forked from OSchip/llvm-project
1883 lines
69 KiB
C++
1883 lines
69 KiB
C++
//===-- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===/
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Insert wait instructions for memory reads and writes.
|
|
///
|
|
/// Memory reads and writes are issued asynchronously, so we need to insert
|
|
/// S_WAITCNT instructions when we want to access any of their results or
|
|
/// overwrite any register that's used asynchronously.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIDefines.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
|
|
#define DEBUG_TYPE "si-insert-waitcnts"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Class of object that encapsulates latest instruction counter score
|
|
// associated with the operand. Used for determining whether
|
|
// s_waitcnt instruction needs to be emited.
|
|
|
|
#define CNT_MASK(t) (1u << (t))
|
|
|
|
enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS };
|
|
|
|
typedef std::pair<signed, signed> RegInterval;
|
|
|
|
struct {
|
|
int32_t VmcntMax;
|
|
int32_t ExpcntMax;
|
|
int32_t LgkmcntMax;
|
|
int32_t NumVGPRsMax;
|
|
int32_t NumSGPRsMax;
|
|
} HardwareLimits;
|
|
|
|
struct {
|
|
unsigned VGPR0;
|
|
unsigned VGPRL;
|
|
unsigned SGPR0;
|
|
unsigned SGPRL;
|
|
} RegisterEncoding;
|
|
|
|
enum WaitEventType {
|
|
VMEM_ACCESS, // vector-memory read & write
|
|
LDS_ACCESS, // lds read & write
|
|
GDS_ACCESS, // gds read & write
|
|
SQ_MESSAGE, // send message
|
|
SMEM_ACCESS, // scalar-memory read & write
|
|
EXP_GPR_LOCK, // export holding on its data src
|
|
GDS_GPR_LOCK, // GDS holding on its data and addr src
|
|
EXP_POS_ACCESS, // write to export position
|
|
EXP_PARAM_ACCESS, // write to export parameter
|
|
VMW_GPR_LOCK, // vector-memory write holding on its data src
|
|
NUM_WAIT_EVENTS,
|
|
};
|
|
|
|
// The mapping is:
|
|
// 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs
|
|
// SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots
|
|
// NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
|
|
// We reserve a fixed number of VGPR slots in the scoring tables for
|
|
// special tokens like SCMEM_LDS (needed for buffer load to LDS).
|
|
enum RegisterMapping {
|
|
SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
|
|
SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
|
|
NUM_EXTRA_VGPRS = 1, // A reserved slot for DS.
|
|
EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses.
|
|
NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
|
|
};
|
|
|
|
#define ForAllWaitEventType(w) \
|
|
for (enum WaitEventType w = (enum WaitEventType)0; \
|
|
(w) < (enum WaitEventType)NUM_WAIT_EVENTS; \
|
|
(w) = (enum WaitEventType)((w) + 1))
|
|
|
|
// This is a per-basic-block object that maintains current score brackets
|
|
// of each wait-counter, and a per-register scoreboard for each wait-couner.
|
|
// We also maintain the latest score for every event type that can change the
|
|
// waitcnt in order to know if there are multiple types of events within
|
|
// the brackets. When multiple types of event happen in the bracket,
|
|
// wait-count may get decreased out of order, therefore we need to put in
|
|
// "s_waitcnt 0" before use.
|
|
class BlockWaitcntBrackets {
|
|
public:
|
|
static int32_t getWaitCountMax(InstCounterType T) {
|
|
switch (T) {
|
|
case VM_CNT:
|
|
return HardwareLimits.VmcntMax;
|
|
case LGKM_CNT:
|
|
return HardwareLimits.LgkmcntMax;
|
|
case EXP_CNT:
|
|
return HardwareLimits.ExpcntMax;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
};
|
|
|
|
void setScoreLB(InstCounterType T, int32_t Val) {
|
|
assert(T < NUM_INST_CNTS);
|
|
if (T >= NUM_INST_CNTS)
|
|
return;
|
|
ScoreLBs[T] = Val;
|
|
};
|
|
|
|
void setScoreUB(InstCounterType T, int32_t Val) {
|
|
assert(T < NUM_INST_CNTS);
|
|
if (T >= NUM_INST_CNTS)
|
|
return;
|
|
ScoreUBs[T] = Val;
|
|
if (T == EXP_CNT) {
|
|
int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT));
|
|
if (ScoreLBs[T] < UB)
|
|
ScoreLBs[T] = UB;
|
|
}
|
|
};
|
|
|
|
int32_t getScoreLB(InstCounterType T) {
|
|
assert(T < NUM_INST_CNTS);
|
|
if (T >= NUM_INST_CNTS)
|
|
return 0;
|
|
return ScoreLBs[T];
|
|
};
|
|
|
|
int32_t getScoreUB(InstCounterType T) {
|
|
assert(T < NUM_INST_CNTS);
|
|
if (T >= NUM_INST_CNTS)
|
|
return 0;
|
|
return ScoreUBs[T];
|
|
};
|
|
|
|
// Mapping from event to counter.
|
|
InstCounterType eventCounter(WaitEventType E) {
|
|
switch (E) {
|
|
case VMEM_ACCESS:
|
|
return VM_CNT;
|
|
case LDS_ACCESS:
|
|
case GDS_ACCESS:
|
|
case SQ_MESSAGE:
|
|
case SMEM_ACCESS:
|
|
return LGKM_CNT;
|
|
case EXP_GPR_LOCK:
|
|
case GDS_GPR_LOCK:
|
|
case VMW_GPR_LOCK:
|
|
case EXP_POS_ACCESS:
|
|
case EXP_PARAM_ACCESS:
|
|
return EXP_CNT;
|
|
default:
|
|
llvm_unreachable("unhandled event type");
|
|
}
|
|
return NUM_INST_CNTS;
|
|
}
|
|
|
|
void setRegScore(int GprNo, InstCounterType T, int32_t Val) {
|
|
if (GprNo < NUM_ALL_VGPRS) {
|
|
if (GprNo > VgprUB) {
|
|
VgprUB = GprNo;
|
|
}
|
|
VgprScores[T][GprNo] = Val;
|
|
} else {
|
|
assert(T == LGKM_CNT);
|
|
if (GprNo - NUM_ALL_VGPRS > SgprUB) {
|
|
SgprUB = GprNo - NUM_ALL_VGPRS;
|
|
}
|
|
SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
|
|
}
|
|
}
|
|
|
|
int32_t getRegScore(int GprNo, InstCounterType T) {
|
|
if (GprNo < NUM_ALL_VGPRS) {
|
|
return VgprScores[T][GprNo];
|
|
}
|
|
return SgprScores[GprNo - NUM_ALL_VGPRS];
|
|
}
|
|
|
|
void clear() {
|
|
memset(ScoreLBs, 0, sizeof(ScoreLBs));
|
|
memset(ScoreUBs, 0, sizeof(ScoreUBs));
|
|
memset(EventUBs, 0, sizeof(EventUBs));
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
memset(VgprScores[T], 0, sizeof(VgprScores[T]));
|
|
}
|
|
memset(SgprScores, 0, sizeof(SgprScores));
|
|
}
|
|
|
|
RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
|
|
const MachineRegisterInfo *MRI,
|
|
const SIRegisterInfo *TRI, unsigned OpNo,
|
|
bool Def) const;
|
|
|
|
void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
|
|
const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
|
|
unsigned OpNo, int32_t Val);
|
|
|
|
void setWaitAtBeginning() { WaitAtBeginning = true; }
|
|
void clearWaitAtBeginning() { WaitAtBeginning = false; }
|
|
bool getWaitAtBeginning() const { return WaitAtBeginning; }
|
|
void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; }
|
|
int32_t getMaxVGPR() const { return VgprUB; }
|
|
int32_t getMaxSGPR() const { return SgprUB; }
|
|
int32_t getEventUB(enum WaitEventType W) const {
|
|
assert(W < NUM_WAIT_EVENTS);
|
|
return EventUBs[W];
|
|
}
|
|
bool counterOutOfOrder(InstCounterType T);
|
|
unsigned int updateByWait(InstCounterType T, int ScoreToWait);
|
|
void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
|
|
const MachineRegisterInfo *MRI, WaitEventType E,
|
|
MachineInstr &MI);
|
|
|
|
BlockWaitcntBrackets()
|
|
: WaitAtBeginning(false), RevisitLoop(false), ValidLoop(false), MixedExpTypes(false),
|
|
LoopRegion(NULL), PostOrder(0), Waitcnt(NULL), VgprUB(0), SgprUB(0) {
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
memset(VgprScores[T], 0, sizeof(VgprScores[T]));
|
|
}
|
|
}
|
|
~BlockWaitcntBrackets(){};
|
|
|
|
bool hasPendingSMEM() const {
|
|
return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
|
|
EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]);
|
|
}
|
|
|
|
bool hasPendingFlat() const {
|
|
return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
|
|
LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
|
|
(LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
|
|
LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
|
|
}
|
|
|
|
void setPendingFlat() {
|
|
LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
|
|
LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
|
|
}
|
|
|
|
int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; }
|
|
|
|
void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; }
|
|
|
|
bool getRevisitLoop() const { return RevisitLoop; }
|
|
void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; }
|
|
|
|
void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; }
|
|
int32_t getPostOrder() const { return PostOrder; }
|
|
|
|
void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; }
|
|
void clearWaitcnt() { Waitcnt = NULL; }
|
|
MachineInstr *getWaitcnt() const { return Waitcnt; }
|
|
|
|
bool mixedExpTypes() const { return MixedExpTypes; }
|
|
void setMixedExpTypes(bool MixedExpTypesIn) {
|
|
MixedExpTypes = MixedExpTypesIn;
|
|
}
|
|
|
|
void print(raw_ostream &);
|
|
void dump() { print(dbgs()); }
|
|
|
|
private:
|
|
bool WaitAtBeginning;
|
|
bool RevisitLoop;
|
|
bool ValidLoop;
|
|
bool MixedExpTypes;
|
|
MachineLoop *LoopRegion;
|
|
int32_t PostOrder;
|
|
MachineInstr *Waitcnt;
|
|
int32_t ScoreLBs[NUM_INST_CNTS] = {0};
|
|
int32_t ScoreUBs[NUM_INST_CNTS] = {0};
|
|
int32_t EventUBs[NUM_WAIT_EVENTS] = {0};
|
|
// Remember the last flat memory operation.
