forked from OSchip/llvm-project
612 lines
23 KiB
C++
612 lines
23 KiB
C++
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements miscellaneous analysis routines for non-loop IR
|
|
// structures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Utils.h"
|
|
|
|
#include "mlir/AffineOps/AffineOps.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/StandardOps/StandardOps.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "analysis-utils"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Populates 'loops' with IVs of the loops surrounding 'inst' ordered from
|
|
/// the outermost 'for' instruction to the innermost one.
|
|
void mlir::getLoopIVs(const Instruction &inst,
|
|
SmallVectorImpl<ForInst *> *loops) {
|
|
auto *currInst = inst.getParentInst();
|
|
ForInst *currForInst;
|
|
// Traverse up the hierarchy collecing all 'for' instruction while skipping
|
|
// over 'if' instructions.
|
|
while (currInst && ((currForInst = dyn_cast<ForInst>(currInst)) ||
|
|
cast<OperationInst>(currInst)->isa<AffineIfOp>())) {
|
|
if (currForInst)
|
|
loops->push_back(currForInst);
|
|
currInst = currInst->getParentInst();
|
|
}
|
|
std::reverse(loops->begin(), loops->end());
|
|
}
|
|
|
|
unsigned MemRefRegion::getRank() const {
|
|
return memref->getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
|
|
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
|
|
SmallVectorImpl<int64_t> *lbDivisors) const {
|
|
auto memRefType = memref->getType().cast<MemRefType>();
|
|
unsigned rank = memRefType.getRank();
|
|
if (shape)
|
|
shape->reserve(rank);
|
|
|
|
// Find a constant upper bound on the extent of this memref region along each
|
|
// dimension.
|
|
int64_t numElements = 1;
|
|
int64_t diffConstant;
|
|
int64_t lbDivisor;
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
SmallVector<int64_t, 4> lb;
|
|
Optional<int64_t> diff = cst.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
|
|
if (diff.hasValue()) {
|
|
diffConstant = diff.getValue();
|
|
assert(lbDivisor > 0);
|
|
} else {
|
|
// If no constant bound is found, then it can always be bound by the
|
|
// memref's dim size if the latter has a constant size along this dim.
|
|
auto dimSize = memRefType.getDimSize(d);
|
|
if (dimSize == -1)
|
|
return None;
|
|
diffConstant = dimSize;
|
|
// Lower bound becomes 0.
|
|
lb.resize(cst.getNumSymbolIds() + 1, 0);
|
|
lbDivisor = 1;
|
|
}
|
|
numElements *= diffConstant;
|
|
if (lbs) {
|
|
lbs->push_back(lb);
|
|
assert(lbDivisors && "both lbs and lbDivisor or none");
|
|
lbDivisors->push_back(lbDivisor);
|
|
}
|
|
if (shape) {
|
|
shape->push_back(diffConstant);
|
|
}
|
|
}
|
|
return numElements;
|
|
}
|
|
|
|
bool MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
|
|
assert(memref == other.memref);
|
|
return cst.unionBoundingBox(*other.getConstraints());
|
|
}
|
|
|
|
/// Computes the memory region accessed by this memref with the region
|
|
/// represented as constraints symbolic/parameteric in 'loopDepth' loops
|
|
/// surrounding opInst and any additional Function symbols. Returns false if
|
|
/// this fails due to yet unimplemented cases.
|
|
// For example, the memref region for this load operation at loopDepth = 1 will
|
|
// be as below:
|
|
//
|
|
// for %i = 0 to 32 {
|
|
// for %ii = %i to (d0) -> (d0 + 8) (%i) {
|
|
// load %A[%ii]
|
|
// }
|
|
// }
|
|
//
|
|
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
|
|
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
|
|
//
|
|
// TODO(bondhugula): extend this to any other memref dereferencing ops
|
|
// (dma_start, dma_wait).
