llvm-project/mlir/lib/Analysis/Utils.cpp

612 lines
23 KiB
C++

//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Utils.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/StandardOps/StandardOps.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "analysis-utils"
using namespace mlir;
/// Populates 'loops' with IVs of the loops surrounding 'inst' ordered from
/// the outermost 'for' instruction to the innermost one.
void mlir::getLoopIVs(const Instruction &inst,
SmallVectorImpl<ForInst *> *loops) {
auto *currInst = inst.getParentInst();
ForInst *currForInst;
// Traverse up the hierarchy collecing all 'for' instruction while skipping
// over 'if' instructions.
while (currInst && ((currForInst = dyn_cast<ForInst>(currInst)) ||
cast<OperationInst>(currInst)->isa<AffineIfOp>())) {
if (currForInst)
loops->push_back(currForInst);
currInst = currInst->getParentInst();
}
std::reverse(loops->begin(), loops->end());
}
unsigned MemRefRegion::getRank() const {
return memref->getType().cast<MemRefType>().getRank();
}
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
SmallVectorImpl<int64_t> *lbDivisors) const {
auto memRefType = memref->getType().cast<MemRefType>();
unsigned rank = memRefType.getRank();
if (shape)
shape->reserve(rank);
// Find a constant upper bound on the extent of this memref region along each
// dimension.
int64_t numElements = 1;
int64_t diffConstant;
int64_t lbDivisor;
for (unsigned d = 0; d < rank; d++) {
SmallVector<int64_t, 4> lb;
Optional<int64_t> diff = cst.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
if (diff.hasValue()) {
diffConstant = diff.getValue();
assert(lbDivisor > 0);
} else {
// If no constant bound is found, then it can always be bound by the
// memref's dim size if the latter has a constant size along this dim.
auto dimSize = memRefType.getDimSize(d);
if (dimSize == -1)
return None;
diffConstant = dimSize;
// Lower bound becomes 0.
lb.resize(cst.getNumSymbolIds() + 1, 0);
lbDivisor = 1;
}
numElements *= diffConstant;
if (lbs) {
lbs->push_back(lb);
assert(lbDivisors && "both lbs and lbDivisor or none");
lbDivisors->push_back(lbDivisor);
}
if (shape) {
shape->push_back(diffConstant);
}
}
return numElements;
}
bool MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
assert(memref == other.memref);
return cst.unionBoundingBox(*other.getConstraints());
}
/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parameteric in 'loopDepth' loops
/// surrounding opInst and any additional Function symbols. Returns false if
/// this fails due to yet unimplemented cases.
// For example, the memref region for this load operation at loopDepth = 1 will
// be as below:
//
// for %i = 0 to 32 {
// for %ii = %i to (d0) -> (d0 + 8) (%i) {
// load %A[%ii]
// }
// }
//
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
//
// TODO(bondhugula): extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
bool mlir::getMemRefRegion(OperationInst *opInst, unsigned loopDepth,
MemRefRegion *region) {
unsigned rank;
SmallVector<Value *, 4> indices;
if (auto loadOp = opInst->dyn_cast<LoadOp>()) {
rank = loadOp->getMemRefType().getRank();
indices.reserve(rank);
indices.append(loadOp->getIndices().begin(), loadOp->getIndices().end());
region->memref = loadOp->getMemRef();
region->setWrite(false);
} else if (auto storeOp = opInst->dyn_cast<StoreOp>()) {
rank = storeOp->getMemRefType().getRank();
indices.reserve(rank);
indices.append(storeOp->getIndices().begin(), storeOp->getIndices().end());
region->memref = storeOp->getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
// Build the constraints for this region.
FlatAffineConstraints *regionCst = region->getConstraints();
if (rank == 0) {
// A rank 0 memref has a 0-d region.
