llvm-project/clang/lib/Parse/ParseDecl.cpp

2720 lines
98 KiB
C++

//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Scope.h"
#include "ExtensionRAIIObject.h"
#include "AstGuard.h"
#include "llvm/ADT/SmallSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
///
/// Called type-id in C++.
Action::TypeResult Parser::ParseTypeName() {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
ParseDeclarator(DeclaratorInfo);
if (DeclaratorInfo.isInvalidType())
return true;
return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
}
/// ParseAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// FIXME: The GCC grammar/code for this construct implies we need two
/// token lookahead. Comment from gcc: "If they start with an identifier
/// which is followed by a comma or close parenthesis, then the arguments
/// start with that identifier; otherwise they are an expression list."
///
/// At the moment, I am not doing 2 token lookahead. I am also unaware of
/// any attributes that don't work (based on my limited testing). Most
/// attributes are very simple in practice. Until we find a bug, I don't see
/// a pressing need to implement the 2 token lookahead.
AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
AttributeList *CurrAttr = 0;
while (Tok.is(tok::kw___attribute)) {
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
Tok.is(tok::comma)) {
if (Tok.is(tok::comma)) {
// allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
ConsumeToken();
continue;
}
// we have an identifier or declaration specifier (const, int, etc.)
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
// check if we have a "paramterized" attribute
if (Tok.is(tok::l_paren)) {
ConsumeParen(); // ignore the left paren loc for now
if (Tok.is(tok::identifier)) {
IdentifierInfo *ParmName = Tok.getIdentifierInfo();
SourceLocation ParmLoc = ConsumeToken();
if (Tok.is(tok::r_paren)) {
// __attribute__(( mode(byte) ))
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc,
ParmName, ParmLoc, 0, 0, CurrAttr);
} else if (Tok.is(tok::comma)) {
ConsumeToken();
// __attribute__(( format(printf, 1, 2) ))
ExprVector ArgExprs(Actions);
bool ArgExprsOk = true;
// now parse the non-empty comma separated list of expressions
while (1) {
OwningExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
}
}
} else { // not an identifier
// parse a possibly empty comma separated list of expressions
if (Tok.is(tok::r_paren)) {
// __attribute__(( nonnull() ))
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
} else {
// __attribute__(( aligned(16) ))
ExprVector ArgExprs(Actions);
bool ArgExprsOk = true;
// now parse the list of expressions
while (1) {
OwningExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
// Match the ')'.
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
SourceLocation(), ArgExprs.take(), ArgExprs.size(),
CurrAttr);
}
}
}
} else {
CurrAttr = new AttributeList(AttrName, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
SourceLocation Loc = Tok.getLocation();;
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
SkipUntil(tok::r_paren, false);
}
if (EndLoc)
*EndLoc = Loc;
}
return CurrAttr;
}
/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
/// routine is called to skip/ignore tokens that comprise the MS declspec.
void Parser::FuzzyParseMicrosoftDeclSpec() {
assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
ConsumeToken();
if (Tok.is(tok::l_paren)) {
unsigned short savedParenCount = ParenCount;
do {
ConsumeAnyToken();
} while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
}
return;
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a Declarator::TheContext value. This returns the
/// location of the semicolon in DeclEnd.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] template-declaration
/// [C++] namespace-definition
/// [C++] using-directive
/// [C++] using-declaration [TODO]
/// [C++0x] static_assert-declaration
/// others... [FIXME]
///
Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
SourceLocation &DeclEnd) {
DeclPtrTy SingleDecl;
switch (Tok.getKind()) {
case tok::kw_template:
case tok::kw_export:
SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
break;
case tok::kw_namespace:
SingleDecl = ParseNamespace(Context, DeclEnd);
break;
case tok::kw_using:
SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
break;
case tok::kw_static_assert:
SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
break;
default:
return ParseSimpleDeclaration(Context, DeclEnd);
}
// This routine returns a DeclGroup, if the thing we parsed only contains a
// single decl, convert it now.
return Actions.ConvertDeclToDeclGroup(SingleDecl);
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive [TODO]
///
/// If RequireSemi is false, this does not check for a ';' at the end of the
/// declaration.
Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
SourceLocation &DeclEnd,
bool RequireSemi) {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
ConsumeToken();
DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
ParseDeclarator(DeclaratorInfo);
DeclGroupPtrTy DG =
ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
DeclEnd = Tok.getLocation();
// If the client wants to check what comes after the declaration, just return
// immediately without checking anything!
if (!RequireSemi) return DG;
if (Tok.is(tok::semi)) {
ConsumeToken();
return DG;
}
Diag(Tok, diag::err_expected_semi_declation);
// Skip to end of block or statement
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return DG;
}
/// \brief Parse 'declaration' after parsing 'declaration-specifiers
/// declarator'. This method parses the remainder of the declaration
/// (including any attributes or initializer, among other things) and
/// finalizes the declaration.
///
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
/// [C++] declarator initializer[opt]
///
/// [C++] initializer:
/// [C++] '=' initializer-clause
/// [C++] '(' expression-list ')'
/// [C++0x] '=' 'default' [TODO]
/// [C++0x] '=' 'delete'
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, true, true);
return DeclPtrTy();
}
D.setAsmLabel(AsmLabel.release());
D.SetRangeEnd(Loc);
}
// If attributes are present, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
D.AddAttributes(AttrList, Loc);
}
// Inform the current actions module that we just parsed this declarator.
DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
// Parse declarator '=' initializer.
if (Tok.is(tok::equal)) {
ConsumeToken();
if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
SourceLocation DelLoc = ConsumeToken();
Actions.SetDeclDeleted(ThisDecl, DelLoc);
} else {
OwningExprResult Init(ParseInitializer());
if (Init.isInvalid()) {
SkipUntil(tok::semi, true, true);
return DeclPtrTy();
}
Actions.AddInitializerToDecl(ThisDecl, move(Init));
}
} else if (Tok.is(tok::l_paren)) {
// Parse C++ direct initializer: '(' expression-list ')'
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
} else {
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
"Unexpected number of commas!");
Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
move_arg(Exprs),
&CommaLocs[0], RParenLoc);
}
} else {
Actions.ActOnUninitializedDecl(ThisDecl);
}
return ThisDecl;
}
/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
/// parsing 'declaration-specifiers declarator'. This method is split out this
/// way to handle the ambiguity between top-level function-definitions and
/// declarations.