|
|
int32_t LastFlat[NUM_INST_CNTS] = {0};
|
|
// wait_cnt scores for every vgpr.
|
|
// Keep track of the VgprUB and SgprUB to make merge at join efficient.
|
|
int32_t VgprUB;
|
|
int32_t SgprUB;
|
|
int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
|
|
// Wait cnt scores for every sgpr, only lgkmcnt is relevant.
|
|
int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
|
|
};
|
|
|
|
// This is a per-loop-region object that records waitcnt status at the end of
|
|
// loop footer from the previous iteration. We also maintain an iteration
|
|
// count to track the number of times the loop has been visited. When it
|
|
// doesn't converge naturally, we force convergence by inserting s_waitcnt 0
|
|
// at the end of the loop footer.
|
|
class LoopWaitcntData {
|
|
public:
|
|
void incIterCnt() { IterCnt++; }
|
|
void resetIterCnt() { IterCnt = 0; }
|
|
int32_t getIterCnt() { return IterCnt; }
|
|
|
|
LoopWaitcntData() : LfWaitcnt(NULL), IterCnt(0) {}
|
|
~LoopWaitcntData(){};
|
|
|
|
void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; }
|
|
MachineInstr *getWaitcnt() const { return LfWaitcnt; }
|
|
|
|
void print() {
|
|
DEBUG(dbgs() << " iteration " << IterCnt << '\n';);
|
|
return;
|
|
}
|
|
|
|
private:
|
|
// s_waitcnt added at the end of loop footer to stablize wait scores
|
|
// at the end of the loop footer.
|
|
MachineInstr *LfWaitcnt;
|
|
// Number of iterations the loop has been visited, not including the initial
|
|
// walk over.
|
|
int32_t IterCnt;
|
|
};
|
|
|
|
class SIInsertWaitcnts : public MachineFunctionPass {
|
|
|
|
private:
|
|
const SISubtarget *ST;
|
|
const SIInstrInfo *TII;
|
|
const SIRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
const MachineLoopInfo *MLI;
|
|
AMDGPU::IsaInfo::IsaVersion IV;
|
|
AMDGPUAS AMDGPUASI;
|
|
|
|
DenseSet<MachineBasicBlock *> BlockVisitedSet;
|
|
DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet;
|
|
DenseSet<MachineInstr *> VCCZBugHandledSet;
|
|
|
|
DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>>
|
|
BlockWaitcntBracketsMap;
|
|
|
|
DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet;
|
|
|
|
DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap;
|
|
|
|
std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
SIInsertWaitcnts()
|
|
: MachineFunctionPass(ID), ST(nullptr), TII(nullptr), TRI(nullptr),
|
|
MRI(nullptr), MLI(nullptr) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return "SI insert wait instructions";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
void addKillWaitBracket(BlockWaitcntBrackets *Bracket) {
|
|
// The waitcnt information is copied because it changes as the block is
|
|
// traversed.
|
|
KillWaitBrackets.push_back(make_unique<BlockWaitcntBrackets>(*Bracket));
|
|
}
|
|
|
|
MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI,
|
|
BlockWaitcntBrackets *ScoreBrackets);
|
|
void updateEventWaitCntAfter(MachineInstr &Inst,
|
|
BlockWaitcntBrackets *ScoreBrackets);
|
|
void mergeInputScoreBrackets(MachineBasicBlock &Block);
|
|
MachineBasicBlock *loopBottom(const MachineLoop *Loop);
|
|
void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block);
|
|
void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst);
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI,
|
|
const SIInstrInfo *TII,
|
|
const MachineRegisterInfo *MRI,
|
|
const SIRegisterInfo *TRI,
|
|
unsigned OpNo,
|
|
bool Def) const {
|
|
const MachineOperand &Op = MI->getOperand(OpNo);
|
|
if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
|
|
(Def && !Op.isDef()))
|
|
return {-1, -1};
|
|
|
|
// A use via a PW operand does not need a waitcnt.
|
|
// A partial write is not a WAW.
|
|
assert(!Op.getSubReg() || !Op.isUndef());
|
|
|
|
RegInterval Result;
|
|
const MachineRegisterInfo &MRIA = *MRI;
|
|
|
|
unsigned Reg = TRI->getEncodingValue(Op.getReg());
|
|
|
|
if (TRI->isVGPR(MRIA, Op.getReg())) {
|
|
assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
|
|
Result.first = Reg - RegisterEncoding.VGPR0;
|
|
assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
|
|
} else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
|
|
assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
|
|
Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
|
|
assert(Result.first >= NUM_ALL_VGPRS &&
|
|
Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
|
|
}
|
|
// TODO: Handle TTMP
|
|
// else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
|
|
else
|
|
return {-1, -1};
|
|
|
|
const MachineInstr &MIA = *MI;
|
|
const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
|
|
unsigned Size = TRI->getRegSizeInBits(*RC);
|
|
Result.second = Result.first + (Size / 32);
|
|
|
|
return Result;
|
|
}
|
|
|
|
void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI,
|
|
const SIInstrInfo *TII,
|
|
const SIRegisterInfo *TRI,
|
|
const MachineRegisterInfo *MRI,
|
|
unsigned OpNo, int32_t Val) {
|
|
RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
|
|
DEBUG({
|
|
const MachineOperand &Opnd = MI->getOperand(OpNo);
|
|
assert(TRI->isVGPR(*MRI, Opnd.getReg()));
|
|
});
|
|
for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
|
|
setRegScore(RegNo, EXP_CNT, Val);
|
|
}
|
|
}
|
|
|
|
void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
|
|
const SIRegisterInfo *TRI,
|
|
const MachineRegisterInfo *MRI,
|
|
WaitEventType E, MachineInstr &Inst) {
|
|
const MachineRegisterInfo &MRIA = *MRI;
|
|
InstCounterType T = eventCounter(E);
|
|
int32_t CurrScore = getScoreUB(T) + 1;
|
|
// EventUB and ScoreUB need to be update regardless if this event changes
|
|
// the score of a register or not.
