIG;
defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec",
int_x86_aesni_aesdec, loadv2i64>, VEX_4V, VEX_WIG;
defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast",
int_x86_aesni_aesdeclast, loadv2i64>, VEX_4V, VEX_WIG;
}
let Predicates = [NoVLX, HasVAES] in {
defm VAESENCY : AESI_binop_rm_int<0xDC, "vaesenc",
int_x86_aesni_aesenc_256, loadv4i64, 0, VR256,
i256mem>, VEX_4V, VEX_L, VEX_WIG;
defm VAESENCLASTY : AESI_binop_rm_int<0xDD, "vaesenclast",
int_x86_aesni_aesenclast_256, loadv4i64, 0, VR256,
i256mem>, VEX_4V, VEX_L, VEX_WIG;
defm VAESDECY : AESI_binop_rm_int<0xDE, "vaesdec",
int_x86_aesni_aesdec_256, loadv4i64, 0, VR256,
i256mem>, VEX_4V, VEX_L, VEX_WIG;
defm VAESDECLASTY : AESI_binop_rm_int<0xDF, "vaesdeclast",
int_x86_aesni_aesdeclast_256, loadv4i64, 0, VR256,
i256mem>, VEX_4V, VEX_L, VEX_WIG;
}
let Constraints = "$src1 = $dst" in {
defm AESENC : AESI_binop_rm_int<0xDC, "aesenc",
int_x86_aesni_aesenc, memopv2i64, 1>;
defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast",
int_x86_aesni_aesenclast, memopv2i64, 1>;
defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec",
int_x86_aesni_aesdec, memopv2i64, 1>;
defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast",
int_x86_aesni_aesdeclast, memopv2i64, 1>;
}
// Perform the AES InvMixColumn Transformation
let Predicates = [HasAVX, HasAES] in {
def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1),
"vaesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>,
VEX, VEX_WIG;
def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1),
"vaesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst, (int_x86_aesni_aesimc (loadv2i64 addr:$src1)))]>,
Sched<[WriteAESIMC.Folded]>, VEX, VEX_WIG;
}
def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1),
"aesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>;
def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1),
"aesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst, (int_x86_aesni_aesimc (memopv2i64 addr:$src1)))]>,
Sched<[WriteAESIMC.Folded]>;
// AES Round Key Generation Assist
let Predicates = [HasAVX, HasAES] in {
def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, u8imm:$src2),
"vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
Sched<[WriteAESKeyGen]>, VEX, VEX_WIG;
def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, u8imm:$src2),
"vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist (loadv2i64 addr:$src1), imm:$src2))]>,
Sched<[WriteAESKeyGen.Folded]>, VEX, VEX_WIG;
}
def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, u8imm:$src2),
"aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
Sched<[WriteAESKeyGen]>;
def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, u8imm:$src2),
"aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist (memopv2i64 addr:$src1), imm:$src2))]>,
Sched<[WriteAESKeyGen.Folded]>;
//===----------------------------------------------------------------------===//
// PCLMUL Instructions
//===----------------------------------------------------------------------===//
// Immediate transform to help with commuting.
def PCLMULCommuteImm : SDNodeXForm<imm, [{
uint8_t Imm = N->getZExtValue();
return getI8Imm((uint8_t)((Imm >> 4) | (Imm << 4)), SDLoc(N));
}]>;
// SSE carry-less Multiplication instructions
let Predicates = [NoAVX, HasPCLMUL] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in
def PCLMULQDQrr : PCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, u8imm:$src3),
"pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))]>,
Sched<[WriteCLMul]>;
def PCLMULQDQrm : PCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, u8imm:$src3),
"pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_pclmulqdq VR128:$src1, (memopv2i64 addr:$src2),
imm:$src3))]>,
Sched<[WriteCLMul.Folded, ReadAfterLd]>;
} // Constraints = "$src1 = $dst"
def : Pat<(int_x86_pclmulqdq (memopv2i64 addr:$src2), VR128:$src1,
(i8 imm:$src3)),
(PCLMULQDQrm VR128:$src1, addr:$src2,
(PCLMULCommuteImm imm:$src3))>;
} // Predicates = [NoAVX, HasPCLMUL]
// SSE aliases
foreach HI = ["hq","lq"] in
foreach LO = ["hq","lq"] in {
def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}",
(PCLMULQDQrr VR128:$dst, VR128:$src,
!add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>;
def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}",
(PCLMULQDQrm VR128:$dst, i128mem:$src,
!add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>;
}
// AVX carry-less Multiplication instructions
multiclass vpclmulqdq<RegisterClass RC, X86MemOperand MemOp,
PatFrag LdFrag, Intrinsic IntId> {
let isCommutable = 1 in
def rr : PCLMULIi8<0x44, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3),
"vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set RC:$dst,
(IntId RC:$src1, RC:$src2, imm:$src3))]>,
Sched<[WriteCLMul]>;
def rm : PCLMULIi8<0x44, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, MemOp:$src2, u8imm:$src3),
"vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set RC:$dst,
(IntId RC:$src1, (LdFrag addr:$src2), imm:$src3))]>,
Sched<[WriteCLMul.Folded, ReadAfterLd]>;
// We can commute a load in the first operand by swapping the sources and
// rotating the immediate.
