forked from OSchip/llvm-project
26300 lines
1.0 MiB
26300 lines
1.0 MiB
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that X86 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86ISelLowering.h"
|
|
#include "Utils/X86ShuffleDecode.h"
|
|
#include "X86CallingConv.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "X86TargetObjectFile.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/VariadicFunction.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "X86IntrinsicsInfo.h"
|
|
#include <bitset>
|
|
#include <numeric>
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-isel"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
static cl::opt<bool> ExperimentalVectorWideningLegalization(
|
|
"x86-experimental-vector-widening-legalization", cl::init(false),
|
|
cl::desc("Enable an experimental vector type legalization through widening "
|
|
"rather than promotion."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> ExperimentalVectorShuffleLowering(
|
|
"x86-experimental-vector-shuffle-lowering", cl::init(true),
|
|
cl::desc("Enable an experimental vector shuffle lowering code path."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<int> ReciprocalEstimateRefinementSteps(
|
|
"x86-recip-refinement-steps", cl::init(1),
|
|
cl::desc("Specify the number of Newton-Raphson iterations applied to the "
|
|
"result of the hardware reciprocal estimate instruction."),
|
|
cl::NotHidden);
|
|
|
|
// Forward declarations.
|
|
static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
|
|
SDValue V2);
|
|
|
|
static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
|
|
SelectionDAG &DAG, SDLoc dl,
|
|
unsigned vectorWidth) {
|
|
assert((vectorWidth == 128 || vectorWidth == 256) &&
|
|
"Unsupported vector width");
|
|
EVT VT = Vec.getValueType();
|
|
EVT ElVT = VT.getVectorElementType();
|
|
unsigned Factor = VT.getSizeInBits()/vectorWidth;
|
|
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
|
|
VT.getVectorNumElements()/Factor);
|
|
|
|
// Extract from UNDEF is UNDEF.
|
|
if (Vec.getOpcode() == ISD::UNDEF)
|
|
return DAG.getUNDEF(ResultVT);
|
|
|
|
// Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
|
|
unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
|
|
|
|
// This is the index of the first element of the vectorWidth-bit chunk
|
|
// we want.
|
|
unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
|
|
* ElemsPerChunk);
|
|
|
|
// If the input is a buildvector just emit a smaller one.
|
|
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
|
|
makeArrayRef(Vec->op_begin()+NormalizedIdxVal,
|
|
ElemsPerChunk));
|
|
|
|
SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
|
|
SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
|
|
VecIdx);
|
|
|
|
return Result;
|
|
|
|
}
|
|
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
|
|
/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
|
|
/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
|
|
/// instructions or a simple subregister reference. Idx is an index in the
|
|
/// 128 bits we want. It need not be aligned to a 128-bit bounday. That makes
|
|
/// lowering EXTRACT_VECTOR_ELT operations easier.
|
|
static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
|
|
SelectionDAG &DAG, SDLoc dl) {
|
|
assert((Vec.getValueType().is256BitVector() ||
|
|
Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
|
|
return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
|
|
}
|
|
|
|
/// Generate a DAG to grab 256-bits from a 512-bit vector.
|
|
static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
|
|
SelectionDAG &DAG, SDLoc dl) {
|
|
assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
|
|
return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
|
|
}
|
|
|
|
static SDValue InsertSubVector(SDValue Result, SDValue Vec,
|
|
unsigned IdxVal, SelectionDAG &DAG,
|
|
SDLoc dl, unsigned vectorWidth) {
|
|
assert((vectorWidth == 128 || vectorWidth == 256) &&
|
|
"Unsupported vector width");
|
|
// Inserting UNDEF is Result
|
|
if (Vec.getOpcode() == ISD::UNDEF)
|
|
return Result;
|
|
EVT VT = Vec.getValueType();
|
|
EVT ElVT = VT.getVectorElementType();
|
|
EVT ResultVT = Result.getValueType();
|
|
|
|
// Insert the relevant vectorWidth bits.
|
|
unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
|
|
|
|
// This is the index of the first element of the vectorWidth-bit chunk
|
|
// we want.
|
|
unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
|
|
* ElemsPerChunk);
|
|
|
|
SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
|
|
VecIdx);
|
|
}
|
|
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
|
|
/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
|
|
/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
|
|
/// simple superregister reference. Idx is an index in the 128 bits
|
|
/// we want. It need not be aligned to a 128-bit bounday. That makes
|
|
/// lowering INSERT_VECTOR_ELT operations easier.
|
|
static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
|
|
unsigned IdxVal, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
|
|
return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
|
|
}
|
|
|
|
static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
|
|
unsigned IdxVal, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
|
|
return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
|
|
}
|
|
|
|
/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
|
|
/// instructions. This is used because creating CONCAT_VECTOR nodes of
|
|
/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
|
|
/// large BUILD_VECTORS.
|
|
static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
|
|
unsigned NumElems, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
|
|
return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
|
|
}
|
|
|
|
static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
|
|
unsigned NumElems, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
|
|
return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
|
|
}
|
|
|
|
// FIXME: This should stop caching the target machine as soon as
|
|
// we can remove resetOperationActions et al.
|
|
X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM)
|
|
: TargetLowering(TM) {
|
|
Subtarget = &TM.getSubtarget<X86Subtarget>();
|
|
X86ScalarSSEf64 = Subtarget->hasSSE2();
|
|
X86ScalarSSEf32 = Subtarget->hasSSE1();
|
|
TD = getDataLayout();
|
|
|
|
resetOperationActions();
|
|
}
|
|
|
|
void X86TargetLowering::resetOperationActions() {
|
|
const TargetMachine &TM = getTargetMachine();
|
|
static bool FirstTimeThrough = true;
|
|
|
|
// If none of the target options have changed, then we don't need to reset the
|
|
// operation actions.
|
|
if (!FirstTimeThrough && TO == TM.Options) return;
|
|
|
|
if (!FirstTimeThrough) {
|
|
// Reinitialize the actions.
|
|
initActions();
|
|
FirstTimeThrough = false;
|
|
}
|
|
|
|
TO = TM.Options;
|
|
|
|
// Set up the TargetLowering object.
|
|
static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
|
|
|
|
// X86 is weird, it always uses i8 for shift amounts and setcc results.
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
// X86-SSE is even stranger. It uses -1 or 0 for vector masks.
