llvm-project/llvm/unittests/IR/VPIntrinsicTest.cpp

374 lines
15 KiB
C++

//===- VPIntrinsicTest.cpp - VPIntrinsic unit tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
#include <sstream>
using namespace llvm;
namespace {
static const char *ReductionIntOpcodes[] = {
"add", "mul", "and", "or", "xor", "smin", "smax", "umin", "umax"};
static const char *ReductionFPOpcodes[] = {"fadd", "fmul", "fmin", "fmax"};
class VPIntrinsicTest : public testing::Test {
protected:
LLVMContext Context;
VPIntrinsicTest() : Context() {}
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> createVPDeclarationModule() {
const char *BinaryIntOpcodes[] = {"add", "sub", "mul", "sdiv", "srem",
"udiv", "urem", "and", "xor", "or",
"ashr", "lshr", "shl"};
std::stringstream Str;
for (const char *BinaryIntOpcode : BinaryIntOpcodes)
Str << " declare <8 x i32> @llvm.vp." << BinaryIntOpcode
<< ".v8i32(<8 x i32>, <8 x i32>, <8 x i1>, i32) ";
const char *BinaryFPOpcodes[] = {"fadd", "fsub", "fmul", "fdiv", "frem"};
for (const char *BinaryFPOpcode : BinaryFPOpcodes)
Str << " declare <8 x float> @llvm.vp." << BinaryFPOpcode
<< ".v8f32(<8 x float>, <8 x float>, <8 x i1>, i32) ";
Str << " declare void @llvm.vp.store.v8i32.p0v8i32(<8 x i32>, <8 x i32>*, "
"<8 x i1>, i32) ";
Str << " declare void @llvm.vp.scatter.v8i32.v8p0i32(<8 x i32>, <8 x "
"i32*>, <8 x i1>, i32) ";
Str << " declare <8 x i32> @llvm.vp.load.v8i32.p0v8i32(<8 x i32>*, <8 x "
"i1>, i32) ";
Str << " declare <8 x i32> @llvm.vp.gather.v8i32.v8p0i32(<8 x i32*>, <8 x "
"i1>, i32) ";
for (const char *ReductionOpcode : ReductionIntOpcodes)
Str << " declare i32 @llvm.vp.reduce." << ReductionOpcode
<< ".v8i32(i32, <8 x i32>, <8 x i1>, i32) ";
for (const char *ReductionOpcode : ReductionFPOpcodes)
Str << " declare float @llvm.vp.reduce." << ReductionOpcode
<< ".v8f32(float, <8 x float>, <8 x i1>, i32) ";
Str << " declare <8 x i32> @llvm.vp.select.v8i32(<8 x i1>, <8 x i32>, <8 x "
"i32>, i32)";
return parseAssemblyString(Str.str(), Err, C);
}
};
/// Check that the property scopes include/llvm/IR/VPIntrinsics.def are closed.
TEST_F(VPIntrinsicTest, VPIntrinsicsDefScopes) {
Optional<Intrinsic::ID> ScopeVPID;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) \
ASSERT_FALSE(ScopeVPID.hasValue()); \
ScopeVPID = Intrinsic::VPID;
#define END_REGISTER_VP_INTRINSIC(VPID) \
ASSERT_TRUE(ScopeVPID.hasValue()); \
ASSERT_EQ(ScopeVPID.getValue(), Intrinsic::VPID); \
ScopeVPID = None;
Optional<ISD::NodeType> ScopeOPC;
#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
ASSERT_FALSE(ScopeOPC.hasValue()); \
ScopeOPC = ISD::SDOPC;
#define END_REGISTER_VP_SDNODE(SDOPC) \
ASSERT_TRUE(ScopeOPC.hasValue()); \
ASSERT_EQ(ScopeOPC.getValue(), ISD::SDOPC); \
ScopeOPC = None;
#include "llvm/IR/VPIntrinsics.def"
ASSERT_FALSE(ScopeVPID.hasValue());
ASSERT_FALSE(ScopeOPC.hasValue());
}
/// Check that every VP intrinsic in the test module is recognized as a VP
/// intrinsic.