///
/// init-declarator-list: [C99 6.7]
/// init-declarator
/// init-declarator-list ',' init-declarator
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Parser::DeclGroupPtrTy Parser::
ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
// Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
// that we parse together here.
llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
// At this point, we know that it is not a function definition. Parse the
// rest of the init-declarator-list.
while (1) {
DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
if (ThisDecl.get())
DeclsInGroup.push_back(ThisDecl);
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
if (Tok.isNot(tok::comma))
break;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
D.clear();
// Accept attributes in an init-declarator. In the first declarator in a
// declaration, these would be part of the declspec. In subsequent
// declarators, they become part of the declarator itself, so that they
// don't apply to declarators after *this* one. Examples:
// short __attribute__((common)) var; -> declspec
// short var __attribute__((common)); -> declarator
// short x, __attribute__((common)) var; -> declarator
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
D.AddAttributes(AttrList, Loc);
}
ParseDeclarator(D);
}
return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
DeclsInGroup.size());
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
ParseDeclarationSpecifiers(DS);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
!DS.getAttributes())
Diag(Tok, diag::err_typename_requires_specqual);
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specfier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
if (DS.isInlineSpecified())
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isVirtualSpecified())
Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isExplicitSpecified())
Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
}
/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
/// specified token is valid after the identifier in a declarator which
/// immediately follows the declspec. For example, these things are valid:
///
/// int x [ 4]; // direct-declarator
/// int x ( int y); // direct-declarator
/// int(int x ) // direct-declarator
/// int x ; // simple-declaration
/// int x = 17; // init-declarator-list
/// int x , y; // init-declarator-list
/// int x __asm__ ("foo"); // init-declarator-list
/// int x : 4; // struct-declarator
/// int x { 5}; // C++'0x unified initializers
///
/// This is not, because 'x' does not immediately follow the declspec (though
/// ')' happens to be valid anyway).
/// int (x)
///
static bool isValidAfterIdentifierInDeclarator(const Token &T) {
return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
}
/// ParseImplicitInt - This method is called when we have an non-typename
/// identifier in a declspec (which normally terminates the decl spec) when
/// the declspec has no type specifier. In this case, the declspec is either
/// malformed or is "implicit int" (in K&R and C89).
///
/// This method handles diagnosing this prettily and returns false if the
/// declspec is done being processed. If it recovers and thinks there may be
/// other pieces of declspec after it, it returns true.
///
bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
assert(Tok.is(tok::identifier) && "should have identifier");
SourceLocation Loc = Tok.getLocation();
// If we see an identifier that is not a type name, we normally would
// parse it as the identifer being declared. However, when a typename
// is typo'd or the definition is not included, this will incorrectly
// parse the typename as the identifier name and fall over misparsing
// later parts of the diagnostic.
//
// As such, we try to do some look-ahead in cases where this would
// otherwise be an "implicit-int" case to see if this is invalid. For
// example: "static foo_t x = 4;" In this case, if we parsed foo_t as
// an identifier with implicit int, we'd get a parse error because the
// next token is obviously invalid for a type. Parse these as a case
// with an invalid type specifier.
assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
// Since we know that this either implicit int (which is rare) or an
// error, we'd do lookahead to try to do better recovery.
if (isValidAfterIdentifierInDeclarator(NextToken())) {
// If this token is valid for implicit int, e.g. "static x = 4", then
// we just avoid eating the identifier, so it will be parsed as the
// identifier in the declarator.
return false;
}
// Otherwise, if we don't consume this token, we are going to emit an
// error anyway. Try to recover from various common problems. Check
// to see if this was a reference to a tag name without a tag specified.
// This is a common problem in C (saying 'foo' instead of 'struct foo').
//
// C++ doesn't need this, and isTagName doesn't take SS.
if (SS == 0) {
const char *TagName = 0;
tok::TokenKind TagKind = tok::unknown;
switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
default: break;
case DeclSpec::TST_enum: TagName="enum" ;TagKind=tok::kw_enum ;break;
case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
}
if (TagName) {
Diag(Loc, diag::err_use_of_tag_name_without_tag)
<< Tok.getIdentifierInfo() << TagName
<< CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
// Parse this as a tag as if the missing tag were present.
if (TagKind == tok::kw_enum)
ParseEnumSpecifier(Loc, DS, AS);
else
ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
return true;
}
}
// Since this is almost certainly an invalid type name, emit a
// diagnostic that says it, eat the token, and mark the declspec as
// invalid.
SourceRange R;
if (SS) R = SS->getRange();
Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
const char *PrevSpec;
DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// TODO: Could inject an invalid typedef decl in an enclosing scope to
// avoid rippling error messages on subsequent uses of the same type,
// could be useful if #include was forgotten.
return false;
}
/// ParseDeclarationSpecifiers
/// declaration-specifiers: [C99 6.7]
/// storage-class-specifier declaration-specifiers[opt]
/// type-specifier declaration-specifiers[opt]
/// [C99] function-specifier declaration-specifiers[opt]
/// [GNU] attributes declaration-specifiers[opt]
///
/// storage-class-specifier: [C99 6.7.1]
/// 'typedef'
/// 'extern'
/// 'static'
/// 'auto'
/// 'register'
/// [C++] 'mutable'
/// [GNU] '__thread'
/// function-specifier: [C99 6.7.4]
/// [C99] 'inline'
/// [C++] 'virtual'
/// [C++] 'explicit'
/// 'friend': [C++ dcl.friend]
///
void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
DS.SetRangeStart(Tok.getLocation());
while (1) {
int isInvalid = false;
const char *PrevSpec = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
default:
DoneWithDeclSpec:
// If this is not a declaration specifier token, we're done reading decl
// specifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
return;
case tok::coloncolon: // ::foo::bar
// Annotate C++ scope specifiers. If we get one, loop.
if (TryAnnotateCXXScopeToken())
continue;
goto DoneWithDeclSpec;
case tok::annot_cxxscope: {
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
// We are looking for a qualified typename.
Token Next = NextToken();
if (Next.is(tok::annot_template_id) &&
static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
->Kind == TNK_Type_template) {
// We have a qualified template-id, e.g., N::A<int>
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS);
assert(Tok.is(tok::annot_template_id) &&
"ParseOptionalCXXScopeSpecifier not working");
AnnotateTemplateIdTokenAsType(&SS);
continue;
}
if (Next.isNot(tok::identifier))
goto DoneWithDeclSpec;
CXXScopeSpec SS;
SS.setScopeRep(Tok.getAnnotationValue());
SS.setRange(Tok.getAnnotationRange());
// If the next token is the name of the class type that the C++ scope
// denotes, followed by a '(', then this is a constructor declaration.
