forked from OSchip/llvm-project
241 lines
9.2 KiB
C++
241 lines
9.2 KiB
C++
//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for computing profile summary data.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ProfileData/ProfileCommon.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
cl::opt<bool> UseContextLessSummary(
|
|
"profile-summary-contextless", cl::Hidden, cl::init(false), cl::ZeroOrMore,
|
|
cl::desc("Merge context profiles before calculating thresholds."));
|
|
|
|
// The following two parameters determine the threshold for a count to be
|
|
// considered hot/cold. These two parameters are percentile values (multiplied
|
|
// by 10000). If the counts are sorted in descending order, the minimum count to
|
|
// reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
|
|
// Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
|
|
// threshold for determining cold count (everything <= this threshold is
|
|
// considered cold).
|
|
cl::opt<int> ProfileSummaryCutoffHot(
|
|
"profile-summary-cutoff-hot", cl::Hidden, cl::init(990000), cl::ZeroOrMore,
|
|
cl::desc("A count is hot if it exceeds the minimum count to"
|
|
" reach this percentile of total counts."));
|
|
|
|
cl::opt<int> ProfileSummaryCutoffCold(
|
|
"profile-summary-cutoff-cold", cl::Hidden, cl::init(999999), cl::ZeroOrMore,
|
|
cl::desc("A count is cold if it is below the minimum count"
|
|
" to reach this percentile of total counts."));
|
|
|
|
cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold(
|
|
"profile-summary-huge-working-set-size-threshold", cl::Hidden,
|
|
cl::init(15000), cl::ZeroOrMore,
|
|
cl::desc("The code working set size is considered huge if the number of"
|
|
" blocks required to reach the -profile-summary-cutoff-hot"
|
|
" percentile exceeds this count."));
|
|
|
|
cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold(
|
|
"profile-summary-large-working-set-size-threshold", cl::Hidden,
|
|
cl::init(12500), cl::ZeroOrMore,
|
|
cl::desc("The code working set size is considered large if the number of"
|
|
" blocks required to reach the -profile-summary-cutoff-hot"
|
|
" percentile exceeds this count."));
|
|
|
|
// The next two options override the counts derived from summary computation and
|
|
// are useful for debugging purposes.
|
|
cl::opt<int> ProfileSummaryHotCount(
|
|
"profile-summary-hot-count", cl::ReallyHidden, cl::ZeroOrMore,
|
|
cl::desc("A fixed hot count that overrides the count derived from"
|
|
" profile-summary-cutoff-hot"));
|
|
|
|
cl::opt<int> ProfileSummaryColdCount(
|
|
"profile-summary-cold-count", cl::ReallyHidden, cl::ZeroOrMore,
|
|
cl::desc("A fixed cold count that overrides the count derived from"
|
|
" profile-summary-cutoff-cold"));
|
|
|
|
// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
|
|
// (which is 1000000) is a desired percentile of total counts.
|
|
static const uint32_t DefaultCutoffsData[] = {
|
|
10000, /* 1% */
|
|
100000, /* 10% */
|
|
200000, 300000, 400000, 500000, 600000, 700000, 800000,
|
|
900000, 950000, 990000, 999000, 999900, 999990, 999999};
|
|
const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
|
|
DefaultCutoffsData;
|
|
|
|
const ProfileSummaryEntry &
|
|
ProfileSummaryBuilder::getEntryForPercentile(const SummaryEntryVector &DS,
|
|
uint64_t Percentile) {
|
|
auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
|
|
return Entry.Cutoff < Percentile;
|
|
});
|
|
// The required percentile has to be <= one of the percentiles in the
|
|
// detailed summary.
|
|
if (It == DS.end())
|
|
report_fatal_error("Desired percentile exceeds the maximum cutoff");
|
|
return *It;
|
|
}
|
|
|
|
void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
|
|
// The first counter is not necessarily an entry count for IR
|
|
// instrumentation profiles.
|
|
// Eventually MaxFunctionCount will become obsolete and this can be
|
|
// removed.
|
|
addEntryCount(R.Counts[0]);
|
|
for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
|
|
addInternalCount(R.Counts[I]);
|
|
}
|
|
|
|
// To compute the detailed summary, we consider each line containing samples as
|
|
// equivalent to a block with a count in the instrumented profile.
