llvm-project/llvm/lib/Target/Hexagon/HexagonCopyToCombine.cpp

677 lines
25 KiB
C++

//===------- HexagonCopyToCombine.cpp - Hexagon Copy-To-Combine Pass ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass replaces transfer instructions by combine instructions.
// We walk along a basic block and look for two combinable instructions and try
// to move them together. If we can move them next to each other we do so and
// replace them with a combine instruction.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-copy-combine"
#include "llvm/PassSupport.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonMachineFunctionInfo.h"
using namespace llvm;
static
cl::opt<bool> IsCombinesDisabled("disable-merge-into-combines",
cl::Hidden, cl::ZeroOrMore,
cl::init(false),
cl::desc("Disable merging into combines"));
static
cl::opt<unsigned>
MaxNumOfInstsBetweenNewValueStoreAndTFR("max-num-inst-between-tfr-and-nv-store",
cl::Hidden, cl::init(4),
cl::desc("Maximum distance between a tfr feeding a store we "
"consider the store still to be newifiable"));
namespace llvm {
void initializeHexagonCopyToCombinePass(PassRegistry&);
}
namespace {
class HexagonCopyToCombine : public MachineFunctionPass {
const HexagonInstrInfo *TII;
const TargetRegisterInfo *TRI;
bool ShouldCombineAggressively;
DenseSet<MachineInstr *> PotentiallyNewifiableTFR;
public:
static char ID;
HexagonCopyToCombine() : MachineFunctionPass(ID) {
initializeHexagonCopyToCombinePass(*PassRegistry::getPassRegistry());
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const {
return "Hexagon Copy-To-Combine Pass";
}
virtual bool runOnMachineFunction(MachineFunction &Fn);
private:
MachineInstr *findPairable(MachineInstr *I1, bool &DoInsertAtI1);
void findPotentialNewifiableTFRs(MachineBasicBlock &);
void combine(MachineInstr *I1, MachineInstr *I2,
MachineBasicBlock::iterator &MI, bool DoInsertAtI1);
bool isSafeToMoveTogether(MachineInstr *I1, MachineInstr *I2,
unsigned I1DestReg, unsigned I2DestReg,
bool &DoInsertAtI1);
void emitCombineRR(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitCombineRI(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitCombineIR(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
void emitCombineII(MachineBasicBlock::iterator &Before, unsigned DestReg,
MachineOperand &HiOperand, MachineOperand &LoOperand);
};
} // End anonymous namespace.
char HexagonCopyToCombine::ID = 0;
INITIALIZE_PASS(HexagonCopyToCombine, "hexagon-copy-combine",
"Hexagon Copy-To-Combine Pass", false, false)
static bool isCombinableInstType(MachineInstr *MI,
const HexagonInstrInfo *TII,
bool ShouldCombineAggressively) {
switch(MI->getOpcode()) {
case Hexagon::TFR: {
// A COPY instruction can be combined if its arguments are IntRegs (32bit).
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isReg());
unsigned DestReg = MI->getOperand(0).getReg();
unsigned SrcReg = MI->getOperand(1).getReg();
return Hexagon::IntRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg);
}
case Hexagon::TFRI: {
// A transfer-immediate can be combined if its argument is a signed 8bit
// value.
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
unsigned DestReg = MI->getOperand(0).getReg();
// Only combine constant extended TFRI if we are in aggressive mode.
return Hexagon::IntRegsRegClass.contains(DestReg) &&
(ShouldCombineAggressively || isInt<8>(MI->getOperand(1).getImm()));
}
case Hexagon::TFRI_V4: {
if (!ShouldCombineAggressively)
return false;
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isGlobal());
// Ensure that TargetFlags are MO_NO_FLAG for a global. This is a
// workaround for an ABI bug that prevents GOT relocations on combine
// instructions
if (MI->getOperand(1).getTargetFlags() != HexagonII::MO_NO_FLAG)
return false;
unsigned DestReg = MI->getOperand(0).getReg();
return Hexagon::IntRegsRegClass.contains(DestReg);
}
default:
break;
}
return false;
}
static bool isGreaterThan8BitTFRI(MachineInstr *I) {
return I->getOpcode() == Hexagon::TFRI &&
!isInt<8>(I->getOperand(1).getImm());
}
static bool isGreaterThan6BitTFRI(MachineInstr *I) {
return I->getOpcode() == Hexagon::TFRI &&
!isUInt<6>(I->getOperand(1).getImm());
}
/// areCombinableOperations - Returns true if the two instruction can be merge
/// into a combine (ignoring register constraints).