// We're done with the decl-specifiers.
if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
CurScope, &SS) &&
GetLookAheadToken(2).is(tok::l_paren))
goto DoneWithDeclSpec;
TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
Next.getLocation(), CurScope, &SS);
// If the referenced identifier is not a type, then this declspec is
// erroneous: We already checked about that it has no type specifier, and
// C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
// typename.
if (TypeRep == 0) {
ConsumeToken(); // Eat the scope spec so the identifier is current.
if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
goto DoneWithDeclSpec;
}
ConsumeToken(); // The C++ scope.
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The typename.
continue;
}
case tok::annot_typename: {
if (Tok.getAnnotationValue())
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
Tok.getAnnotationValue());
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (!Tok.is(tok::less) || !getLang().ObjC1)
continue;
SourceLocation EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
DS.SetRangeEnd(EndProtoLoc);
continue;
}
// typedef-name
case tok::identifier: {
// In C++, check to see if this is a scope specifier like foo::bar::, if
// so handle it as such. This is important for ctor parsing.
if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
continue;
// This identifier can only be a typedef name if we haven't already seen
// a type-specifier. Without this check we misparse:
// typedef int X; struct Y { short X; }; as 'short int'.
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
// It has to be available as a typedef too!
TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
Tok.getLocation(), CurScope);
// If this is not a typedef name, don't parse it as part of the declspec,
// it must be an implicit int or an error.
if (TypeRep == 0) {
if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
goto DoneWithDeclSpec;
}
// C++: If the identifier is actually the name of the class type
// being defined and the next token is a '(', then this is a
// constructor declaration. We're done with the decl-specifiers
// and will treat this token as an identifier.
if (getLang().CPlusPlus && CurScope->isClassScope() &&
Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
NextToken().getKind() == tok::l_paren)
goto DoneWithDeclSpec;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The identifier
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (!Tok.is(tok::less) || !getLang().ObjC1)
continue;
SourceLocation EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
DS.SetRangeEnd(EndProtoLoc);
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// type-name
case tok::annot_template_id: {
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (TemplateId->Kind != TNK_Type_template) {
// This template-id does not refer to a type name, so we're
// done with the type-specifiers.
goto DoneWithDeclSpec;
}
// Turn the template-id annotation token into a type annotation
// token, then try again to parse it as a type-specifier.
AnnotateTemplateIdTokenAsType();
continue;
}
// GNU attributes support.
case tok::kw___attribute:
DS.AddAttributes(ParseAttributes());
continue;
// Microsoft declspec support.
case tok::kw___declspec:
if (!PP.getLangOptions().Microsoft)
goto DoneWithDeclSpec;
FuzzyParseMicrosoftDeclSpec();
continue;
// Microsoft single token adornments.
case tok::kw___forceinline:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
if (!PP.getLangOptions().Microsoft)
goto DoneWithDeclSpec;
// Just ignore it.
break;
// storage-class-specifier
case tok::kw_typedef:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
break;
case tok::kw_extern:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before) << "extern";
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
break;
case tok::kw___private_extern__:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
PrevSpec);
break;
case tok::kw_static:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before) << "static";
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
break;
case tok::kw_auto:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
break;
case tok::kw_register:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
break;
case tok::kw_mutable:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
break;
case tok::kw___thread:
isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
break;
// function-specifier
case tok::kw_inline:
isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
break;
case tok::kw_virtual:
isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
break;
case tok::kw_explicit:
isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
break;
// friend
case tok::kw_friend:
isInvalid = DS.SetFriendSpec(Loc, PrevSpec);
break;
// type-specifier
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
break;
case tok::kw_bool:
case tok::kw__Bool:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
continue;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, AS);
continue;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
getLang())*2;
break;
// C++ typename-specifier:
case tok::kw_typename:
if (TryAnnotateTypeOrScopeToken())
continue;
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
continue;
case tok::less:
// GCC ObjC supports types like "<SomeProtocol>" as a synonym for
// "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
// but we support it.
if (DS.hasTypeSpecifier() || !getLang().ObjC1)
goto DoneWithDeclSpec;
{
SourceLocation EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
DS.SetRangeEnd(EndProtoLoc);
Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
<< CodeModificationHint::CreateInsertion(Loc, "id")
<< SourceRange(Loc, EndProtoLoc);
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
// Pick between error or extwarn.
unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
: diag::ext_duplicate_declspec;
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
}
}
/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
/// primarily follow the C++ grammar with additions for C99 and GNU,
/// which together subsume the C grammar. Note that the C++
/// type-specifier also includes the C type-qualifier (for const,
/// volatile, and C99 restrict). Returns true if a type-specifier was
/// found (and parsed), false otherwise.
///
/// type-specifier: [C++ 7.1.5]
/// simple-type-specifier
/// class-specifier
/// enum-specifier
/// elaborated-type-specifier [TODO]
/// cv-qualifier
///
/// cv-qualifier: [C++ 7.1.5.1]
/// 'const'
/// 'volatile'
/// [C99] 'restrict'
///
/// simple-type-specifier: [ C++ 7.1.5.2]
/// '::'[opt] nested-name-specifier[opt] type-name [TODO]
/// '::'[opt] nested-name-specifier 'template' template-id [TODO]
/// 'char'
/// 'wchar_t'
/// 'bool'
/// 'short'
/// 'int'
/// 'long'
/// 'signed'
/// 'unsigned'
/// 'float'
/// 'double'
/// 'void'
/// [C99] '_Bool'
/// [C99] '_Complex'
/// [C99] '_Imaginary' // Removed in TC2?
/// [GNU] '_Decimal32'
/// [GNU] '_Decimal64'
/// [GNU] '_Decimal128'
/// [GNU] typeof-specifier
/// [OBJC] class-name objc-protocol-refs[opt] [TODO]
/// [OBJC] typedef-name objc-protocol-refs[opt] [TODO]
bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
const char *&PrevSpec,
const ParsedTemplateInfo &TemplateInfo) {
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
case tok::kw_typename: // typename foo::bar
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
// Otherwise, not a type specifier.
return false;
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
// Otherwise, not a type specifier.
return false;
// simple-type-specifier:
case tok::annot_typename: {
if (Tok.getAnnotationValue())
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
Tok.getAnnotationValue());
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (!Tok.is(tok::less) || !getLang().ObjC1)
return true;
SourceLocation EndProtoLoc;
llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
DS.SetRangeEnd(EndProtoLoc);
return true;
}
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
break;
case tok::kw_bool:
case tok::kw__Bool:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
return true;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS);
return true;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
getLang())*2;
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
return true;
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
if (!PP.getLangOptions().Microsoft) return false;
ConsumeToken();
return true;
default:
// Not a type-specifier; do nothing.
return false;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
// Pick between error or extwarn.
unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
: diag::ext_duplicate_declspec;
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // whatever we parsed above.
return true;
}
/// ParseStructDeclaration - Parse a struct declaration without the terminating
/// semicolon.
