llvm-project/llvm/lib/InterfaceStub/ELFObjHandler.cpp

676 lines
23 KiB
C++

//===- ELFObjHandler.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===-----------------------------------------------------------------------===/
#include "llvm/InterfaceStub/ELFObjHandler.h"
#include "llvm/InterfaceStub/IFSStub.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Process.h"
using llvm::MemoryBufferRef;
using llvm::object::ELFObjectFile;
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
namespace llvm {
namespace ifs {
// Simple struct to hold relevant .dynamic entries.
struct DynamicEntries {
uint64_t StrTabAddr = 0;
uint64_t StrSize = 0;
Optional<uint64_t> SONameOffset;
std::vector<uint64_t> NeededLibNames;
// Symbol table:
uint64_t DynSymAddr = 0;
// Hash tables:
Optional<uint64_t> ElfHash;
Optional<uint64_t> GnuHash;
};
/// This initializes an ELF file header with information specific to a binary
/// dynamic shared object.
/// Offsets, indexes, links, etc. for section and program headers are just
/// zero-initialized as they will be updated elsewhere.
///
/// @param ElfHeader Target ELFT::Ehdr to populate.
/// @param Machine Target architecture (e_machine from ELF specifications).
template <class ELFT>
static void initELFHeader(typename ELFT::Ehdr &ElfHeader, uint16_t Machine) {
memset(&ElfHeader, 0, sizeof(ElfHeader));
// ELF identification.
ElfHeader.e_ident[EI_MAG0] = ElfMagic[EI_MAG0];
ElfHeader.e_ident[EI_MAG1] = ElfMagic[EI_MAG1];
ElfHeader.e_ident[EI_MAG2] = ElfMagic[EI_MAG2];
ElfHeader.e_ident[EI_MAG3] = ElfMagic[EI_MAG3];
ElfHeader.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
bool IsLittleEndian = ELFT::TargetEndianness == support::little;
ElfHeader.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
ElfHeader.e_ident[EI_VERSION] = EV_CURRENT;
ElfHeader.e_ident[EI_OSABI] = ELFOSABI_NONE;
// Remainder of ELF header.
ElfHeader.e_type = ET_DYN;
ElfHeader.e_machine = Machine;
ElfHeader.e_version = EV_CURRENT;
ElfHeader.e_ehsize = sizeof(typename ELFT::Ehdr);
ElfHeader.e_phentsize = sizeof(typename ELFT::Phdr);
ElfHeader.e_shentsize = sizeof(typename ELFT::Shdr);
}
namespace {
template <class ELFT> struct OutputSection {
using Elf_Shdr = typename ELFT::Shdr;
std::string Name;
Elf_Shdr Shdr;
uint64_t Addr;
uint64_t Offset;
uint64_t Size;
uint64_t Align;
uint32_t Index;
bool NoBits = true;
};
template <class T, class ELFT>
struct ContentSection : public OutputSection<ELFT> {
T Content;
ContentSection() { this->NoBits = false; }
};
// This class just wraps StringTableBuilder for the purpose of adding a
// default constructor.
class ELFStringTableBuilder : public StringTableBuilder {
public:
ELFStringTableBuilder() : StringTableBuilder(StringTableBuilder::ELF) {}
};
template <class ELFT> class ELFSymbolTableBuilder {
public:
using Elf_Sym = typename ELFT::Sym;
ELFSymbolTableBuilder() { Symbols.push_back({}); }
void add(size_t StNameOffset, uint64_t StSize, uint8_t StBind, uint8_t StType,
uint8_t StOther, uint16_t StShndx) {
Elf_Sym S{};
S.st_name = StNameOffset;
S.st_size = StSize;
S.st_info = (StBind << 4) | (StType & 0xf);
S.st_other = StOther;
S.st_shndx = StShndx;
Symbols.push_back(S);
}
size_t getSize() const { return Symbols.size() * sizeof(Elf_Sym); }
void write(uint8_t *Buf) const {
memcpy(Buf, Symbols.data(), sizeof(Elf_Sym) * Symbols.size());
}
private:
llvm::SmallVector<Elf_Sym, 8> Symbols;
};
template <class ELFT> class ELFDynamicTableBuilder {
public:
using Elf_Dyn = typename ELFT::Dyn;
size_t addAddr(uint64_t Tag, uint64_t Addr) {
Elf_Dyn Entry;
Entry.d_tag = Tag;
Entry.d_un.d_ptr = Addr;
Entries.push_back(Entry);
return Entries.size() - 1;
}
void modifyAddr(size_t Index, uint64_t Addr) {
Entries[Index].d_un.d_ptr = Addr;
}
size_t addValue(uint64_t Tag, uint64_t Value) {
Elf_Dyn Entry;
Entry.d_tag = Tag;
Entry.d_un.d_val = Value;
Entries.push_back(Entry);
return Entries.size() - 1;
}
void modifyValue(size_t Index, uint64_t Value) {
Entries[Index].d_un.d_val = Value;
}
size_t getSize() const {
// Add DT_NULL entry at the end.