SmallVector<ForInst *, 4> ivs;
getLoopIVs(*opInst, &ivs);
SmallVector<Value *, 8> regionSymbols = extractForInductionVars(ivs);
regionCst->reset(0, loopDepth, 0, regionSymbols);
return true;
}
FuncBuilder b(opInst);
auto idMap = b.getMultiDimIdentityMap(rank);
// Initialize 'accessValueMap' and compose with reachable AffineApplyOps.
fullyComposeAffineMapAndOperands(&idMap, &indices);
AffineValueMap accessValueMap(idMap, indices);
AffineMap accessMap = accessValueMap.getAffineMap();
// We'll first associate the dims and symbols of the access map to the dims
// and symbols resp. of regionCst. This will change below once regionCst is
// fully constructed out.
regionCst->reset(accessMap.getNumDims(), accessMap.getNumSymbols(), 0,
accessValueMap.getOperands());
// Add equality constraints.
unsigned numDims = accessMap.getNumDims();
unsigned numSymbols = accessMap.getNumSymbols();
// Add inequalties for loop lower/upper bounds.
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
if (auto *loop = getForInductionVarOwner(accessValueMap.getOperand(i))) {
// Note that regionCst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO(bondhugula): rewrite this to use getInstIndexSet; this way
// conditionals will be handled when the latter supports it.
if (!regionCst->addForInstDomain(*loop))
return false;
} else {
// Has to be a valid symbol.
auto *symbol = accessValueMap.getOperand(i);
assert(symbol->isValidSymbol());
// Check if the symbol is a constant.
if (auto *opInst = symbol->getDefiningInst()) {
if (auto constOp = opInst->dyn_cast<ConstantIndexOp>()) {
regionCst->setIdToConstant(*symbol, constOp->getValue());
}
}
}
}
// Add access function equalities to connect loop IVs to data dimensions.
if (!regionCst->composeMap(&accessValueMap)) {
LLVM_DEBUG(llvm::dbgs() << "getMemRefRegion: compose affine map failed\n");
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
return false;
}
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
// this memref region is symbolic.
SmallVector<ForInst *, 4> outerIVs;
getLoopIVs(*opInst, &outerIVs);
assert(loopDepth <= outerIVs.size() && "invalid loop depth");
outerIVs.resize(loopDepth);
for (auto *operand : accessValueMap.getOperands()) {
ForInst *iv;
if ((iv = getForInductionVarOwner(operand)) &&
std::find(outerIVs.begin(), outerIVs.end(), iv) == outerIVs.end()) {
regionCst->projectOut(operand);
}
}
// Project out any local variables (these would have been added for any
// mod/divs).
regionCst->projectOut(regionCst->getNumDimAndSymbolIds(),
regionCst->getNumLocalIds());
// Set all identifiers appearing after the first 'rank' identifiers as
// symbolic identifiers - so that the ones correspoding to the memref
// dimensions are the dimensional identifiers for the memref region.
regionCst->setDimSymbolSeparation(regionCst->getNumDimAndSymbolIds() - rank);
// Constant fold any symbolic identifiers.
regionCst->constantFoldIdRange(/*pos=*/regionCst->getNumDimIds(),
/*num=*/regionCst->getNumSymbolIds());
assert(regionCst->getNumDimIds() == rank && "unexpected MemRefRegion format");
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
LLVM_DEBUG(region->getConstraints()->dump());
return true;
}
// TODO(mlir-team): improve/complete this when we have target data.
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else {
auto vectorType = elementType.cast<VectorType>();
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
}
return llvm::divideCeil(sizeInBits, 8);
}
/// Returns the size of memref data in bytes if it's statically shaped, None
/// otherwise. If the element of the memref has vector type, takes into account
/// size of the vector as well.
// TODO(mlir-team): improve/complete this when we have target data.