///
/// struct-declaration:
/// specifier-qualifier-list struct-declarator-list
/// [GNU] __extension__ struct-declaration
/// [GNU] specifier-qualifier-list
/// struct-declarator-list:
/// struct-declarator
/// struct-declarator-list ',' struct-declarator
/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
/// struct-declarator:
/// declarator
/// [GNU] declarator attributes[opt]
/// declarator[opt] ':' constant-expression
/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
///
void Parser::
ParseStructDeclaration(DeclSpec &DS,
llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseStructDeclaration(DS, Fields);
}
// Parse the common specifier-qualifiers-list piece.
SourceLocation DSStart = Tok.getLocation();
ParseSpecifierQualifierList(DS);
// If there are no declarators, this is a free-standing declaration
// specifier. Let the actions module cope with it.
if (Tok.is(tok::semi)) {
Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
return;
}
// Read struct-declarators until we find the semicolon.
Fields.push_back(FieldDeclarator(DS));
while (1) {
FieldDeclarator &DeclaratorInfo = Fields.back();
/// struct-declarator: declarator
/// struct-declarator: declarator[opt] ':' constant-expression
if (Tok.isNot(tok::colon))
ParseDeclarator(DeclaratorInfo.D);
if (Tok.is(tok::colon)) {
ConsumeToken();
OwningExprResult Res(ParseConstantExpression());
if (Res.isInvalid())
SkipUntil(tok::semi, true, true);
else
DeclaratorInfo.BitfieldSize = Res.release();
}
// If attributes exist after the declarator, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
DeclaratorInfo.D.AddAttributes(AttrList, Loc);
}
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
return;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
Fields.push_back(FieldDeclarator(DS));
// Attributes are only allowed on the second declarator.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
Fields.back().D.AddAttributes(AttrList, Loc);
}
}
}
/// ParseStructUnionBody
/// struct-contents:
/// struct-declaration-list
/// [EXT] empty
/// [GNU] "struct-declaration-list" without terminatoring ';'
/// struct-declaration-list:
/// struct-declaration
/// struct-declaration-list struct-declaration
/// [OBC] '@' 'defs' '(' class-name ')'
///
void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
unsigned TagType, DeclPtrTy TagDecl) {
PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
PP.getSourceManager(),
"parsing struct/union body");
SourceLocation LBraceLoc = ConsumeBrace();
ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
Actions.ActOnTagStartDefinition(CurScope, TagDecl);
// Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
// C++.
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::ext_empty_struct_union_enum)
<< DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
// While we still have something to read, read the declarations in the struct.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one struct-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi)
<< CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
ConsumeToken();
continue;
}
// Parse all the comma separated declarators.
DeclSpec DS;
FieldDeclarators.clear();
if (!Tok.is(tok::at)) {
ParseStructDeclaration(DS, FieldDeclarators);
// Convert them all to fields.
for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
FieldDeclarator &FD = FieldDeclarators[i];
// Install the declarator into the current TagDecl.
DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
DS.getSourceRange().getBegin(),
FD.D, FD.BitfieldSize);
FieldDecls.push_back(Field);
}
} else { // Handle @defs
ConsumeToken();
if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
Diag(Tok, diag::err_unexpected_at);
SkipUntil(tok::semi, true, true);
continue;
}
ConsumeToken();
ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::semi, true, true);
continue;
}
llvm::SmallVector<DeclPtrTy, 16> Fields;
Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
Tok.getIdentifierInfo(), Fields);
FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
ConsumeToken();
ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else if (Tok.is(tok::r_brace)) {
Diag(Tok, diag::ext_expected_semi_decl_list);
break;
} else {
Diag(Tok, diag::err_expected_semi_decl_list);
// Skip to end of block or statement
SkipUntil(tok::r_brace, true, true);
}
}
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
AttributeList *AttrList = 0;
// If attributes exist after struct contents, parse them.
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes();
Actions.ActOnFields(CurScope,
RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
LBraceLoc, RBraceLoc,
AttrList);
StructScope.Exit();
Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
}
/// ParseEnumSpecifier
/// enum-specifier: [C99 6.7.2.2]
/// 'enum' identifier[opt] '{' enumerator-list '}'
///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}' attributes[opt]
/// 'enum' identifier
/// [GNU] 'enum' attributes[opt] identifier
///
/// [C++] elaborated-type-specifier:
/// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
///
void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
AccessSpecifier AS) {
// Parse the tag portion of this.
AttributeList *Attr = 0;
// If attributes exist after tag, parse them.
if (Tok.is(tok::kw___attribute))
Attr = ParseAttributes();
CXXScopeSpec SS;
if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
if (Tok.isNot(tok::l_brace)) {
// Has no name and is not a definition.
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
}
}
// Must have either 'enum name' or 'enum {...}'.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
Diag(Tok, diag::err_expected_ident_lbrace);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
// If an identifier is present, consume and remember it.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
// There are three options here. If we have 'enum foo;', then this is a
// forward declaration. If we have 'enum foo {...' then this is a
// definition. Otherwise we have something like 'enum foo xyz', a reference.
//
// This is needed to handle stuff like this right (C99 6.7.2.3p11):
// enum foo {..}; void bar() { enum foo; } <- new foo in bar.
// enum foo {..}; void bar() { enum foo x; } <- use of old foo.
//
Action::TagKind TK;
if (Tok.is(tok::l_brace))
TK = Action::TK_Definition;
else if (Tok.is(tok::semi))
TK = Action::TK_Declaration;
else
TK = Action::TK_Reference;
DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
StartLoc, SS, Name, NameLoc, Attr, AS);
if (Tok.is(tok::l_brace))
ParseEnumBody(StartLoc, TagDecl);
// TODO: semantic analysis on the declspec for enums.
const char *PrevSpec = 0;
if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
TagDecl.getAs<void>()))
Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
}
/// ParseEnumBody - Parse a {} enclosed enumerator-list.
/// enumerator-list:
/// enumerator
/// enumerator-list ',' enumerator
/// enumerator:
/// enumeration-constant
/// enumeration-constant '=' constant-expression
/// enumeration-constant:
/// identifier
///
void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
// Enter the scope of the enum body and start the definition.
ParseScope EnumScope(this, Scope::DeclScope);
Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
SourceLocation LBraceLoc = ConsumeBrace();
// C does not allow an empty enumerator-list, C++ does [dcl.enum].
