llvm-project/lldb/source/Plugins/ABI/SysV-x86_64/ABISysV_x86_64.cpp

577 lines
18 KiB
C++

//===-- ABISysV_x86_64.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABISysV_x86_64.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Thread.h"
#include "llvm/ADT/Triple.h"
using namespace lldb;
using namespace lldb_private;
static const char *pluginName = "ABISysV_x86_64";
static const char *pluginDesc = "System V ABI for x86_64 targets";
static const char *pluginShort = "abi.sysv-x86_64";
size_t
ABISysV_x86_64::GetRedZoneSize () const
{
return 128;
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABISysV_x86_64::CreateInstance (const ArchSpec &arch)
{
static ABISP g_abi_sp;
if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
{
if (!g_abi_sp)
g_abi_sp.reset (new ABISysV_x86_64);
return g_abi_sp;
}
return ABISP();
}
bool
ABISysV_x86_64::PrepareTrivialCall (Thread &thread,
lldb::addr_t sp,
lldb::addr_t func_addr,
lldb::addr_t return_addr,
lldb::addr_t *arg1_ptr,
lldb::addr_t *arg2_ptr,
lldb::addr_t *arg3_ptr) const
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
log->Printf("ABISysV_x86_64::PrepareTrivialCall\n(\n thread = %p\n sp = 0x%llx\n func_addr = 0x%llx\n return_addr = 0x%llx\n arg1_ptr = %p (0x%llx)\n arg2_ptr = %p (0x%llx)\n arg3_ptr = %p (0x%llx)\n)",
(void*)&thread,
(uint64_t)sp,
(uint64_t)func_addr,
(uint64_t)return_addr,
arg1_ptr, arg1_ptr ? (uint64_t)*arg1_ptr : (uint64_t) 0,
arg2_ptr, arg2_ptr ? (uint64_t)*arg2_ptr : (uint64_t) 0,
arg3_ptr, arg3_ptr ? (uint64_t)*arg3_ptr : (uint64_t) 0);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
RegisterValue reg_value;
if (arg1_ptr)
{
if (log)
log->Printf("About to write arg1 (0x%llx) into RDI", (uint64_t)*arg1_ptr);
reg_value.SetUInt64(*arg1_ptr);
if (!reg_ctx->WriteRegister(reg_ctx->GetRegisterInfoByName("rdi", 0), reg_value))
return false;
if (arg2_ptr)
{
if (log)
log->Printf("About to write arg2 (0x%llx) into RSI", (uint64_t)*arg2_ptr);
reg_value.SetUInt64(*arg2_ptr);
if (!reg_ctx->WriteRegister(reg_ctx->GetRegisterInfoByName("rsi", 0), reg_value))
return false;
if (arg3_ptr)
{
if (log)
log->Printf("About to write arg3 (0x%llx) into RDX", (uint64_t)*arg3_ptr);
reg_value.SetUInt64(*arg3_ptr);
if (!reg_ctx->WriteRegister(reg_ctx->GetRegisterInfoByName("rdx", 0), reg_value))
return false;
}
}
}
// First, align the SP
if (log)
log->Printf("16-byte aligning SP: 0x%llx to 0x%llx", (uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
// The return address is pushed onto the stack (yes after the alignment...)
sp -= 8;
reg_value.SetUInt64 (return_addr);
if (log)
log->Printf("Pushing the return address onto the stack: new SP 0x%llx, return address 0x%llx", (uint64_t)sp, (uint64_t)return_addr);
const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfoByName("rip");
Error error (reg_ctx->WriteRegisterValueToMemory(pc_reg_info, sp, pc_reg_info->byte_size, reg_value));
if (error.Fail())
return false;
// %rsp is set to the actual stack value.
if (log)
log->Printf("Writing SP (0x%llx) down", (uint64_t)sp);
reg_value.SetUInt64(sp);
if (!reg_ctx->WriteRegister (reg_ctx->GetRegisterInfoByName("rsp"), reg_value))
return false;
// %rip is set to the address of the called function.