static bool areCombinableOperations(const TargetRegisterInfo *TRI,
MachineInstr *HighRegInst,
MachineInstr *LowRegInst) {
assert((HighRegInst->getOpcode() == Hexagon::TFR ||
HighRegInst->getOpcode() == Hexagon::TFRI ||
HighRegInst->getOpcode() == Hexagon::TFRI_V4) &&
(LowRegInst->getOpcode() == Hexagon::TFR ||
LowRegInst->getOpcode() == Hexagon::TFRI ||
LowRegInst->getOpcode() == Hexagon::TFRI_V4) &&
"Assume individual instructions are of a combinable type");
const HexagonRegisterInfo *QRI =
static_cast<const HexagonRegisterInfo *>(TRI);
// V4 added some combine variations (mixed immediate and register source
// operands), if we are on < V4 we can only combine 2 register-to-register
// moves and 2 immediate-to-register moves. We also don't have
// constant-extenders.
if (!QRI->Subtarget.hasV4TOps())
return HighRegInst->getOpcode() == LowRegInst->getOpcode() &&
!isGreaterThan8BitTFRI(HighRegInst) &&
!isGreaterThan6BitTFRI(LowRegInst);
// There is no combine of two constant extended values.
if ((HighRegInst->getOpcode() == Hexagon::TFRI_V4 ||
isGreaterThan8BitTFRI(HighRegInst)) &&
(LowRegInst->getOpcode() == Hexagon::TFRI_V4 ||
isGreaterThan6BitTFRI(LowRegInst)))
return false;
return true;
}
static bool isEvenReg(unsigned Reg) {
assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
Hexagon::IntRegsRegClass.contains(Reg));
return (Reg - Hexagon::R0) % 2 == 0;
}
static void removeKillInfo(MachineInstr *MI, unsigned RegNotKilled) {
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
MachineOperand &Op = MI->getOperand(I);
if (!Op.isReg() || Op.getReg() != RegNotKilled || !Op.isKill())
continue;
Op.setIsKill(false);
}
}
/// isUnsafeToMoveAccross - Returns true if it is unsafe to move a copy
/// instruction from \p UseReg to \p DestReg over the instruction \p I.
bool isUnsafeToMoveAccross(MachineInstr *I, unsigned UseReg, unsigned DestReg,
const TargetRegisterInfo *TRI) {
return (UseReg && (I->modifiesRegister(UseReg, TRI))) ||
I->modifiesRegister(DestReg, TRI) ||
I->readsRegister(DestReg, TRI) ||
I->hasUnmodeledSideEffects() ||
I->isInlineAsm() || I->isDebugValue();
}
/// isSafeToMoveTogether - Returns true if it is safe to move I1 next to I2 such
/// that the two instructions can be paired in a combine.
bool HexagonCopyToCombine::isSafeToMoveTogether(MachineInstr *I1,
MachineInstr *I2,
unsigned I1DestReg,
unsigned I2DestReg,
bool &DoInsertAtI1) {
bool IsImmUseReg = I2->getOperand(1).isImm() || I2->getOperand(1).isGlobal();
unsigned I2UseReg = IsImmUseReg ? 0 : I2->getOperand(1).getReg();
// It is not safe to move I1 and I2 into one combine if I2 has a true
// dependence on I1.
if (I2UseReg && I1->modifiesRegister(I2UseReg, TRI))
return false;
bool isSafe = true;
// First try to move I2 towards I1.
{
// A reverse_iterator instantiated like below starts before I2, and I1
// respectively.
// Look at instructions I in between I2 and (excluding) I1.