|
|
// Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
|
|
EventUBs[E] = CurrScore;
|
|
setScoreUB(T, CurrScore);
|
|
|
|
if (T == EXP_CNT) {
|
|
// Check for mixed export types. If they are mixed, then a waitcnt exp(0)
|
|
// is required.
|
|
if (!MixedExpTypes) {
|
|
MixedExpTypes = counterOutOfOrder(EXP_CNT);
|
|
}
|
|
|
|
// Put score on the source vgprs. If this is a store, just use those
|
|
// specific register(s).
|
|
if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
|
|
// All GDS operations must protect their address register (same as
|
|
// export.)
|
|
if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
|
|
Inst.getOpcode() != AMDGPU::DS_CONSUME) {
|
|
setExpScore(
|
|
&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
|
|
CurrScore);
|
|
}
|
|
if (Inst.mayStore()) {
|
|
setExpScore(
|
|
&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
|
|
CurrScore);
|
|
if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
|
|
AMDGPU::OpName::data1) != -1) {
|
|
setExpScore(&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
|
|
AMDGPU::OpName::data1),
|
|
CurrScore);
|
|
}
|
|
} else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
|
|
Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
|
|
Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
|
|
Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
|
|
Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
|
|
Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
|
|
Inst.getOpcode() != AMDGPU::DS_APPEND &&
|
|
Inst.getOpcode() != AMDGPU::DS_CONSUME &&
|
|
Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
|
|
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &Op = Inst.getOperand(I);
|
|
if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
|
|
setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
|
|
}
|
|
}
|
|
}
|
|
} else if (TII->isFLAT(Inst)) {
|
|
if (Inst.mayStore()) {
|
|
setExpScore(
|
|
&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
|
|
CurrScore);
|
|
} else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
|
|
setExpScore(
|
|
&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
|
|
CurrScore);
|
|
}
|
|
} else if (TII->isMIMG(Inst)) {
|
|
if (Inst.mayStore()) {
|
|
setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
|
|
} else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
|
|
setExpScore(
|
|
&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
|
|
CurrScore);
|
|
}
|
|
} else if (TII->isMTBUF(Inst)) {
|
|
if (Inst.mayStore()) {
|
|
setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
|
|
}
|
|
} else if (TII->isMUBUF(Inst)) {
|
|
if (Inst.mayStore()) {
|
|
setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
|
|
} else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
|
|
setExpScore(
|
|
&Inst, TII, TRI, MRI,
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
|
|
CurrScore);
|
|
}
|
|
} else {
|
|
if (TII->isEXP(Inst)) {
|
|
// For export the destination registers are really temps that
|
|
// can be used as the actual source after export patching, so
|
|
// we need to treat them like sources and set the EXP_CNT
|
|
// score.
|
|
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
|
|
MachineOperand &DefMO = Inst.getOperand(I);
|
|
if (DefMO.isReg() && DefMO.isDef() &&
|
|
TRI->isVGPR(MRIA, DefMO.getReg())) {
|
|
setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
|
|
CurrScore);
|
|
}
|
|
}
|
|
}
|
|
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
|
|
MachineOperand &MO = Inst.getOperand(I);
|
|
if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
|
|
setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
|
|
}
|
|
}
|
|
}
|
|
#if 0 // TODO: check if this is handled by MUBUF code above.
|
|
} else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
|
|
Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
|
|
Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
|
|
MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
|
|
unsigned OpNo;//TODO: find the OpNo for this operand;
|
|
RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
|
|
for (signed RegNo = Interval.first; RegNo < Interval.second;
|
|
++RegNo) {
|
|
setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
|
|
}
|
|
#endif
|
|
} else {
|
|
// Match the score to the destination registers.
|
|
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
|
|
RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
|
|
if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
|
|
continue;
|
|
for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
|
|
setRegScore(RegNo, T, CurrScore);
|
|
}
|
|
}
|
|
if (TII->isDS(Inst) && Inst.mayStore()) {
|
|
setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlockWaitcntBrackets::print(raw_ostream &OS) {
|
|
OS << '\n';
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
int LB = getScoreLB(T);
|
|
int UB = getScoreUB(T);
|
|
|
|
switch (T) {
|
|
case VM_CNT:
|
|
OS << " VM_CNT(" << UB - LB << "): ";
|
|
break;
|
|
case LGKM_CNT:
|
|
OS << " LGKM_CNT(" << UB - LB << "): ";
|
|
break;
|
|
case EXP_CNT:
|
|
OS << " EXP_CNT(" << UB - LB << "): ";
|
|
break;
|
|
default:
|
|
OS << " UNKNOWN(" << UB - LB << "): ";
|
|
break;
|
|
}
|
|
|
|
if (LB < UB) {
|
|
// Print vgpr scores.
|
|
for (int J = 0; J <= getMaxVGPR(); J++) {
|
|
int RegScore = getRegScore(J, T);
|
|
if (RegScore <= LB)
|
|
continue;
|
|
int RelScore = RegScore - LB - 1;
|
|
if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
|
|
OS << RelScore << ":v" << J << " ";
|
|
} else {
|
|
OS << RelScore << ":ds ";
|
|
}
|
|
}
|
|
// Also need to print sgpr scores for lgkm_cnt.
|
|
if (T == LGKM_CNT) {
|
|
for (int J = 0; J <= getMaxSGPR(); J++) {
|
|
int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
|
|
if (RegScore <= LB)
|
|
continue;
|
|
int RelScore = RegScore - LB - 1;
|
|
OS << RelScore << ":s" << J << " ";
|
|
}
|
|
}
|
|
}
|
|
OS << '\n';
|
|
}
|
|
OS << '\n';
|
|
return;
|
|
}
|
|
|
|
unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T,
|
|
int ScoreToWait) {
|
|
unsigned int NeedWait = 0;
|
|
if (ScoreToWait == -1) {
|
|
// The score to wait is unknown. This implies that it was not encountered
|
|
// during the path of the CFG walk done during the current traversal but
|
|
// may be seen on a different path. Emit an s_wait counter with a
|
|
// conservative value of 0 for the counter.
|
|
NeedWait = CNT_MASK(T);
|
|
setScoreLB(T, getScoreUB(T));
|
|
return NeedWait;
|
|
}
|
|
|
|
// If the score of src_operand falls within the bracket, we need an
|
|
// s_waitcnt instruction.
|
|
const int32_t LB = getScoreLB(T);
|
|
const int32_t UB = getScoreUB(T);
|
|
if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
|
|
if (T == VM_CNT && hasPendingFlat()) {
|
|
// If there is a pending FLAT operation, and this is a VM waitcnt,
|
|
// then we need to force a waitcnt 0 for VM.
|
|
NeedWait = CNT_MASK(T);
|
|
setScoreLB(T, getScoreUB(T));
|
|
} else if (counterOutOfOrder(T)) {
|
|
// Counter can get decremented out-of-order when there
|
|
// are multiple types event in the brack. Also emit an s_wait counter
|
|
// with a conservative value of 0 for the counter.
|
|
NeedWait = CNT_MASK(T);
|
|
setScoreLB(T, getScoreUB(T));
|
|
} else {
|
|
NeedWait = CNT_MASK(T);
|
|
setScoreLB(T, ScoreToWait);
|
|
}
|
|
}
|
|
|
|
return NeedWait;
|
|
}
|
|
|
|
// Where there are multiple types of event in the bracket of a counter,
|
|
// the decrement may go out of order.
|
|
bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) {
|
|
switch (T) {
|
|
case VM_CNT:
|
|
return false;
|
|
case LGKM_CNT: {
|
|
if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
|
|
EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) {
|
|
// Scalar memory read always can go out of order.
