llvm-project/llvm/lib/Target/AArch64/AArch64LegalizerInfo.cpp

416 lines
15 KiB
C++

//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AArch64LegalizerInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalityPredicates;
AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 64);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
const LLT s256 = LLT::scalar(256);
const LLT s512 = LLT::scalar(512);
const LLT v16s8 = LLT::vector(16, 8);
const LLT v8s8 = LLT::vector(8, 8);
const LLT v4s8 = LLT::vector(4, 8);
const LLT v8s16 = LLT::vector(8, 16);
const LLT v4s16 = LLT::vector(4, 16);
const LLT v2s16 = LLT::vector(2, 16);
const LLT v2s32 = LLT::vector(2, 32);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalFor({p0, s1, s8, s16, s32, s64})
.clampScalar(0, s1, s64)
.widenScalarToNextPow2(0, 8);
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, s16, s32, s64})
.clampScalar(0, s16, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({s32, s64})
.clampScalar(0, s16, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL})
.legalFor({s32, s64, v2s32, v4s32, v2s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.clampNumElements(0, v2s32, v4s32)
.clampNumElements(0, v2s64, v2s64)
.moreElementsToNextPow2(0);
getActionDefinitionsBuilder(G_GEP)
.legalFor({{p0, s64}})
.clampScalar(1, s64, s64);
getActionDefinitionsBuilder(G_PTR_MASK).legalFor({p0});
getActionDefinitionsBuilder({G_LSHR, G_ASHR, G_SDIV, G_UDIV})
.legalFor({s32, s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
for (unsigned BinOp : {G_SREM, G_UREM})
for (auto Ty : { s1, s8, s16, s32, s64 })
setAction({BinOp, Ty}, Lower);
for (unsigned Op : {G_SMULO, G_UMULO}) {
setAction({Op, 0, s64}, Lower);
setAction({Op, 1, s1}, Legal);
}
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO})
.legalFor({{s32, s1}, {s64, s1}});
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMA, G_FMUL, G_FDIV})
.legalFor({s32, s64});
getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
getActionDefinitionsBuilder(G_INSERT)
.unsupportedIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
return false;
return isPowerOf2_32(Ty1.getSizeInBits()) &&
(Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.maxScalarIf(typeInSet(0, {s32}), 1, s16)
.maxScalarIf(typeInSet(0, {s64}), 1, s32)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder(G_EXTRACT)
.unsupportedIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
if (Ty1 != s32 && Ty1 != s64)
return false;
if (Ty1 == p0)
return true;
return isPowerOf2_32(Ty0.getSizeInBits()) &&
(Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.maxScalarIf(typeInSet(1, {s32}), 0, s16)
.maxScalarIf(typeInSet(1, {s64}), 0, s32)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.legalFor(
{{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}, {p0, p0}, {v2s32, p0}})
.clampScalar(0, s8, s64)
.widenScalarToNextPow2(0)
.clampNumElements(0, v2s32, v2s32);
// Constants
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({p0, s32, s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({s32, s64})
.clampScalar(0, s32, s64);
getActionDefinitionsBuilder(G_ICMP)
.legalFor({{s32, s32}, {s32, s64}, {s32, p0}})
.clampScalar(0, s32, s32)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder(G_FCMP)
.legalFor({{s32, s32}, {s32, s64}})
.clampScalar(0, s32, s32)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
// Extensions
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalFor({s1, s8, s16, s32, s64})
.maxScalar(0, s64)
.widenScalarToNextPow2(0);
// FP conversions
getActionDefinitionsBuilder(G_FPTRUNC).legalFor(
{{s16, s32}, {s16, s64}, {s32, s64}});
getActionDefinitionsBuilder(G_FPEXT).legalFor(
{{s32, s16}, {s64, s16}, {s64, s32}});
// Conversions
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalForCartesianProduct({s32, s64})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
// Control-flow
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
// Select
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
// Pointer-handling
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
.maxScalar(0, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR)
.unsupportedIf([&](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
})
.legalFor({s64, p0});
// Casts for 32 and 64-bit width type are just copies.