MachineBasicBlock::reverse_iterator I(I2),
End = --(MachineBasicBlock::reverse_iterator(I1));
// At 03 we got better results (dhrystone!) by being more conservative.
if (!ShouldCombineAggressively)
End = MachineBasicBlock::reverse_iterator(I1);
// If I2 kills its operand and we move I2 over an instruction that also
// uses I2's use reg we need to modify that (first) instruction to now kill
// this reg.
unsigned KilledOperand = 0;
if (I2->killsRegister(I2UseReg))
KilledOperand = I2UseReg;
MachineInstr *KillingInstr = 0;
for (; I != End; ++I) {
// If the intervening instruction I:
// * modifies I2's use reg
// * modifies I2's def reg
// * reads I2's def reg
// * or has unmodelled side effects
// we can't move I2 across it.
if (isUnsafeToMoveAccross(&*I, I2UseReg, I2DestReg, TRI)) {
isSafe = false;
break;
}
// Update first use of the killed operand.
if (!KillingInstr && KilledOperand &&
I->readsRegister(KilledOperand, TRI))
KillingInstr = &*I;
}
if (isSafe) {
// Update the intermediate instruction to with the kill flag.
if (KillingInstr) {
bool Added = KillingInstr->addRegisterKilled(KilledOperand, TRI, true);
(void)Added; // supress compiler warning
assert(Added && "Must successfully update kill flag");
removeKillInfo(I2, KilledOperand);
}
DoInsertAtI1 = true;
return true;
}
}
// Try to move I1 towards I2.
{
// Look at instructions I in between I1 and (excluding) I2.
MachineBasicBlock::iterator I(I1), End(I2);
// At O3 we got better results (dhrystone) by being more conservative here.
if (!ShouldCombineAggressively)
End = llvm::next(MachineBasicBlock::iterator(I2));
IsImmUseReg = I1->getOperand(1).isImm() || I1->getOperand(1).isGlobal();
unsigned I1UseReg = IsImmUseReg ? 0 : I1->getOperand(1).getReg();
// Track killed operands. If we move accross an instruction that kills our
// operand, we need to update the kill information on the moved I1. It kills
// the operand now.
MachineInstr *KillingInstr = 0;
unsigned KilledOperand = 0;
while(++I != End) {
// If the intervening instruction I:
// * modifies I1's use reg
// * modifies I1's def reg
// * reads I1's def reg
// * or has unmodelled side effects
// We introduce this special case because llvm has no api to remove a
// kill flag for a register (a removeRegisterKilled() analogous to
// addRegisterKilled) that handles aliased register correctly.
// * or has a killed aliased register use of I1's use reg
// %D4<def> = TFRI64 16
// %R6<def> = TFR %R9
// %R8<def> = KILL %R8, %D4<imp-use,kill>
// If we want to move R6 = across the KILL instruction we would have
// to remove the %D4<imp-use,kill> operand. For now, we are
// conservative and disallow the move.
// we can't move I1 across it.
if (isUnsafeToMoveAccross(I, I1UseReg, I1DestReg, TRI) ||
// Check for an aliased register kill. Bail out if we see one.
(!I->killsRegister(I1UseReg) && I->killsRegister(I1UseReg, TRI)))
return false;
// Check for an exact kill (registers match).
if (I1UseReg && I->killsRegister(I1UseReg)) {
assert(KillingInstr == 0 && "Should only see one killing instruction");
KilledOperand = I1UseReg;
KillingInstr = &*I;
}
}
if (KillingInstr) {
removeKillInfo(KillingInstr, KilledOperand);
// Update I1 to set the kill flag. This flag will later be picked up by
// the new COMBINE instruction.
bool Added = I1->addRegisterKilled(KilledOperand, TRI);
(void)Added; // supress compiler warning
assert(Added && "Must successfully update kill flag");
}
DoInsertAtI1 = false;
}
return true;
}
/// findPotentialNewifiableTFRs - Finds tranfers that feed stores that could be
/// newified. (A use of a 64 bit register define can not be newified)
void
HexagonCopyToCombine::findPotentialNewifiableTFRs(MachineBasicBlock &BB) {
DenseMap<unsigned, MachineInstr *> LastDef;
for (MachineBasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
MachineInstr *MI = I;
// Mark TFRs that feed a potential new value store as such.
if(TII->mayBeNewStore(MI)) {
// Look for uses of TFR instructions.
for (unsigned OpdIdx = 0, OpdE = MI->getNumOperands(); OpdIdx != OpdE;
++OpdIdx) {
MachineOperand &Op = MI->getOperand(OpdIdx);
// Skip over anything except register uses.
if (!Op.isReg() || !Op.isUse() || !Op.getReg())
continue;
// Look for the defining instruction.
unsigned Reg = Op.getReg();
MachineInstr *DefInst = LastDef[Reg];
if (!DefInst)
continue;
if (!isCombinableInstType(DefInst, TII, ShouldCombineAggressively))
continue;
// Only close newifiable stores should influence the decision.