if (log)
log->Printf("Writing new IP (0x%llx) down", (uint64_t)func_addr);
reg_value.SetUInt64(func_addr);
if (!reg_ctx->WriteRegister(pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar,
unsigned int bit_width,
bool is_signed,
Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument)
{
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
uint64_t arg_contents;
if (current_argument_register < 6)
{
arg_contents = thread.GetRegisterContext()->ReadRegisterAsUnsigned(argument_register_ids[current_argument_register], 0);
current_argument_register++;
}
else
{
uint8_t arg_data[sizeof(arg_contents)];
Error error;
thread.GetProcess().ReadMemory(current_stack_argument, arg_data, sizeof(arg_contents), error);
DataExtractor arg_data_extractor (arg_data, sizeof(arg_contents),
thread.GetProcess().GetTarget().GetArchitecture().GetByteOrder(),
thread.GetProcess().GetTarget().GetArchitecture().GetAddressByteSize());
uint32_t offset = 0;
arg_contents = arg_data_extractor.GetMaxU64(&offset, bit_width / 8);
if (!offset)
return false;
current_stack_argument += (bit_width / 8);
}
if (is_signed)
{
switch (bit_width)
{
default:
return false;
case 8:
scalar = (int8_t)(arg_contents & 0xff);
break;
case 16:
scalar = (int16_t)(arg_contents & 0xffff);
break;
case 32:
scalar = (int32_t)(arg_contents & 0xffffffff);
break;
case 64:
scalar = (int64_t)arg_contents;
break;
}
}
else
{
switch (bit_width)
{
default:
return false;
case 8:
scalar = (uint8_t)(arg_contents & 0xff);
break;
case 16:
scalar = (uint16_t)(arg_contents & 0xffff);
break;
case 32:
scalar = (uint32_t)(arg_contents & 0xffffffff);
break;
case 64:
scalar = (uint64_t)arg_contents;
break;
}
}
return true;
}
bool
ABISysV_x86_64::GetArgumentValues (Thread &thread,
ValueList &values) const
{
unsigned int num_values = values.GetSize();
unsigned int value_index;
// For now, assume that the types in the AST values come from the Target's
// scratch AST.
clang::ASTContext *ast_context = thread.CalculateTarget()->GetScratchClangASTContext()->getASTContext();
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 8; // jump over return address
uint32_t argument_register_ids[6];
argument_register_ids[0] = reg_ctx->GetRegisterInfoByName("rdi", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[1] = reg_ctx->GetRegisterInfoByName("rsi", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[2] = reg_ctx->GetRegisterInfoByName("rdx", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[3] = reg_ctx->GetRegisterInfoByName("rcx", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[4] = reg_ctx->GetRegisterInfoByName("r8", 0)->kinds[eRegisterKindLLDB];
argument_register_ids[5] = reg_ctx->GetRegisterInfoByName("r9", 0)->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0;
value_index < num_values;
++value_index)
{
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// We currently only support extracting values with Clang QualTypes.
// Do we care about others?
switch (value->GetContextType())
{
default:
return false;
case Value::eContextTypeClangType:
{
void *value_type = value->GetClangType();
bool is_signed;
if (ClangASTContext::IsIntegerType (value_type, is_signed))
{
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
ReadIntegerArgument(value->GetScalar(),
bit_width,
is_signed,
thread,
argument_register_ids,
current_argument_register,
current_stack_argument);
}
else if (ClangASTContext::IsPointerType (value_type))
{
ReadIntegerArgument(value->GetScalar(),
64,
false,
thread,
argument_register_ids,
current_argument_register,
current_stack_argument);
}
}
break;
}
}
return true;
}
bool
ABISysV_x86_64::GetReturnValue (Thread &thread,
Value &value) const
{
switch (value.GetContextType())
{
default:
return false;
case Value::eContextTypeClangType:
{
void *value_type = value.GetClangType();
bool is_signed;
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
if (ClangASTContext::IsIntegerType (value_type, is_signed))
{
// For now, assume that the types in the AST values come from the Target's
// scratch AST.