|
|
bool mlir::getMemRefRegion(OperationInst *opInst, unsigned loopDepth,
|
|
MemRefRegion *region) {
|
|
unsigned rank;
|
|
SmallVector<Value *, 4> indices;
|
|
if (auto loadOp = opInst->dyn_cast<LoadOp>()) {
|
|
rank = loadOp->getMemRefType().getRank();
|
|
indices.reserve(rank);
|
|
indices.append(loadOp->getIndices().begin(), loadOp->getIndices().end());
|
|
region->memref = loadOp->getMemRef();
|
|
region->setWrite(false);
|
|
} else if (auto storeOp = opInst->dyn_cast<StoreOp>()) {
|
|
rank = storeOp->getMemRefType().getRank();
|
|
indices.reserve(rank);
|
|
indices.append(storeOp->getIndices().begin(), storeOp->getIndices().end());
|
|
region->memref = storeOp->getMemRef();
|
|
region->setWrite(true);
|
|
} else {
|
|
assert(false && "expected load or store op");
|
|
return false;
|
|
}
|
|
|
|
// Build the constraints for this region.
|
|
FlatAffineConstraints *regionCst = region->getConstraints();
|
|
|
|
if (rank == 0) {
|
|
// A rank 0 memref has a 0-d region.
|
|
SmallVector<ForInst *, 4> ivs;
|
|
getLoopIVs(*opInst, &ivs);
|
|
|
|
SmallVector<Value *, 8> regionSymbols = extractForInductionVars(ivs);
|
|
regionCst->reset(0, loopDepth, 0, regionSymbols);
|
|
return true;
|
|
}
|
|
|
|
FuncBuilder b(opInst);
|
|
auto idMap = b.getMultiDimIdentityMap(rank);
|
|
// Initialize 'accessValueMap' and compose with reachable AffineApplyOps.
|
|
fullyComposeAffineMapAndOperands(&idMap, &indices);
|
|
AffineValueMap accessValueMap(idMap, indices);
|
|
AffineMap accessMap = accessValueMap.getAffineMap();
|
|
|
|
// We'll first associate the dims and symbols of the access map to the dims
|
|
// and symbols resp. of regionCst. This will change below once regionCst is
|
|
// fully constructed out.
|
|
regionCst->reset(accessMap.getNumDims(), accessMap.getNumSymbols(), 0,
|
|
accessValueMap.getOperands());
|
|
|
|
// Add equality constraints.
|
|
unsigned numDims = accessMap.getNumDims();
|
|
unsigned numSymbols = accessMap.getNumSymbols();
|
|
// Add inequalties for loop lower/upper bounds.
|
|
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
|
|
if (auto *loop = getForInductionVarOwner(accessValueMap.getOperand(i))) {
|
|
// Note that regionCst can now have more dimensions than accessMap if the
|
|
// bounds expressions involve outer loops or other symbols.
|
|
// TODO(bondhugula): rewrite this to use getInstIndexSet; this way
|
|
// conditionals will be handled when the latter supports it.
|
|
if (!regionCst->addForInstDomain(*loop))
|
|
return false;
|
|
} else {
|
|
// Has to be a valid symbol.
|
|
auto *symbol = accessValueMap.getOperand(i);
|
|
assert(symbol->isValidSymbol());
|
|
// Check if the symbol is a constant.
|
|
if (auto *opInst = symbol->getDefiningInst()) {
|
|
if (auto constOp = opInst->dyn_cast<ConstantIndexOp>()) {
|
|
regionCst->setIdToConstant(*symbol, constOp->getValue());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add access function equalities to connect loop IVs to data dimensions.
|
|
if (!regionCst->composeMap(&accessValueMap)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "getMemRefRegion: compose affine map failed\n");
|
|
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
|
|
return false;
|
|
}
|
|
|
|
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
|
|
// this memref region is symbolic.
|
|
SmallVector<ForInst *, 4> outerIVs;
|
|
getLoopIVs(*opInst, &outerIVs);
|
|
assert(loopDepth <= outerIVs.size() && "invalid loop depth");
|
|
outerIVs.resize(loopDepth);
|
|
for (auto *operand : accessValueMap.getOperands()) {
|
|
ForInst *iv;
|
|
if ((iv = getForInductionVarOwner(operand)) &&
|
|
std::find(outerIVs.begin(), outerIVs.end(), iv) == outerIVs.end()) {
|
|
regionCst->projectOut(operand);
|
|
}
|
|
}
|
|
// Project out any local variables (these would have been added for any
|
|
// mod/divs).