def : Pat<(IntId (LdFrag addr:$src2), RC:$src1, (i8 imm:$src3)),
(!cast<Instruction>(NAME#"rm") RC:$src1, addr:$src2,
(PCLMULCommuteImm imm:$src3))>;
}
let Predicates = [HasAVX, NoVLX_Or_NoVPCLMULQDQ, HasPCLMUL] in
defm VPCLMULQDQ : vpclmulqdq<VR128, i128mem, loadv2i64,
int_x86_pclmulqdq>, VEX_4V, VEX_WIG;
let Predicates = [NoVLX, HasVPCLMULQDQ] in
defm VPCLMULQDQY : vpclmulqdq<VR256, i256mem, loadv4i64,
int_x86_pclmulqdq_256>, VEX_4V, VEX_L, VEX_WIG;
multiclass vpclmulqdq_aliases_impl<string InstStr, RegisterClass RC,
X86MemOperand MemOp, string Hi, string Lo> {
def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
(!cast<Instruction>(InstStr # "rr") RC:$dst, RC:$src1, RC:$src2,
!add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>;
def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
(!cast<Instruction>(InstStr # "rm") RC:$dst, RC:$src1, MemOp:$src2,
!add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>;
}
multiclass vpclmulqdq_aliases<string InstStr, RegisterClass RC,
X86MemOperand MemOp> {
defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "hq", "hq">;
defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "hq", "lq">;
defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "lq", "hq">;
defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "lq", "lq">;
}
// AVX aliases
defm : vpclmulqdq_aliases<"VPCLMULQDQ", VR128, i128mem>;
defm : vpclmulqdq_aliases<"VPCLMULQDQY", VR256, i256mem>;
//===----------------------------------------------------------------------===//
// SSE4A Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasSSE4A] in {
let ExeDomain = SSEPackedInt in {
let Constraints = "$src = $dst" in {
def EXTRQI : Ii8<0x78, MRMXr, (outs VR128:$dst),
(ins VR128:$src, u8imm:$len, u8imm:$idx),
"extrq\t{$idx, $len, $src|$src, $len, $idx}",
[(set VR128:$dst, (X86extrqi VR128:$src, imm:$len,
imm:$idx))]>,
PD, Sched<[SchedWriteVecALU.XMM]>;
def EXTRQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src, VR128:$mask),
"extrq\t{$mask, $src|$src, $mask}",
[(set VR128:$dst, (int_x86_sse4a_extrq VR128:$src,
VR128:$mask))]>,
PD, Sched<[SchedWriteVecALU.XMM]>;
def INSERTQI : Ii8<0x78, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src, VR128:$src2, u8imm:$len, u8imm:$idx),
"insertq\t{$idx, $len, $src2, $src|$src, $src2, $len, $idx}",
[(set VR128:$dst, (X86insertqi VR128:$src, VR128:$src2,
imm:$len, imm:$idx))]>,
XD, Sched<[SchedWriteVecALU.XMM]>;
def INSERTQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src, VR128:$mask),
"insertq\t{$mask, $src|$src, $mask}",
[(set VR128:$dst, (int_x86_sse4a_insertq VR128:$src,
VR128:$mask))]>,
XD, Sched<[SchedWriteVecALU.XMM]>;
}
} // ExeDomain = SSEPackedInt
// Non-temporal (unaligned) scalar stores.
let AddedComplexity = 400 in { // Prefer non-temporal versions
let hasSideEffects = 0, mayStore = 1, SchedRW = [WriteStore] in {
def MOVNTSS : I<0x2B, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src),
"movntss\t{$src, $dst|$dst, $src}", []>, XS;
def MOVNTSD : I<0x2B, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movntsd\t{$src, $dst|$dst, $src}", []>, XD;
} // SchedRW
def : Pat<(nontemporalstore FR32:$src, addr:$dst),
(MOVNTSS addr:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(nontemporalstore FR64:$src, addr:$dst),
(MOVNTSD addr:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
} // AddedComplexity
} // HasSSE4A
//===----------------------------------------------------------------------===//
// AVX Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// VBROADCAST - Load from memory and broadcast to all elements of the
// destination operand
//
class avx_broadcast_rm<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, ValueType VT,
PatFrag ld_frag, SchedWrite Sched> :
AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (VT (X86VBroadcast (ld_frag addr:$src))))]>,
Sched<[Sched]>, VEX;
// AVX2 adds register forms
class avx2_broadcast_rr<bits<8> opc, string OpcodeStr, RegisterClass RC,
ValueType ResVT, ValueType OpVT, SchedWrite Sched> :
AVX28I<opc, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (ResVT (X86VBroadcast (OpVT VR128:$src))))]>,
Sched<[Sched]>, VEX;
let ExeDomain = SSEPackedSingle, Predicates = [HasAVX, NoVLX] in {
def VBROADCASTSSrm : avx_broadcast_rm<0x18, "vbroadcastss", VR128,
f32mem, v4f32, loadf32,
SchedWriteFShuffle.XMM.Folded>;
def VBROADCASTSSYrm : avx_broadcast_rm<0x18, "vbroadcastss", VR256,
f32mem, v8f32, loadf32,
SchedWriteFShuffle.XMM.Folded>, VEX_L;
}
let ExeDomain = SSEPackedDouble, Predicates = [HasAVX, NoVLX] in
def VBROADCASTSDYrm : avx_broadcast_rm<0x19, "vbroadcastsd", VR256, f64mem,
v4f64, loadf64,
SchedWriteFShuffle.XMM.Folded>, VEX_L;
let ExeDomain = SSEPackedSingle, Predicates = [HasAVX2, NoVLX] in {
def VBROADCASTSSrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR128,
v4f32, v4f32, SchedWriteFShuffle.XMM>;
def VBROADCASTSSYrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR256,
v8f32, v4f32, WriteFShuffle256>, VEX_L;
}
let ExeDomain = SSEPackedDouble, Predicates = [HasAVX2, NoVLX] in
def VBROADCASTSDYrr : avx2_broadcast_rr<0x19, "vbroadcastsd", VR256,
v4f64, v2f64, WriteFShuffle256>, VEX_L;
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4f32 (X86VBroadcast (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(VBROADCASTSSrm addr:$src)>;
def : Pat<(v8f32 (X86VBroadcast (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(VBROADCASTSSYrm addr:$src)>;
def : Pat<(v4f64 (X86VBroadcast (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(VBROADCASTSDYrm addr:$src)>;
}
//===----------------------------------------------------------------------===//
// VBROADCAST*128 - Load from memory and broadcast 128-bit vector to both
// halves of a 256-bit vector.
//
let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX2] in
def VBROADCASTI128 : AVX8I<0x5A, MRMSrcMem, (outs VR256:$dst),
(ins i128mem:$src),
"vbroadcasti128\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteShuffleLd]>, VEX, VEX_L;
let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX],
ExeDomain = SSEPackedSingle in
def VBROADCASTF128 : AVX8I<0x1A, MRMSrcMem, (outs VR256:$dst),
(ins f128mem:$src),
"vbroadcastf128\t{$src, $dst|$dst, $src}", []>,
Sched<[SchedWriteFShuffle.XMM.Folded]>, VEX, VEX_L;
let Predicates = [HasAVX2, NoVLX] in {
def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))),
(VBROADCASTI128 addr:$src)>;
def : Pat<(v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src)))),
(VBROADCASTI128 addr:$src)>;
def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))),
(VBROADCASTI128 addr:$src)>;
def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))),
(VBROADCASTI128 addr:$src)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))),
(VBROADCASTF128 addr:$src)>;
def : Pat<(v8f32 (X86SubVBroadcast (loadv4f32 addr:$src))),
(VBROADCASTF128 addr:$src)>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))),
(VBROADCASTF128 addr:$src)>;
def : Pat<(v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src)))),
(VBROADCASTF128 addr:$src)>;
def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))),
(VBROADCASTF128 addr:$src)>;
def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))),
(VBROADCASTF128 addr:$src)>;
}
//===----------------------------------------------------------------------===//
// VINSERTF128 - Insert packed floating-point values
//
let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, u8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteFShuffle256]>, VEX_4V, VEX_L;
let mayLoad = 1 in
def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f128mem:$src2, u8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteFShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
}
// To create a 256-bit all ones value, we should produce VCMPTRUEPS
// with YMM register containing zero.