return (Entries.size() + 1) * sizeof(Elf_Dyn);
}
void write(uint8_t *Buf) const {
memcpy(Buf, Entries.data(), sizeof(Elf_Dyn) * Entries.size());
// Add DT_NULL entry at the end.
memset(Buf + sizeof(Elf_Dyn) * Entries.size(), 0, sizeof(Elf_Dyn));
}
private:
llvm::SmallVector<Elf_Dyn, 8> Entries;
};
template <class ELFT> class ELFStubBuilder {
public:
using Elf_Ehdr = typename ELFT::Ehdr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Phdr = typename ELFT::Phdr;
using Elf_Sym = typename ELFT::Sym;
using Elf_Addr = typename ELFT::Addr;
using Elf_Dyn = typename ELFT::Dyn;
ELFStubBuilder(const ELFStubBuilder &) = delete;
ELFStubBuilder(ELFStubBuilder &&) = default;
explicit ELFStubBuilder(const IFSStub &Stub) {
DynSym.Name = ".dynsym";
DynSym.Align = sizeof(Elf_Addr);
DynStr.Name = ".dynstr";
DynStr.Align = 1;
DynTab.Name = ".dynamic";
DynTab.Align = sizeof(Elf_Addr);
ShStrTab.Name = ".shstrtab";
ShStrTab.Align = 1;
// Populate string tables.
for (const IFSSymbol &Sym : Stub.Symbols)
DynStr.Content.add(Sym.Name);
for (const std::string &Lib : Stub.NeededLibs)
DynStr.Content.add(Lib);
if (Stub.SoName)
DynStr.Content.add(Stub.SoName.getValue());
std::vector<OutputSection<ELFT> *> Sections = {&DynSym, &DynStr, &DynTab,
&ShStrTab};
const OutputSection<ELFT> *LastSection = Sections.back();
// Now set the Index and put sections names into ".shstrtab".
uint64_t Index = 1;
for (OutputSection<ELFT> *Sec : Sections) {
Sec->Index = Index++;
ShStrTab.Content.add(Sec->Name);
}
ShStrTab.Content.finalize();
ShStrTab.Size = ShStrTab.Content.getSize();
DynStr.Content.finalize();
DynStr.Size = DynStr.Content.getSize();
// Populate dynamic symbol table.
for (const IFSSymbol &Sym : Stub.Symbols) {
uint8_t Bind = Sym.Weak ? STB_WEAK : STB_GLOBAL;
// For non-undefined symbols, value of the shndx is not relevant at link
// time as long as it is not SHN_UNDEF. Set shndx to 1, which
// points to ".dynsym".
uint16_t Shndx = Sym.Undefined ? SHN_UNDEF : 1;
DynSym.Content.add(DynStr.Content.getOffset(Sym.Name), Sym.Size, Bind,
convertIFSSymbolTypeToELF(Sym.Type), 0, Shndx);
}
DynSym.Size = DynSym.Content.getSize();
// Poplulate dynamic table.
size_t DynSymIndex = DynTab.Content.addAddr(DT_SYMTAB, 0);
size_t DynStrIndex = DynTab.Content.addAddr(DT_STRTAB, 0);
for (const std::string &Lib : Stub.NeededLibs)
DynTab.Content.addValue(DT_NEEDED, DynStr.Content.getOffset(Lib));
if (Stub.SoName)
DynTab.Content.addValue(DT_SONAME,
DynStr.Content.getOffset(Stub.SoName.getValue()));
DynTab.Size = DynTab.Content.getSize();
// Calculate sections' addresses and offsets.
uint64_t CurrentOffset = sizeof(Elf_Ehdr);
for (OutputSection<ELFT> *Sec : Sections) {
Sec->Offset = alignTo(CurrentOffset, Sec->Align);
Sec->Addr = Sec->Offset;
CurrentOffset = Sec->Offset + Sec->Size;
}
// Fill Addr back to dynamic table.