|
|
return true;
|
|
}
|
|
int NumEventTypes = 0;
|
|
if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
|
|
EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
|
|
EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] &&
|
|
EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
if (NumEventTypes <= 1) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case EXP_CNT: {
|
|
// If there has been a mixture of export types, then a waitcnt exp(0) is
|
|
// required.
|
|
if (MixedExpTypes)
|
|
return true;
|
|
int NumEventTypes = 0;
|
|
if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
|
|
EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
|
|
EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
|
|
EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] &&
|
|
EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
|
|
if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] &&
|
|
EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) {
|
|
NumEventTypes++;
|
|
}
|
|
|
|
if (NumEventTypes <= 1) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
|
|
false)
|
|
INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
|
|
false)
|
|
|
|
char SIInsertWaitcnts::ID = 0;
|
|
|
|
char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
|
|
|
|
FunctionPass *llvm::createSIInsertWaitcntsPass() {
|
|
return new SIInsertWaitcnts();
|
|
}
|
|
|
|
static bool readsVCCZ(const MachineInstr &MI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
|
|
!MI.getOperand(1).isUndef();
|
|
}
|
|
|
|
/// \brief Generate s_waitcnt instruction to be placed before cur_Inst.
|
|
/// Instructions of a given type are returned in order,
|
|
/// but instructions of different types can complete out of order.
|
|
/// We rely on this in-order completion
|
|
/// and simply assign a score to the memory access instructions.
|
|
/// We keep track of the active "score bracket" to determine
|
|
/// if an access of a memory read requires an s_waitcnt
|
|
/// and if so what the value of each counter is.
|
|
/// The "score bracket" is bound by the lower bound and upper bound
|
|
/// scores (*_score_LB and *_score_ub respectively).
|
|
MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore(
|
|
MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) {
|
|
// To emit, or not to emit - that's the question!
|
|
// Start with an assumption that there is no need to emit.
|
|
unsigned int EmitSwaitcnt = 0;
|
|
// s_waitcnt instruction to return; default is NULL.
|
|
MachineInstr *SWaitInst = nullptr;
|
|
// No need to wait before phi. If a phi-move exists, then the wait should
|
|
// has been inserted before the move. If a phi-move does not exist, then
|
|
// wait should be inserted before the real use. The same is true for
|
|
// sc-merge. It is not a coincident that all these cases correspond to the
|
|
// instructions that are skipped in the assembling loop.
|
|
bool NeedLineMapping = false; // TODO: Check on this.
|
|
if (MI.isDebugValue() &&
|
|
// TODO: any other opcode?
|
|
!NeedLineMapping) {
|
|
return SWaitInst;
|
|
}
|
|
|
|
// See if an s_waitcnt is forced at block entry, or is needed at
|
|
// program end.
|
|
if (ScoreBrackets->getWaitAtBeginning()) {
|
|
// Note that we have already cleared the state, so we don't need to update
|
|
// it.
|
|
ScoreBrackets->clearWaitAtBeginning();
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
EmitSwaitcnt |= CNT_MASK(T);
|
|
ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
|
|
}
|
|
}
|
|
|
|
// See if this instruction has a forced S_WAITCNT VM.
|
|
// TODO: Handle other cases of NeedsWaitcntVmBefore()
|
|
else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
|
|
MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
|
|
MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) {
|
|
EmitSwaitcnt |=
|
|
ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
|
|
}
|
|
|
|
// All waits must be resolved at call return.
|
|
// NOTE: this could be improved with knowledge of all call sites or
|
|
// with knowledge of the called routines.
|
|
if (MI.getOpcode() == AMDGPU::RETURN ||
|
|
MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
|
|
MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
|
|
ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
|
|
EmitSwaitcnt |= CNT_MASK(T);
|
|
}
|
|
}
|
|
}
|
|
// Resolve vm waits before gs-done.
|
|
else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
|
|
MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
|
|
((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
|
|
AMDGPU::SendMsg::ID_GS_DONE)) {
|
|
if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) {
|
|
ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
|
|
EmitSwaitcnt |= CNT_MASK(VM_CNT);
|
|
}
|
|
}
|
|
#if 0 // TODO: the following blocks of logic when we have fence.
|
|
else if (MI.getOpcode() == SC_FENCE) {
|
|
const unsigned int group_size =
|
|
context->shader_info->GetMaxThreadGroupSize();
|
|
// group_size == 0 means thread group size is unknown at compile time
|
|
const bool group_is_multi_wave =
|
|
(group_size == 0 || group_size > target_info->GetWaveFrontSize());
|
|
const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
|
|
|
|
for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
|
|
SCRegType src_type = Inst->GetSrcType(i);
|
|
switch (src_type) {
|
|
case SCMEM_LDS:
|
|
if (group_is_multi_wave ||
|
|
context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
|
|
ScoreBrackets->getScoreUB(LGKM_CNT));
|
|
// LDS may have to wait for VM_CNT after buffer load to LDS
|
|
if (target_info->HasBufferLoadToLDS()) {
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
|
|
ScoreBrackets->getScoreUB(VM_CNT));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SCMEM_GDS:
|
|
if (group_is_multi_wave || fence_is_global) {
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
|
|
ScoreBrackets->getScoreUB(EXP_CNT));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
|
|
ScoreBrackets->getScoreUB(LGKM_CNT));
|
|
}
|
|
break;
|
|
|
|
case SCMEM_UAV:
|
|
case SCMEM_TFBUF:
|
|
case SCMEM_RING:
|
|
case SCMEM_SCATTER:
|
|
if (group_is_multi_wave || fence_is_global) {
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
|
|
ScoreBrackets->getScoreUB(EXP_CNT));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
|
|
ScoreBrackets->getScoreUB(VM_CNT));
|
|
}
|
|
break;
|
|
|
|
case SCMEM_SCRATCH:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Export & GDS instructions do not read the EXEC mask until after the export
|
|
// is granted (which can occur well after the instruction is issued).
|
|
// The shader program must flush all EXP operations on the export-count
|
|
// before overwriting the EXEC mask.
|
|
else {
|
|
if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
|
|
// Export and GDS are tracked individually, either may trigger a waitcnt
|
|
// for EXEC.
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK));
|
|
}
|
|
|
|
#if 0 // TODO: the following code to handle CALL.
|
|
// The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
|
|
// However, there is a problem with EXP_CNT, because the call cannot
|
|
// easily tell if a register is used in the function, and if it did, then
|
|
// the referring instruction would have to have an S_WAITCNT, which is
|
|
// dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
|
|
// before the call.
|
|
if (MI.getOpcode() == SC_CALL) {
|
|
if (ScoreBrackets->getScoreUB(EXP_CNT) >
|
|
ScoreBrackets->getScoreLB(EXP_CNT)) {
|
|
ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
|
|
EmitSwaitcnt |= CNT_MASK(EXP_CNT);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Look at the source operands of every instruction to see if
|
|
// any of them results from a previous memory operation that affects
|
|
// its current usage. If so, an s_waitcnt instruction needs to be
|
|
// emitted.
|
|
// If the source operand was defined by a load, add the s_waitcnt
|
|
// instruction.
|
|
for (const MachineMemOperand *Memop : MI.memoperands()) {
|
|
unsigned AS = Memop->getAddrSpace();
|
|
if (AS != AMDGPUASI.LOCAL_ADDRESS)
|
|
continue;
|
|
unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
|
|
// VM_CNT is only relevant to vgpr or LDS.
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
|
|
}
|
|
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &Op = MI.getOperand(I);
|
|
const MachineRegisterInfo &MRIA = *MRI;
|
|
RegInterval Interval =
|
|
ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false);
|
|
for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
|
|
if (TRI->isVGPR(MRIA, Op.getReg())) {
|
|
// VM_CNT is only relevant to vgpr or LDS.
