llvm-project/polly
Rainer Orth 570c50aa92 [Polly] Fix lib/Transform/ScheduleOptimizer.cpp compilation on Solaris
lib/Transform/ScheduleOptimizer.cpp fails to compile on Solaris, both on the 9.x
branch (first noticed when running test-release.sh without -no-polly) and on trunk:

  /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp: In function ‘MicroKernelParamsTy getMicroKernelParams(const llvm::TargetTransformInfo*, polly::MatMulInfoTy)’:
  /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:914:62: error: call of overloaded ‘sqrt(long unsigned int)’ is ambiguous
    914 |       ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
        |                                                              ^
  In file included from /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/math.h:24,
                   from /usr/gcc/9/include/c++/9.1.0/cmath:45,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm-c/DataTypes.h:28,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/Support/DataTypes.h:16,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/Hashing.h:47,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/ArrayRef.h:12,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/include/polly/ScheduleOptimizer.h:12,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:48:
  /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:220:21: note: candidate: ‘long double std::sqrt(long double)’
    220 |  inline long double sqrt(long double __X) { return __sqrtl(__X); }
        |                     ^~~~
  /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:186:15:
note: candidate: ‘float std::sqrt(float)’
    186 |  inline float sqrt(float __X) { return __sqrtf(__X); }
        |               ^~~~
  /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:74:15:
note: candidate: ‘double std::sqrt(double)’
     74 | extern double sqrt __P((double));
        |               ^~~~
  /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:915:67:
error: call of overloaded ‘ceil(long unsigned int)’ is ambiguous
    915 |   int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
        |                                                                   ^
  In file included from /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/math.h:24,
                   from /usr/gcc/9/include/c++/9.1.0/cmath:45,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm-c/DataTypes.h:28,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/Support/DataTypes.h:16,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/Hashing.h:47,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/include/llvm/ADT/ArrayRef.h:12,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/include/polly/ScheduleOptimizer.h:12,
                   from /var/llvm/llvm-9.0.0-rc4/rc4/llvm.src/tools/polly/lib/Transform/ScheduleOptimizer.cpp:48:
  /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:196:21: note: candidate: ‘long double std::ceil(long double)’
    196 |  inline long double ceil(long double __X) { return __ceill(__X); }
        |                     ^~~~
  /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:160:15:
note: candidate: ‘float std::ceil(float)’
    160 |  inline float ceil(float __X) { return __ceilf(__X); }
        |               ^~~~
  /usr/gcc/9/lib/gcc/x86_64-pc-solaris2.11/9.1.0/include-fixed/iso/math_iso.h:76:15:
note: candidate: ‘double std::ceil(double)’
     76 | extern double ceil __P((double));
        |               ^~~~

Fixed by adding casts to disambiguate, checked that it now compiles on both 
amd64-pc-solaris2.11 and sparcv9-sun-solaris2.11 and on x86_64-pc-linux-gnu.

Differential Revision: https://reviews.llvm.org/D67442

llvm-svn: 371825
2019-09-13 08:45:06 +00:00
..
cmake [CMake] Fix generation of exported targets in build directory 2018-11-06 15:18:17 +00:00
docs Bump the trunk version to 10.0.0svn 2019-07-18 11:51:05 +00:00
include/polly [NFC][ScopBuilder] Move buildDomains and its callees to ScopBuilder. 2019-08-06 21:51:18 +00:00
lib [Polly] Fix lib/Transform/ScheduleOptimizer.cpp compilation on Solaris 2019-09-13 08:45:06 +00:00
test [ScopBuilder] Skip getting leader when merging statements to close holes. 2019-09-13 01:04:38 +00:00
tools Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
unittests Update the file headers across all of the LLVM projects in the monorepo 2019-01-19 08:50:56 +00:00
utils [arc] Remove unittesting from arcconfig 2018-05-15 13:43:42 +00:00
www Adjust documentation for git migration. 2019-01-29 16:37:27 +00:00
.arcconfig [arc] Remove unittesting from arcconfig 2018-05-15 13:43:42 +00:00
.arclint [External] Move lib/JSON to lib/External/JSON. NFC. 2017-02-05 15:26:56 +00:00
.gitattributes
.gitignore Do not track the isl PDF manual in SVN 2017-01-16 11:48:03 +00:00
CMakeLists.txt [JSONExporter] Replace bundled Jsoncpp with llvm/Support/JSON.h. NFC. 2018-08-01 00:15:16 +00:00
CREDITS.txt
LICENSE.txt Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
README Test commit 2017-06-28 12:58:44 +00:00

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.