|
|
regionCst->projectOut(regionCst->getNumDimAndSymbolIds(),
|
|
regionCst->getNumLocalIds());
|
|
|
|
// Set all identifiers appearing after the first 'rank' identifiers as
|
|
// symbolic identifiers - so that the ones correspoding to the memref
|
|
// dimensions are the dimensional identifiers for the memref region.
|
|
regionCst->setDimSymbolSeparation(regionCst->getNumDimAndSymbolIds() - rank);
|
|
|
|
// Constant fold any symbolic identifiers.
|
|
regionCst->constantFoldIdRange(/*pos=*/regionCst->getNumDimIds(),
|
|
/*num=*/regionCst->getNumSymbolIds());
|
|
|
|
assert(regionCst->getNumDimIds() == rank && "unexpected MemRefRegion format");
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
|
|
LLVM_DEBUG(region->getConstraints()->dump());
|
|
|
|
return true;
|
|
}
|
|
|
|
// TODO(mlir-team): improve/complete this when we have target data.
|
|
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
|
auto elementType = memRefType.getElementType();
|
|
|
|
unsigned sizeInBits;
|
|
if (elementType.isIntOrFloat()) {
|
|
sizeInBits = elementType.getIntOrFloatBitWidth();
|
|
} else {
|
|
auto vectorType = elementType.cast<VectorType>();
|
|
sizeInBits =
|
|
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
|
}
|
|
return llvm::divideCeil(sizeInBits, 8);
|
|
}
|
|
|
|
/// Returns the size of memref data in bytes if it's statically shaped, None
|
|
/// otherwise. If the element of the memref has vector type, takes into account
|
|
/// size of the vector as well.
|
|
// TODO(mlir-team): improve/complete this when we have target data.
|
|
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
|
|
if (memRefType.getNumDynamicDims() > 0)
|
|
return None;
|
|
auto elementType = memRefType.getElementType();
|
|
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
|
|
return None;
|
|
|
|
unsigned sizeInBytes = getMemRefEltSizeInBytes(memRefType);
|
|
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
|
|
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
|
|
}
|
|
return sizeInBytes;
|
|
}
|
|
|
|
template <typename LoadOrStoreOpPointer>
|
|
bool mlir::boundCheckLoadOrStoreOp(LoadOrStoreOpPointer loadOrStoreOp,
|
|
bool emitError) {
|
|
static_assert(
|
|
std::is_same<LoadOrStoreOpPointer, OpPointer<LoadOp>>::value ||
|
|
std::is_same<LoadOrStoreOpPointer, OpPointer<StoreOp>>::value,
|
|
"argument should be either a LoadOp or a StoreOp");
|
|
|
|
OperationInst *opInst = loadOrStoreOp->getInstruction();
|
|
MemRefRegion region;
|
|
if (!getMemRefRegion(opInst, /*loopDepth=*/0, ®ion))
|
|
return false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region");
|
|
LLVM_DEBUG(region.getConstraints()->dump());
|
|
|
|
bool outOfBounds = false;
|
|
unsigned rank = loadOrStoreOp->getMemRefType().getRank();
|
|
|
|
// For each dimension, check for out of bounds.
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
FlatAffineConstraints ucst(*region.getConstraints());
|
|
|
|
// Intersect memory region with constraint capturing out of bounds (both out
|
|
// of upper and out of lower), and check if the constraint system is
|
|
// feasible. If it is, there is at least one point out of bounds.
|
|
SmallVector<int64_t, 4> ineq(rank + 1, 0);
|
|
int64_t dimSize = loadOrStoreOp->getMemRefType().getDimSize(r);
|
|
// TODO(bondhugula): handle dynamic dim sizes.
|
|
if (dimSize == -1)
|
|
continue;
|
|
|
|
// Check for overflow: d_i >= memref dim size.
|
|
ucst.addConstantLowerBound(r, dimSize);
|
|
outOfBounds = !ucst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp->emitOpError(
|
|
"memref out of upper bound access along dimension #" + Twine(r + 1));
|
|
}
|
|
|
|
// Check for a negative index.
|
|
FlatAffineConstraints lcst(*region.getConstraints());
|
|
std::fill(ineq.begin(), ineq.end(), 0);
|
|
// d_i <= -1;
|
|
lcst.addConstantUpperBound(r, -1);
|
|
outOfBounds = !lcst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp->emitOpError(
|
|
"memref out of lower bound access along dimension #" + Twine(r + 1));
|
|
}
|
|
}
|
|
return outOfBounds;
|
|
}
|
|
|
|
// Explicitly instantiate the template so that the compiler knows we need them!