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
|
|
}
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
|
|
}
|
|
}
|
|
// End of for loop that looks at all source operands to decide vm_wait_cnt
|
|
// and lgk_wait_cnt.
|
|
|
|
// Two cases are handled for destination operands:
|
|
// 1) If the destination operand was defined by a load, add the s_waitcnt
|
|
// instruction to guarantee the right WAW order.
|
|
// 2) If a destination operand that was used by a recent export/store ins,
|
|
// add s_waitcnt on exp_cnt to guarantee the WAR order.
|
|
if (MI.mayStore()) {
|
|
for (const MachineMemOperand *Memop : MI.memoperands()) {
|
|
unsigned AS = Memop->getAddrSpace();
|
|
if (AS != AMDGPUASI.LOCAL_ADDRESS)
|
|
continue;
|
|
unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
|
|
}
|
|
}
|
|
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
|
|
MachineOperand &Def = MI.getOperand(I);
|
|
const MachineRegisterInfo &MRIA = *MRI;
|
|
RegInterval Interval =
|
|
ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true);
|
|
for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
|
|
if (TRI->isVGPR(MRIA, Def.getReg())) {
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
|
|
}
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
|
|
}
|
|
} // End of for loop that looks at all dest operands.
|
|
}
|
|
|
|
// TODO: Tie force zero to a compiler triage option.
|
|
bool ForceZero = false;
|
|
|
|
// Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
|
|
// occurs before the instruction. Doing it here prevents any additional
|
|
// S_WAITCNTs from being emitted if the instruction was marked as
|
|
// requiring a WAITCNT beforehand.
|
|
if (MI.getOpcode() == AMDGPU::S_BARRIER &&
|
|
!ST->hasAutoWaitcntBeforeBarrier()) {
|
|
EmitSwaitcnt |=
|
|
ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
|
|
EmitSwaitcnt |= ScoreBrackets->updateByWait(
|
|
LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT));
|
|
}
|
|
|
|
// TODO: Remove this work-around, enable the assert for Bug 457939
|
|
// after fixing the scheduler. Also, the Shader Compiler code is
|
|
// independent of target.
|
|
if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) {
|
|
if (ScoreBrackets->getScoreLB(LGKM_CNT) <
|
|
ScoreBrackets->getScoreUB(LGKM_CNT) &&
|
|
ScoreBrackets->hasPendingSMEM()) {
|
|
// Wait on everything, not just LGKM. vccz reads usually come from
|
|
// terminators, and we always wait on everything at the end of the
|
|
// block, so if we only wait on LGKM here, we might end up with
|
|
// another s_waitcnt inserted right after this if there are non-LGKM
|
|
// instructions still outstanding.
|
|
ForceZero = true;
|
|
EmitSwaitcnt = true;
|
|
}
|
|
}
|
|
|
|
// Does this operand processing indicate s_wait counter update?
|
|
if (EmitSwaitcnt) {
|
|
int CntVal[NUM_INST_CNTS];
|
|
|
|
bool UseDefaultWaitcntStrategy = true;
|
|
if (ForceZero) {
|
|
// Force all waitcnts to 0.
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
|
|
}
|
|
CntVal[VM_CNT] = 0;
|
|
CntVal[EXP_CNT] = 0;
|
|
CntVal[LGKM_CNT] = 0;
|
|
UseDefaultWaitcntStrategy = false;
|
|
}
|
|
|
|
if (UseDefaultWaitcntStrategy) {
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
if (EmitSwaitcnt & CNT_MASK(T)) {
|
|
int Delta =
|
|
ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T);
|
|
int MaxDelta = ScoreBrackets->getWaitCountMax(T);
|
|
if (Delta >= MaxDelta) {
|
|
Delta = -1;
|
|
if (T != EXP_CNT) {
|
|
ScoreBrackets->setScoreLB(
|
|
T, ScoreBrackets->getScoreUB(T) - MaxDelta);
|
|
}
|
|
EmitSwaitcnt &= ~CNT_MASK(T);
|
|
}
|
|
CntVal[T] = Delta;
|
|
} else {
|
|
// If we are not waiting for a particular counter then encode
|
|
// it as -1 which means "don't care."
|
|
CntVal[T] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are not waiting on any counter we can skip the wait altogether.
|
|
if (EmitSwaitcnt != 0) {
|
|
MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt();
|
|
int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm();
|
|
if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) !=
|
|
(CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) ||
|
|
(AMDGPU::decodeExpcnt(IV, Imm) !=
|
|
(CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) ||
|
|
(AMDGPU::decodeLgkmcnt(IV, Imm) !=
|
|
(CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) {
|
|
MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent());
|
|
if (ContainingLoop) {
|
|
MachineBasicBlock *TBB = ContainingLoop->getHeader();
|
|
BlockWaitcntBrackets *ScoreBracket =
|
|
BlockWaitcntBracketsMap[TBB].get();
|
|
if (!ScoreBracket) {
|
|
assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end());
|
|
BlockWaitcntBracketsMap[TBB] = make_unique<BlockWaitcntBrackets>();
|
|
ScoreBracket = BlockWaitcntBracketsMap[TBB].get();
|
|
}
|
|
ScoreBracket->setRevisitLoop(true);
|
|
DEBUG(dbgs() << "set-revisit: block"
|
|
<< ContainingLoop->getHeader()->getNumber() << '\n';);
|
|
}
|
|
}
|
|
|
|
// Update an existing waitcount, or make a new one.
|
|
MachineFunction &MF = *MI.getParent()->getParent();
|
|
if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) {
|
|
SWaitInst = OldWaitcnt;
|
|
} else {
|
|
SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT),
|
|
MI.getDebugLoc());
|
|
CompilerGeneratedWaitcntSet.insert(SWaitInst);
|
|
}
|
|
|
|
const MachineOperand &Op =
|
|
MachineOperand::CreateImm(AMDGPU::encodeWaitcnt(
|
|
IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT]));
|
|
SWaitInst->addOperand(MF, Op);
|
|
|
|
if (CntVal[EXP_CNT] == 0) {
|
|
ScoreBrackets->setMixedExpTypes(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SWaitInst;
|
|
}
|
|
|
|
void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB,
|
|
MachineInstr *Waitcnt) {
|
|
if (MBB.empty()) {
|
|
MBB.push_back(Waitcnt);
|
|
return;
|
|
}
|
|
|
|
MachineBasicBlock::iterator It = MBB.end();
|
|
MachineInstr *MI = &*(--It);
|
|
if (MI->isBranch()) {
|
|
MBB.insert(It, Waitcnt);
|
|
} else {
|
|
MBB.push_back(Waitcnt);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void SIInsertWaitcnts::updateEventWaitCntAfter(
|
|
MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) {
|
|
// Now look at the instruction opcode. If it is a memory access
|
|
// instruction, update the upper-bound of the appropriate counter's
|
|
// bracket and the destination operand scores.
|
|
// TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
|
|
uint64_t TSFlags = Inst.getDesc().TSFlags;
|
|
if (TII->isDS(Inst) && (TSFlags & SIInstrFlags::LGKM_CNT)) {
|
|
if (TII->getNamedOperand(Inst, AMDGPU::OpName::gds) &&
|
|
TII->getNamedOperand(Inst, AMDGPU::OpName::gds)->getImm() != 0) {
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
|
|
} else {
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
|
|
}
|
|
} else if (TII->isFLAT(Inst)) {
|
|
assert(Inst.mayLoad() || Inst.mayStore());
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
|
|
|
|
// This is a flat memory operation. Check to see if it has memory
|
|
// tokens for both LDS and Memory, and if so mark it as a flat.
|
|
bool FoundLDSMem = false;
|
|
for (const MachineMemOperand *Memop : Inst.memoperands()) {
|
|
unsigned AS = Memop->getAddrSpace();
|
|
if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS)
|
|
FoundLDSMem = true;
|
|
}
|
|
|
|
// This is a flat memory operation, so note it - it will require
|
|
// that both the VM and LGKM be flushed to zero if it is pending when
|
|
// a VM or LGKM dependency occurs.
|
|
if (FoundLDSMem) {
|
|
ScoreBrackets->setPendingFlat();
|
|
}
|
|
} else if (SIInstrInfo::isVMEM(Inst) &&
|
|
// TODO: get a better carve out.