// FIXME: Avoid producing vxorps to clear the fake inputs.
let Predicates = [HasAVX1Only] in {
def : Pat<(v8i32 immAllOnesV), (VCMPPSYrri (AVX_SET0), (AVX_SET0), 0xf)>;
}
multiclass vinsert_lowering<string InstrStr, ValueType From, ValueType To,
PatFrag memop_frag> {
def : Pat<(vinsert128_insert:$ins (To VR256:$src1), (From VR128:$src2),
(iPTR imm)),
(!cast<Instruction>(InstrStr#rr) VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (To VR256:$src1),
(From (bitconvert (memop_frag addr:$src2))),
(iPTR imm)),
(!cast<Instruction>(InstrStr#rm) VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
}
let Predicates = [HasAVX, NoVLX] in {
defm : vinsert_lowering<"VINSERTF128", v4f32, v8f32, loadv4f32>;
defm : vinsert_lowering<"VINSERTF128", v2f64, v4f64, loadv2f64>;
}
let Predicates = [HasAVX1Only] in {
defm : vinsert_lowering<"VINSERTF128", v2i64, v4i64, loadv2i64>;
defm : vinsert_lowering<"VINSERTF128", v4i32, v8i32, loadv2i64>;
defm : vinsert_lowering<"VINSERTF128", v8i16, v16i16, loadv2i64>;
defm : vinsert_lowering<"VINSERTF128", v16i8, v32i8, loadv2i64>;
}
//===----------------------------------------------------------------------===//
// VEXTRACTF128 - Extract packed floating-point values
//
let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, u8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, Sched<[WriteFShuffle256]>, VEX, VEX_L;
let mayStore = 1 in
def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs),
(ins f128mem:$dst, VR256:$src1, u8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, Sched<[WriteFStore]>, VEX, VEX_L;
}
multiclass vextract_lowering<string InstrStr, ValueType From, ValueType To> {
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(To (!cast<Instruction>(InstrStr#rr)
(From VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(store (To (vextract128_extract:$ext (From VR256:$src1),
(iPTR imm))), addr:$dst),
(!cast<Instruction>(InstrStr#mr) addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
}
// AVX1 patterns
let Predicates = [HasAVX, NoVLX] in {
defm : vextract_lowering<"VEXTRACTF128", v8f32, v4f32>;
defm : vextract_lowering<"VEXTRACTF128", v4f64, v2f64>;
}
let Predicates = [HasAVX1Only] in {
defm : vextract_lowering<"VEXTRACTF128", v4i64, v2i64>;
defm : vextract_lowering<"VEXTRACTF128", v8i32, v4i32>;
defm : vextract_lowering<"VEXTRACTF128", v16i16, v8i16>;
defm : vextract_lowering<"VEXTRACTF128", v32i8, v16i8>;
}
//===----------------------------------------------------------------------===//
// VMASKMOV - Conditional SIMD Packed Loads and Stores
//
multiclass avx_movmask_rm<bits<8> opc_rm, bits<8> opc_mr, string OpcodeStr,
Intrinsic IntLd, Intrinsic IntLd256,
Intrinsic IntSt, Intrinsic IntSt256> {
def rm : AVX8I<opc_rm, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (IntLd addr:$src2, VR128:$src1))]>,
VEX_4V, Sched<[WriteFLoad]>;
def Yrm : AVX8I<opc_rm, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
VEX_4V, VEX_L, Sched<[WriteFLoad]>;
def mr : AVX8I<opc_mr, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt addr:$dst, VR128:$src1, VR128:$src2)]>,
VEX_4V, Sched<[WriteFStore]>;
def Ymr : AVX8I<opc_mr, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>,
VEX_4V, VEX_L, Sched<[WriteFStore]>;
}
let ExeDomain = SSEPackedSingle in
defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps",
int_x86_avx_maskload_ps,
int_x86_avx_maskload_ps_256,
int_x86_avx_maskstore_ps,
int_x86_avx_maskstore_ps_256>;
let ExeDomain = SSEPackedDouble in
defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd",
int_x86_avx_maskload_pd,
int_x86_avx_maskload_pd_256,
int_x86_avx_maskstore_pd,
int_x86_avx_maskstore_pd_256>;
//===----------------------------------------------------------------------===//
// VPERMIL - Permute Single and Double Floating-Point Values
//
multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop_f,
X86MemOperand x86memop_i, PatFrag i_frag,
ValueType f_vt, ValueType i_vt,
X86FoldableSchedWrite sched,
X86FoldableSchedWrite varsched> {
let Predicates = [HasAVX, NoVLX] in {
def rr : AVX8I<opc_rm, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (f_vt (X86VPermilpv RC:$src1, (i_vt RC:$src2))))]>, VEX_4V,
Sched<[varsched]>;
def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop_i:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (f_vt (X86VPermilpv RC:$src1,
(i_vt (bitconvert (i_frag addr:$src2))))))]>, VEX_4V,
Sched<[varsched.Folded, ReadAfterLd]>;
def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, u8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (f_vt (X86VPermilpi RC:$src1, (i8 imm:$src2))))]>, VEX,
Sched<[sched]>;
def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst),
(ins x86memop_f:$src1, u8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(f_vt (X86VPermilpi (load addr:$src1), (i8 imm:$src2))))]>, VEX,
Sched<[sched.Folded]>;
}// Predicates = [HasAVX, NoVLX]
}
let ExeDomain = SSEPackedSingle in {
defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem,
loadv2i64, v4f32, v4i32, SchedWriteFShuffle.XMM,
SchedWriteFVarShuffle.XMM>;
defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem,
loadv4i64, v8f32, v8i32, SchedWriteFShuffle.YMM,
SchedWriteFVarShuffle.YMM>, VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem,
loadv2i64, v2f64, v2i64, SchedWriteFShuffle.XMM,
SchedWriteFVarShuffle.XMM>;
defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem,
loadv4i64, v4f64, v4i64, SchedWriteFShuffle.YMM,
SchedWriteFVarShuffle.YMM>, VEX_L;
}
//===----------------------------------------------------------------------===//
// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks
//
let ExeDomain = SSEPackedSingle in {
let isCommutable = 1 in
def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, u8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2,
(i8 imm:$src3))))]>, VEX_4V, VEX_L,
Sched<[WriteFShuffle256]>;
def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, u8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4f64 addr:$src2),
(i8 imm:$src3)))]>, VEX_4V, VEX_L,
Sched<[WriteFShuffle256Ld, ReadAfterLd]>;
}
// Immediate transform to help with commuting.
def Perm2XCommuteImm : SDNodeXForm<imm, [{
return getI8Imm(N->getZExtValue() ^ 0x22, SDLoc(N));
}]>;
let Predicates = [HasAVX] in {
// Pattern with load in other operand.
def : Pat<(v4f64 (X86VPerm2x128 (loadv4f64 addr:$src2),
VR256:$src1, (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1,
(loadv4i64 addr:$src2), (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
// Pattern with load in other operand.
def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2),
VR256:$src1, (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>;
}
//===----------------------------------------------------------------------===//
// VZERO - Zero YMM registers
// Note: These instruction do not affect the YMM16-YMM31.