|
|
template bool mlir::boundCheckLoadOrStoreOp(OpPointer<LoadOp> loadOp,
|
|
bool emitError);
|
|
template bool mlir::boundCheckLoadOrStoreOp(OpPointer<StoreOp> storeOp,
|
|
bool emitError);
|
|
|
|
// Returns in 'positions' the Block positions of 'inst' in each ancestor
|
|
// Block from the Block containing instruction, stopping at 'limitBlock'.
|
|
static void findInstPosition(const Instruction *inst, Block *limitBlock,
|
|
SmallVectorImpl<unsigned> *positions) {
|
|
const Block *block = inst->getBlock();
|
|
while (block != limitBlock) {
|
|
int instPosInBlock = block->findInstPositionInBlock(*inst);
|
|
assert(instPosInBlock >= 0);
|
|
positions->push_back(instPosInBlock);
|
|
inst = block->getContainingInst();
|
|
block = inst->getBlock();
|
|
}
|
|
std::reverse(positions->begin(), positions->end());
|
|
}
|
|
|
|
// Returns the Instruction in a possibly nested set of Blocks, where the
|
|
// position of the instruction is represented by 'positions', which has a
|
|
// Block position for each level of nesting.
|
|
static Instruction *getInstAtPosition(ArrayRef<unsigned> positions,
|
|
unsigned level, Block *block) {
|
|
unsigned i = 0;
|
|
for (auto &inst : *block) {
|
|
if (i != positions[level]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
if (level == positions.size() - 1)
|
|
return &inst;
|
|
if (auto *childForInst = dyn_cast<ForInst>(&inst))
|
|
return getInstAtPosition(positions, level + 1, childForInst->getBody());
|
|
|
|
for (auto &blockList : cast<OperationInst>(&inst)->getBlockLists()) {
|
|
for (auto &b : blockList)
|
|
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
|
|
return ret;
|
|
}
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Computes memref dependence between 'srcAccess' and 'dstAccess', projects
|
|
// out any dst loop IVs at depth greater than 'dstLoopDepth', and computes slice
|
|
// bounds in 'sliceState' which represent the src IVs in terms of the dst IVs,
|
|
// symbols and constants.
|
|
bool mlir::getBackwardComputationSliceState(const MemRefAccess &srcAccess,
|
|
const MemRefAccess &dstAccess,
|
|
unsigned dstLoopDepth,
|
|
ComputationSliceState *sliceState) {
|
|
FlatAffineConstraints dependenceConstraints;
|
|
if (!checkMemrefAccessDependence(srcAccess, dstAccess, /*loopDepth=*/1,
|
|
&dependenceConstraints,
|
|
/*dependenceComponents=*/nullptr)) {
|
|
return false;
|
|
}
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<ForInst *, 4> srcLoopIVs;
|
|
getLoopIVs(*srcAccess.opInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<ForInst *, 4> dstLoopIVs;
|
|
getLoopIVs(*dstAccess.opInst, &dstLoopIVs);
|
|
unsigned numDstLoopIVs = dstLoopIVs.size();
|
|
if (dstLoopDepth > numDstLoopIVs) {
|
|
dstAccess.opInst->emitError("invalid destination loop depth");
|
|
return false;
|
|
}
|
|
|
|
// Project out dimensions other than those up to 'dstLoopDepth'.
|
|
dependenceConstraints.projectOut(numSrcLoopIVs + dstLoopDepth,
|
|
numDstLoopIVs - dstLoopDepth);
|
|
|
|
// Set up lower/upper bound affine maps for the slice.
|
|
sliceState->lbs.resize(numSrcLoopIVs, AffineMap());
|
|
sliceState->ubs.resize(numSrcLoopIVs, AffineMap());
|
|
|
|
// Get bounds for src IVs in terms of dst IVs, symbols, and constants.
|
|
dependenceConstraints.getSliceBounds(numSrcLoopIVs,
|
|
srcAccess.opInst->getContext(),
|
|
&sliceState->lbs, &sliceState->ubs);
|
|
|
|
// Set up bound operands for the slice's lower and upper bounds.