|
|
Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
|
|
Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
|
|
Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) {
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
|
|
if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() &&
|
|
(Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
|
|
}
|
|
} else if (TII->isSMRD(Inst)) {
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
|
|
} else {
|
|
switch (Inst.getOpcode()) {
|
|
case AMDGPU::S_SENDMSG:
|
|
case AMDGPU::S_SENDMSGHALT:
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
|
|
break;
|
|
case AMDGPU::EXP:
|
|
case AMDGPU::EXP_DONE: {
|
|
int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
|
|
if (Imm >= 32 && Imm <= 63)
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
|
|
else if (Imm >= 12 && Imm <= 15)
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
|
|
else
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
|
|
break;
|
|
}
|
|
case AMDGPU::S_MEMTIME:
|
|
case AMDGPU::S_MEMREALTIME:
|
|
ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) {
|
|
BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
|
|
int32_t MaxPending[NUM_INST_CNTS] = {0};
|
|
int32_t MaxFlat[NUM_INST_CNTS] = {0};
|
|
bool MixedExpTypes = false;
|
|
|
|
// Clear the score bracket state.
|
|
ScoreBrackets->clear();
|
|
|
|
// Compute the number of pending elements on block entry.
|
|
|
|
// IMPORTANT NOTE: If iterative handling of loops is added, the code will
|
|
// need to handle single BBs with backedges to themselves. This means that
|
|
// they will need to retain and not clear their initial state.
|
|
|
|
// See if there are any uninitialized predecessors. If so, emit an
|
|
// s_waitcnt 0 at the beginning of the block.
|
|
for (MachineBasicBlock *pred : Block.predecessors()) {
|
|
BlockWaitcntBrackets *PredScoreBrackets =
|
|
BlockWaitcntBracketsMap[pred].get();
|
|
bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end();
|
|
if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
|
|
break;
|
|
}
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
int span =
|
|
PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T);
|
|
MaxPending[T] = std::max(MaxPending[T], span);
|
|
span =
|
|
PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T);
|
|
MaxFlat[T] = std::max(MaxFlat[T], span);
|
|
}
|
|
|
|
MixedExpTypes |= PredScoreBrackets->mixedExpTypes();
|
|
}
|
|
|
|
// TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
|
|
// Also handle kills for exit block.
|
|
if (Block.succ_empty() && !KillWaitBrackets.empty()) {
|
|
for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
int Span = KillWaitBrackets[I]->getScoreUB(T) -
|
|
KillWaitBrackets[I]->getScoreLB(T);
|
|
MaxPending[T] = std::max(MaxPending[T], Span);
|
|
Span = KillWaitBrackets[I]->pendingFlat(T) -
|
|
KillWaitBrackets[I]->getScoreLB(T);
|
|
MaxFlat[T] = std::max(MaxFlat[T], Span);
|
|
}
|
|
|
|
MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes();
|
|
}
|
|
}
|
|
|
|
// Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK.
|
|
for (MachineBasicBlock *Pred : Block.predecessors()) {
|
|
BlockWaitcntBrackets *PredScoreBrackets =
|
|
BlockWaitcntBracketsMap[Pred].get();
|
|
bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end();
|
|
if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
|
|
break;
|
|
}
|
|
|
|
int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) -
|
|
PredScoreBrackets->getScoreLB(EXP_CNT);
|
|
MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
|
|
int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) -
|
|
PredScoreBrackets->getScoreLB(EXP_CNT);
|
|
MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
|
|
}
|
|
|
|
// TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
|
|
if (Block.succ_empty() && !KillWaitBrackets.empty()) {
|
|
for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
|
|
int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) -
|
|
KillWaitBrackets[I]->getScoreLB(EXP_CNT);
|
|
MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
|
|
int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) -
|
|
KillWaitBrackets[I]->getScoreLB(EXP_CNT);
|
|
MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// LC does not (unlike) add a waitcnt at beginning. Leaving it as marker.
|
|
// TODO: how does LC distinguish between function entry and main entry?
|
|
// If this is the entry to a function, force a wait.
|
|
MachineBasicBlock &Entry = Block.getParent()->front();
|
|
if (Entry.getNumber() == Block.getNumber()) {
|
|
ScoreBrackets->setWaitAtBeginning();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// Now set the current Block's brackets to the largest ending bracket.
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
ScoreBrackets->setScoreUB(T, MaxPending[T]);
|
|
ScoreBrackets->setScoreLB(T, 0);
|
|
ScoreBrackets->setLastFlat(T, MaxFlat[T]);
|
|
}
|
|
|
|
ScoreBrackets->setMixedExpTypes(MixedExpTypes);
|
|
|
|
// Set the register scoreboard.
|
|
for (MachineBasicBlock *Pred : Block.predecessors()) {
|
|
if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
|
|
break;
|
|
}
|
|
|
|
BlockWaitcntBrackets *PredScoreBrackets =
|
|
BlockWaitcntBracketsMap[Pred].get();
|
|
|
|
// Now merge the gpr_reg_score information
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
int PredLB = PredScoreBrackets->getScoreLB(T);
|
|
int PredUB = PredScoreBrackets->getScoreUB(T);
|
|
if (PredLB < PredUB) {
|
|
int PredScale = MaxPending[T] - PredUB;
|
|
// Merge vgpr scores.
|
|
for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) {
|
|
int PredRegScore = PredScoreBrackets->getRegScore(J, T);
|
|
if (PredRegScore <= PredLB)
|
|
continue;
|
|
int NewRegScore = PredScale + PredRegScore;
|
|
ScoreBrackets->setRegScore(
|
|
J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
|
|
}
|
|
// Also need to merge sgpr scores for lgkm_cnt.
|
|
if (T == LGKM_CNT) {
|
|
for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) {
|
|
int PredRegScore =
|
|
PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
|
|
if (PredRegScore <= PredLB)
|
|
continue;
|
|
int NewRegScore = PredScale + PredRegScore;
|
|
ScoreBrackets->setRegScore(
|
|
J + NUM_ALL_VGPRS, LGKM_CNT,
|
|
std::max(
|
|
ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
|
|
NewRegScore));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Also merge the WaitEvent information.
|
|
ForAllWaitEventType(W) {
|
|
enum InstCounterType T = PredScoreBrackets->eventCounter(W);
|
|
int PredEventUB = PredScoreBrackets->getEventUB(W);
|
|
if (PredEventUB > PredScoreBrackets->getScoreLB(T)) {
|
|
int NewEventUB =
|
|
MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T);
|
|
if (NewEventUB > 0) {
|
|
ScoreBrackets->setEventUB(
|
|
W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
|
|
// Set the register scoreboard.
|
|
if (Block.succ_empty() && !KillWaitBrackets.empty()) {
|
|
for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
|
|
// Now merge the gpr_reg_score information.
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
int PredLB = KillWaitBrackets[I]->getScoreLB(T);
|
|
int PredUB = KillWaitBrackets[I]->getScoreUB(T);
|
|
if (PredLB < PredUB) {
|
|
int PredScale = MaxPending[T] - PredUB;
|
|
// Merge vgpr scores.
|
|
for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) {
|
|
int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T);
|
|
if (PredRegScore <= PredLB)
|
|
continue;
|
|
int NewRegScore = PredScale + PredRegScore;
|
|
ScoreBrackets->setRegScore(
|
|
J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
|
|
}
|
|
// Also need to merge sgpr scores for lgkm_cnt.
|
|
if (T == LGKM_CNT) {
|
|
for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) {
|
|
int PredRegScore =
|
|
KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
|
|
if (PredRegScore <= PredLB)
|
|
continue;
|
|
int NewRegScore = PredScale + PredRegScore;
|
|
ScoreBrackets->setRegScore(
|
|
J + NUM_ALL_VGPRS, LGKM_CNT,
|
|
std::max(
|
|
ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
|
|
NewRegScore));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Also merge the WaitEvent information.
|
|
ForAllWaitEventType(W) {
|
|
enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W);
|
|
int PredEventUB = KillWaitBrackets[I]->getEventUB(W);
|
|
if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) {
|
|
int NewEventUB =
|
|
MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T);
|
|
if (NewEventUB > 0) {
|
|
ScoreBrackets->setEventUB(
|
|
W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the
|
|
// sequencing predecessors, because changes to EXEC require waitcnts due to
|
|
// the delayed nature of these operations.