DynTab.Content.modifyAddr(DynSymIndex, DynSym.Addr);
DynTab.Content.modifyAddr(DynStrIndex, DynStr.Addr);
// Write section headers of string tables.
fillSymTabShdr(DynSym, SHT_DYNSYM);
fillStrTabShdr(DynStr, SHF_ALLOC);
fillDynTabShdr(DynTab);
fillStrTabShdr(ShStrTab);
// Finish initializing the ELF header.
initELFHeader<ELFT>(ElfHeader,
static_cast<uint16_t>(Stub.Target.Arch.getValue()));
ElfHeader.e_shstrndx = ShStrTab.Index;
ElfHeader.e_shnum = LastSection->Index + 1;
ElfHeader.e_shoff =
alignTo(LastSection->Offset + LastSection->Size, sizeof(Elf_Addr));
}
size_t getSize() const {
return ElfHeader.e_shoff + ElfHeader.e_shnum * sizeof(Elf_Shdr);
}
void write(uint8_t *Data) const {
write(Data, ElfHeader);
DynSym.Content.write(Data + DynSym.Shdr.sh_offset);
DynStr.Content.write(Data + DynStr.Shdr.sh_offset);
DynTab.Content.write(Data + DynTab.Shdr.sh_offset);
ShStrTab.Content.write(Data + ShStrTab.Shdr.sh_offset);
writeShdr(Data, DynSym);
writeShdr(Data, DynStr);
writeShdr(Data, DynTab);
writeShdr(Data, ShStrTab);
}
private:
Elf_Ehdr ElfHeader;
ContentSection<ELFStringTableBuilder, ELFT> DynStr;
ContentSection<ELFStringTableBuilder, ELFT> ShStrTab;
ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> DynSym;
ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> DynTab;
template <class T> static void write(uint8_t *Data, const T &Value) {
*reinterpret_cast<T *>(Data) = Value;
}
void fillStrTabShdr(ContentSection<ELFStringTableBuilder, ELFT> &StrTab,
uint32_t ShFlags = 0) const {
StrTab.Shdr.sh_type = SHT_STRTAB;
StrTab.Shdr.sh_flags = ShFlags;
StrTab.Shdr.sh_addr = StrTab.Addr;
StrTab.Shdr.sh_offset = StrTab.Offset;
StrTab.Shdr.sh_info = 0;
StrTab.Shdr.sh_size = StrTab.Size;
StrTab.Shdr.sh_name = ShStrTab.Content.getOffset(StrTab.Name);
StrTab.Shdr.sh_addralign = StrTab.Align;
StrTab.Shdr.sh_entsize = 0;
StrTab.Shdr.sh_link = 0;
}
void fillSymTabShdr(ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> &SymTab,
uint32_t ShType) const {
SymTab.Shdr.sh_type = ShType;
SymTab.Shdr.sh_flags = SHF_ALLOC;
SymTab.Shdr.sh_addr = SymTab.Addr;
SymTab.Shdr.sh_offset = SymTab.Offset;
// Only non-local symbols are included in the tbe file, so .dynsym only
// contains 1 local symbol (the undefined symbol at index 0). The sh_info
// should always be 1.
SymTab.Shdr.sh_info = 1;
SymTab.Shdr.sh_size = SymTab.Size;
SymTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(SymTab.Name);
SymTab.Shdr.sh_addralign = SymTab.Align;
SymTab.Shdr.sh_entsize = sizeof(Elf_Sym);
SymTab.Shdr.sh_link = this->DynStr.Index;
}
void fillDynTabShdr(
ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> &DynTab) const {
DynTab.Shdr.sh_type = SHT_DYNAMIC;
DynTab.Shdr.sh_flags = SHF_ALLOC;
DynTab.Shdr.sh_addr = DynTab.Addr;
DynTab.Shdr.sh_offset = DynTab.Offset;
DynTab.Shdr.sh_info = 0;
DynTab.Shdr.sh_size = DynTab.Size;
DynTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(DynTab.Name);
DynTab.Shdr.sh_addralign = DynTab.Align;
DynTab.Shdr.sh_entsize = sizeof(Elf_Dyn);
DynTab.Shdr.sh_link = this->DynStr.Index;
}
uint64_t shdrOffset(const OutputSection<ELFT> &Sec) const {
return ElfHeader.e_shoff + Sec.Index * sizeof(Elf_Shdr);
}
void writeShdr(uint8_t *Data, const OutputSection<ELFT> &Sec) const {
write(Data + shdrOffset(Sec), Sec.Shdr);
}
};
} // end anonymous namespace
/// This function behaves similarly to StringRef::substr(), but attempts to
/// terminate the returned StringRef at the first null terminator. If no null
/// terminator is found, an error is returned.