//
let SchedRW = [WriteSystem] in {
let Defs = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15] in {
// Zero All YMM registers
def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall",
[(int_x86_avx_vzeroall)]>, PS, VEX, VEX_L,
Requires<[HasAVX]>, VEX_WIG;
// Zero Upper bits of YMM registers
def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper",
[(int_x86_avx_vzeroupper)]>, PS, VEX,
Requires<[HasAVX]>, VEX_WIG;
} // Defs
} // SchedRW
//===----------------------------------------------------------------------===//
// Half precision conversion instructions
//
multiclass f16c_ph2ps<RegisterClass RC, X86MemOperand x86memop> {
def rr : I<0x13, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
"vcvtph2ps\t{$src, $dst|$dst, $src}",
[(set RC:$dst, (X86cvtph2ps VR128:$src))]>,
T8PD, VEX, Sched<[WriteCvtF2F]>;
let hasSideEffects = 0, mayLoad = 1 in
def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
"vcvtph2ps\t{$src, $dst|$dst, $src}",
[(set RC:$dst, (X86cvtph2ps (bc_v8i16
(loadv2i64 addr:$src))))]>,
T8PD, VEX, Sched<[WriteCvtF2FLd]>;
}
multiclass f16c_ps2ph<RegisterClass RC, X86MemOperand x86memop> {
def rr : Ii8<0x1D, MRMDestReg, (outs VR128:$dst),
(ins RC:$src1, i32u8imm:$src2),
"vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (X86cvtps2ph RC:$src1, imm:$src2))]>,
TAPD, VEX, Sched<[WriteCvtF2F]>;
let hasSideEffects = 0, mayStore = 1 in
def mr : Ii8<0x1D, MRMDestMem, (outs),
(ins x86memop:$dst, RC:$src1, i32u8imm:$src2),
"vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
TAPD, VEX, Sched<[WriteCvtF2FSt]>;
}
let Predicates = [HasF16C, NoVLX] in {
defm VCVTPH2PS : f16c_ph2ps<VR128, f64mem>;
defm VCVTPH2PSY : f16c_ph2ps<VR256, f128mem>, VEX_L;
defm VCVTPS2PH : f16c_ps2ph<VR128, f64mem>;
defm VCVTPS2PHY : f16c_ps2ph<VR256, f128mem>, VEX_L;
// Pattern match vcvtph2ps of a scalar i64 load.
def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzmovl_v2i64 addr:$src)))),
(VCVTPH2PSrm addr:$src)>;
def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzload_v2i64 addr:$src)))),
(VCVTPH2PSrm addr:$src)>;
def : Pat<(v4f32 (X86cvtph2ps (v8i16 (bitconvert
(v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(VCVTPH2PSrm addr:$src)>;
def : Pat<(store (f64 (extractelt
(bc_v2f64 (v8i16 (X86cvtps2ph VR128:$src1, i32:$src2))),
(iPTR 0))), addr:$dst),
(VCVTPS2PHmr addr:$dst, VR128:$src1, imm:$src2)>;
def : Pat<(store (i64 (extractelt
(bc_v2i64 (v8i16 (X86cvtps2ph VR128:$src1, i32:$src2))),
(iPTR 0))), addr:$dst),
(VCVTPS2PHmr addr:$dst, VR128:$src1, imm:$src2)>;
def : Pat<(store (v8i16 (X86cvtps2ph VR256:$src1, i32:$src2)), addr:$dst),
(VCVTPS2PHYmr addr:$dst, VR256:$src1, imm:$src2)>;
}
// Patterns for matching conversions from float to half-float and vice versa.
let Predicates = [HasF16C, NoVLX] in {
// Use MXCSR.RC for rounding instead of explicitly specifying the default
// rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the
// configurations we support (the default). However, falling back to MXCSR is
// more consistent with other instructions, which are always controlled by it.
// It's encoded as 0b100.
def : Pat<(fp_to_f16 FR32:$src),
(i16 (EXTRACT_SUBREG (VMOVPDI2DIrr (VCVTPS2PHrr
(COPY_TO_REGCLASS FR32:$src, VR128), 4)), sub_16bit))>;
def : Pat<(f16_to_fp GR16:$src),
(f32 (COPY_TO_REGCLASS (VCVTPH2PSrr
(COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128)), FR32)) >;
def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32:$src))),
(f32 (COPY_TO_REGCLASS (VCVTPH2PSrr
(VCVTPS2PHrr (COPY_TO_REGCLASS FR32:$src, VR128), 4)), FR32)) >;
}
//===----------------------------------------------------------------------===//
// AVX2 Instructions
//===----------------------------------------------------------------------===//
/// AVX2_blend_rmi - AVX2 blend with 8-bit immediate
multiclass AVX2_blend_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, X86FoldableSchedWrite sched,
RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, SDNodeXForm commuteXForm> {
let isCommutable = 1 in
def rri : AVX2AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>,
Sched<[sched]>, VEX_4V;
def rmi : AVX2AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, u8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(OpVT (OpNode RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3)))]>,
Sched<[sched.Folded, ReadAfterLd]>, VEX_4V;
// Pattern to commute if load is in first source.
def : Pat<(OpVT (OpNode (bitconvert (memop_frag addr:$src2)),
RC:$src1, imm:$src3)),
(!cast<Instruction>(NAME#"rmi") RC:$src1, addr:$src2,
(commuteXForm imm:$src3))>;
}
defm VPBLENDD : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v4i32,
SchedWriteBlend.XMM, VR128, loadv2i64, i128mem,
BlendCommuteImm4>;
defm VPBLENDDY : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v8i32,
SchedWriteBlend.YMM, VR256, loadv4i64, i256mem,
BlendCommuteImm8>, VEX_L;
// For insertion into the zero index (low half) of a 256-bit vector, it is
// more efficient to generate a blend with immediate instead of an insert*128.