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
// For 64-bit since we have so many registers use the ILP scheduler, for
|
|
// 32-bit code use the register pressure specific scheduling.
|
|
// For Atom, always use ILP scheduling.
|
|
if (Subtarget->isAtom())
|
|
setSchedulingPreference(Sched::ILP);
|
|
else if (Subtarget->is64Bit())
|
|
setSchedulingPreference(Sched::ILP);
|
|
else
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
const X86RegisterInfo *RegInfo =
|
|
TM.getSubtarget<X86Subtarget>().getRegisterInfo();
|
|
setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
|
|
|
|
// Bypass expensive divides on Atom when compiling with O2
|
|
if (TM.getOptLevel() >= CodeGenOpt::Default) {
|
|
if (Subtarget->hasSlowDivide32())
|
|
addBypassSlowDiv(32, 8);
|
|
if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit())
|
|
addBypassSlowDiv(64, 16);
|
|
}
|
|
|
|
if (Subtarget->isTargetKnownWindowsMSVC()) {
|
|
// Setup Windows compiler runtime calls.
|
|
setLibcallName(RTLIB::SDIV_I64, "_alldiv");
|
|
setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
|
|
setLibcallName(RTLIB::SREM_I64, "_allrem");
|
|
setLibcallName(RTLIB::UREM_I64, "_aullrem");
|
|
setLibcallName(RTLIB::MUL_I64, "_allmul");
|
|
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
|
|
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
|
|
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
|
|
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
|
|
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
|
|
|
|
// The _ftol2 runtime function has an unusual calling conv, which
|
|
// is modeled by a special pseudo-instruction.
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
|
|
}
|
|
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
|
|
setUseUnderscoreSetJmp(false);
|
|
setUseUnderscoreLongJmp(false);
|
|
} else if (Subtarget->isTargetWindowsGNU()) {
|
|
// MS runtime is weird: it exports _setjmp, but longjmp!
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(false);
|
|
} else {
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(true);
|
|
}
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i8, &X86::GR8RegClass);
|
|
addRegisterClass(MVT::i16, &X86::GR16RegClass);
|
|
addRegisterClass(MVT::i32, &X86::GR32RegClass);
|
|
if (Subtarget->is64Bit())
|
|
addRegisterClass(MVT::i64, &X86::GR64RegClass);
|
|
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// We don't accept any truncstore of integer registers.
|
|
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
|
|
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
|
|
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
|
|
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// SETOEQ and SETUNE require checking two conditions.
|
|
setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
|
|
setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
|
|
|
|
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
|
|
// operation.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
|
|
} else if (!TM.Options.UseSoftFloat) {
|
|
// We have an algorithm for SSE2->double, and we turn this into a
|
|
// 64-bit FILD followed by conditional FADD for other targets.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
|
|
// We have an algorithm for SSE2, and we turn this into a 64-bit
|
|
// FILD for other targets.
|
|
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
|
|
}
|
|
|
|
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
|
|
// this operation.
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
|
|
|
|
if (!TM.Options.UseSoftFloat) {
|
|
// SSE has no i16 to fp conversion, only i32
|
|
if (X86ScalarSSEf32) {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
|
|
// f32 and f64 cases are Legal, f80 case is not
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
|
|
}
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
|
|
}
|
|
|
|
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
|
|
// are Legal, f80 is custom lowered.
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
|
|
|
|
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
|
|
// this operation.
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
|
|
|
|
if (X86ScalarSSEf32) {
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
|
|
// f32 and f64 cases are Legal, f80 case is not
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
|
|
} else {
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
|
|
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
|
|
}
|
|
|
|
// Handle FP_TO_UINT by promoting the destination to a larger signed
|
|
// conversion.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
|
|
} else if (!TM.Options.UseSoftFloat) {
|
|
// Since AVX is a superset of SSE3, only check for SSE here.
|
|
if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
|
|
// Expand FP_TO_UINT into a select.
|
|
// FIXME: We would like to use a Custom expander here eventually to do
|
|
// the optimal thing for SSE vs. the default expansion in the legalizer.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
|
|
else
|
|
// With SSE3 we can use fisttpll to convert to a signed i64; without
|
|
// SSE, we're stuck with a fistpll.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
|
|
}
|
|
|
|
if (isTargetFTOL()) {
|
|
// Use the _ftol2 runtime function, which has a pseudo-instruction
|
|
// to handle its weird calling convention.
|
|
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
|
|
}
|
|
|
|
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
|
|
if (!X86ScalarSSEf64) {
|
|
setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
|
|
setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
|
|
// Without SSE, i64->f64 goes through memory.
|
|
setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
|
|
}
|
|
}
|
|
|
|
// Scalar integer divide and remainder are lowered to use operations that
|
|
// produce two results, to match the available instructions. This exposes
|
|
// the two-result form to trivial CSE, which is able to combine x/y and x%y
|
|
// into a single instruction.
|
|
//
|
|
// Scalar integer multiply-high is also lowered to use two-result
|
|
// operations, to match the available instructions. However, plain multiply
|
|
// (low) operations are left as Legal, as there are single-result
|
|
// instructions for this in x86. Using the two-result multiply instructions
|
|
// when both high and low results are needed must be arranged by dagcombine.
|
|
for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
|
|
MVT VT = IntVTs[i];
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
|
|
// Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
|
|
setOperationAction(ISD::ADDC, VT, Custom);
|
|
setOperationAction(ISD::ADDE, VT, Custom);
|
|
setOperationAction(ISD::SUBC, VT, Custom);
|
|
setOperationAction(ISD::SUBE, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
|
|
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
|
|
setOperationAction(ISD::BR_CC , MVT::f32, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::f64, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::f80, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::i8, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::i16, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::i32, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::f80, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::i8, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::i16, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT_CC , MVT::i64, Expand);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
|
|
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FREM , MVT::f80 , Expand);
|
|
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
|
|
|
|
// Promote the i8 variants and force them on up to i32 which has a shorter
|
|
// encoding.
|
|
setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
|
|
AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
|
|
AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
|
|
if (Subtarget->hasBMI()) {
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
} else {
|
|
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
|
|
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
|
|
}
|
|
|
|
if (Subtarget->hasLZCNT()) {
|
|
// When promoting the i8 variants, force them to i32 for a shorter
|
|
// encoding.
|
|
setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
|
|
AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
|
|
AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
} else {
|
|
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
|
|
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
|
|
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
|
|
}
|
|
}
|
|
|
|
// Special handling for half-precision floating point conversions.
|
|
// If we don't have F16C support, then lower half float conversions
|
|
// into library calls.
|
|
if (TM.Options.UseSoftFloat || !Subtarget->hasF16C()) {
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
|
|
}
|
|
|
|
// There's never any support for operations beyond MVT::f32.