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
if (memRefType.getNumDynamicDims() > 0)
return None;
auto elementType = memRefType.getElementType();
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
return None;
unsigned sizeInBytes = getMemRefEltSizeInBytes(memRefType);
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
}
return sizeInBytes;
}
template <typename LoadOrStoreOpPointer>
bool mlir::boundCheckLoadOrStoreOp(LoadOrStoreOpPointer loadOrStoreOp,
bool emitError) {
static_assert(
std::is_same<LoadOrStoreOpPointer, OpPointer<LoadOp>>::value ||
std::is_same<LoadOrStoreOpPointer, OpPointer<StoreOp>>::value,
"argument should be either a LoadOp or a StoreOp");
OperationInst *opInst = loadOrStoreOp->getInstruction();
MemRefRegion region;
if (!getMemRefRegion(opInst, /*loopDepth=*/0, &region))
return false;
LLVM_DEBUG(llvm::dbgs() << "Memory region");
LLVM_DEBUG(region.getConstraints()->dump());
bool outOfBounds = false;
unsigned rank = loadOrStoreOp->getMemRefType().getRank();
// For each dimension, check for out of bounds.
for (unsigned r = 0; r < rank; r++) {
FlatAffineConstraints ucst(*region.getConstraints());
// Intersect memory region with constraint capturing out of bounds (both out
// of upper and out of lower), and check if the constraint system is
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int64_t dimSize = loadOrStoreOp->getMemRefType().getDimSize(r);
// TODO(bondhugula): handle dynamic dim sizes.
if (dimSize == -1)
continue;
// Check for overflow: d_i >= memref dim size.
ucst.addConstantLowerBound(r, dimSize);
outOfBounds = !ucst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp->emitOpError(
"memref out of upper bound access along dimension #" + Twine(r + 1));
}
// Check for a negative index.
FlatAffineConstraints lcst(*region.getConstraints());
std::fill(ineq.begin(), ineq.end(), 0);
// d_i <= -1;
lcst.addConstantUpperBound(r, -1);
outOfBounds = !lcst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp->emitOpError(
"memref out of lower bound access along dimension #" + Twine(r + 1));
}
}
return outOfBounds;
}
// Explicitly instantiate the template so that the compiler knows we need them!
template bool mlir::boundCheckLoadOrStoreOp(OpPointer<LoadOp> loadOp,
bool emitError);
template bool mlir::boundCheckLoadOrStoreOp(OpPointer<StoreOp> storeOp,
bool emitError);
// Returns in 'positions' the Block positions of 'inst' in each ancestor
// Block from the Block containing instruction, stopping at 'limitBlock'.
static void findInstPosition(const Instruction *inst, Block *limitBlock,
SmallVectorImpl<unsigned> *positions) {
const Block *block = inst->getBlock();
while (block != limitBlock) {
int instPosInBlock = block->findInstPositionInBlock(*inst);
assert(instPosInBlock >= 0);
positions->push_back(instPosInBlock);
inst = block->getContainingInst();
block = inst->getBlock();
}
std::reverse(positions->begin(), positions->end());
}
// Returns the Instruction in a possibly nested set of Blocks, where the
// position of the instruction is represented by 'positions', which has a
// Block position for each level of nesting.
static Instruction *getInstAtPosition(ArrayRef<unsigned> positions,
unsigned level, Block *block) {
unsigned i = 0;
for (auto &inst : *block) {
if (i != positions[level]) {
++i;
continue;
}
if (level == positions.size() - 1)
return &inst;
if (auto *childForInst = dyn_cast<ForInst>(&inst))
return getInstAtPosition(positions, level + 1, childForInst->getBody());
for (auto &blockList : cast<OperationInst>(&inst)->getBlockLists()) {
for (auto &b : blockList)
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
return ret;
}
return nullptr;
}
return nullptr;
}
// Computes memref dependence between 'srcAccess' and 'dstAccess', projects
// out any dst loop IVs at depth greater than 'dstLoopDepth', and computes slice
// bounds in 'sliceState' which represent the src IVs in terms of the dst IVs,
// symbols and constants.
bool mlir::getBackwardComputationSliceState(const MemRefAccess &srcAccess,
const MemRefAccess &dstAccess,
unsigned dstLoopDepth,
ComputationSliceState *sliceState) {
FlatAffineConstraints dependenceConstraints;
if (!checkMemrefAccessDependence(srcAccess, dstAccess, /*loopDepth=*/1,
&dependenceConstraints,
/*dependenceComponents=*/nullptr)) {
return false;
}
// Get loop nest surrounding src operation.