// Same for 128-bit width type, except they are on the FPR bank.
getActionDefinitionsBuilder(G_BITCAST)
// FIXME: This is wrong since G_BITCAST is not allowed to change the
// number of bits but it's what the previous code described and fixing
// it breaks tests.
.legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
v8s16, v4s16, v2s16, v4s32, v2s32, v2s64});
getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
getActionDefinitionsBuilder(G_VAARG)
.customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
.clampScalar(0, s8, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
if (ST.hasLSE()) {
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
.legalForCartesianProduct({s8, s16, s32, s64}, {p0});
}
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG);
if (ST.hasLSE()) {
for (auto Ty : {s8, s16, s32, s64}) {
setAction({G_ATOMIC_CMPXCHG_WITH_SUCCESS, Ty}, Lower);
}
getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
.legalForCartesianProduct({s8, s16, s32, s64}, {p0});
}
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
if (Ty.isVector()) {
const LLT &EltTy = Ty.getElementType();
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
return true;
if (!isPowerOf2_32(EltTy.getSizeInBits()))
return true;
}
return false;
};
auto scalarize =
[](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
return std::make_pair(TypeIdx, Ty.getElementType());
};
// FIXME: This rule is horrible, but specifies the same as what we had
// before with the particularly strange definitions removed (e.g.
// s8 = G_MERGE_VALUES s32, s32).
// Part of the complexity comes from these ops being extremely flexible. For
// example, you can build/decompose vectors with it, concatenate vectors,
// etc. and in addition to this you can also bitcast with it at the same
// time. We've been considering breaking it up into multiple ops to make it
// more manageable throughout the backend.
getActionDefinitionsBuilder(Op)
// Break up vectors with weird elements into scalars
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
[=](const LegalityQuery &Query) { return scalarize(Query, 0); })
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
[=](const LegalityQuery &Query) { return scalarize(Query, 1); })
// Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
// or 384.
.clampScalar(BigTyIdx, s8, s512)
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT &Ty = Query.Types[BigTyIdx];
return !isPowerOf2_32(Ty.getSizeInBits()) &&
Ty.getSizeInBits() % 64 != 0;
},
[=](const LegalityQuery &Query) {
// Pick the next power of 2, or a multiple of 64 over 128.
// Whichever is smaller.
const LLT &Ty = Query.Types[BigTyIdx];
unsigned NewSizeInBits = 1
<< Log2_32_Ceil(Ty.getSizeInBits() + 1);
if (NewSizeInBits >= 256) {
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
if (RoundedTo < NewSizeInBits)
NewSizeInBits = RoundedTo;
}
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
})
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
// worth considering the multiples of 64 since 2*192 and 2*384 are not
// valid.
.clampScalar(LitTyIdx, s8, s256)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
// So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
// s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
// At this point it's simple enough to accept the legal types.
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
return false;
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
return false;
return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
})
// Any vectors left are the wrong size. Scalarize them.
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
0, Query.Types[0].getElementType());
})
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
1, Query.Types[1].getElementType());
});
}
computeTables();
}
bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_VAARG:
return legalizeVaArg(MI, MRI, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MIRBuilder.setInstr(MI);
MachineFunction &MF = MIRBuilder.getMF();
unsigned Align = MI.getOperand(2).getImm();
unsigned Dst = MI.getOperand(0).getReg();
unsigned ListPtr = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(ListPtr);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
unsigned List = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildLoad(
List, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
PtrSize, /* Align = */ PtrSize));
unsigned DstPtr;
if (Align > PtrSize) {
// Realign the list to the actual required alignment.
auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1);
unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(ListTmp, List, AlignMinus1->getOperand(0).getReg());
DstPtr = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align));
} else
DstPtr = List;
uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
MIRBuilder.buildLoad(
Dst, DstPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
ValSize, std::max(Align, PtrSize)));
unsigned SizeReg = MRI.createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildConstant(SizeReg, alignTo(ValSize, PtrSize));
unsigned NewList = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(NewList, DstPtr, SizeReg);
MIRBuilder.buildStore(
NewList, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
PtrSize, /* Align = */ PtrSize));
MI.eraseFromParent();
return true;
}