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
DeclPtrTy LastEnumConstDecl;
// Parse the enumerator-list.
while (Tok.is(tok::identifier)) {
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
SourceLocation EqualLoc;
OwningExprResult AssignedVal(Actions);
if (Tok.is(tok::equal)) {
EqualLoc = ConsumeToken();
AssignedVal = ParseConstantExpression();
if (AssignedVal.isInvalid())
SkipUntil(tok::comma, tok::r_brace, true, true);
}
// Install the enumerator constant into EnumDecl.
DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
LastEnumConstDecl,
IdentLoc, Ident,
EqualLoc,
AssignedVal.release());
EnumConstantDecls.push_back(EnumConstDecl);
LastEnumConstDecl = EnumConstDecl;
if (Tok.isNot(tok::comma))
break;
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isNot(tok::identifier) &&
!(getLang().C99 || getLang().CPlusPlus0x))
Diag(CommaLoc, diag::ext_enumerator_list_comma)
<< getLang().CPlusPlus
<< CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
}
// Eat the }.
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
&EnumConstantDecls[0], EnumConstantDecls.size());
Action::AttrTy *AttrList = 0;
// If attributes exist after the identifier list, parse them.
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes(); // FIXME: where do they do?
EnumScope.Exit();
Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a type-qualifier-list.
bool Parser::isTypeQualifier() const {
switch (Tok.getKind()) {
default: return false;
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
return true;
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a specifier-qualifier-list.
bool Parser::isTypeSpecifierQualifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return isTypeSpecifierQualifier();
// Otherwise, not a type specifier.
return false;
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return isTypeSpecifierQualifier();
// Otherwise, not a type specifier.
return false;
// GNU attributes support.
case tok::kw___attribute:
// GNU typeof support.
case tok::kw_typeof:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// typedef-name
case tok::annot_typename:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLang().ObjC1;
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
return PP.getLangOptions().Microsoft;
}
}
/// isDeclarationSpecifier() - Return true if the current token is part of a
/// declaration specifier.
bool Parser::isDeclarationSpecifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
// Unfortunate hack to support "Class.factoryMethod" notation.
if (getLang().ObjC1 && NextToken().is(tok::period))
return false;
// Fall through
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return isDeclarationSpecifier();
// Otherwise, not a declaration specifier.
return false;
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return isDeclarationSpecifier();
// Otherwise, not a declaration specifier.
return false;
// storage-class-specifier
case tok::kw_typedef:
case tok::kw_extern:
case tok::kw___private_extern__:
case tok::kw_static:
case tok::kw_auto:
case tok::kw_register:
case tok::kw___thread:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// function-specifier
case tok::kw_inline:
case tok::kw_virtual:
case tok::kw_explicit:
// typedef-name
case tok::annot_typename:
// GNU typeof support.
case tok::kw_typeof:
// GNU attributes.
case tok::kw___attribute:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLang().ObjC1;
case tok::kw___declspec:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
return PP.getLangOptions().Microsoft;
}
}
/// ParseTypeQualifierListOpt
/// type-qualifier-list: [C99 6.7.5]
/// type-qualifier
/// [GNU] attributes [ only if AttributesAllowed=true ]
/// type-qualifier-list type-qualifier
/// [GNU] type-qualifier-list attributes [ only if AttributesAllowed=true ]
///
void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
while (1) {
int isInvalid = false;
const char *PrevSpec = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw___ptr64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
if (!PP.getLangOptions().Microsoft)
goto DoneWithTypeQuals;
// Just ignore it.
break;
case tok::kw___attribute:
if (AttributesAllowed) {
DS.AddAttributes(ParseAttributes());
continue; // do *not* consume the next token!
}
// otherwise, FALL THROUGH!
default:
DoneWithTypeQuals:
// If this is not a type-qualifier token, we're done reading type
// qualifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
return;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
// Pick between error or extwarn.
unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
: diag::ext_duplicate_declspec;
Diag(Tok, DiagID) << PrevSpec;
}
ConsumeToken();
}
}
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
///
void Parser::ParseDeclarator(Declarator &D) {
/// This implements the 'declarator' production in the C grammar, then checks
/// for well-formedness and issues diagnostics.
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
}
/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
/// is parsed by the function passed to it. Pass null, and the direct-declarator
/// isn't parsed at all, making this function effectively parse the C++
/// ptr-operator production.
///
/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
/// [C] pointer[opt] direct-declarator
/// [C++] direct-declarator
/// [C++] ptr-operator declarator
///
/// pointer: [C99 6.7.5]
/// '*' type-qualifier-list[opt]
/// '*' type-qualifier-list[opt] pointer
///
/// ptr-operator:
/// '*' cv-qualifier-seq[opt]
/// '&'
/// [C++0x] '&&'
/// [GNU] '&' restrict[opt] attributes[opt]
/// [GNU?] '&&' restrict[opt] attributes[opt]
/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
void Parser::ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser) {
// C++ member pointers start with a '::' or a nested-name.
// Member pointers get special handling, since there's no place for the
// scope spec in the generic path below.
if (getLang().CPlusPlus &&
(Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
Tok.is(tok::annot_cxxscope))) {
CXXScopeSpec SS;
if (ParseOptionalCXXScopeSpecifier(SS)) {
if(Tok.isNot(tok::star)) {
// The scope spec really belongs to the direct-declarator.
D.getCXXScopeSpec() = SS;
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
SourceLocation Loc = ConsumeToken();
D.SetRangeEnd(Loc);
DeclSpec DS;
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recurse to parse whatever is left.
ParseDeclaratorInternal(D, DirectDeclParser);
// Sema will have to catch (syntactically invalid) pointers into global
// scope. It has to catch pointers into namespace scope anyway.
D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
Loc, DS.TakeAttributes()),
/* Don't replace range end. */SourceLocation());
return;
}
}
tok::TokenKind Kind = Tok.getKind();
// Not a pointer, C++ reference, or block.
if (Kind != tok::star && Kind != tok::caret &&
(Kind != tok::amp || !getLang().CPlusPlus) &&
// We parse rvalue refs in C++03, because otherwise the errors are scary.
(Kind != tok::ampamp || !getLang().CPlusPlus)) {
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
// Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
// '&&' -> rvalue reference
SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
D.SetRangeEnd(Loc);
if (Kind == tok::star || Kind == tok::caret) {
// Is a pointer.
DeclSpec DS;
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (Kind == tok::star)
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
DS.TakeAttributes()),
SourceLocation());
else
// Remember that we parsed a Block type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
Loc, DS.TakeAttributes()),
SourceLocation());
} else {
// Is a reference
DeclSpec DS;
// Complain about rvalue references in C++03, but then go on and build
// the declarator.
if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
Diag(Loc, diag::err_rvalue_reference);
// C++ 8.3.2p1: cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef or of a
// template type argument, in which case the cv-qualifiers are ignored.