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f80, MVT::f16, Expand);
|
|
|
|
if (Subtarget->hasPOPCNT()) {
|
|
setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
|
|
} else {
|
|
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
|
|
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
|
|
|
|
if (!Subtarget->hasMOVBE())
|
|
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
|
|
|
|
// These should be promoted to a larger select which is supported.
|
|
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
|
|
// X86 wants to expand cmov itself.
|
|
setOperationAction(ISD::SELECT , MVT::i8 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
|
|
setOperationAction(ISD::SELECT , MVT::f80 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i16 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::f80 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::SELECT , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SETCC , MVT::i64 , Custom);
|
|
}
|
|
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
|
|
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
|
|
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
|
|
// support continuation, user-level threading, and etc.. As a result, no
|
|
// other SjLj exception interfaces are implemented and please don't build
|
|
// your own exception handling based on them.
|
|
// LLVM/Clang supports zero-cost DWARF exception handling.
|
|
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
|
|
|
|
// Darwin ABI issue.
|
|
setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
|
|
setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
|
|
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit())
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
|
|
setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
|
|
setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
|
|
setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
|
|
setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
|
|
setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
|
|
}
|
|
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
|
|
setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
|
|
setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
|
|
}
|
|
|
|
if (Subtarget->hasSSE1())
|
|
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
|
|
|
|
setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
|
|
|
|
// Expand certain atomics
|
|
for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
|
|
MVT VT = IntVTs[i];
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
|
|
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
|
|
}
|
|
|
|
if (Subtarget->hasCmpxchg16b()) {
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
|
|
}
|
|
|
|
// FIXME - use subtarget debug flags
|
|
if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
|
|
!Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
|
|
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
|
|
}
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setExceptionPointerRegister(X86::RAX);
|
|
setExceptionSelectorRegister(X86::RDX);
|
|
} else {
|
|
setExceptionPointerRegister(X86::EAX);
|
|
setExceptionSelectorRegister(X86::EDX);
|
|
}
|
|
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
|
|
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
|
|
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
|
|
// TargetInfo::X86_64ABIBuiltinVaList
|
|
setOperationAction(ISD::VAARG , MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
|
|
} else {
|
|
// TargetInfo::CharPtrBuiltinVaList
|
|
setOperationAction(ISD::VAARG , MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(), Custom);
|
|
|
|
if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
|
|
// f32 and f64 use SSE.
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f32, &X86::FR32RegClass);
|
|
addRegisterClass(MVT::f64, &X86::FR64RegClass);
|
|
|
|
// Use ANDPD to simulate FABS.
|
|
setOperationAction(ISD::FABS , MVT::f64, Custom);
|
|
setOperationAction(ISD::FABS , MVT::f32, Custom);
|
|
|
|
// Use XORP to simulate FNEG.
|
|
setOperationAction(ISD::FNEG , MVT::f64, Custom);
|
|
setOperationAction(ISD::FNEG , MVT::f32, Custom);
|
|
|
|
// Use ANDPD and ORPD to simulate FCOPYSIGN.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
|
|
// Lower this to FGETSIGNx86 plus an AND.
|
|
setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
|
|
setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
|
|
|
|
// We don't support sin/cos/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
|
|
// Expand FP immediates into loads from the stack, except for the special
|
|
// cases we handle.
|
|
addLegalFPImmediate(APFloat(+0.0)); // xorpd
|
|
addLegalFPImmediate(APFloat(+0.0f)); // xorps
|
|
} else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
|
|
// Use SSE for f32, x87 for f64.
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f32, &X86::FR32RegClass);
|
|
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
|
|
|
|
// Use ANDPS to simulate FABS.
|
|
setOperationAction(ISD::FABS , MVT::f32, Custom);
|
|
|
|
// Use XORP to simulate FNEG.
|
|
setOperationAction(ISD::FNEG , MVT::f32, Custom);
|
|
|
|
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
|
|
|
|
// Use ANDPS and ORPS to simulate FCOPYSIGN.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
|
|
// We don't support sin/cos/fmod
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
|
|
// Special cases we handle for FP constants.
|
|
addLegalFPImmediate(APFloat(+0.0f)); // xorps
|
|
addLegalFPImmediate(APFloat(+0.0)); // FLD0
|
|
addLegalFPImmediate(APFloat(+1.0)); // FLD1
|
|
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
|
|
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
|
|
|
|
if (!TM.Options.UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
}
|
|
} else if (!TM.Options.UseSoftFloat) {
|
|
// f32 and f64 in x87.
|
|
// Set up the FP register classes.
|
|
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
|
|
addRegisterClass(MVT::f32, &X86::RFP32RegClass);
|
|
|
|
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
|
|
setOperationAction(ISD::UNDEF, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
if (!TM.Options.UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
}
|
|
addLegalFPImmediate(APFloat(+0.0)); // FLD0
|
|
addLegalFPImmediate(APFloat(+1.0)); // FLD1
|
|
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
|
|
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
|
|
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
|
|
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
|
|
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
|
|
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
|
|
}
|
|
|
|
// We don't support FMA.
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
|
|
// Long double always uses X87.
|
|
if (!TM.Options.UseSoftFloat) {
|
|
addRegisterClass(MVT::f80, &X86::RFP80RegClass);
|
|
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
|
|
{
|
|
APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
|
|
addLegalFPImmediate(TmpFlt); // FLD0
|
|
TmpFlt.changeSign();
|
|
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
|
|
|
|
bool ignored;
|
|
APFloat TmpFlt2(+1.0);
|
|
TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
addLegalFPImmediate(TmpFlt2); // FLD1
|
|
TmpFlt2.changeSign();
|
|
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
|
|
}
|
|
|
|
if (!TM.Options.UnsafeFPMath) {
|
|
setOperationAction(ISD::FSIN , MVT::f80, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f80, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::f80, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::f80, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f80, Expand);
|
|
}
|
|
|
|
// Always use a library call for pow.
|
|
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
|
|
|
|
setOperationAction(ISD::FLOG, MVT::f80, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f80, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
|
|
setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
|
|
|
|
// First set operation action for all vector types to either promote
|
|
// (for widening) or expand (for scalarization). Then we will selectively
|
|
// turn on ones that can be effectively codegen'd.