let Predicates = [HasAVX2] in {
def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)),
(VPBLENDDYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)),
(VPBLENDDYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)),
(VPBLENDDYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)),
(VPBLENDDYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)),
(VBLENDPSYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)),
(VBLENDPSYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)),
(VBLENDPSYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)),
(VBLENDPSYrri VR256:$src1,
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
VR128:$src2, sub_xmm), 0xf)>;
}
//===----------------------------------------------------------------------===//
// VPBROADCAST - Load from memory and broadcast to all elements of the
// destination operand
//
multiclass avx2_broadcast<bits<8> opc, string OpcodeStr,
X86MemOperand x86memop, PatFrag ld_frag,
ValueType OpVT128, ValueType OpVT256, Predicate prd> {
let Predicates = [HasAVX2, prd] in {
def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(OpVT128 (X86VBroadcast (OpVT128 VR128:$src))))]>,
Sched<[SchedWriteShuffle.XMM]>, VEX;
def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(OpVT128 (X86VBroadcast (ld_frag addr:$src))))]>,
Sched<[SchedWriteShuffle.XMM.Folded]>, VEX;
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(OpVT256 (X86VBroadcast (OpVT128 VR128:$src))))]>,
Sched<[WriteShuffle256]>, VEX, VEX_L;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(OpVT256 (X86VBroadcast (ld_frag addr:$src))))]>,
Sched<[SchedWriteShuffle.XMM.Folded]>, VEX, VEX_L;
// Provide aliases for broadcast from the same register class that
// automatically does the extract.
def : Pat<(OpVT256 (X86VBroadcast (OpVT256 VR256:$src))),
(!cast<Instruction>(NAME#"Yrr")
(OpVT128 (EXTRACT_SUBREG (OpVT256 VR256:$src),sub_xmm)))>;
}
}
defm VPBROADCASTB : avx2_broadcast<0x78, "vpbroadcastb", i8mem, loadi8,
v16i8, v32i8, NoVLX_Or_NoBWI>;
defm VPBROADCASTW : avx2_broadcast<0x79, "vpbroadcastw", i16mem, loadi16,
v8i16, v16i16, NoVLX_Or_NoBWI>;
defm VPBROADCASTD : avx2_broadcast<0x58, "vpbroadcastd", i32mem, loadi32,
v4i32, v8i32, NoVLX>;
defm VPBROADCASTQ : avx2_broadcast<0x59, "vpbroadcastq", i64mem, loadi64,
v2i64, v4i64, NoVLX>;
let Predicates = [HasAVX2, NoVLX] in {
// 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD.
def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload addr:$src)))),
(VPBROADCASTQrm addr:$src)>;
def : Pat<(v4i64 (X86VBroadcast (v4i64 (X86vzload addr:$src)))),
(VPBROADCASTQYrm addr:$src)>;
def : Pat<(v4i32 (X86VBroadcast (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(VPBROADCASTDrm addr:$src)>;
def : Pat<(v8i32 (X86VBroadcast (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(VPBROADCASTDYrm addr:$src)>;
def : Pat<(v2i64 (X86VBroadcast (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(VPBROADCASTQrm addr:$src)>;
def : Pat<(v4i64 (X86VBroadcast (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(VPBROADCASTQYrm addr:$src)>;
}
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
// loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably.
// This means we'll encounter truncated i32 loads; match that here.
def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))),
(VPBROADCASTWrm addr:$src)>;
def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))),
(VPBROADCASTWYrm addr:$src)>;
def : Pat<(v8i16 (X86VBroadcast
(i16 (trunc (i32 (zextloadi16 addr:$src)))))),
(VPBROADCASTWrm addr:$src)>;
def : Pat<(v16i16 (X86VBroadcast
(i16 (trunc (i32 (zextloadi16 addr:$src)))))),
(VPBROADCASTWYrm addr:$src)>;
}
let Predicates = [HasAVX2, NoVLX] in {
// Provide aliases for broadcast from the same register class that
// automatically does the extract.
def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256:$src))),
(VBROADCASTSSYrr (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src),
sub_xmm)))>;
def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256:$src))),
(VBROADCASTSDYrr (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src),
sub_xmm)))>;
}
let Predicates = [HasAVX2, NoVLX] in {
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
(VBROADCASTSSrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
(VBROADCASTSSYrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
(VBROADCASTSDYrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
}
let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
def : Pat<(v16i8 (X86VBroadcast GR8:$src)),
(VPBROADCASTBrr (COPY_TO_REGCLASS
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
GR8:$src, sub_8bit)),
VR128))>;
def : Pat<(v32i8 (X86VBroadcast GR8:$src)),
(VPBROADCASTBYrr (COPY_TO_REGCLASS
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
GR8:$src, sub_8bit)),
VR128))>;
def : Pat<(v8i16 (X86VBroadcast GR16:$src)),
(VPBROADCASTWrr (COPY_TO_REGCLASS
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
GR16:$src, sub_16bit)),
VR128))>;
def : Pat<(v16i16 (X86VBroadcast GR16:$src)),
(VPBROADCASTWYrr (COPY_TO_REGCLASS
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
GR16:$src, sub_16bit)),
VR128))>;
}
let Predicates = [HasAVX2, NoVLX] in {
def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
(VPBROADCASTDrr (COPY_TO_REGCLASS GR32:$src, VR128))>;
def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
(VPBROADCASTDYrr (COPY_TO_REGCLASS GR32:$src, VR128))>;
def : Pat<(v2i64 (X86VBroadcast GR64:$src)),
(VPBROADCASTQrr (COPY_TO_REGCLASS GR64:$src, VR128))>;
def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
(VPBROADCASTQYrr (COPY_TO_REGCLASS GR64:$src, VR128))>;
}
// AVX1 broadcast patterns
let Predicates = [HasAVX1Only] in {
def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))),
(VBROADCASTSSYrm addr:$src)>;
def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))),
(VBROADCASTSDYrm addr:$src)>;
def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))),
(VBROADCASTSSrm addr:$src)>;
}
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
let Predicates = [HasAVX, NoVLX] in {
// 128bit broadcasts:
def : Pat<(v2f64 (X86VBroadcast f64:$src)),
(VMOVDDUPrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))),
(VMOVDDUPrm addr:$src)>;
def : Pat<(v2f64 (X86VBroadcast v2f64:$src)),
(VMOVDDUPrr VR128:$src)>;
def : Pat<(v2f64 (X86VBroadcast (loadv2f64 addr:$src))),
(VMOVDDUPrm addr:$src)>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
(VPERMILPSri (COPY_TO_REGCLASS FR32:$src, VR128), 0)>;
def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
(VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)),
(VPERMILPSri (COPY_TO_REGCLASS FR32:$src, VR128), 0), sub_xmm),
(VPERMILPSri (COPY_TO_REGCLASS FR32:$src, VR128), 0), 1)>;
def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
(VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)),
(VMOVDDUPrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_xmm),