|
|
void SampleProfileSummaryBuilder::addRecord(
|
|
const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
|
|
if (!isCallsiteSample) {
|
|
NumFunctions++;
|
|
if (FS.getHeadSamples() > MaxFunctionCount)
|
|
MaxFunctionCount = FS.getHeadSamples();
|
|
}
|
|
for (const auto &I : FS.getBodySamples()) {
|
|
uint64_t Count = I.second.getSamples();
|
|
addCount(Count);
|
|
}
|
|
for (const auto &I : FS.getCallsiteSamples())
|
|
for (const auto &CS : I.second)
|
|
addRecord(CS.second, true);
|
|
}
|
|
|
|
// The argument to this method is a vector of cutoff percentages and the return
|
|
// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
|
|
void ProfileSummaryBuilder::computeDetailedSummary() {
|
|
if (DetailedSummaryCutoffs.empty())
|
|
return;
|
|
llvm::sort(DetailedSummaryCutoffs);
|
|
auto Iter = CountFrequencies.begin();
|
|
const auto End = CountFrequencies.end();
|
|
|
|
uint32_t CountsSeen = 0;
|
|
uint64_t CurrSum = 0, Count = 0;
|
|
|
|
for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
|
|
assert(Cutoff <= 999999);
|
|
APInt Temp(128, TotalCount);
|
|
APInt N(128, Cutoff);
|
|
APInt D(128, ProfileSummary::Scale);
|
|
Temp *= N;
|
|
Temp = Temp.sdiv(D);
|
|
uint64_t DesiredCount = Temp.getZExtValue();
|
|
assert(DesiredCount <= TotalCount);
|
|
while (CurrSum < DesiredCount && Iter != End) {
|
|
Count = Iter->first;
|
|
uint32_t Freq = Iter->second;
|
|
CurrSum += (Count * Freq);
|
|
CountsSeen += Freq;
|
|
Iter++;
|
|
}
|
|
assert(CurrSum >= DesiredCount);
|
|
ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
|
|
DetailedSummary.push_back(PSE);
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
ProfileSummaryBuilder::getHotCountThreshold(const SummaryEntryVector &DS) {
|
|
auto &HotEntry =
|
|
ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot);
|
|
uint64_t HotCountThreshold = HotEntry.MinCount;
|
|
if (ProfileSummaryHotCount.getNumOccurrences() > 0)
|
|
HotCountThreshold = ProfileSummaryHotCount;
|
|
return HotCountThreshold;
|
|
}
|
|
|
|
uint64_t
|
|
ProfileSummaryBuilder::getColdCountThreshold(const SummaryEntryVector &DS) {
|
|
auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile(
|
|
DS, ProfileSummaryCutoffCold);
|
|
uint64_t ColdCountThreshold = ColdEntry.MinCount;
|
|
if (ProfileSummaryColdCount.getNumOccurrences() > 0)
|
|
ColdCountThreshold = ProfileSummaryColdCount;
|
|
return ColdCountThreshold;
|
|
}
|
|
|
|
std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
|
|
computeDetailedSummary();
|
|
return std::make_unique<ProfileSummary>(
|
|
ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
|
|
MaxFunctionCount, NumCounts, NumFunctions);
|
|
}
|
|
|
|
std::unique_ptr<ProfileSummary>
|
|
SampleProfileSummaryBuilder::computeSummaryForProfiles(
|
|
const SampleProfileMap &Profiles) {
|
|
assert(NumFunctions == 0 &&
|
|
"This can only be called on an empty summary builder");
|
|
sampleprof::SampleProfileMap ContextLessProfiles;
|
|
const sampleprof::SampleProfileMap *ProfilesToUse = &Profiles;
|
|
// For CSSPGO, context-sensitive profile effectively split a function profile
|
|
// into many copies each representing the CFG profile of a particular calling
|
|
// context. That makes the count distribution looks more flat as we now have
|
|
// more function profiles each with lower counts, which in turn leads to lower
|
|
// hot thresholds. To compensate for that, by default we merge context
|
|
// profiles before computing profile summary.
|
|
if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
|
|
!UseContextLessSummary.getNumOccurrences())) {
|
|
for (const auto &I : Profiles) {
|
|
ContextLessProfiles[I.second.getName()].merge(I.second);
|
|
}
|
|
ProfilesToUse = &ContextLessProfiles;
|
|
}
|
|
|
|
for (const auto &I : *ProfilesToUse) {
|
|
const sampleprof::FunctionSamples &Profile = I.second;
|
|
addRecord(Profile);
|
|
}
|
|
|
|
return getSummary();
|
|
}
|
|
|
|
std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
|
|
computeDetailedSummary();
|
|
return std::make_unique<ProfileSummary>(
|
|
ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
|
|
MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
|
|
}
|
|
|
|
void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
|
|
NumFunctions++;
|
|
|
|
// Skip invalid count.
|
|
if (Count == (uint64_t)-1)
|
|
return;
|
|
|
|
addCount(Count);
|
|
if (Count > MaxFunctionCount)
|
|
MaxFunctionCount = Count;
|
|
}
|
|
|
|
void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
|
|
// Skip invalid count.
|
|
if (Count == (uint64_t)-1)
|
|
return;
|
|
|
|
addCount(Count);
|
|
if (Count > MaxInternalBlockCount)
|
|
MaxInternalBlockCount = Count;
|
|
}
|