///
/// @param Str Source string to create a substring from.
/// @param Offset The start index of the desired substring.
static Expected<StringRef> terminatedSubstr(StringRef Str, size_t Offset) {
size_t StrEnd = Str.find('\0', Offset);
if (StrEnd == StringLiteral::npos) {
return createError(
"String overran bounds of string table (no null terminator)");
}
size_t StrLen = StrEnd - Offset;
return Str.substr(Offset, StrLen);
}
/// This function takes an error, and appends a string of text to the end of
/// that error. Since "appending" to an Error isn't supported behavior of an
/// Error, this function technically creates a new error with the combined
/// message and consumes the old error.
///
/// @param Err Source error.
/// @param After Text to append at the end of Err's error message.
Error appendToError(Error Err, StringRef After) {
std::string Message;
raw_string_ostream Stream(Message);
Stream << Err;
Stream << " " << After;
consumeError(std::move(Err));
return createError(Stream.str());
}
/// This function populates a DynamicEntries struct using an ELFT::DynRange.
/// After populating the struct, the members are validated with
/// some basic correctness checks.
///
/// @param Dyn Target DynamicEntries struct to populate.
/// @param DynTable Source dynamic table.
template <class ELFT>
static Error populateDynamic(DynamicEntries &Dyn,
typename ELFT::DynRange DynTable) {
if (DynTable.empty())
return createError("No .dynamic section found");
// Search .dynamic for relevant entries.
bool FoundDynStr = false;
bool FoundDynStrSz = false;
bool FoundDynSym = false;
for (auto &Entry : DynTable) {
switch (Entry.d_tag) {
case DT_SONAME:
Dyn.SONameOffset = Entry.d_un.d_val;
break;
case DT_STRTAB:
Dyn.StrTabAddr = Entry.d_un.d_ptr;
FoundDynStr = true;
break;
case DT_STRSZ:
Dyn.StrSize = Entry.d_un.d_val;
FoundDynStrSz = true;
break;
case DT_NEEDED:
Dyn.NeededLibNames.push_back(Entry.d_un.d_val);
break;
case DT_SYMTAB:
Dyn.DynSymAddr = Entry.d_un.d_ptr;
FoundDynSym = true;
break;
case DT_HASH:
Dyn.ElfHash = Entry.d_un.d_ptr;
break;
case DT_GNU_HASH:
Dyn.GnuHash = Entry.d_un.d_ptr;
}
}
if (!FoundDynStr) {
return createError(
"Couldn't locate dynamic string table (no DT_STRTAB entry)");
}
if (!FoundDynStrSz) {
return createError(
"Couldn't determine dynamic string table size (no DT_STRSZ entry)");
}
if (!FoundDynSym) {
return createError(
"Couldn't locate dynamic symbol table (no DT_SYMTAB entry)");
}
if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) {
return createStringError(object_error::parse_failed,
"DT_SONAME string offset (0x%016" PRIx64
") outside of dynamic string table",
*Dyn.SONameOffset);
}
for (uint64_t Offset : Dyn.NeededLibNames) {
if (Offset >= Dyn.StrSize) {
return createStringError(object_error::parse_failed,
"DT_NEEDED string offset (0x%016" PRIx64
") outside of dynamic string table",
Offset);
}
}
return Error::success();
}
/// This function creates an IFSSymbol and populates all members using
/// information from a binary ELFT::Sym.
///
/// @param SymName The desired name of the IFSSymbol.