//
// [GNU] Retricted references are allowed.
// [GNU] Attributes on references are allowed.
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(DS.getConstSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "const";
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
Diag(DS.getVolatileSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "volatile";
}
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (D.getNumTypeObjects() > 0) {
// C++ [dcl.ref]p4: There shall be no references to references.
DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
if (InnerChunk.Kind == DeclaratorChunk::Reference) {
if (const IdentifierInfo *II = D.getIdentifier())
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< II;
else
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< "type name";
// Once we've complained about the reference-to-reference, we
// can go ahead and build the (technically ill-formed)
// declarator: reference collapsing will take care of it.
}
}
// Remember that we parsed a reference type. It doesn't have type-quals.
D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
DS.TakeAttributes(),
Kind == tok::amp),
SourceLocation());
}
}
/// ParseDirectDeclarator
/// direct-declarator: [C99 6.7.5]
/// [C99] identifier
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
/// [C++] direct-declarator '(' parameter-declaration-clause ')'
/// cv-qualifier-seq[opt] exception-specification[opt]
/// [C++] declarator-id
///
/// declarator-id: [C++ 8]
/// id-expression
/// '::'[opt] nested-name-specifier[opt] type-name
///
/// id-expression: [C++ 5.1]
/// unqualified-id
/// qualified-id [TODO]
///
/// unqualified-id: [C++ 5.1]
/// identifier
/// operator-function-id
/// conversion-function-id [TODO]
/// '~' class-name
/// template-id
///
void Parser::ParseDirectDeclarator(Declarator &D) {
DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
if (getLang().CPlusPlus) {
if (D.mayHaveIdentifier()) {
// ParseDeclaratorInternal might already have parsed the scope.
bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
if (afterCXXScope) {
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
if (Tok.is(tok::identifier)) {
assert(Tok.getIdentifierInfo() && "Not an identifier?");
// If this identifier is the name of the current class, it's a
// constructor name.
if (!D.getDeclSpec().hasTypeSpecifier() &&
Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
Tok.getLocation(), CurScope),
Tok.getLocation());
// This is a normal identifier.
} else
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
} else if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
// FIXME: Could this template-id name a constructor?
// FIXME: This is an egregious hack, where we silently ignore
// the specialization (which should be a function template
// specialization name) and use the name instead. This hack
// will go away when we have support for function
// specializations.
D.SetIdentifier(TemplateId->Name, Tok.getLocation());
TemplateId->Destroy();
ConsumeToken();
goto PastIdentifier;
} else if (Tok.is(tok::kw_operator)) {
SourceLocation OperatorLoc = Tok.getLocation();
SourceLocation EndLoc;
// First try the name of an overloaded operator
if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
} else {
// This must be a conversion function (C++ [class.conv.fct]).
if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
else {
D.SetIdentifier(0, Tok.getLocation());
}
}
goto PastIdentifier;
} else if (Tok.is(tok::tilde)) {
// This should be a C++ destructor.
SourceLocation TildeLoc = ConsumeToken();
if (Tok.is(tok::identifier)) {
// FIXME: Inaccurate.
SourceLocation NameLoc = Tok.getLocation();
SourceLocation EndLoc;
TypeResult Type = ParseClassName(EndLoc);
if (Type.isInvalid())
D.SetIdentifier(0, TildeLoc);
else
D.setDestructor(Type.get(), TildeLoc, NameLoc);
} else {
Diag(Tok, diag::err_expected_class_name);
D.SetIdentifier(0, TildeLoc);
}
goto PastIdentifier;
}
// If we reached this point, token is not identifier and not '~'.
if (afterCXXScope) {
Diag(Tok, diag::err_expected_unqualified_id);
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
goto PastIdentifier;
}
}
}
// If we reached this point, we are either in C/ObjC or the token didn't
// satisfy any of the C++-specific checks.
if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
assert(!getLang().CPlusPlus &&
"There's a C++-specific check for tok::identifier above");
assert(Tok.getIdentifierInfo() && "Not an identifier?");
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
} else if (Tok.is(tok::l_paren)) {
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
// Example: 'char (*X)' or 'int (*XX)(void)'
ParseParenDeclarator(D);
} else if (D.mayOmitIdentifier()) {
// This could be something simple like "int" (in which case the declarator
// portion is empty), if an abstract-declarator is allowed.
D.SetIdentifier(0, Tok.getLocation());
} else {
if (D.getContext() == Declarator::MemberContext)
Diag(Tok, diag::err_expected_member_name_or_semi)
<< D.getDeclSpec().getSourceRange();
else if (getLang().CPlusPlus)
Diag(Tok, diag::err_expected_unqualified_id);
else
Diag(Tok, diag::err_expected_ident_lparen);
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
}
PastIdentifier:
assert(D.isPastIdentifier() &&
"Haven't past the location of the identifier yet?");
while (1) {
if (Tok.is(tok::l_paren)) {
// The paren may be part of a C++ direct initializer, eg. "int x(1);".
// In such a case, check if we actually have a function declarator; if it
// is not, the declarator has been fully parsed.
if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
// When not in file scope, warn for ambiguous function declarators, just
// in case the author intended it as a variable definition.
bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
if (!isCXXFunctionDeclarator(warnIfAmbiguous))
break;
}
ParseFunctionDeclarator(ConsumeParen(), D);
} else if (Tok.is(tok::l_square)) {
ParseBracketDeclarator(D);
} else {
break;
}
}
}
/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
/// only called before the identifier, so these are most likely just grouping
/// parens for precedence. If we find that these are actually function
/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
///
/// direct-declarator:
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
///
void Parser::ParseParenDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeParen();
assert(!D.isPastIdentifier() && "Should be called before passing identifier");
// Eat any attributes before we look at whether this is a grouping or function
// declarator paren. If this is a grouping paren, the attribute applies to
// the type being built up, for example:
// int (__attribute__(()) *x)(long y)
// If this ends up not being a grouping paren, the attribute applies to the
// first argument, for example:
// int (__attribute__(()) int x)
// In either case, we need to eat any attributes to be able to determine what
// sort of paren this is.
//
AttributeList *AttrList = 0;
bool RequiresArg = false;
if (Tok.is(tok::kw___attribute)) {
AttrList = ParseAttributes();
// We require that the argument list (if this is a non-grouping paren) be
// present even if the attribute list was empty.