|
|
for (int i = MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
setOperationAction(ISD::ADD , VT, Expand);
|
|
setOperationAction(ISD::SUB , VT, Expand);
|
|
setOperationAction(ISD::FADD, VT, Expand);
|
|
setOperationAction(ISD::FNEG, VT, Expand);
|
|
setOperationAction(ISD::FSUB, VT, Expand);
|
|
setOperationAction(ISD::MUL , VT, Expand);
|
|
setOperationAction(ISD::FMUL, VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::FDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::LOAD, VT, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
|
|
setOperationAction(ISD::FABS, VT, Expand);
|
|
setOperationAction(ISD::FSIN, VT, Expand);
|
|
setOperationAction(ISD::FSINCOS, VT, Expand);
|
|
setOperationAction(ISD::FCOS, VT, Expand);
|
|
setOperationAction(ISD::FSINCOS, VT, Expand);
|
|
setOperationAction(ISD::FREM, VT, Expand);
|
|
setOperationAction(ISD::FMA, VT, Expand);
|
|
setOperationAction(ISD::FPOWI, VT, Expand);
|
|
setOperationAction(ISD::FSQRT, VT, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
|
|
setOperationAction(ISD::FFLOOR, VT, Expand);
|
|
setOperationAction(ISD::FCEIL, VT, Expand);
|
|
setOperationAction(ISD::FTRUNC, VT, Expand);
|
|
setOperationAction(ISD::FRINT, VT, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::SDIVREM, VT, Expand);
|
|
setOperationAction(ISD::UDIVREM, VT, Expand);
|
|
setOperationAction(ISD::FPOW, VT, Expand);
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::SHL, VT, Expand);
|
|
setOperationAction(ISD::SRA, VT, Expand);
|
|
setOperationAction(ISD::SRL, VT, Expand);
|
|
setOperationAction(ISD::ROTL, VT, Expand);
|
|
setOperationAction(ISD::ROTR, VT, Expand);
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
setOperationAction(ISD::SETCC, VT, Expand);
|
|
setOperationAction(ISD::FLOG, VT, Expand);
|
|
setOperationAction(ISD::FLOG2, VT, Expand);
|
|
setOperationAction(ISD::FLOG10, VT, Expand);
|
|
setOperationAction(ISD::FEXP, VT, Expand);
|
|
setOperationAction(ISD::FEXP2, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
|
|
setOperationAction(ISD::TRUNCATE, VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
|
|
setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
|
|
setOperationAction(ISD::ANY_EXTEND, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
|
|
InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
|
|
setTruncStoreAction(VT,
|
|
(MVT::SimpleValueType)InnerVT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
|
|
|
|
// N.b. ISD::EXTLOAD legality is basically ignored except for i1-like types,
|
|
// we have to deal with them whether we ask for Expansion or not. Setting
|
|
// Expand causes its own optimisation problems though, so leave them legal.
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
setLoadExtAction(ISD::EXTLOAD, VT, Expand);
|
|
}
|
|
|
|
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
|
|
// with -msoft-float, disable use of MMX as well.
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
|
|
addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
|
|
// No operations on x86mmx supported, everything uses intrinsics.
|
|
}
|
|
|
|
// MMX-sized vectors (other than x86mmx) are expected to be expanded
|
|
// into smaller operations.
|
|
setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::AND, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::AND, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::AND, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::AND, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::OR, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::OR, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::OR, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::OR, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::XOR, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
|
|
addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::FABS, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
|
|
}
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
|
|
addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
|
|
|
|
// FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
|
|
// registers cannot be used even for integer operations.
|
|
addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
|
|
addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
|
|
addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
|
|
addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
|
|
|
|
setOperationAction(ISD::ADD, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::FABS, MVT::v2f64, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
|
|
for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
// Do not attempt to custom lower non-power-of-2 vectors
|
|
if (!isPowerOf2_32(VT.getVectorNumElements()))
|
|
continue;
|
|
// Do not attempt to custom lower non-128-bit vectors
|
|
if (!VT.is128BitVector())
|
|
continue;
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
}
|
|
|
|
// We support custom legalizing of sext and anyext loads for specific
|
|
// memory vector types which we can load as a scalar (or sequence of
|
|
// scalars) and extend in-register to a legal 128-bit vector type. For sext
|
|
// loads these must work with a single scalar load.
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i8, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v8i8, Custom);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
|
|
}
|
|
|
|
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
|
|
for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
// Do not attempt to promote non-128-bit vectors
|
|
if (!VT.is128BitVector())
|
|
continue;
|
|
|
|
setOperationAction(ISD::AND, VT, Promote);
|
|
AddPromotedToType (ISD::AND, VT, MVT::v2i64);
|
|
setOperationAction(ISD::OR, VT, Promote);
|
|
AddPromotedToType (ISD::OR, VT, MVT::v2i64);
|
|
setOperationAction(ISD::XOR, VT, Promote);
|
|
AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
|
|
setOperationAction(ISD::LOAD, VT, Promote);
|
|
AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
|
|
setOperationAction(ISD::SELECT, VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
|
|
}
|
|
|
|
// Custom lower v2i64 and v2f64 selects.
|
|
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
|
|
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
|
|
// As there is no 64-bit GPR available, we need build a special custom
|
|
// sequence to convert from v2i32 to v2f32.
|
|
if (!Subtarget->is64Bit())
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
|
|
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal);
|
|
|
|
setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
|
|
}
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
|
|
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
|
|
|
|
// FIXME: Do we need to handle scalar-to-vector here?
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
|
|
|
|
setOperationAction(ISD::VSELECT, MVT::v2f64, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v8i16, Custom);
|
|
// There is no BLENDI for byte vectors. We don't need to custom lower
|
|
// some vselects for now.
|
|
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
|
|
|
|
// SSE41 brings specific instructions for doing vector sign extend even in
|
|
// cases where we don't have SRA.
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, Custom);
|
|
|
|
// i8 and i16 vectors are custom because the source register and source
|
|
// source memory operand types are not the same width. f32 vectors are
|
|
// custom since the immediate controlling the insert encodes additional
|
|
// information.
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
// FIXME: these should be Legal, but that's only for the case where
|
|
// the index is constant. For now custom expand to deal with that.
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
|
|
}
|
|
}
|
|
|
|
if (Subtarget->hasSSE2()) {
|
|
setOperationAction(ISD::SRL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::SRA, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SRA, MVT::v16i8, Custom);
|
|
|
|
// In the customized shift lowering, the legal cases in AVX2 will be
|
|
// recognized.