/// @param RawSym ELFT::Sym to extract symbol information from.
template <class ELFT>
static IFSSymbol createELFSym(StringRef SymName,
const typename ELFT::Sym &RawSym) {
IFSSymbol TargetSym{std::string(SymName)};
uint8_t Binding = RawSym.getBinding();
if (Binding == STB_WEAK)
TargetSym.Weak = true;
else
TargetSym.Weak = false;
TargetSym.Undefined = RawSym.isUndefined();
TargetSym.Type = convertELFSymbolTypeToIFS(RawSym.st_info);
if (TargetSym.Type == IFSSymbolType::Func) {
TargetSym.Size = 0;
} else {
TargetSym.Size = RawSym.st_size;
}
return TargetSym;
}
/// This function populates an IFSStub with symbols using information read
/// from an ELF binary.
///
/// @param TargetStub IFSStub to add symbols to.
/// @param DynSym Range of dynamic symbols to add to TargetStub.
/// @param DynStr StringRef to the dynamic string table.
template <class ELFT>
static Error populateSymbols(IFSStub &TargetStub,
const typename ELFT::SymRange DynSym,
StringRef DynStr) {
// Skips the first symbol since it's the NULL symbol.
for (auto RawSym : DynSym.drop_front(1)) {
// If a symbol does not have global or weak binding, ignore it.
uint8_t Binding = RawSym.getBinding();
if (!(Binding == STB_GLOBAL || Binding == STB_WEAK))
continue;
// If a symbol doesn't have default or protected visibility, ignore it.
uint8_t Visibility = RawSym.getVisibility();
if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED))
continue;
// Create an IFSSymbol and populate it with information from the symbol
// table entry.
Expected<StringRef> SymName = terminatedSubstr(DynStr, RawSym.st_name);
if (!SymName)
return SymName.takeError();
IFSSymbol Sym = createELFSym<ELFT>(*SymName, RawSym);
TargetStub.Symbols.push_back(std::move(Sym));
// TODO: Populate symbol warning.
}
return Error::success();
}
/// Returns a new IFSStub with all members populated from an ELFObjectFile.
/// @param ElfObj Source ELFObjectFile.
template <class ELFT>
static Expected<std::unique_ptr<IFSStub>>
buildStub(const ELFObjectFile<ELFT> &ElfObj) {
using Elf_Dyn_Range = typename ELFT::DynRange;
using Elf_Phdr_Range = typename ELFT::PhdrRange;
using Elf_Sym_Range = typename ELFT::SymRange;
using Elf_Sym = typename ELFT::Sym;
std::unique_ptr<IFSStub> DestStub = std::make_unique<IFSStub>();
const ELFFile<ELFT> &ElfFile = ElfObj.getELFFile();
// Fetch .dynamic table.
Expected<Elf_Dyn_Range> DynTable = ElfFile.dynamicEntries();
if (!DynTable) {
return DynTable.takeError();
}
// Fetch program headers.
Expected<Elf_Phdr_Range> PHdrs = ElfFile.program_headers();
if (!PHdrs) {
return PHdrs.takeError();
}
// Collect relevant .dynamic entries.
DynamicEntries DynEnt;
if (Error Err = populateDynamic<ELFT>(DynEnt, *DynTable))
return std::move(Err);
// Get pointer to in-memory location of .dynstr section.
Expected<const uint8_t *> DynStrPtr = ElfFile.toMappedAddr(DynEnt.StrTabAddr);
if (!DynStrPtr)
return appendToError(DynStrPtr.takeError(),
"when locating .dynstr section contents");
StringRef DynStr(reinterpret_cast<const char *>(DynStrPtr.get()),
DynEnt.StrSize);
// Populate Arch from ELF header.
DestStub->Target.Arch = static_cast<IFSArch>(ElfFile.getHeader().e_machine);
DestStub->Target.BitWidth =
convertELFBitWidthToIFS(ElfFile.getHeader().e_ident[EI_CLASS]);
DestStub->Target.Endianness =
convertELFEndiannessToIFS(ElfFile.getHeader().e_ident[EI_DATA]);
DestStub->Target.ObjectFormat = "ELF";
// Populate SoName from .dynamic entries and dynamic string table.
if (DynEnt.SONameOffset.hasValue()) {
Expected<StringRef> NameOrErr =
terminatedSubstr(DynStr, *DynEnt.SONameOffset);
if (!NameOrErr) {
return appendToError(NameOrErr.takeError(), "when reading DT_SONAME");
}
DestStub->SoName = std::string(*NameOrErr);
}
// Populate NeededLibs from .dynamic entries and dynamic string table.
for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) {
Expected<StringRef> LibNameOrErr =
terminatedSubstr(DynStr, NeededStrOffset);
if (!LibNameOrErr) {
return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED");
}
DestStub->NeededLibs.push_back(std::string(*LibNameOrErr));
}
// Populate Symbols from .dynsym table and dynamic string table.