RequiresArg = true;
}
// Eat any Microsoft extensions.
while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
(Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
ConsumeToken();
// If we haven't past the identifier yet (or where the identifier would be
// stored, if this is an abstract declarator), then this is probably just
// grouping parens. However, if this could be an abstract-declarator, then
// this could also be the start of function arguments (consider 'void()').
bool isGrouping;
if (!D.mayOmitIdentifier()) {
// If this can't be an abstract-declarator, this *must* be a grouping
// paren, because we haven't seen the identifier yet.
isGrouping = true;
} else if (Tok.is(tok::r_paren) || // 'int()' is a function.
(getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
isDeclarationSpecifier()) { // 'int(int)' is a function.
// This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
// considered to be a type, not a K&R identifier-list.
isGrouping = false;
} else {
// Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
isGrouping = true;
}
// If this is a grouping paren, handle:
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
if (isGrouping) {
bool hadGroupingParens = D.hasGroupingParens();
D.setGroupingParens(true);
if (AttrList)
D.AddAttributes(AttrList, SourceLocation());
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
// Match the ')'.
SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
D.setGroupingParens(hadGroupingParens);
D.SetRangeEnd(Loc);
return;
}
// Okay, if this wasn't a grouping paren, it must be the start of a function
// argument list. Recognize that this declarator will never have an
// identifier (and remember where it would have been), then call into
// ParseFunctionDeclarator to handle of argument list.
D.SetIdentifier(0, Tok.getLocation());
ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
}
/// ParseFunctionDeclarator - We are after the identifier and have parsed the
/// declarator D up to a paren, which indicates that we are parsing function
/// arguments.
///
/// If AttrList is non-null, then the caller parsed those arguments immediately
/// after the open paren - they should be considered to be the first argument of
/// a parameter. If RequiresArg is true, then the first argument of the
/// function is required to be present and required to not be an identifier
/// list.
///
/// This method also handles this portion of the grammar:
/// parameter-type-list: [C99 6.7.5]
/// parameter-list
/// parameter-list ',' '...'
///
/// parameter-list: [C99 6.7.5]
/// parameter-declaration
/// parameter-list ',' parameter-declaration
///
/// parameter-declaration: [C99 6.7.5]
/// declaration-specifiers declarator
/// [C++] declaration-specifiers declarator '=' assignment-expression
/// [GNU] declaration-specifiers declarator attributes
/// declaration-specifiers abstract-declarator[opt]
/// [C++] declaration-specifiers abstract-declarator[opt]
/// '=' assignment-expression
/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
///
/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
/// and "exception-specification[opt]".
///
void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
AttributeList *AttrList,
bool RequiresArg) {
// lparen is already consumed!
assert(D.isPastIdentifier() && "Should not call before identifier!");
// This parameter list may be empty.
if (Tok.is(tok::r_paren)) {
if (RequiresArg) {
Diag(Tok, diag::err_argument_required_after_attribute);
delete AttrList;
}
SourceLocation Loc = ConsumeParen(); // Eat the closing ')'.
// cv-qualifier-seq[opt].
DeclSpec DS;
bool hasExceptionSpec = false;
bool hasAnyExceptionSpec = false;
// FIXME: Does an empty vector ever allocate? Exception specifications are
// extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
std::vector<TypeTy*> Exceptions;
if (getLang().CPlusPlus) {
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
if (!DS.getSourceRange().getEnd().isInvalid())
Loc = DS.getSourceRange().getEnd();
// Parse exception-specification[opt].
if (Tok.is(tok::kw_throw)) {
hasExceptionSpec = true;
ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
}
}
// Remember that we parsed a function type, and remember the attributes.
// int() -> no prototype, no '...'.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
/*variadic*/ false,
SourceLocation(),
/*arglist*/ 0, 0,
DS.getTypeQualifiers(),
hasExceptionSpec,
hasAnyExceptionSpec,
Exceptions.empty() ? 0 :
&Exceptions[0],
Exceptions.size(),
LParenLoc, D),
Loc);
return;
}
// Alternatively, this parameter list may be an identifier list form for a
// K&R-style function: void foo(a,b,c)
if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
if (!TryAnnotateTypeOrScopeToken()) {
// K&R identifier lists can't have typedefs as identifiers, per
// C99 6.7.5.3p11.
if (RequiresArg) {
Diag(Tok, diag::err_argument_required_after_attribute);
delete AttrList;
}
// Identifier list. Note that '(' identifier-list ')' is only allowed for
// normal declarators, not for abstract-declarators.
return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
}
}
// Finally, a normal, non-empty parameter type list.
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope);
bool IsVariadic = false;
SourceLocation EllipsisLoc;
while (1) {
if (Tok.is(tok::ellipsis)) {
IsVariadic = true;
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
break;
}
SourceLocation DSStart = Tok.getLocation();
// Parse the declaration-specifiers.
DeclSpec DS;
// If the caller parsed attributes for the first argument, add them now.
if (AttrList) {
DS.AddAttributes(AttrList);
AttrList = 0; // Only apply the attributes to the first parameter.
}
ParseDeclarationSpecifiers(DS);
// Parse the declarator. This is "PrototypeContext", because we must
// accept either 'declarator' or 'abstract-declarator' here.
Declarator ParmDecl(DS, Declarator::PrototypeContext);
ParseDeclarator(ParmDecl);
// Parse GNU attributes, if present.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
ParmDecl.AddAttributes(AttrList, Loc);
}
// Remember this parsed parameter in ParamInfo.
IdentifierInfo *ParmII = ParmDecl.getIdentifier();
// DefArgToks is used when the parsing of default arguments needs
// to be delayed.
CachedTokens *DefArgToks = 0;
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
ParmDecl.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
// Otherwise, we have something. Add it and let semantic analysis try
// to grok it and add the result to the ParamInfo we are building.
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
// C.
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = Tok.getLocation();
// Parse the default argument
if (D.getContext() == Declarator::MemberContext) {
// If we're inside a class definition, cache the tokens
// corresponding to the default argument. We'll actually parse
// them when we see the end of the class definition.
// FIXME: Templates will require something similar.
// FIXME: Can we use a smart pointer for Toks?
DefArgToks = new CachedTokens;
if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
tok::semi, false)) {
delete DefArgToks;
DefArgToks = 0;
Actions.ActOnParamDefaultArgumentError(Param);
} else
Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
} else {
// Consume the '='.
ConsumeToken();
OwningExprResult DefArgResult(ParseAssignmentExpression());
if (DefArgResult.isInvalid()) {
Actions.ActOnParamDefaultArgumentError(Param);
SkipUntil(tok::comma, tok::r_paren, true, true);
} else {
// Inform the actions module about the default argument
Actions.ActOnParamDefaultArgument(Param, EqualLoc,
move(DefArgResult));
}
}
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDecl.getIdentifierLoc(), Param,
DefArgToks));
}
// If the next token is a comma, consume it and keep reading arguments.
if (Tok.isNot(tok::comma)) break;
// Consume the comma.