|
|
SmallVector<Value *, 4> sliceBoundOperands;
|
|
dependenceConstraints.getIdValues(
|
|
numSrcLoopIVs, dependenceConstraints.getNumDimAndSymbolIds(),
|
|
&sliceBoundOperands);
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceState->lbOperands.resize(numSrcLoopIVs, sliceBoundOperands);
|
|
sliceState->ubOperands.resize(numSrcLoopIVs, sliceBoundOperands);
|
|
return true;
|
|
}
|
|
|
|
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
|
|
/// updates the slice loop bounds with any non-null bound maps specified in
|
|
/// 'sliceState', and inserts this slice into the loop nest surrounding
|
|
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
|
|
// TODO(andydavis,bondhugula): extend the slicing utility to compute slices that
|
|
// aren't necessarily a one-to-one relation b/w the source and destination. The
|
|
// relation between the source and destination could be many-to-many in general.
|
|
// TODO(andydavis,bondhugula): the slice computation is incorrect in the cases
|
|
// where the dependence from the source to the destination does not cover the
|
|
// entire destination index set. Subtract out the dependent destination
|
|
// iterations from destination index set and check for emptiness --- this is one
|
|
// solution.
|
|
// TODO(andydavis) Remove dependence on 'srcLoopDepth' here. Instead project
|
|
// out loop IVs we don't care about and produce smaller slice.
|
|
ForInst *mlir::insertBackwardComputationSlice(
|
|
OperationInst *srcOpInst, OperationInst *dstOpInst, unsigned dstLoopDepth,
|
|
ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<ForInst *, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<ForInst *, 4> dstLoopIVs;
|
|
getLoopIVs(*dstOpInst, &dstLoopIVs);
|
|
unsigned dstLoopIVsSize = dstLoopIVs.size();
|
|
if (dstLoopDepth > dstLoopIVsSize) {
|
|
dstOpInst->emitError("invalid destination loop depth");
|
|
return nullptr;
|
|
}
|
|
|
|
// Find the inst block positions of 'srcOpInst' within 'srcLoopIVs'.
|
|
SmallVector<unsigned, 4> positions;
|
|
// TODO(andydavis): This code is incorrect since srcLoopIVs can be 0-d.
|
|
findInstPosition(srcOpInst, srcLoopIVs[0]->getBlock(), &positions);
|
|
|
|
// Clone src loop nest and insert it a the beginning of the instruction block
|
|
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
|
|
auto *dstForInst = dstLoopIVs[dstLoopDepth - 1];
|
|
FuncBuilder b(dstForInst->getBody(), dstForInst->getBody()->begin());
|
|
auto *sliceLoopNest = cast<ForInst>(b.clone(*srcLoopIVs[0]));
|
|
|
|
Instruction *sliceInst =
|
|
getInstAtPosition(positions, /*level=*/0, sliceLoopNest->getBody());
|
|
// Get loop nest surrounding 'sliceInst'.
|
|
SmallVector<ForInst *, 4> sliceSurroundingLoops;
|
|
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
|
|
|
|
// Sanity check.
|
|
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
|
|
(void)sliceSurroundingLoopsSize;
|
|
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
|
|
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
|
|
(void)sliceLoopLimit;
|
|
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
|
|
|
|
// Update loop bounds for loops in 'sliceLoopNest'.
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
auto *forInst = sliceSurroundingLoops[dstLoopDepth + i];
|
|
if (AffineMap lbMap = sliceState->lbs[i])
|
|
forInst->setLowerBound(sliceState->lbOperands[i], lbMap);
|
|
if (AffineMap ubMap = sliceState->ubs[i])
|
|
forInst->setUpperBound(sliceState->ubOperands[i], ubMap);
|
|
}
|
|
return sliceLoopNest;
|
|
}
|
|
|
|
// Constructs MemRefAccess populating it with the memref, its indices and
|
|
// opinst from 'loadOrStoreOpInst'.