clang::ASTContext *ast_context = thread.CalculateTarget()->GetScratchClangASTContext()->getASTContext();
// Extract the register context so we can read arguments from registers
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
unsigned rax_id = reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
switch (bit_width)
{
default:
case 128:
// Scalar can't hold 128-bit literals, so we don't handle this
return false;
case 64:
if (is_signed)
value.GetScalar() = (int64_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0));
else
value.GetScalar() = (uint64_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0));
break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffffffff);
else
value.GetScalar() = (uint32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffffffff);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffff);
else
value.GetScalar() = (uint16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xffff);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xff);
else
value.GetScalar() = (uint8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0) & 0xff);
break;
}
}
else if (ClangASTContext::IsPointerType (value_type))
{
unsigned rax_id = reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0);
}
else
{
// not handled yet
return false;
}
}
break;
}
return true;
}
bool
ABISysV_x86_64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
uint32_t reg_kind = unwind_plan.GetRegisterKind();
uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
switch (reg_kind)
{
case eRegisterKindDWARF:
case eRegisterKindGCC:
sp_reg_num = gcc_dwarf_rsp;
pc_reg_num = gcc_dwarf_rip;
break;
case eRegisterKindGDB:
sp_reg_num = gdb_rsp;
pc_reg_num = gdb_rip;
break;
case eRegisterKindGeneric:
sp_reg_num = LLDB_REGNUM_GENERIC_SP;
pc_reg_num = LLDB_REGNUM_GENERIC_PC;
break;
}
if (sp_reg_num == LLDB_INVALID_REGNUM ||
pc_reg_num == LLDB_INVALID_REGNUM)
return false;
UnwindPlan::Row row;
row.SetCFARegister (sp_reg_num);
row.SetCFAOffset (8);
row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName (pluginName);
return true;
}
bool
ABISysV_x86_64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
uint32_t reg_kind = unwind_plan.GetRegisterKind();
uint32_t fp_reg_num = LLDB_INVALID_REGNUM;
uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
switch (reg_kind)
{
case eRegisterKindDWARF:
case eRegisterKindGCC:
fp_reg_num = gcc_dwarf_rbp;
sp_reg_num = gcc_dwarf_rsp;
pc_reg_num = gcc_dwarf_rip;
break;
case eRegisterKindGDB:
fp_reg_num = gdb_rbp;
sp_reg_num = gdb_rsp;
pc_reg_num = gdb_rip;
break;
case eRegisterKindGeneric:
fp_reg_num = LLDB_REGNUM_GENERIC_FP;
sp_reg_num = LLDB_REGNUM_GENERIC_SP;
pc_reg_num = LLDB_REGNUM_GENERIC_PC;
break;
}
if (fp_reg_num == LLDB_INVALID_REGNUM ||
sp_reg_num == LLDB_INVALID_REGNUM ||
pc_reg_num == LLDB_INVALID_REGNUM)
return false;
UnwindPlan::Row row;
const int32_t ptr_size = 8;
row.SetCFARegister (LLDB_REGNUM_GENERIC_FP);
row.SetCFAOffset (2 * ptr_size);
row.SetOffset (0);
row.SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
row.SetRegisterLocationToAtCFAPlusOffset(sp_reg_num, ptr_size * 0, true);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("x86_64 default unwind plan");
return true;
}
bool
ABISysV_x86_64::RegisterIsVolatile (const RegisterInfo *reg_info)
{
return !RegisterIsCalleeSaved (reg_info);
}
bool
ABISysV_x86_64::RegisterIsCalleeSaved (const RegisterInfo *reg_info)
{
if (reg_info)
{
// Volatile registers include: rbx, rbp, rsp, r12, r13, r14, r15, rip
const char *name = reg_info->name;
if (name[0] == 'r')
{
switch (name[1])
{
case '1': // r12, r13, r14, r15
if (name[2] >= '2' && name[2] <= '5')
return name[3] == '\0';
break;
case 'b': // rbp, rbx
if (name[2] == 'p' || name[2] == 'x')
return name[3] == '\0';
break;
case 'i': // rip
if (name[2] == 'p')
return name[3] == '\0';
break;
case 's': // rsp
if (name[2] == 'p')
return name[3] == '\0';
break;
default:
break;
}
}
}
return false;
}
void
ABISysV_x86_64::Initialize()
{
PluginManager::RegisterPlugin (pluginName,
pluginDesc,
CreateInstance);
}
void
ABISysV_x86_64::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ABISysV_x86_64::GetPluginName()
{
return pluginName;
}
const char *
ABISysV_x86_64::GetShortPluginName()
{
return pluginShort;
}
uint32_t
ABISysV_x86_64::GetPluginVersion()
{
return 1;
}