SmallVector<ForInst *, 4> srcLoopIVs;
getLoopIVs(*srcAccess.opInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<ForInst *, 4> dstLoopIVs;
getLoopIVs(*dstAccess.opInst, &dstLoopIVs);
unsigned numDstLoopIVs = dstLoopIVs.size();
if (dstLoopDepth > numDstLoopIVs) {
dstAccess.opInst->emitError("invalid destination loop depth");
return false;
}
// Project out dimensions other than those up to 'dstLoopDepth'.
dependenceConstraints.projectOut(numSrcLoopIVs + dstLoopDepth,
numDstLoopIVs - dstLoopDepth);
// Set up lower/upper bound affine maps for the slice.
sliceState->lbs.resize(numSrcLoopIVs, AffineMap());
sliceState->ubs.resize(numSrcLoopIVs, AffineMap());
// Get bounds for src IVs in terms of dst IVs, symbols, and constants.
dependenceConstraints.getSliceBounds(numSrcLoopIVs,
srcAccess.opInst->getContext(),
&sliceState->lbs, &sliceState->ubs);
// Set up bound operands for the slice's lower and upper bounds.
SmallVector<Value *, 4> sliceBoundOperands;
dependenceConstraints.getIdValues(
numSrcLoopIVs, dependenceConstraints.getNumDimAndSymbolIds(),
&sliceBoundOperands);
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceState->lbOperands.resize(numSrcLoopIVs, sliceBoundOperands);
sliceState->ubOperands.resize(numSrcLoopIVs, sliceBoundOperands);
return true;
}
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO(andydavis,bondhugula): extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO(andydavis,bondhugula): the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
// solution.
// TODO(andydavis) Remove dependence on 'srcLoopDepth' here. Instead project
// out loop IVs we don't care about and produce smaller slice.
ForInst *mlir::insertBackwardComputationSlice(
OperationInst *srcOpInst, OperationInst *dstOpInst, unsigned dstLoopDepth,
ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<ForInst *, 4> srcLoopIVs;
getLoopIVs(*srcOpInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<ForInst *, 4> dstLoopIVs;
getLoopIVs(*dstOpInst, &dstLoopIVs);
unsigned dstLoopIVsSize = dstLoopIVs.size();
if (dstLoopDepth > dstLoopIVsSize) {
dstOpInst->emitError("invalid destination loop depth");
return nullptr;
}
// Find the inst block positions of 'srcOpInst' within 'srcLoopIVs'.
SmallVector<unsigned, 4> positions;
// TODO(andydavis): This code is incorrect since srcLoopIVs can be 0-d.
findInstPosition(srcOpInst, srcLoopIVs[0]->getBlock(), &positions);
// Clone src loop nest and insert it a the beginning of the instruction block
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
auto *dstForInst = dstLoopIVs[dstLoopDepth - 1];
FuncBuilder b(dstForInst->getBody(), dstForInst->getBody()->begin());
auto *sliceLoopNest = cast<ForInst>(b.clone(*srcLoopIVs[0]));
Instruction *sliceInst =
getInstAtPosition(positions, /*level=*/0, sliceLoopNest->getBody());
// Get loop nest surrounding 'sliceInst'.
SmallVector<ForInst *, 4> sliceSurroundingLoops;
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
// Sanity check.
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
(void)sliceSurroundingLoopsSize;
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
(void)sliceLoopLimit;
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
// Update loop bounds for loops in 'sliceLoopNest'.