TEST_F(VPIntrinsicTest, VPModuleComplete) {
std::unique_ptr<Module> M = createVPDeclarationModule();
assert(M);
// Check that all @llvm.vp.* functions in the module are recognized vp
// intrinsics.
std::set<Intrinsic::ID> SeenIDs;
for (const auto &VPDecl : *M) {
ASSERT_TRUE(VPDecl.isIntrinsic());
ASSERT_TRUE(VPIntrinsic::isVPIntrinsic(VPDecl.getIntrinsicID()));
SeenIDs.insert(VPDecl.getIntrinsicID());
}
// Check that every registered VP intrinsic has an instance in the test
// module.
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) \
ASSERT_TRUE(SeenIDs.count(Intrinsic::VPID));
#include "llvm/IR/VPIntrinsics.def"
}
/// Check that VPIntrinsic:canIgnoreVectorLengthParam() returns true
/// if the vector length parameter does not mask off any lanes.
TEST_F(VPIntrinsicTest, CanIgnoreVectorLength) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M =
parseAssemblyString(
"declare <256 x i64> @llvm.vp.mul.v256i64(<256 x i64>, <256 x i64>, <256 x i1>, i32)"
"declare <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64>, <vscale x 2 x i64>, <vscale x 2 x i1>, i32)"
"declare <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64>, <vscale x 1 x i64>, <vscale x 1 x i1>, i32)"
"declare i32 @llvm.vscale.i32()"
"define void @test_static_vlen( "
" <256 x i64> %i0, <vscale x 2 x i64> %si0x2, <vscale x 1 x i64> %si0x1,"
" <256 x i64> %i1, <vscale x 2 x i64> %si1x2, <vscale x 1 x i64> %si1x1,"
" <256 x i1> %m, <vscale x 2 x i1> %smx2, <vscale x 1 x i1> %smx1, i32 %vl) { "
" %r0 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 %vl)"
" %r1 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 256)"
" %r2 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 0)"
" %r3 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 7)"
" %r4 = call <256 x i64> @llvm.vp.mul.v256i64(<256 x i64> %i0, <256 x i64> %i1, <256 x i1> %m, i32 123)"
" %vs = call i32 @llvm.vscale.i32()"
" %vs.x2 = mul i32 %vs, 2"
" %r5 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 %vs.x2)"
" %r6 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 %vs)"
" %r7 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 99999)"
" %r8 = call <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64> %si0x1, <vscale x 1 x i64> %si1x1, <vscale x 1 x i1> %smx1, i32 %vs)"
" %r9 = call <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64> %si0x1, <vscale x 1 x i64> %si1x1, <vscale x 1 x i1> %smx1, i32 1)"
" %r10 = call <vscale x 1 x i64> @llvm.vp.mul.nxv1i64(<vscale x 1 x i64> %si0x1, <vscale x 1 x i64> %si1x1, <vscale x 1 x i1> %smx1, i32 %vs.x2)"
" %vs.wat = add i32 %vs, 2"
" %r11 = call <vscale x 2 x i64> @llvm.vp.mul.nxv2i64(<vscale x 2 x i64> %si0x2, <vscale x 2 x i64> %si1x2, <vscale x 2 x i1> %smx2, i32 %vs.wat)"
" ret void "
"}",
Err, C);
auto *F = M->getFunction("test_static_vlen");
assert(F);
const bool Expected[] = {false, true, false, false, false, true,
false, false, true, false, true, false};
const auto *ExpectedIt = std::begin(Expected);
for (auto &I : F->getEntryBlock()) {
VPIntrinsic *VPI = dyn_cast<VPIntrinsic>(&I);
if (!VPI)
continue;
ASSERT_NE(ExpectedIt, std::end(Expected));
ASSERT_EQ(*ExpectedIt, VPI->canIgnoreVectorLengthParam());
++ExpectedIt;
}
}
/// Check that the argument returned by
/// VPIntrinsic::get<X>ParamPos(Intrinsic::ID) has the expected type.