ConsumeToken();
}
// Leave prototype scope.
PrototypeScope.Exit();
// If we have the closing ')', eat it.
SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
DeclSpec DS;
bool hasExceptionSpec = false;
bool hasAnyExceptionSpec = false;
// FIXME: Does an empty vector ever allocate? Exception specifications are
// extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
std::vector<TypeTy*> Exceptions;
if (getLang().CPlusPlus) {
// Parse cv-qualifier-seq[opt].
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
if (!DS.getSourceRange().getEnd().isInvalid())
Loc = DS.getSourceRange().getEnd();
// Parse exception-specification[opt].
if (Tok.is(tok::kw_throw)) {
hasExceptionSpec = true;
ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
}
}
// Remember that we parsed a function type, and remember the attributes.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
EllipsisLoc,
&ParamInfo[0], ParamInfo.size(),
DS.getTypeQualifiers(),
hasExceptionSpec,
hasAnyExceptionSpec,
Exceptions.empty() ? 0 :
&Exceptions[0],
Exceptions.size(), LParenLoc, D),
Loc);
}
/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
/// we found a K&R-style identifier list instead of a type argument list. The
/// current token is known to be the first identifier in the list.
///
/// identifier-list: [C99 6.7.5]
/// identifier
/// identifier-list ',' identifier
///
void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
Declarator &D) {
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
// If there was no identifier specified for the declarator, either we are in
// an abstract-declarator, or we are in a parameter declarator which was found
// to be abstract. In abstract-declarators, identifier lists are not valid:
// diagnose this.
if (!D.getIdentifier())
Diag(Tok, diag::ext_ident_list_in_param);
// Tok is known to be the first identifier in the list. Remember this
// identifier in ParamInfo.
ParamsSoFar.insert(Tok.getIdentifierInfo());
ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
Tok.getLocation(),
DeclPtrTy()));
ConsumeToken(); // eat the first identifier.
while (Tok.is(tok::comma)) {
// Eat the comma.
ConsumeToken();
// If this isn't an identifier, report the error and skip until ')'.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren);
return;
}
IdentifierInfo *ParmII = Tok.getIdentifierInfo();
// Reject 'typedef int y; int test(x, y)', but continue parsing.
if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
// Verify that the argument identifier has not already been mentioned.
if (!ParamsSoFar.insert(ParmII)) {
Diag(Tok, diag::err_param_redefinition) << ParmII;
} else {
// Remember this identifier in ParamInfo.
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
Tok.getLocation(),
DeclPtrTy()));
}
// Eat the identifier.
ConsumeToken();
}
// If we have the closing ')', eat it and we're done.
SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// Remember that we parsed a function type, and remember the attributes. This
// function type is always a K&R style function type, which is not varargs and
// has no prototype.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
SourceLocation(),
&ParamInfo[0], ParamInfo.size(),
/*TypeQuals*/0,
/*exception*/false, false, 0, 0,
LParenLoc, D),
RLoc);
}
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
void Parser::ParseBracketDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeBracket();
// C array syntax has many features, but by-far the most common is [] and [4].
// This code does a fast path to handle some of the most obvious cases.
if (Tok.getKind() == tok::r_square) {
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
// Remember that we parsed the empty array type.
OwningExprResult NumElements(Actions);
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
EndLoc);
return;
} else if (Tok.getKind() == tok::numeric_constant &&
GetLookAheadToken(1).is(tok::r_square)) {
// [4] is very common. Parse the numeric constant expression.
OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
ConsumeToken();
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
// If there was an error parsing the assignment-expression, recover.
if (ExprRes.isInvalid())
ExprRes.release(); // Deallocate expr, just use [].
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
ExprRes.release(), StartLoc),
EndLoc);
return;
}
// If valid, this location is the position where we read the 'static' keyword.
SourceLocation StaticLoc;
if (Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// If there is a type-qualifier-list, read it now.
// Type qualifiers in an array subscript are a C99 feature.
DeclSpec DS;
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
// If we haven't already read 'static', check to see if there is one after the
// type-qualifier-list.
if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// Handle "direct-declarator [ type-qual-list[opt] * ]".
bool isStar = false;
OwningExprResult NumElements(Actions);
// Handle the case where we have '[*]' as the array size. However, a leading
// star could be the start of an expression, for example 'X[*p + 4]'. Verify
// the the token after the star is a ']'. Since stars in arrays are
// infrequent, use of lookahead is not costly here.
if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
ConsumeToken(); // Eat the '*'.
if (StaticLoc.isValid()) {
Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
}
isStar = true;
} else if (Tok.isNot(tok::r_square)) {
// Note, in C89, this production uses the constant-expr production instead
// of assignment-expr. The only difference is that assignment-expr allows
// things like '=' and '*='. Sema rejects these in C89 mode because they
// are not i-c-e's, so we don't need to distinguish between the two here.
// Parse the assignment-expression now.
NumElements = ParseAssignmentExpression();
}
// If there was an error parsing the assignment-expression, recover.
if (NumElements.isInvalid()) {
D.setInvalidType(true);
// If the expression was invalid, skip it.
SkipUntil(tok::r_square);
return;
}
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
StaticLoc.isValid(), isStar,
NumElements.release(), StartLoc),
EndLoc);
}
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
/// [GNU/C++] typeof unary-expression
///
void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
SourceLocation StartLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
if (!getLang().CPlusPlus) {
Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
return;
}
OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
if (Result.isInvalid()) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
// Check for duplicate type specifiers.
if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
Result.release()))
Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
// FIXME: Not accurate, the range gets one token more than it should.
DS.SetRangeEnd(Tok.getLocation());
return;
}
SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
if (isTypeIdInParens()) {
Action::TypeResult Ty = ParseTypeName();
assert((Ty.isInvalid() || Ty.get()) &&
"Parser::ParseTypeofSpecifier(): missing type");
if (Tok.isNot(tok::r_paren)) {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return;
}
RParenLoc = ConsumeParen();
if (Ty.isInvalid())
DS.SetTypeSpecError();
else {
const char *PrevSpec = 0;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
Ty.get()))
Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
}
} else { // we have an expression.
OwningExprResult Result(ParseExpression());
if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
DS.SetTypeSpecError();
return;
}
RParenLoc = ConsumeParen();
const char *PrevSpec = 0;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
Result.release()))
Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
}
DS.SetRangeEnd(RParenLoc);
}