|
|
setOperationAction(ISD::SRL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::SRA, MVT::v4i32, Custom);
|
|
}
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
|
|
addRegisterClass(MVT::v32i8, &X86::VR256RegClass);
|
|
addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
|
|
addRegisterClass(MVT::v8i32, &X86::VR256RegClass);
|
|
addRegisterClass(MVT::v8f32, &X86::VR256RegClass);
|
|
addRegisterClass(MVT::v4i64, &X86::VR256RegClass);
|
|
addRegisterClass(MVT::v4f64, &X86::VR256RegClass);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
|
|
setOperationAction(ISD::FABS, MVT::v8f32, Custom);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
|
|
setOperationAction(ISD::FABS, MVT::v4f64, Custom);
|
|
|
|
// (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
|
|
// even though v8i16 is a legal type.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
|
|
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
|
|
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, Legal);
|
|
|
|
setOperationAction(ISD::SRL, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v32i8, Custom);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v32i8, Custom);
|
|
|
|
setOperationAction(ISD::SRA, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::SRA, MVT::v32i8, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
|
|
|
|
setOperationAction(ISD::VSELECT, MVT::v4f64, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v8f32, Custom);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
|
|
|
|
if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
|
|
setOperationAction(ISD::FMA, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v4f64, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
|
|
setOperationAction(ISD::FMA, MVT::f32, Legal);
|
|
setOperationAction(ISD::FMA, MVT::f64, Legal);
|
|
}
|
|
|
|
if (Subtarget->hasInt256()) {
|
|
setOperationAction(ISD::ADD, MVT::v4i64, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v16i16, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v32i8, Legal);
|
|
|
|
setOperationAction(ISD::SUB, MVT::v4i64, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v16i16, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v32i8, Legal);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v16i16, Legal);
|
|
// Don't lower v32i8 because there is no 128-bit byte mul
|
|
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::MULHU, MVT::v16i16, Legal);
|
|
setOperationAction(ISD::MULHS, MVT::v16i16, Legal);
|
|
|
|
setOperationAction(ISD::VSELECT, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
|
|
|
|
// The custom lowering for UINT_TO_FP for v8i32 becomes interesting
|
|
// when we have a 256bit-wide blend with immediate.
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::ADD, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::ADD, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::ADD, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::ADD, MVT::v32i8, Custom);
|
|
|
|
setOperationAction(ISD::SUB, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::SUB, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::SUB, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::SUB, MVT::v32i8, Custom);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v16i16, Custom);
|
|
// Don't lower v32i8 because there is no 128-bit byte mul
|
|
}
|
|
|
|
// In the customized shift lowering, the legal cases in AVX2 will be
|
|
// recognized.
|
|
setOperationAction(ISD::SRL, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v8i32, Custom);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v8i32, Custom);
|
|
|
|
setOperationAction(ISD::SRA, MVT::v8i32, Custom);
|
|
|
|
// Custom lower several nodes for 256-bit types.
|
|
for (int i = MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
// Extract subvector is special because the value type
|
|
// (result) is 128-bit but the source is 256-bit wide.
|
|
if (VT.is128BitVector()) {
|
|
if (VT.getScalarSizeInBits() >= 32) {
|
|
setOperationAction(ISD::MLOAD, VT, Custom);
|
|
setOperationAction(ISD::MSTORE, VT, Custom);
|
|
}
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
}
|
|
// Do not attempt to custom lower other non-256-bit vectors
|
|
if (!VT.is256BitVector())
|
|
continue;
|
|
|
|
if (VT.getScalarSizeInBits() >= 32) {
|
|
setOperationAction(ISD::MLOAD, VT, Legal);
|
|
setOperationAction(ISD::MSTORE, VT, Legal);
|
|
}
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
|
|
}
|
|
|
|
// Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
|
|
for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
// Do not attempt to promote non-256-bit vectors
|
|
if (!VT.is256BitVector())
|
|
continue;
|
|
|
|
setOperationAction(ISD::AND, VT, Promote);
|
|
AddPromotedToType (ISD::AND, VT, MVT::v4i64);
|
|
setOperationAction(ISD::OR, VT, Promote);
|
|
AddPromotedToType (ISD::OR, VT, MVT::v4i64);
|
|
setOperationAction(ISD::XOR, VT, Promote);
|
|
AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
|
|
setOperationAction(ISD::LOAD, VT, Promote);
|
|
AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
|
|
setOperationAction(ISD::SELECT, VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
|
|
}
|
|
}
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
|
|
addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
|
|
addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
|
|
addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
|
|
addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
|
|
|
|
addRegisterClass(MVT::i1, &X86::VK1RegClass);
|
|
addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
|
|
addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
|
|
|
|
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::i1, Custom);
|
|
setOperationAction(ISD::XOR, MVT::i1, Legal);
|
|
setOperationAction(ISD::OR, MVT::i1, Legal);
|
|
setOperationAction(ISD::AND, MVT::i1, Legal);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v16f32, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v16i1, Legal);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v16f32, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v16f32, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v16f32, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v16f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v16f32, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v16f32, Custom);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::FSUB, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v8f64, Custom);
|
|
setOperationAction(ISD::FMA, MVT::v8f64, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v16f32, Legal);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
|
|
if (Subtarget->is64Bit()) {
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
|
|
}
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal);
|
|
|
|
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom);
|
|
setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Legal);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v16i1, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v8i1, Custom);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v8i64, Custom);
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
|
|
|
|
setOperationAction(ISD::ADD, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::ADD, MVT::v16i32, Legal);
|
|
|
|
setOperationAction(ISD::SUB, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v16i32, Legal);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v16i32, Legal);
|
|
|
|
setOperationAction(ISD::SRL, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::SRL, MVT::v16i32, Custom);
|
|
|
|
setOperationAction(ISD::SHL, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::SHL, MVT::v16i32, Custom);
|
|
|
|
setOperationAction(ISD::SRA, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::SRA, MVT::v16i32, Custom);
|
|
|
|
setOperationAction(ISD::AND, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::OR, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::XOR, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::AND, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::OR, MVT::v16i32, Legal);
|
|
setOperationAction(ISD::XOR, MVT::v16i32, Legal);
|
|
|
|
if (Subtarget->hasCDI()) {
|
|
setOperationAction(ISD::CTLZ, MVT::v8i64, Legal);
|
|
setOperationAction(ISD::CTLZ, MVT::v16i32, Legal);
|
|
}
|
|
|
|
// Custom lower several nodes.
|
|
for (int i = MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
// Extract subvector is special because the value type
|
|
// (result) is 256/128-bit but the source is 512-bit wide.