MachineBasicBlock::iterator It(DefInst);
unsigned NumInstsToDef = 0;
while (&*It++ != MI)
++NumInstsToDef;
if (NumInstsToDef > MaxNumOfInstsBetweenNewValueStoreAndTFR)
continue;
PotentiallyNewifiableTFR.insert(DefInst);
}
// Skip to next instruction.
continue;
}
// Put instructions that last defined integer or double registers into the
// map.
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
MachineOperand &Op = MI->getOperand(I);
if (!Op.isReg() || !Op.isDef() || !Op.getReg())
continue;
unsigned Reg = Op.getReg();
if (Hexagon::DoubleRegsRegClass.contains(Reg)) {
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
LastDef[*SubRegs] = MI;
}
} else if (Hexagon::IntRegsRegClass.contains(Reg))
LastDef[Reg] = MI;
}
}
}
bool HexagonCopyToCombine::runOnMachineFunction(MachineFunction &MF) {
if (IsCombinesDisabled) return false;
bool HasChanged = false;
// Get target info.
TRI = MF.getTarget().getRegisterInfo();
TII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
// Combine aggressively (for code size)
ShouldCombineAggressively =
MF.getTarget().getOptLevel() <= CodeGenOpt::Default;
// Traverse basic blocks.
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
++BI) {
PotentiallyNewifiableTFR.clear();
findPotentialNewifiableTFRs(*BI);
// Traverse instructions in basic block.
for(MachineBasicBlock::iterator MI = BI->begin(), End = BI->end();
MI != End;) {
MachineInstr *I1 = MI++;
// Don't combine a TFR whose user could be newified (instructions that
// define double registers can not be newified - Programmer's Ref Manual
// 5.4.2 New-value stores).
if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(I1))
continue;
// Ignore instructions that are not combinable.
if (!isCombinableInstType(I1, TII, ShouldCombineAggressively))
continue;
// Find a second instruction that can be merged into a combine
// instruction.
bool DoInsertAtI1 = false;
MachineInstr *I2 = findPairable(I1, DoInsertAtI1);
if (I2) {
HasChanged = true;
combine(I1, I2, MI, DoInsertAtI1);
}
}
}
return HasChanged;
}
/// findPairable - Returns an instruction that can be merged with \p I1 into a
/// COMBINE instruction or 0 if no such instruction can be found. Returns true
/// in \p DoInsertAtI1 if the combine must be inserted at instruction \p I1
/// false if the combine must be inserted at the returned instruction.
MachineInstr *HexagonCopyToCombine::findPairable(MachineInstr *I1,
bool &DoInsertAtI1) {
MachineBasicBlock::iterator I2 = llvm::next(MachineBasicBlock::iterator(I1));
unsigned I1DestReg = I1->getOperand(0).getReg();
for (MachineBasicBlock::iterator End = I1->getParent()->end(); I2 != End;
++I2) {
// Bail out early if we see a second definition of I1DestReg.
if (I2->modifiesRegister(I1DestReg, TRI))
break;
// Ignore non-combinable instructions.
if (!isCombinableInstType(I2, TII, ShouldCombineAggressively))
continue;
// Don't combine a TFR whose user could be newified.
if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(I2))
continue;
unsigned I2DestReg = I2->getOperand(0).getReg();
// Check that registers are adjacent and that the first destination register
// is even.
bool IsI1LowReg = (I2DestReg - I1DestReg) == 1;
bool IsI2LowReg = (I1DestReg - I2DestReg) == 1;
unsigned FirstRegIndex = IsI1LowReg ? I1DestReg : I2DestReg;
if ((!IsI1LowReg && !IsI2LowReg) || !isEvenReg(FirstRegIndex))
continue;
// Check that the two instructions are combinable. V4 allows more
// instructions to be merged into a combine.