TEST_F(VPIntrinsicTest, GetParamPos) {
std::unique_ptr<Module> M = createVPDeclarationModule();
assert(M);
for (Function &F : *M) {
ASSERT_TRUE(F.isIntrinsic());
Optional<unsigned> MaskParamPos =
VPIntrinsic::getMaskParamPos(F.getIntrinsicID());
if (MaskParamPos.hasValue()) {
Type *MaskParamType = F.getArg(MaskParamPos.getValue())->getType();
ASSERT_TRUE(MaskParamType->isVectorTy());
ASSERT_TRUE(
cast<VectorType>(MaskParamType)->getElementType()->isIntegerTy(1));
}
Optional<unsigned> VecLenParamPos =
VPIntrinsic::getVectorLengthParamPos(F.getIntrinsicID());
if (VecLenParamPos.hasValue()) {
Type *VecLenParamType = F.getArg(VecLenParamPos.getValue())->getType();
ASSERT_TRUE(VecLenParamType->isIntegerTy(32));
}
}
}
/// Check that going from Opcode to VP intrinsic and back results in the same
/// Opcode.
TEST_F(VPIntrinsicTest, OpcodeRoundTrip) {
std::vector<unsigned> Opcodes;
Opcodes.reserve(100);
{
#define HANDLE_INST(OCNum, OCName, Class) Opcodes.push_back(OCNum);
#include "llvm/IR/Instruction.def"
}
unsigned FullTripCounts = 0;
for (unsigned OC : Opcodes) {
Intrinsic::ID VPID = VPIntrinsic::getForOpcode(OC);
// No equivalent VP intrinsic available.
if (VPID == Intrinsic::not_intrinsic)
continue;
Optional<unsigned> RoundTripOC =
VPIntrinsic::getFunctionalOpcodeForVP(VPID);
// No equivalent Opcode available.
if (!RoundTripOC)
continue;
ASSERT_EQ(*RoundTripOC, OC);
++FullTripCounts;
}
ASSERT_NE(FullTripCounts, 0u);
}
/// Check that going from VP intrinsic to Opcode and back results in the same
/// intrinsic id.
TEST_F(VPIntrinsicTest, IntrinsicIDRoundTrip) {
std::unique_ptr<Module> M = createVPDeclarationModule();
assert(M);
unsigned FullTripCounts = 0;
for (const auto &VPDecl : *M) {
auto VPID = VPDecl.getIntrinsicID();
Optional<unsigned> OC = VPIntrinsic::getFunctionalOpcodeForVP(VPID);
// no equivalent Opcode available
if (!OC)
continue;
Intrinsic::ID RoundTripVPID = VPIntrinsic::getForOpcode(*OC);
ASSERT_EQ(RoundTripVPID, VPID);
++FullTripCounts;
}
ASSERT_NE(FullTripCounts, 0u);
}
/// Check that VPIntrinsic::getDeclarationForParams works.
TEST_F(VPIntrinsicTest, VPIntrinsicDeclarationForParams) {
std::unique_ptr<Module> M = createVPDeclarationModule();
assert(M);
auto OutM = std::make_unique<Module>("", M->getContext());
for (auto &F : *M) {
auto *FuncTy = F.getFunctionType();
// Declare intrinsic anew with explicit types.
std::vector<Value *> Values;
for (auto *ParamTy : FuncTy->params())
Values.push_back(UndefValue::get(ParamTy));
ASSERT_NE(F.getIntrinsicID(), Intrinsic::not_intrinsic);
auto *NewDecl = VPIntrinsic::getDeclarationForParams(
OutM.get(), F.getIntrinsicID(), Values);
ASSERT_TRUE(NewDecl);
// Check that 'old decl' == 'new decl'.
ASSERT_EQ(F.getIntrinsicID(), NewDecl->getIntrinsicID());
FunctionType::param_iterator ItNewParams =
NewDecl->getFunctionType()->param_begin();
FunctionType::param_iterator EndItNewParams =
NewDecl->getFunctionType()->param_end();
for (auto *ParamTy : FuncTy->params()) {
ASSERT_NE(ItNewParams, EndItNewParams);
ASSERT_EQ(*ItNewParams, ParamTy);
++ItNewParams;
}
}
}
/// Check that the HANDLE_VP_TO_CONSTRAINEDFP maps to an existing intrinsic with
/// the right amount of metadata args.