|
|
if (VT.is128BitVector() || VT.is256BitVector()) {
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
if ( EltSize >= 32) {
|
|
setOperationAction(ISD::MLOAD, VT, Legal);
|
|
setOperationAction(ISD::MSTORE, VT, Legal);
|
|
}
|
|
}
|
|
if (VT.getVectorElementType() == MVT::i1)
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
|
|
|
|
// Do not attempt to custom lower other non-512-bit vectors
|
|
if (!VT.is512BitVector())
|
|
continue;
|
|
|
|
if ( EltSize >= 32) {
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VSELECT, VT, Legal);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::MLOAD, VT, Legal);
|
|
setOperationAction(ISD::MSTORE, VT, Legal);
|
|
}
|
|
}
|
|
for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
|
|
MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
// Do not attempt to promote non-256-bit vectors
|
|
if (!VT.is512BitVector())
|
|
continue;
|
|
|
|
setOperationAction(ISD::SELECT, VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
|
|
}
|
|
}// has AVX-512
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasBWI()) {
|
|
addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
|
|
addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
|
|
|
|
addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
|
|
addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v32i16, Legal);
|
|
setOperationAction(ISD::LOAD, MVT::v64i8, Legal);
|
|
setOperationAction(ISD::SETCC, MVT::v32i1, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v64i1, Custom);
|
|
|
|
for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
|
|
const MVT VT = (MVT::SimpleValueType)i;
|
|
|
|
const unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
|
|
// Do not attempt to promote non-256-bit vectors
|
|
if (!VT.is512BitVector())
|
|
continue;
|
|
|
|
if ( EltSize < 32) {
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VSELECT, VT, Legal);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasVLX()) {
|
|
addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
|
|
addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v4i1, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v2i1, Custom);
|
|
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Legal);
|
|
}
|
|
|
|
// SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
|
|
// of this type with custom code.
|
|
for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
|
|
VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
|
|
Custom);
|
|
}
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
if (!Subtarget->is64Bit())
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
|
|
|
|
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
|
|
// handle type legalization for these operations here.
|
|
//
|
|
// FIXME: We really should do custom legalization for addition and
|
|
// subtraction on x86-32 once PR3203 is fixed. We really can't do much better
|
|
// than generic legalization for 64-bit multiplication-with-overflow, though.
|
|
for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
|
|
// Add/Sub/Mul with overflow operations are custom lowered.
|
|
MVT VT = IntVTs[i];
|
|
setOperationAction(ISD::SADDO, VT, Custom);
|
|
setOperationAction(ISD::UADDO, VT, Custom);
|
|
setOperationAction(ISD::SSUBO, VT, Custom);
|
|
setOperationAction(ISD::USUBO, VT, Custom);
|
|
setOperationAction(ISD::SMULO, VT, Custom);
|
|
setOperationAction(ISD::UMULO, VT, Custom);
|
|
}
|
|
|
|
|
|
if (!Subtarget->is64Bit()) {
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRA_I128, nullptr);
|
|
}
|
|
|
|
// Combine sin / cos into one node or libcall if possible.
|
|
if (Subtarget->hasSinCos()) {
|
|
setLibcallName(RTLIB::SINCOS_F32, "sincosf");
|
|
setLibcallName(RTLIB::SINCOS_F64, "sincos");
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// For MacOSX, we don't want to the normal expansion of a libcall to
|
|
// sincos. We want to issue a libcall to __sincos_stret to avoid memory
|
|
// traffic.
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
|
|
}
|
|
}
|
|
|
|
if (Subtarget->isTargetWin64()) {
|
|
setOperationAction(ISD::SDIV, MVT::i128, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::i128, Custom);
|
|
setOperationAction(ISD::SREM, MVT::i128, Custom);
|
|
setOperationAction(ISD::UREM, MVT::i128, Custom);
|
|
setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
|
|
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
|
|
setTargetDAGCombine(ISD::VSELECT);
|
|
setTargetDAGCombine(ISD::SELECT);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::FADD);
|
|
setTargetDAGCombine(ISD::FSUB);
|
|
setTargetDAGCombine(ISD::FMA);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
|
|
setTargetDAGCombine(ISD::TRUNCATE);
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
setTargetDAGCombine(ISD::BUILD_VECTOR);
|
|
if (Subtarget->is64Bit())
|
|
setTargetDAGCombine(ISD::MUL);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
|
|
computeRegisterProperties();
|
|
|
|
// On Darwin, -Os means optimize for size without hurting performance,
|
|
// do not reduce the limit.
|
|
MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
|
|
MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
|
|
MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
|
|
MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
|
|
MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
|
|
MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
|
|
setPrefLoopAlignment(4); // 2^4 bytes.
|
|
|
|
// Predictable cmov don't hurt on atom because it's in-order.
|
|
PredictableSelectIsExpensive = !Subtarget->isAtom();
|
|
|
|
setPrefFunctionAlignment(4); // 2^4 bytes.
|
|
|
|
verifyIntrinsicTables();
|
|
}
|
|
|
|
// This has so far only been implemented for 64-bit MachO.
|
|
bool X86TargetLowering::useLoadStackGuardNode() const {
|
|
return Subtarget->getTargetTriple().getObjectFormat() == Triple::MachO &&
|
|
Subtarget->is64Bit();
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
X86TargetLowering::getPreferredVectorAction(EVT VT) const {
|
|
if (ExperimentalVectorWideningLegalization &&
|
|
VT.getVectorNumElements() != 1 &&
|
|
VT.getVectorElementType().getSimpleVT() != MVT::i1)
|
|
return TypeWidenVector;
|
|
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector())
|
|
return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
|
|
|
|
const unsigned NumElts = VT.getVectorNumElements();
|
|
const EVT EltVT = VT.getVectorElementType();
|
|
if (VT.is512BitVector()) {
|
|
if (Subtarget->hasAVX512())
|
|
if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
|
|
EltVT == MVT::f32 || EltVT == MVT::f64)
|
|
switch(NumElts) {
|
|
case 8: return MVT::v8i1;
|
|
case 16: return MVT::v16i1;
|
|
}
|
|
if (Subtarget->hasBWI())
|
|
if (EltVT == MVT::i8 || EltVT == MVT::i16)
|
|
switch(NumElts) {
|
|
case 32: return MVT::v32i1;
|
|
case 64: return MVT::v64i1;
|
|
}
|
|
}
|
|
|
|
if (VT.is256BitVector() || VT.is128BitVector()) {
|
|
if (Subtarget->hasVLX())
|
|
if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
|
|
EltVT == MVT::f32 || EltVT == MVT::f64)
|
|
switch(NumElts) {
|
|
case 2: return MVT::v2i1;
|
|
case 4: return MVT::v4i1;
|
|
case 8: return MVT::v8i1;
|
|
}
|
|
if (Subtarget->hasBWI() && Subtarget->hasVLX())
|
|
if (EltVT == MVT::i8 || EltVT == MVT::i16)
|
|
switch(NumElts) {
|
|
case 8: return MVT::v8i1;
|
|
case 16: return MVT::v16i1;
|
|
case 32: return MVT::v32i1;
|
|
}
|
|
}
|
|
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
|
|
/// the desired ByVal argument alignment.