|
|
for (MachineBasicBlock *Pred : Block.predecessors()) {
|
|
if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
|
|
break;
|
|
}
|
|
|
|
BlockWaitcntBrackets *PredScoreBrackets =
|
|
BlockWaitcntBracketsMap[Pred].get();
|
|
|
|
int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK);
|
|
if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
|
|
int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub -
|
|
PredScoreBrackets->getScoreUB(EXP_CNT);
|
|
if (new_gds_ub > 0) {
|
|
ScoreBrackets->setEventUB(
|
|
GDS_GPR_LOCK,
|
|
std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub));
|
|
}
|
|
}
|
|
int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK);
|
|
if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
|
|
int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub -
|
|
PredScoreBrackets->getScoreUB(EXP_CNT);
|
|
if (new_exp_ub > 0) {
|
|
ScoreBrackets->setEventUB(
|
|
EXP_GPR_LOCK,
|
|
std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the "bottom" block of a loop. This differs from
|
|
/// MachineLoop::getBottomBlock in that it works even if the loop is
|
|
/// discontiguous.
|
|
MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) {
|
|
MachineBasicBlock *Bottom = Loop->getHeader();
|
|
for (MachineBasicBlock *MBB : Loop->blocks())
|
|
if (MBB->getNumber() > Bottom->getNumber())
|
|
Bottom = MBB;
|
|
return Bottom;
|
|
}
|
|
|
|
// Generate s_waitcnt instructions where needed.
|
|
void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
|
|
MachineBasicBlock &Block) {
|
|
// Initialize the state information.
|
|
mergeInputScoreBrackets(Block);
|
|
|
|
BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
|
|
|
|
DEBUG({
|
|
dbgs() << "Block" << Block.getNumber();
|
|
ScoreBrackets->dump();
|
|
});
|
|
|
|
bool InsertNOP = false;
|
|
|
|
// Walk over the instructions.
|
|
for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
|
|
Iter != E;) {
|
|
MachineInstr &Inst = *Iter;
|
|
// Remove any previously existing waitcnts.
|
|
if (Inst.getOpcode() == AMDGPU::S_WAITCNT) {
|
|
// TODO: Register the old waitcnt and optimize the following waitcnts.
|
|
// Leaving the previously existing waitcnts is conservatively correct.
|
|
if (CompilerGeneratedWaitcntSet.find(&Inst) ==
|
|
CompilerGeneratedWaitcntSet.end())
|
|
++Iter;
|
|
else {
|
|
ScoreBrackets->setWaitcnt(&Inst);
|
|
++Iter;
|
|
Inst.removeFromParent();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Kill instructions generate a conditional branch to the endmain block.
|
|
// Merge the current waitcnt state into the endmain block information.
|
|
// TODO: Are there other flavors of KILL instruction?
|
|
if (Inst.getOpcode() == AMDGPU::KILL) {
|
|
addKillWaitBracket(ScoreBrackets);
|
|
}
|
|
|
|
bool VCCZBugWorkAround = false;
|
|
if (readsVCCZ(Inst) &&
|
|
(VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) {
|
|
if (ScoreBrackets->getScoreLB(LGKM_CNT) <
|
|
ScoreBrackets->getScoreUB(LGKM_CNT) &&
|
|
ScoreBrackets->hasPendingSMEM()) {
|
|
if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS)
|
|
VCCZBugWorkAround = true;
|
|
}
|
|
}
|
|
|
|
// Generate an s_waitcnt instruction to be placed before
|
|
// cur_Inst, if needed.
|
|
MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets);
|
|
|
|
if (SWaitInst) {
|
|
Block.insert(Inst, SWaitInst);
|
|
if (ScoreBrackets->getWaitcnt() != SWaitInst) {
|
|
DEBUG(dbgs() << "insertWaitcntInBlock\n"
|
|
<< "Old Instr: " << Inst << '\n'
|
|
<< "New Instr: " << *SWaitInst << '\n';);
|
|
}
|
|
}
|
|
|
|
updateEventWaitCntAfter(Inst, ScoreBrackets);
|
|
|
|
#if 0 // TODO: implement resource type check controlled by options with ub = LB.
|
|
// If this instruction generates a S_SETVSKIP because it is an
|
|
// indexed resource, and we are on Tahiti, then it will also force
|
|
// an S_WAITCNT vmcnt(0)
|
|
if (RequireCheckResourceType(Inst, context)) {
|
|
// Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
|
|
ScoreBrackets->setScoreLB(VM_CNT,
|
|
ScoreBrackets->getScoreUB(VM_CNT));
|
|
}
|
|
#endif
|
|
|
|
ScoreBrackets->clearWaitcnt();
|
|
|
|
if (SWaitInst) {
|
|
DEBUG({ SWaitInst->print(dbgs() << '\n'); });
|
|
}
|
|
DEBUG({
|
|
Inst.print(dbgs());
|
|
ScoreBrackets->dump();
|
|
});
|
|
|
|
// Check to see if this is a GWS instruction. If so, and if this is CI or
|
|
// VI, then the generated code sequence will include an S_WAITCNT 0.
|
|
// TODO: Are these the only GWS instructions?
|
|
if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
|
|
Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
|
|
Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
|
|
Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
|
|
Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
|
|
// TODO: && context->target_info->GwsRequiresMemViolTest() ) {
|
|
ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
|
|
ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
|
|
ScoreBrackets->updateByWait(LGKM_CNT,
|
|
ScoreBrackets->getScoreUB(LGKM_CNT));
|
|
}
|
|
|
|
// TODO: Remove this work-around after fixing the scheduler and enable the
|
|
// assert above.
|
|
if (VCCZBugWorkAround) {
|
|
// Restore the vccz bit. Any time a value is written to vcc, the vcc
|
|
// bit is updated, so we can restore the bit by reading the value of
|
|
// vcc and then writing it back to the register.
|
|
BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
|
|
AMDGPU::VCC)
|
|
.addReg(AMDGPU::VCC);
|
|
VCCZBugHandledSet.insert(&Inst);
|
|
}
|
|
|
|
if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
|
|
// This avoids a s_nop after a waitcnt has just been inserted.
|
|
if (!SWaitInst && InsertNOP) {
|
|
BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0);
|
|
}
|
|
InsertNOP = false;
|
|
|
|
// Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM
|
|
// or SMEM clause, respectively.
|
|
//
|
|
// The temporary workaround is to break the clauses with S_NOP.
|
|
//
|
|
// The proper solution would be to allocate registers such that all source
|
|
// and destination registers don't overlap, e.g. this is illegal:
|
|
// r0 = load r2
|
|
// r2 = load r0
|
|
bool IsSMEM = false;
|
|
bool IsVMEM = false;
|
|
if (TII->isSMRD(Inst))
|
|
IsSMEM = true;
|
|
else if (TII->usesVM_CNT(Inst))
|
|
IsVMEM = true;
|
|
|
|
++Iter;
|
|
if (Iter == E)
|
|
break;
|
|
|
|
MachineInstr &Next = *Iter;
|
|
|
|
// TODO: How about consecutive SMEM instructions?
|
|
// The comments above says break the clause but the code does not.
|
|
// if ((TII->isSMRD(next) && isSMEM) ||
|
|
if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM &&
|
|
// TODO: Enable this check when hasSoftClause is upstreamed.
|
|
// ST->hasSoftClauses() &&
|
|
ST->isXNACKEnabled()) {
|
|
// Insert a NOP to break the clause.
|
|
InsertNOP = true;
|
|
continue;
|
|
}
|
|
|
|
// There must be "S_NOP 0" between an instruction writing M0 and
|
|
// S_SENDMSG.
|
|
if ((Next.getOpcode() == AMDGPU::S_SENDMSG ||
|
|
Next.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
|
|
Inst.definesRegister(AMDGPU::M0))
|
|
InsertNOP = true;
|
|
|
|
continue;
|
|
}
|
|
|
|
++Iter;
|
|
}
|
|
|
|
// Check if we need to force convergence at loop footer.