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
auto *forInst = sliceSurroundingLoops[dstLoopDepth + i];
if (AffineMap lbMap = sliceState->lbs[i])
forInst->setLowerBound(sliceState->lbOperands[i], lbMap);
if (AffineMap ubMap = sliceState->ubs[i])
forInst->setUpperBound(sliceState->ubOperands[i], ubMap);
}
return sliceLoopNest;
}
// Constructs MemRefAccess populating it with the memref, its indices and
// opinst from 'loadOrStoreOpInst'.
MemRefAccess::MemRefAccess(OperationInst *loadOrStoreOpInst) {
if (auto loadOp = loadOrStoreOpInst->dyn_cast<LoadOp>()) {
memref = loadOp->getMemRef();
opInst = loadOrStoreOpInst;
auto loadMemrefType = loadOp->getMemRefType();
indices.reserve(loadMemrefType.getRank());
for (auto *index : loadOp->getIndices()) {
indices.push_back(index);
}
} else {
assert(loadOrStoreOpInst->isa<StoreOp>() && "load/store op expected");
auto storeOp = loadOrStoreOpInst->dyn_cast<StoreOp>();
opInst = loadOrStoreOpInst;
memref = storeOp->getMemRef();
auto storeMemrefType = storeOp->getMemRefType();
indices.reserve(storeMemrefType.getRank());
for (auto *index : storeOp->getIndices()) {
indices.push_back(index);
}
}
}
/// Returns the nesting depth of this statement, i.e., the number of loops
/// surrounding this statement.
unsigned mlir::getNestingDepth(const Instruction &stmt) {
const Instruction *currInst = &stmt;
unsigned depth = 0;
while ((currInst = currInst->getParentInst())) {
if (isa<ForInst>(currInst))
depth++;
}
return depth;
}
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
/// where each lists loops from outer-most to inner-most in loop nest.
unsigned mlir::getNumCommonSurroundingLoops(const Instruction &A,
const Instruction &B) {
SmallVector<ForInst *, 4> loopsA, loopsB;
getLoopIVs(A, &loopsA);
getLoopIVs(B, &loopsB);
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (loopsA[i] != loopsB[i])
break;
++numCommonLoops;
}
return numCommonLoops;
}
// Returns the size of the region.
static Optional<int64_t> getRegionSize(const MemRefRegion &region) {
auto *memref = region.memref;
auto memRefType = memref->getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return false;
}
// Indices to use for the DmaStart op.
// Indices for the original memref being DMAed from/to.
SmallVector<Value *, 4> memIndices;
// Indices for the faster buffer being DMAed into/from.
SmallVector<Value *, 4> bufIndices;
// Compute the extents of the buffer.
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape();
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
return None;
}
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
}
Optional<int64_t> mlir::getMemoryFootprintBytes(const ForInst &forInst,
int memorySpace) {
std::vector<std::unique_ptr<MemRefRegion>> regions;
// Walk this 'for' instruction to gather all memory regions.
bool error = false;
const_cast<ForInst *>(&forInst)->walkOps([&](OperationInst *opInst) {
if (!opInst->isa<LoadOp>() && !opInst->isa<StoreOp>()) {
// Neither load nor a store op.
return;
}
// TODO(bondhugula): eventually, we need to be performing a union across
// all regions for a given memref instead of creating one region per
// memory op. This way we would be allocating O(num of memref's) sets
// instead of O(num of load/store op's).
auto region = std::make_unique<MemRefRegion>();
if (!getMemRefRegion(opInst, 0, region.get())) {
LLVM_DEBUG(llvm::dbgs() << "Error obtaining memory region\n");
// TODO: stop the walk if an error occurred.
error = true;
return;
}
regions.push_back(std::move(region));
});
if (error)
return None;
int64_t totalSizeInBytes = 0;
for (const auto &region : regions) {
auto size = getRegionSize(*region);
if (!size.hasValue())
return None;
totalSizeInBytes += size.getValue();
}
return totalSizeInBytes;
}