(VMOVDDUPrr (COPY_TO_REGCLASS FR64:$src, VR128)), 1)>;
def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
(VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0)>;
def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
(VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
(VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0), 1)>;
def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
(VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)),
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), 1)>;
def : Pat<(v2i64 (X86VBroadcast i64:$src)),
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44)>;
def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))),
(VMOVDDUPrm addr:$src)>;
}
//===----------------------------------------------------------------------===//
// VPERM - Permute instructions
//
multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
ValueType OpVT, X86FoldableSchedWrite Sched,
X86MemOperand memOp> {
let Predicates = [HasAVX2, NoVLX] in {
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermv VR256:$src1, VR256:$src2)))]>,
Sched<[Sched]>, VEX_4V, VEX_L;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, memOp:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermv VR256:$src1,
(bitconvert (mem_frag addr:$src2)))))]>,
Sched<[Sched.Folded, ReadAfterLd]>, VEX_4V, VEX_L;
}
}
defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32, WriteVarShuffle256,
i256mem>;
let ExeDomain = SSEPackedSingle in
defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32, WriteFVarShuffle256,
f256mem>;
multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
ValueType OpVT, X86FoldableSchedWrite Sched,
X86MemOperand memOp> {
let Predicates = [HasAVX2, NoVLX] in {
def Yri : AVX2AIi8<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermi VR256:$src1, (i8 imm:$src2))))]>,
Sched<[Sched]>, VEX, VEX_L;
def Ymi : AVX2AIi8<opc, MRMSrcMem, (outs VR256:$dst),
(ins memOp:$src1, u8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermi (mem_frag addr:$src1),
(i8 imm:$src2))))]>,
Sched<[Sched.Folded, ReadAfterLd]>, VEX, VEX_L;
}
}
defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64,
WriteShuffle256, i256mem>, VEX_W;
let ExeDomain = SSEPackedDouble in
defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64,
WriteFShuffle256, f256mem>, VEX_W;
//===----------------------------------------------------------------------===//
// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks
//
let isCommutable = 1 in
def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, u8imm:$src3),
"vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2,
(i8 imm:$src3))))]>, Sched<[WriteShuffle256]>,
VEX_4V, VEX_L;
def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, u8imm:$src3),
"vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2),
(i8 imm:$src3)))]>,
Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
let Predicates = [HasAVX2] in
def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2),
VR256:$src1, (i8 imm:$imm))),
(VPERM2I128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>;
//===----------------------------------------------------------------------===//
// VINSERTI128 - Insert packed integer values
//
let hasSideEffects = 0 in {
def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, u8imm:$src3),
"vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L;
let mayLoad = 1 in
def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i128mem:$src2, u8imm:$src3),
"vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
}
let Predicates = [HasAVX2, NoVLX] in {
defm : vinsert_lowering<"VINSERTI128", v2i64, v4i64, loadv2i64>;
defm : vinsert_lowering<"VINSERTI128", v4i32, v8i32, loadv2i64>;
defm : vinsert_lowering<"VINSERTI128", v8i16, v16i16, loadv2i64>;
defm : vinsert_lowering<"VINSERTI128", v16i8, v32i8, loadv2i64>;
}
//===----------------------------------------------------------------------===//
// VEXTRACTI128 - Extract packed integer values
//
def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, u8imm:$src2),
"vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
Sched<[WriteShuffle256]>, VEX, VEX_L;
let hasSideEffects = 0, mayStore = 1 in
def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs),
(ins i128mem:$dst, VR256:$src1, u8imm:$src2),
"vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
Sched<[WriteVecStore]>, VEX, VEX_L;
let Predicates = [HasAVX2, NoVLX] in {
defm : vextract_lowering<"VEXTRACTI128", v4i64, v2i64>;
defm : vextract_lowering<"VEXTRACTI128", v8i32, v4i32>;
defm : vextract_lowering<"VEXTRACTI128", v16i16, v8i16>;
defm : vextract_lowering<"VEXTRACTI128", v32i8, v16i8>;
}
//===----------------------------------------------------------------------===//
// VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores
//
multiclass avx2_pmovmask<string OpcodeStr,
Intrinsic IntLd128, Intrinsic IntLd256,
Intrinsic IntSt128, Intrinsic IntSt256> {
def rm : AVX28I<0x8c, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (IntLd128 addr:$src2, VR128:$src1))]>,
VEX_4V, Sched<[WriteVecLoad]>;
def Yrm : AVX28I<0x8c, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
VEX_4V, VEX_L, Sched<[WriteVecLoad]>;
def mr : AVX28I<0x8e, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt128 addr:$dst, VR128:$src1, VR128:$src2)]>,
VEX_4V, Sched<[WriteVecStore]>;
def Ymr : AVX28I<0x8e, MRMDestMem, (outs),
(ins i256mem:$dst, VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>,
VEX_4V, VEX_L, Sched<[WriteVecStore]>;
}
defm VPMASKMOVD : avx2_pmovmask<"vpmaskmovd",
int_x86_avx2_maskload_d,
int_x86_avx2_maskload_d_256,
int_x86_avx2_maskstore_d,
int_x86_avx2_maskstore_d_256>;
defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq",
int_x86_avx2_maskload_q,
int_x86_avx2_maskload_q_256,
int_x86_avx2_maskstore_q,
int_x86_avx2_maskstore_q_256>, VEX_W;
multiclass maskmov_lowering<string InstrStr, RegisterClass RC, ValueType VT,
ValueType MaskVT, string BlendStr, ValueType ZeroVT> {
// masked store
def: Pat<(X86mstore addr:$ptr, (MaskVT RC:$mask), (VT RC:$src)),
(!cast<Instruction>(InstrStr#"mr") addr:$ptr, RC:$mask, RC:$src)>;
// masked load
def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), undef)),
(!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)>;
def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask),
(VT (bitconvert (ZeroVT immAllZerosV))))),
(!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)>;
def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), (VT RC:$src0))),
(!cast<Instruction>(BlendStr#"rr")
RC:$src0,
(!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr),
RC:$mask)>;
}
let Predicates = [HasAVX] in {
defm : maskmov_lowering<"VMASKMOVPS", VR128, v4f32, v4i32, "VBLENDVPS", v4i32>;
defm : maskmov_lowering<"VMASKMOVPD", VR128, v2f64, v2i64, "VBLENDVPD", v4i32>;
defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8f32, v8i32, "VBLENDVPSY", v8i32>;
defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4f64, v4i64, "VBLENDVPDY", v8i32>;
}
let Predicates = [HasAVX1Only] in {
// load/store i32/i64 not supported use ps/pd version
defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8i32, v8i32, "VBLENDVPSY", v8i32>;
defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4i64, v4i64, "VBLENDVPDY", v8i32>;
defm : maskmov_lowering<"VMASKMOVPS", VR128, v4i32, v4i32, "VBLENDVPS", v4i32>;
defm : maskmov_lowering<"VMASKMOVPD", VR128, v2i64, v2i64, "VBLENDVPD", v4i32>;
}
let Predicates = [HasAVX2] in {
defm : maskmov_lowering<"VPMASKMOVDY", VR256, v8i32, v8i32, "VBLENDVPSY", v8i32>;
defm : maskmov_lowering<"VPMASKMOVQY", VR256, v4i64, v4i64, "VBLENDVPDY", v8i32>;
defm : maskmov_lowering<"VPMASKMOVD", VR128, v4i32, v4i32, "VBLENDVPS", v4i32>;
defm : maskmov_lowering<"VPMASKMOVQ", VR128, v2i64, v2i64, "VBLENDVPD", v4i32>;
}
//===----------------------------------------------------------------------===//
// SubVector Broadcasts
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
let Predicates = [HasAVX2, NoVLX] in {
def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))),
(VINSERTI128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v2i64 VR128:$src), 1)>;
def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))),
(VINSERTI128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v4i32 VR128:$src), 1)>;
def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))),
(VINSERTI128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v8i16 VR128:$src), 1)>;
def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))),
(VINSERTI128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v16i8 VR128:$src), 1)>;
}
let Predicates = [HasAVX, NoVLX] in {
def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128:$src))),
(VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v2f64 VR128:$src), 1)>;
def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128:$src))),
(VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v4f32 VR128:$src), 1)>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))),
(VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v2i64 VR128:$src), 1)>;
def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))),
(VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v4i32 VR128:$src), 1)>;
def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))),
(VINSERTF128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v8i16 VR128:$src), 1)>;
def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))),
(VINSERTF128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
(v16i8 VR128:$src), 1)>;
}
//===----------------------------------------------------------------------===//
// Variable Bit Shifts
//
multiclass avx2_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType vt128, ValueType vt256> {
def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1, (vt128 VR128:$src2))))]>,
VEX_4V, Sched<[SchedWriteVarVecShift.XMM]>;
def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1,
(vt128 (bitconvert (loadv2i64 addr:$src2))))))]>,
VEX_4V, Sched<[SchedWriteVarVecShift.XMM.Folded, ReadAfterLd]>;
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode VR256:$src1, (vt256 VR256:$src2))))]>,
VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM]>;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode VR256:$src1,
(vt256 (bitconvert (loadv4i64 addr:$src2))))))]>,
VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX2, NoVLX] in {
defm VPSLLVD : avx2_var_shift<0x47, "vpsllvd", shl, v4i32, v8i32>;
defm VPSLLVQ : avx2_var_shift<0x47, "vpsllvq", shl, v2i64, v4i64>, VEX_W;
defm VPSRLVD : avx2_var_shift<0x45, "vpsrlvd", srl, v4i32, v8i32>;
defm VPSRLVQ : avx2_var_shift<0x45, "vpsrlvq", srl, v2i64, v4i64>, VEX_W;
defm VPSRAVD : avx2_var_shift<0x46, "vpsravd", sra, v4i32, v8i32>;
def : Pat<(v4i32 (X86vsrav VR128:$src1, VR128:$src2)),
(VPSRAVDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86vsrav VR128:$src1,
(bitconvert (loadv2i64 addr:$src2)))),
(VPSRAVDrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i32 (X86vsrav VR256:$src1, VR256:$src2)),
(VPSRAVDYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v8i32 (X86vsrav VR256:$src1,
(bitconvert (loadv4i64 addr:$src2)))),
(VPSRAVDYrm VR256:$src1, addr:$src2)>;
}
//===----------------------------------------------------------------------===//
// VGATHER - GATHER Operations
// FIXME: Improve scheduling of gather instructions.
multiclass avx2_gather<bits<8> opc, string OpcodeStr, ValueType VTx,
ValueType VTy, PatFrag GatherNode128,
PatFrag GatherNode256, RegisterClass RC256,
X86MemOperand memop128, X86MemOperand memop256,
ValueType MTx = VTx, ValueType MTy = VTy> {
def rm : AVX28I<opc, MRMSrcMem4VOp3, (outs VR128:$dst, VR128:$mask_wb),
(ins VR128:$src1, memop128:$src2, VR128:$mask),
!strconcat(OpcodeStr,
"\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
[(set (VTx VR128:$dst), (MTx VR128:$mask_wb),
(GatherNode128 VR128:$src1, VR128:$mask,
vectoraddr:$src2))]>,
VEX, Sched<[WriteLoad]>;
def Yrm : AVX28I<opc, MRMSrcMem4VOp3, (outs RC256:$dst, RC256:$mask_wb),
(ins RC256:$src1, memop256:$src2, RC256:$mask),
!strconcat(OpcodeStr,
"\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
[(set (VTy RC256:$dst), (MTy RC256:$mask_wb),
(GatherNode256 RC256:$src1, RC256:$mask,
vectoraddr:$src2))]>,
VEX, VEX_L, Sched<[WriteLoad]>;
}
let Predicates = [UseAVX2] in {
let mayLoad = 1, hasSideEffects = 0, Constraints
= "@earlyclobber $dst,@earlyclobber $mask_wb, $src1 = $dst, $mask = $mask_wb"
in {
defm VPGATHERDQ : avx2_gather<0x90, "vpgatherdq", v2i64, v4i64, mgatherv4i32,
mgatherv4i32, VR256, vx128mem, vx256mem>, VEX_W;
defm VPGATHERQQ : avx2_gather<0x91, "vpgatherqq", v2i64, v4i64, mgatherv2i64,
mgatherv4i64, VR256, vx128mem, vy256mem>, VEX_W;
defm VPGATHERDD : avx2_gather<0x90, "vpgatherdd", v4i32, v8i32, mgatherv4i32,
mgatherv8i32, VR256, vx128mem, vy256mem>;
defm VPGATHERQD : avx2_gather<0x91, "vpgatherqd", v4i32, v4i32, mgatherv2i64,
mgatherv4i64, VR128, vx64mem, vy128mem>;
let ExeDomain = SSEPackedDouble in {
defm VGATHERDPD : avx2_gather<0x92, "vgatherdpd", v2f64, v4f64, mgatherv4i32,
mgatherv4i32, VR256, vx128mem, vx256mem,
v2i64, v4i64>, VEX_W;
defm VGATHERQPD : avx2_gather<0x93, "vgatherqpd", v2f64, v4f64, mgatherv2i64,
mgatherv4i64, VR256, vx128mem, vy256mem,
v2i64, v4i64>, VEX_W;
}
let ExeDomain = SSEPackedSingle in {
defm VGATHERDPS : avx2_gather<0x92, "vgatherdps", v4f32, v8f32, mgatherv4i32,
mgatherv8i32, VR256, vx128mem, vy256mem,
v4i32, v8i32>;
defm VGATHERQPS : avx2_gather<0x93, "vgatherqps", v4f32, v4f32, mgatherv2i64,
mgatherv4i64, VR128, vx64mem, vy128mem,
v4i32, v4i32>;
}
}
}
//===----------------------------------------------------------------------===//
// Extra selection patterns for FR128, f128, f128mem
// movaps is shorter than movdqa. movaps is in SSE and movdqa is in SSE2.