|
|
MachineLoop *ContainingLoop = MLI->getLoopFor(&Block);
|
|
if (ContainingLoop && loopBottom(ContainingLoop) == &Block) {
|
|
LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
|
|
WaitcntData->print();
|
|
DEBUG(dbgs() << '\n';);
|
|
|
|
// The iterative waitcnt insertion algorithm aims for optimal waitcnt
|
|
// placement and doesn't always guarantee convergence for a loop. Each
|
|
// loop should take at most 2 iterations for it to converge naturally.
|
|
// When this max is reached and result doesn't converge, we force
|
|
// convergence by inserting a s_waitcnt at the end of loop footer.
|
|
if (WaitcntData->getIterCnt() > 2) {
|
|
// To ensure convergence, need to make wait events at loop footer be no
|
|
// more than those from the previous iteration.
|
|
// As a simplification, Instead of tracking individual scores and
|
|
// generate the precise wait count, just wait on 0.
|
|
bool HasPending = false;
|
|
MachineInstr *SWaitInst = WaitcntData->getWaitcnt();
|
|
for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
|
|
T = (enum InstCounterType)(T + 1)) {
|
|
if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
|
|
ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
|
|
HasPending = true;
|
|
}
|
|
}
|
|
|
|
if (HasPending) {
|
|
if (!SWaitInst) {
|
|
SWaitInst = Block.getParent()->CreateMachineInstr(
|
|
TII->get(AMDGPU::S_WAITCNT), DebugLoc());
|
|
CompilerGeneratedWaitcntSet.insert(SWaitInst);
|
|
const MachineOperand &Op = MachineOperand::CreateImm(0);
|
|
SWaitInst->addOperand(MF, Op);
|
|
#if 0 // TODO: Format the debug output
|
|
OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context);
|
|
OutputTransformAdd(SWaitInst, context);
|
|
#endif
|
|
}
|
|
#if 0 // TODO: ??
|
|
_DEV( REPORTED_STATS->force_waitcnt_converge = 1; )
|
|
#endif
|
|
}
|
|
|
|
if (SWaitInst) {
|
|
DEBUG({
|
|
SWaitInst->print(dbgs());
|
|
dbgs() << "\nAdjusted score board:";
|
|
ScoreBrackets->dump();
|
|
});
|
|
|
|
// Add this waitcnt to the block. It is either newly created or
|
|
// created in previous iterations and added back since block traversal
|
|
// always remove waitcnt.
|
|
insertWaitcntBeforeCF(Block, SWaitInst);
|
|
WaitcntData->setWaitcnt(SWaitInst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
|
|
ST = &MF.getSubtarget<SISubtarget>();
|
|
TII = ST->getInstrInfo();
|
|
TRI = &TII->getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits());
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
AMDGPUASI = ST->getAMDGPUAS();
|
|
|
|
HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
|
|
HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
|
|
HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
|
|
|
|
HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
|
|
HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
|
|
assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
|
|
assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
|
|
|
|
RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
|
|
RegisterEncoding.VGPRL =
|
|
RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
|
|
RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
|
|
RegisterEncoding.SGPRL =
|
|
RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
|
|
|
|
// Walk over the blocks in reverse post-dominator order, inserting
|
|
// s_waitcnt where needed.
|
|
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
|
|
bool Modified = false;
|
|
for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
|
|
I = RPOT.begin(),
|
|
E = RPOT.end(), J = RPOT.begin();
|
|
I != E;) {
|
|
MachineBasicBlock &MBB = **I;
|
|
|
|
BlockVisitedSet.insert(&MBB);
|
|
|
|
BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
|
|
if (!ScoreBrackets) {
|
|
BlockWaitcntBracketsMap[&MBB] = make_unique<BlockWaitcntBrackets>();
|
|
ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
|
|
}
|
|
ScoreBrackets->setPostOrder(MBB.getNumber());
|
|
MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB);
|
|
if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr)
|
|
LoopWaitcntDataMap[ContainingLoop] = make_unique<LoopWaitcntData>();
|
|
|
|
// If we are walking into the block from before the loop, then guarantee
|
|
// at least 1 re-walk over the loop to propagate the information, even if
|
|
// no S_WAITCNT instructions were generated.
|
|
if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I &&
|
|
(BlockWaitcntProcessedSet.find(&MBB) ==
|
|
BlockWaitcntProcessedSet.end())) {
|
|
BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true);
|
|
DEBUG(dbgs() << "set-revisit: block"
|
|
<< ContainingLoop->getHeader()->getNumber() << '\n';);
|
|
}
|
|
|
|
// Walk over the instructions.
|
|
insertWaitcntInBlock(MF, MBB);
|
|
|
|
// Flag that waitcnts have been processed at least once.
|
|
BlockWaitcntProcessedSet.insert(&MBB);
|
|
|
|
// See if we want to revisit the loop.
|
|
if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) {
|
|
MachineBasicBlock *EntryBB = ContainingLoop->getHeader();
|
|
BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get();
|
|
if (EntrySB && EntrySB->getRevisitLoop()) {
|
|
EntrySB->setRevisitLoop(false);
|
|
J = I;
|
|
int32_t PostOrder = EntrySB->getPostOrder();
|
|
// TODO: Avoid this loop. Find another way to set I.
|
|
for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
|
|
X = RPOT.begin(),
|
|
Y = RPOT.end();
|
|
X != Y; ++X) {
|
|
MachineBasicBlock &MBBX = **X;
|
|
if (MBBX.getNumber() == PostOrder) {
|
|
I = X;
|
|
break;
|
|
}
|
|
}
|
|
LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
|
|
WaitcntData->incIterCnt();
|
|
DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';);
|
|
continue;
|
|
} else {
|
|
LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
|
|
// Loop converged, reset iteration count. If this loop gets revisited,
|
|
// it must be from an outer loop, the counter will restart, this will
|
|
// ensure we don't force convergence on such revisits.
|
|
WaitcntData->resetIterCnt();
|
|
}
|
|
}
|
|
|
|
J = I;
|
|
++I;
|
|
}
|
|
|
|
SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
|
|
|
|
bool HaveScalarStores = false;
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
|
|
++BI) {
|
|
|
|
MachineBasicBlock &MBB = *BI;
|
|
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
|
|
++I) {
|
|
|
|
if (!HaveScalarStores && TII->isScalarStore(*I))
|
|
HaveScalarStores = true;
|
|
|
|
if (I->getOpcode() == AMDGPU::S_ENDPGM ||
|
|
I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
|
|
EndPgmBlocks.push_back(&MBB);
|
|
}
|
|
}
|
|
|
|
if (HaveScalarStores) {
|
|
// If scalar writes are used, the cache must be flushed or else the next
|
|
// wave to reuse the same scratch memory can be clobbered.
|
|
//
|
|
// Insert s_dcache_wb at wave termination points if there were any scalar
|
|
// stores, and only if the cache hasn't already been flushed. This could be
|
|
// improved by looking across blocks for flushes in postdominating blocks
|
|
// from the stores but an explicitly requested flush is probably very rare.
|
|
for (MachineBasicBlock *MBB : EndPgmBlocks) {
|
|
bool SeenDCacheWB = false;
|
|
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
|
|
++I) {
|
|
|
|
if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
|
|
SeenDCacheWB = true;
|
|
else if (TII->isScalarStore(*I))
|
|
SeenDCacheWB = false;
|
|
|
|
// FIXME: It would be better to insert this before a waitcnt if any.
|
|
if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
|
|
I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
|
|
!SeenDCacheWB) {
|
|
Modified = true;
|
|
BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MFI->isEntryFunction()) {
|
|
// Wait for any outstanding memory operations that the input registers may
|
|
// depend on. We can't track them and it's better to to the wait after the
|
|
// costly call sequence.
|
|
|
|
// TODO: Could insert earlier and schedule more liberally with operations
|
|
// that only use caller preserved registers.
|
|
MachineBasicBlock &EntryBB = MF.front();
|
|
BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
|
|
.addImm(0);
|
|
|
|
Modified = true;
|
|
}
|
|
|
|
return Modified;
|
|
}
|