|
|
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
|
|
if (MaxAlign == 16)
|
|
return;
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
if (VTy->getBitWidth() == 128)
|
|
MaxAlign = 16;
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
unsigned EltAlign = 0;
|
|
getMaxByValAlign(ATy->getElementType(), EltAlign);
|
|
if (EltAlign > MaxAlign)
|
|
MaxAlign = EltAlign;
|
|
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
unsigned EltAlign = 0;
|
|
getMaxByValAlign(STy->getElementType(i), EltAlign);
|
|
if (EltAlign > MaxAlign)
|
|
MaxAlign = EltAlign;
|
|
if (MaxAlign == 16)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. For X86, aggregates
|
|
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
|
|
/// are at 4-byte boundaries.
|
|
unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
|
|
if (Subtarget->is64Bit()) {
|
|
// Max of 8 and alignment of type.
|
|
unsigned TyAlign = TD->getABITypeAlignment(Ty);
|
|
if (TyAlign > 8)
|
|
return TyAlign;
|
|
return 8;
|
|
}
|
|
|
|
unsigned Align = 4;
|
|
if (Subtarget->hasSSE1())
|
|
getMaxByValAlign(Ty, Align);
|
|
return Align;
|
|
}
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT
|
|
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
|
|
unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
const Function *F = MF.getFunction();
|
|
if ((!IsMemset || ZeroMemset) &&
|
|
!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NoImplicitFloat)) {
|
|
if (Size >= 16 &&
|
|
(Subtarget->isUnalignedMemAccessFast() ||
|
|
((DstAlign == 0 || DstAlign >= 16) &&
|
|
(SrcAlign == 0 || SrcAlign >= 16)))) {
|
|
if (Size >= 32) {
|
|
if (Subtarget->hasInt256())
|
|
return MVT::v8i32;
|
|
if (Subtarget->hasFp256())
|
|
return MVT::v8f32;
|
|
}
|
|
if (Subtarget->hasSSE2())
|
|
return MVT::v4i32;
|
|
if (Subtarget->hasSSE1())
|
|
return MVT::v4f32;
|
|
} else if (!MemcpyStrSrc && Size >= 8 &&
|
|
!Subtarget->is64Bit() &&
|
|
Subtarget->hasSSE2()) {
|
|
// Do not use f64 to lower memcpy if source is string constant. It's
|
|
// better to use i32 to avoid the loads.
|
|
return MVT::f64;
|
|
}
|
|
}
|
|
if (Subtarget->is64Bit() && Size >= 8)
|
|
return MVT::i64;
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
|
|
if (VT == MVT::f32)
|
|
return X86ScalarSSEf32;
|
|
else if (VT == MVT::f64)
|
|
return X86ScalarSSEf64;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned,
|
|
unsigned,
|
|
bool *Fast) const {
|
|
if (Fast)
|
|
*Fast = Subtarget->isUnalignedMemAccessFast();
|
|
return true;
|
|
}
|
|
|
|
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
|
|
/// current function. The returned value is a member of the
|
|
/// MachineJumpTableInfo::JTEntryKind enum.
|
|
unsigned X86TargetLowering::getJumpTableEncoding() const {
|
|
// In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
|
|
// symbol.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
|
|
Subtarget->isPICStyleGOT())
|
|
return MachineJumpTableInfo::EK_Custom32;
|
|
|
|
// Otherwise, use the normal jump table encoding heuristics.
|
|
return TargetLowering::getJumpTableEncoding();
|
|
}
|
|
|
|
const MCExpr *
|
|
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB,
|
|
unsigned uid,MCContext &Ctx) const{
|
|
assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
|
|
Subtarget->isPICStyleGOT());
|
|
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
|
|
// entries.
|
|
return MCSymbolRefExpr::Create(MBB->getSymbol(),
|
|
MCSymbolRefExpr::VK_GOTOFF, Ctx);
|
|
}
|
|
|
|
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
|
|
/// jumptable.
|
|
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const {
|
|
if (!Subtarget->is64Bit())
|
|
// This doesn't have SDLoc associated with it, but is not really the
|
|
// same as a Register.
|
|
return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
|
|
return Table;
|
|
}
|
|
|
|
/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
|
|
/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
|
|
/// MCExpr.
|
|
const MCExpr *X86TargetLowering::
|
|
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
|
|
MCContext &Ctx) const {
|
|
// X86-64 uses RIP relative addressing based on the jump table label.
|
|
if (Subtarget->isPICStyleRIPRel())
|
|
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
|
|
|
|
// Otherwise, the reference is relative to the PIC base.
|
|
return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
|
|
}
|
|
|
|
// FIXME: Why this routine is here? Move to RegInfo!
|
|
std::pair<const TargetRegisterClass*, uint8_t>
|
|
X86TargetLowering::findRepresentativeClass(MVT VT) const{
|
|
const TargetRegisterClass *RRC = nullptr;
|
|
uint8_t Cost = 1;
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
return TargetLowering::findRepresentativeClass(VT);
|
|
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
|
|
RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
|
|
break;
|
|
case MVT::x86mmx:
|
|
RRC = &X86::VR64RegClass;
|
|
break;
|
|
case MVT::f32: case MVT::f64:
|
|
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
|
|
case MVT::v4f32: case MVT::v2f64:
|
|
case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
|
|
case MVT::v4f64:
|
|
RRC = &X86::VR128RegClass;
|
|
break;
|
|
}
|
|
return std::make_pair(RRC, Cost);
|
|
}
|
|
|
|
bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
|
|
unsigned &Offset) const {
|
|
if (!Subtarget->isTargetLinux())
|
|
return false;
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
// %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
|
|
Offset = 0x28;
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
|
|
AddressSpace = 256;
|
|
else
|
|
AddressSpace = 257;
|
|
} else {
|
|
// %gs:0x14 on i386
|
|
Offset = 0x14;
|
|
AddressSpace = 256;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
|
|
unsigned DestAS) const {
|
|
assert(SrcAS != DestAS && "Expected different address spaces!");
|
|
|
|
return SrcAS < 256 && DestAS < 256;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86GenCallingConv.inc"
|
|
|
|
bool
|
|
X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC_X86);
|
|
}
|
|
|
|
const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
|
|
static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
|
|
return ScratchRegs;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 6> RetOps;
|
|
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
|
|
// Operand #1 = Bytes To Pop
|
|
RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
|
|
MVT::i16));
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
SDValue ValToCopy = OutVals[i];
|
|
EVT ValVT = ValToCopy.getValueType();
|
|
|
|
// Promote values to the appropriate types
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
|
|
else if (VA.getLocInfo() == CCValAssign::AExt)
|
|
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
|
|
else if (VA.getLocInfo() == CCValAssign::BCvt)
|
|
ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
|
|
|
|
assert(VA.getLocInfo() != CCValAssign::FPExt &&
|
|
"Unexpected FP-extend for return value.");
|
|
|
|
// If this is x86-64, and we disabled SSE, we can't return FP values,
|
|
// or SSE or MMX vectors.