def : Pat<(store (f128 FR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, (COPY_TO_REGCLASS (f128 FR128:$src), VR128))>;
def : Pat<(loadf128 addr:$src),
(COPY_TO_REGCLASS (MOVAPSrm addr:$src), FR128)>;
// andps is shorter than andpd or pand. andps is SSE and andpd/pand are in SSE2
def : Pat<(X86fand FR128:$src1, (loadf128 addr:$src2)),
(COPY_TO_REGCLASS
(ANDPSrm (COPY_TO_REGCLASS FR128:$src1, VR128), f128mem:$src2),
FR128)>;
def : Pat<(X86fand FR128:$src1, FR128:$src2),
(COPY_TO_REGCLASS
(ANDPSrr (COPY_TO_REGCLASS FR128:$src1, VR128),
(COPY_TO_REGCLASS FR128:$src2, VR128)), FR128)>;
def : Pat<(and FR128:$src1, FR128:$src2),
(COPY_TO_REGCLASS
(ANDPSrr (COPY_TO_REGCLASS FR128:$src1, VR128),
(COPY_TO_REGCLASS FR128:$src2, VR128)), FR128)>;
def : Pat<(X86for FR128:$src1, (loadf128 addr:$src2)),
(COPY_TO_REGCLASS
(ORPSrm (COPY_TO_REGCLASS FR128:$src1, VR128), f128mem:$src2),
FR128)>;
def : Pat<(X86for FR128:$src1, FR128:$src2),
(COPY_TO_REGCLASS
(ORPSrr (COPY_TO_REGCLASS FR128:$src1, VR128),
(COPY_TO_REGCLASS FR128:$src2, VR128)), FR128)>;
def : Pat<(or FR128:$src1, FR128:$src2),
(COPY_TO_REGCLASS
(ORPSrr (COPY_TO_REGCLASS FR128:$src1, VR128),
(COPY_TO_REGCLASS FR128:$src2, VR128)), FR128)>;
def : Pat<(X86fxor FR128:$src1, (loadf128 addr:$src2)),
(COPY_TO_REGCLASS
(XORPSrm (COPY_TO_REGCLASS FR128:$src1, VR128), f128mem:$src2),
FR128)>;
def : Pat<(X86fxor FR128:$src1, FR128:$src2),
(COPY_TO_REGCLASS
(XORPSrr (COPY_TO_REGCLASS FR128:$src1, VR128),
(COPY_TO_REGCLASS FR128:$src2, VR128)), FR128)>;
def : Pat<(xor FR128:$src1, FR128:$src2),
(COPY_TO_REGCLASS
(XORPSrr (COPY_TO_REGCLASS FR128:$src1, VR128),
(COPY_TO_REGCLASS FR128:$src2, VR128)), FR128)>;
//===----------------------------------------------------------------------===//
// GFNI instructions
//===----------------------------------------------------------------------===//
multiclass GF2P8MULB_rm<string OpcodeStr, ValueType OpVT,
RegisterClass RC, PatFrag MemOpFrag,
X86MemOperand X86MemOp, bit Is2Addr = 0> {
let ExeDomain = SSEPackedInt,
AsmString = !if(Is2Addr,
OpcodeStr##"\t{$src2, $dst|$dst, $src2}",
OpcodeStr##"\t{$src2, $src1, $dst|$dst, $src1, $src2}") in {
let isCommutable = 1 in
def rr : PDI<0xCF, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), "",
[(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1, RC:$src2)))]>,
Sched<[SchedWriteVecALU.XMM]>, T8PD;
def rm : PDI<0xCF, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, X86MemOp:$src2), "",
[(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1,
(bitconvert (MemOpFrag addr:$src2)))))]>,
Sched<[SchedWriteVecALU.XMM.Folded, ReadAfterLd]>, T8PD;
}
}
multiclass GF2P8AFFINE_rmi<bits<8> Op, string OpStr, ValueType OpVT,
SDNode OpNode, RegisterClass RC, PatFrag MemOpFrag,
X86MemOperand X86MemOp, bit Is2Addr = 0> {
let AsmString = !if(Is2Addr,
OpStr##"\t{$src3, $src2, $dst|$dst, $src2, $src3}",
OpStr##"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}") in {
def rri : Ii8<Op, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, u8imm:$src3), "",
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))],
SSEPackedInt>, Sched<[SchedWriteVecALU.XMM]>;
def rmi : Ii8<Op, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, X86MemOp:$src2, u8imm:$src3), "",
[(set RC:$dst, (OpVT (OpNode RC:$src1,
(bitconvert (MemOpFrag addr:$src2)),
imm:$src3)))], SSEPackedInt>,
Sched<[SchedWriteVecALU.XMM.Folded, ReadAfterLd]>;
}
}
multiclass GF2P8AFFINE_common<bits<8> Op, string OpStr, SDNode OpNode> {
let Constraints = "$src1 = $dst",
Predicates = [HasGFNI, UseSSE2] in
defm NAME : GF2P8AFFINE_rmi<Op, OpStr, v16i8, OpNode,
VR128, loadv2i64, i128mem, 1>;
let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in {
defm V##NAME : GF2P8AFFINE_rmi<Op, "v"##OpStr, v16i8, OpNode, VR128,
loadv2i64, i128mem>, VEX_4V, VEX_W;
defm V##NAME##Y : GF2P8AFFINE_rmi<Op, "v"##OpStr, v32i8, OpNode, VR256,
loadv4i64, i256mem>, VEX_4V, VEX_L, VEX_W;
}
}
// GF2P8MULB
let Constraints = "$src1 = $dst",
Predicates = [HasGFNI, UseSSE2] in
defm GF2P8MULB : GF2P8MULB_rm<"gf2p8mulb", v16i8, VR128, memopv2i64,
i128mem, 1>;
let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in {
defm VGF2P8MULB : GF2P8MULB_rm<"vgf2p8mulb", v16i8, VR128, loadv2i64,
i128mem>, VEX_4V;
defm VGF2P8MULBY : GF2P8MULB_rm<"vgf2p8mulb", v32i8, VR256, loadv4i64,
i256mem>, VEX_4V, VEX_L;
}
// GF2P8AFFINEINVQB, GF2P8AFFINEQB
let isCommutable = 0 in {
defm GF2P8AFFINEINVQB : GF2P8AFFINE_common<0xCF, "gf2p8affineinvqb",
X86GF2P8affineinvqb>, TAPD;
defm GF2P8AFFINEQB : GF2P8AFFINE_common<0xCE, "gf2p8affineqb",
X86GF2P8affineqb>, TAPD;
}