Expected<uint64_t> SymCount = ElfFile.getDynSymtabSize();
if (!SymCount)
return SymCount.takeError();
if (*SymCount > 0) {
// Get pointer to in-memory location of .dynsym section.
Expected<const uint8_t *> DynSymPtr =
ElfFile.toMappedAddr(DynEnt.DynSymAddr);
if (!DynSymPtr)
return appendToError(DynSymPtr.takeError(),
"when locating .dynsym section contents");
Elf_Sym_Range DynSyms = ArrayRef<Elf_Sym>(
reinterpret_cast<const Elf_Sym *>(*DynSymPtr), *SymCount);
Error SymReadError = populateSymbols<ELFT>(*DestStub, DynSyms, DynStr);
if (SymReadError)
return appendToError(std::move(SymReadError),
"when reading dynamic symbols");
}
return std::move(DestStub);
}
/// This function opens a file for writing and then writes a binary ELF stub to
/// the file.
///
/// @param FilePath File path for writing the ELF binary.
/// @param Stub Source InterFace Stub to generate a binary ELF stub from.
template <class ELFT>
static Error writeELFBinaryToFile(StringRef FilePath, const IFSStub &Stub,
bool WriteIfChanged) {
ELFStubBuilder<ELFT> Builder{Stub};
// Write Stub to memory first.
std::vector<uint8_t> Buf(Builder.getSize());
Builder.write(Buf.data());
if (WriteIfChanged) {
if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrError =
MemoryBuffer::getFile(FilePath)) {
// Compare Stub output with existing Stub file.
// If Stub file unchanged, abort updating.
if ((*BufOrError)->getBufferSize() == Builder.getSize() &&
!memcmp((*BufOrError)->getBufferStart(), Buf.data(),
Builder.getSize()))
return Error::success();
}
}
Expected<std::unique_ptr<FileOutputBuffer>> BufOrError =
FileOutputBuffer::create(FilePath, Builder.getSize());
if (!BufOrError)
return createStringError(errc::invalid_argument,
toString(BufOrError.takeError()) +
" when trying to open `" + FilePath +
"` for writing");
// Write binary to file.
std::unique_ptr<FileOutputBuffer> FileBuf = std::move(*BufOrError);
memcpy(FileBuf->getBufferStart(), Buf.data(), Buf.size());
return FileBuf->commit();
}
Expected<std::unique_ptr<IFSStub>> readELFFile(MemoryBufferRef Buf) {
Expected<std::unique_ptr<Binary>> BinOrErr = createBinary(Buf);
if (!BinOrErr) {
return BinOrErr.takeError();
}
Binary *Bin = BinOrErr->get();
if (auto Obj = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
return buildStub(*Obj);
} else if (auto Obj = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
return buildStub(*Obj);
} else if (auto Obj = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
return buildStub(*Obj);
} else if (auto Obj = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
return buildStub(*Obj);
}
return createStringError(errc::not_supported, "unsupported binary format");
}
// This function wraps the ELFT writeELFBinaryToFile() so writeBinaryStub()
// can be called without having to use ELFType templates directly.
Error writeBinaryStub(StringRef FilePath, const IFSStub &Stub,
bool WriteIfChanged) {
assert(Stub.Target.Arch);
assert(Stub.Target.BitWidth);
assert(Stub.Target.Endianness);
if (Stub.Target.BitWidth == IFSBitWidthType::IFS32) {
if (Stub.Target.Endianness == IFSEndiannessType::Little) {
return writeELFBinaryToFile<ELF32LE>(FilePath, Stub, WriteIfChanged);
} else {
return writeELFBinaryToFile<ELF32BE>(FilePath, Stub, WriteIfChanged);
}
} else {
if (Stub.Target.Endianness == IFSEndiannessType::Little) {
return writeELFBinaryToFile<ELF64LE>(FilePath, Stub, WriteIfChanged);
} else {
return writeELFBinaryToFile<ELF64BE>(FilePath, Stub, WriteIfChanged);
}
}
llvm_unreachable("invalid binary output target");
}
} // end namespace ifs
} // end namespace llvm