|
|
MemRefAccess::MemRefAccess(OperationInst *loadOrStoreOpInst) {
|
|
if (auto loadOp = loadOrStoreOpInst->dyn_cast<LoadOp>()) {
|
|
memref = loadOp->getMemRef();
|
|
opInst = loadOrStoreOpInst;
|
|
auto loadMemrefType = loadOp->getMemRefType();
|
|
indices.reserve(loadMemrefType.getRank());
|
|
for (auto *index : loadOp->getIndices()) {
|
|
indices.push_back(index);
|
|
}
|
|
} else {
|
|
assert(loadOrStoreOpInst->isa<StoreOp>() && "load/store op expected");
|
|
auto storeOp = loadOrStoreOpInst->dyn_cast<StoreOp>();
|
|
opInst = loadOrStoreOpInst;
|
|
memref = storeOp->getMemRef();
|
|
auto storeMemrefType = storeOp->getMemRefType();
|
|
indices.reserve(storeMemrefType.getRank());
|
|
for (auto *index : storeOp->getIndices()) {
|
|
indices.push_back(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nesting depth of this statement, i.e., the number of loops
|
|
/// surrounding this statement.
|
|
unsigned mlir::getNestingDepth(const Instruction &stmt) {
|
|
const Instruction *currInst = &stmt;
|
|
unsigned depth = 0;
|
|
while ((currInst = currInst->getParentInst())) {
|
|
if (isa<ForInst>(currInst))
|
|
depth++;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
|
|
/// where each lists loops from outer-most to inner-most in loop nest.
|
|
unsigned mlir::getNumCommonSurroundingLoops(const Instruction &A,
|
|
const Instruction &B) {
|
|
SmallVector<ForInst *, 4> loopsA, loopsB;
|
|
getLoopIVs(A, &loopsA);
|
|
getLoopIVs(B, &loopsB);
|
|
|
|
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
|
|
unsigned numCommonLoops = 0;
|
|
for (unsigned i = 0; i < minNumLoops; ++i) {
|
|
if (loopsA[i] != loopsB[i])
|
|
break;
|
|
++numCommonLoops;
|
|
}
|
|
return numCommonLoops;
|
|
}
|
|
|
|
// Returns the size of the region.
|
|
static Optional<int64_t> getRegionSize(const MemRefRegion ®ion) {
|
|
auto *memref = region.memref;
|
|
auto memRefType = memref->getType().cast<MemRefType>();
|
|
|
|
auto layoutMaps = memRefType.getAffineMaps();
|
|
if (layoutMaps.size() > 1 ||
|
|
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
|
|
return false;
|
|
}
|
|
|
|
// Indices to use for the DmaStart op.
|
|
// Indices for the original memref being DMAed from/to.
|
|
SmallVector<Value *, 4> memIndices;
|
|
// Indices for the faster buffer being DMAed into/from.
|
|
SmallVector<Value *, 4> bufIndices;
|
|
|
|
// Compute the extents of the buffer.
|
|
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape();
|
|
if (!numElements.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
|
|
return None;
|
|
}
|
|
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
|
|
}
|
|
|
|
Optional<int64_t> mlir::getMemoryFootprintBytes(const ForInst &forInst,
|
|
int memorySpace) {
|
|
std::vector<std::unique_ptr<MemRefRegion>> regions;
|
|
|
|
// Walk this 'for' instruction to gather all memory regions.
|
|
bool error = false;
|
|
const_cast<ForInst *>(&forInst)->walkOps([&](OperationInst *opInst) {
|
|
if (!opInst->isa<LoadOp>() && !opInst->isa<StoreOp>()) {
|
|
// Neither load nor a store op.
|
|
return;
|
|
}
|
|
|
|
// TODO(bondhugula): eventually, we need to be performing a union across
|
|
// all regions for a given memref instead of creating one region per
|
|
// memory op. This way we would be allocating O(num of memref's) sets
|
|
// instead of O(num of load/store op's).
|
|
auto region = std::make_unique<MemRefRegion>();
|
|
if (!getMemRefRegion(opInst, 0, region.get())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Error obtaining memory region\n");
|
|
// TODO: stop the walk if an error occurred.
|
|
error = true;
|
|
return;
|
|
}
|
|
regions.push_back(std::move(region));
|
|
});
|
|
|
|
if (error)
|
|
return None;
|
|
|
|
int64_t totalSizeInBytes = 0;
|
|
for (const auto ®ion : regions) {
|
|
auto size = getRegionSize(*region);
|
|
if (!size.hasValue())
|
|
return None;
|
|
totalSizeInBytes += size.getValue();
|
|
}
|
|
return totalSizeInBytes;
|
|
}
|