// The order matters because in a TFRI we might can encode a int8 as the
// hi reg operand but only a uint6 as the low reg operand.
if ((IsI2LowReg && !areCombinableOperations(TRI, I1, I2)) ||
(IsI1LowReg && !areCombinableOperations(TRI, I2, I1)))
break;
if (isSafeToMoveTogether(I1, I2, I1DestReg, I2DestReg,
DoInsertAtI1))
return I2;
// Not safe. Stop searching.
break;
}
return 0;
}
void HexagonCopyToCombine::combine(MachineInstr *I1, MachineInstr *I2,
MachineBasicBlock::iterator &MI,
bool DoInsertAtI1) {
// We are going to delete I2. If MI points to I2 advance it to the next
// instruction.
if ((MachineInstr *)MI == I2) ++MI;
// Figure out whether I1 or I2 goes into the lowreg part.
unsigned I1DestReg = I1->getOperand(0).getReg();
unsigned I2DestReg = I2->getOperand(0).getReg();
bool IsI1Loreg = (I2DestReg - I1DestReg) == 1;
unsigned LoRegDef = IsI1Loreg ? I1DestReg : I2DestReg;
// Get the double word register.
unsigned DoubleRegDest =
TRI->getMatchingSuperReg(LoRegDef, Hexagon::subreg_loreg,
&Hexagon::DoubleRegsRegClass);
assert(DoubleRegDest != 0 && "Expect a valid register");
// Setup source operands.
MachineOperand &LoOperand = IsI1Loreg ? I1->getOperand(1) :
I2->getOperand(1);
MachineOperand &HiOperand = IsI1Loreg ? I2->getOperand(1) :
I1->getOperand(1);
// Figure out which source is a register and which a constant.
bool IsHiReg = HiOperand.isReg();
bool IsLoReg = LoOperand.isReg();
MachineBasicBlock::iterator InsertPt(DoInsertAtI1 ? I1 : I2);
// Emit combine.
if (IsHiReg && IsLoReg)
emitCombineRR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else if (IsHiReg)
emitCombineRI(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else if (IsLoReg)
emitCombineIR(InsertPt, DoubleRegDest, HiOperand, LoOperand);
else
emitCombineII(InsertPt, DoubleRegDest, HiOperand, LoOperand);
I1->eraseFromParent();
I2->eraseFromParent();
}
void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Handle globals.
if (HiOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
.addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addImm(LoOperand.getImm());
return;
}
if (LoOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg)
.addImm(HiOperand.getImm())
.addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Handle constant extended immediates.
if (!isInt<8>(HiOperand.getImm())) {
assert(isInt<8>(LoOperand.getImm()));
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
return;
}
if (!isUInt<6>(LoOperand.getImm())) {
assert(isInt<8>(HiOperand.getImm()));
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
return;
}
// Insert new combine instruction.
// DoubleRegDest = combine #HiImm, #LoImm
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg)
.addImm(HiOperand.getImm())
.addImm(LoOperand.getImm());
}
void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
unsigned LoReg = LoOperand.getReg();
unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Handle global.
if (HiOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg)
.addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(),
HiOperand.getTargetFlags())
.addReg(LoReg, LoRegKillFlag);
return;
}
// Insert new combine instruction.
// DoubleRegDest = combine #HiImm, LoReg
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg)
.addImm(HiOperand.getImm())
.addReg(LoReg, LoRegKillFlag);
}
void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
unsigned HiReg = HiOperand.getReg();
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Handle global.
if (LoOperand.isGlobal()) {
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(),
LoOperand.getTargetFlags());
return;
}
// Insert new combine instruction.
// DoubleRegDest = combine HiReg, #LoImm
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addImm(LoOperand.getImm());
}
void HexagonCopyToCombine::emitCombineRR(MachineBasicBlock::iterator &InsertPt,
unsigned DoubleDestReg,
MachineOperand &HiOperand,
MachineOperand &LoOperand) {
unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill());
unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill());
unsigned LoReg = LoOperand.getReg();
unsigned HiReg = HiOperand.getReg();
DebugLoc DL = InsertPt->getDebugLoc();
MachineBasicBlock *BB = InsertPt->getParent();
// Insert new combine instruction.
// DoubleRegDest = combine HiReg, LoReg
BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rr), DoubleDestReg)
.addReg(HiReg, HiRegKillFlag)
.addReg(LoReg, LoRegKillFlag);
}
FunctionPass *llvm::createHexagonCopyToCombine() {
return new HexagonCopyToCombine();
}