TEST_F(VPIntrinsicTest, HandleToConstrainedFP) {
#define HANDLE_VP_TO_CONSTRAINEDFP(HASROUND, HASEXCEPT, CFPID) \
{ \
SmallVector<Intrinsic::IITDescriptor, 5> T; \
Intrinsic::getIntrinsicInfoTableEntries(Intrinsic::CFPID, T); \
unsigned NumMetadataArgs = 0; \
for (auto TD : T) \
NumMetadataArgs += (TD.Kind == Intrinsic::IITDescriptor::Metadata); \
ASSERT_EQ(NumMetadataArgs, (unsigned)(HASROUND + HASEXCEPT)); \
}
#include "llvm/IR/VPIntrinsics.def"
}
} // end anonymous namespace
/// Check various properties of VPReductionIntrinsics
TEST_F(VPIntrinsicTest, VPReductions) {
LLVMContext C;
SMDiagnostic Err;
std::stringstream Str;
Str << "declare <8 x i32> @llvm.vp.mul.v8i32(<8 x i32>, <8 x i32>, <8 x i1>, "
"i32)";
for (const char *ReductionOpcode : ReductionIntOpcodes)
Str << " declare i32 @llvm.vp.reduce." << ReductionOpcode
<< ".v8i32(i32, <8 x i32>, <8 x i1>, i32) ";
for (const char *ReductionOpcode : ReductionFPOpcodes)
Str << " declare float @llvm.vp.reduce." << ReductionOpcode
<< ".v8f32(float, <8 x float>, <8 x i1>, i32) ";
Str << "define void @test_reductions(i32 %start, <8 x i32> %val, float "
"%fpstart, <8 x float> %fpval, <8 x i1> %m, i32 %vl) {";
// Mix in a regular non-reduction intrinsic to check that the
// VPReductionIntrinsic subclass works as intended.
Str << " %r0 = call <8 x i32> @llvm.vp.mul.v8i32(<8 x i32> %val, <8 x i32> "
"%val, <8 x i1> %m, i32 %vl)";
unsigned Idx = 1;
for (const char *ReductionOpcode : ReductionIntOpcodes)
Str << " %r" << Idx++ << " = call i32 @llvm.vp.reduce." << ReductionOpcode
<< ".v8i32(i32 %start, <8 x i32> %val, <8 x i1> %m, i32 %vl)";
for (const char *ReductionOpcode : ReductionFPOpcodes)
Str << " %r" << Idx++ << " = call float @llvm.vp.reduce."
<< ReductionOpcode
<< ".v8f32(float %fpstart, <8 x float> %fpval, <8 x i1> %m, i32 %vl)";
Str << " ret void"
"}";
std::unique_ptr<Module> M = parseAssemblyString(Str.str(), Err, C);
assert(M);
auto *F = M->getFunction("test_reductions");
assert(F);
for (const auto &I : F->getEntryBlock()) {
const VPIntrinsic *VPI = dyn_cast<VPIntrinsic>(&I);
if (!VPI)
continue;
Intrinsic::ID ID = VPI->getIntrinsicID();
const auto *VPRedI = dyn_cast<VPReductionIntrinsic>(&I);
if (!VPReductionIntrinsic::isVPReduction(ID)) {
EXPECT_EQ(VPRedI, nullptr);
EXPECT_EQ(VPReductionIntrinsic::getStartParamPos(ID).hasValue(), false);
EXPECT_EQ(VPReductionIntrinsic::getVectorParamPos(ID).hasValue(), false);
continue;
}
EXPECT_EQ(VPReductionIntrinsic::getStartParamPos(ID).hasValue(), true);
EXPECT_EQ(VPReductionIntrinsic::getVectorParamPos(ID).hasValue(), true);
ASSERT_NE(VPRedI, nullptr);
EXPECT_EQ(VPReductionIntrinsic::getStartParamPos(ID),
VPRedI->getStartParamPos());
EXPECT_EQ(VPReductionIntrinsic::getVectorParamPos(ID),
VPRedI->getVectorParamPos());
EXPECT_EQ(VPRedI->getStartParamPos(), 0u);
EXPECT_EQ(VPRedI->getVectorParamPos(), 1u);
}
}