|
|
if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
|
|
VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
|
|
(Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
|
|
report_fatal_error("SSE register return with SSE disabled");
|
|
}
|
|
// Likewise we can't return F64 values with SSE1 only. gcc does so, but
|
|
// llvm-gcc has never done it right and no one has noticed, so this
|
|
// should be OK for now.
|
|
if (ValVT == MVT::f64 &&
|
|
(Subtarget->is64Bit() && !Subtarget->hasSSE2()))
|
|
report_fatal_error("SSE2 register return with SSE2 disabled");
|
|
|
|
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
|
|
// the RET instruction and handled by the FP Stackifier.
|
|
if (VA.getLocReg() == X86::FP0 ||
|
|
VA.getLocReg() == X86::FP1) {
|
|
// If this is a copy from an xmm register to ST(0), use an FPExtend to
|
|
// change the value to the FP stack register class.
|
|
if (isScalarFPTypeInSSEReg(VA.getValVT()))
|
|
ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
|
|
RetOps.push_back(ValToCopy);
|
|
// Don't emit a copytoreg.
|
|
continue;
|
|
}
|
|
|
|
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
|
|
// which is returned in RAX / RDX.
|
|
if (Subtarget->is64Bit()) {
|
|
if (ValVT == MVT::x86mmx) {
|
|
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
|
|
ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
|
|
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
|
|
ValToCopy);
|
|
// If we don't have SSE2 available, convert to v4f32 so the generated
|
|
// register is legal.
|
|
if (!Subtarget->hasSSE2())
|
|
ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
|
|
}
|
|
}
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// The x86-64 ABIs require that for returning structs by value we copy
|
|
// the sret argument into %rax/%eax (depending on ABI) for the return.
|
|
// Win32 requires us to put the sret argument to %eax as well.
|
|
// We saved the argument into a virtual register in the entry block,
|
|
// so now we copy the value out and into %rax/%eax.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
|
|
(Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
unsigned Reg = FuncInfo->getSRetReturnReg();
|
|
assert(Reg &&
|
|
"SRetReturnReg should have been set in LowerFormalArguments().");
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
|
|
|
|
unsigned RetValReg
|
|
= (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
|
|
X86::RAX : X86::EAX;
|
|
Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
// RAX/EAX now acts like a return value.
|
|
RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
|
|
}
|
|
|
|
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDValue TCChain = Chain;
|
|
SDNode *Copy = *N->use_begin();
|
|
if (Copy->getOpcode() == ISD::CopyToReg) {
|
|
// If the copy has a glue operand, we conservatively assume it isn't safe to
|
|
// perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
|
|
return false;
|
|
|
|
bool HasRet = false;
|
|
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
|
|
UI != UE; ++UI) {
|
|
if (UI->getOpcode() != X86ISD::RET_FLAG)
|
|
return false;
|
|
// If we are returning more than one value, we can definitely
|
|
// not make a tail call see PR19530
|
|
if (UI->getNumOperands() > 4)
|
|
return false;
|
|
if (UI->getNumOperands() == 4 &&
|
|
UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
|
|
if (!HasRet)
|
|
return false;
|
|
|
|
Chain = TCChain;
|
|
return true;
|
|
}
|
|
|
|
EVT
|
|
X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
|
|
ISD::NodeType ExtendKind) const {
|
|
MVT ReturnMVT;
|
|
// TODO: Is this also valid on 32-bit?
|
|
if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
|
|
ReturnMVT = MVT::i8;
|
|
else
|
|
ReturnMVT = MVT::i32;
|
|
|
|
EVT MinVT = getRegisterType(Context, ReturnMVT);
|
|
return VT.bitsLT(MinVT) ? MinVT : VT;
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
///
|
|
SDValue
|
|
X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
EVT CopyVT = VA.getValVT();
|
|
|
|
// If this is x86-64, and we disabled SSE, we can't return FP values
|
|
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
|
|
((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
|
|
report_fatal_error("SSE register return with SSE disabled");
|
|
}
|
|
|
|
// If we prefer to use the value in xmm registers, copy it out as f80 and
|
|
// use a truncate to move it from fp stack reg to xmm reg.
|
|
if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
|
|
isScalarFPTypeInSSEReg(VA.getValVT()))
|
|
CopyVT = MVT::f80;
|
|
|
|
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
|
|
CopyVT, InFlag).getValue(1);
|
|
SDValue Val = Chain.getValue(0);
|
|
|
|
if (CopyVT != VA.getValVT())
|
|
Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
|
|
// This truncation won't change the value.
|
|
DAG.getIntPtrConstant(1));
|
|
|
|
InFlag = Chain.getValue(2);
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// C & StdCall & Fast Calling Convention implementation
|
|
//===----------------------------------------------------------------------===//
|
|
// StdCall calling convention seems to be standard for many Windows' API
|
|
// routines and around. It differs from C calling convention just a little:
|
|
// callee should clean up the stack, not caller. Symbols should be also
|
|
// decorated in some fancy way :) It doesn't support any vector arguments.
|
|
// For info on fast calling convention see Fast Calling Convention (tail call)
|
|
// implementation LowerX86_32FastCCCallTo.
|
|
|
|
/// CallIsStructReturn - Determines whether a call uses struct return
|
|
/// semantics.
|
|
enum StructReturnType {
|
|
NotStructReturn,
|
|
RegStructReturn,
|
|
StackStructReturn
|
|
};
|
|
static StructReturnType
|
|
callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
|
|
if (Outs.empty())
|
|
return NotStructReturn;
|
|
|
|
const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
|
|
if (!Flags.isSRet())
|
|
return NotStructReturn;
|
|
if (Flags.isInReg())
|
|
return RegStructReturn;
|
|
return StackStructReturn;
|
|
}
|
|
|
|
/// ArgsAreStructReturn - Determines whether a function uses struct
|
|
/// return semantics.
|
|
static StructReturnType
|
|
argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
|
|
if (Ins.empty())
|
|
return NotStructReturn;
|
|
|
|
const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
|
|
if (!Flags.isSRet())
|
|
return NotStructReturn;
|
|
if (Flags.isInReg())
|
|
return RegStructReturn;
|
|
return StackStructReturn;
|
|
}
|
|
|
|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
|
|
/// by "Src" to address "Dst" with size and alignment information specified by
|
|
/// the specific parameter attribute. The copy will be passed as a byval
|
|
/// function parameter.
|
|
static SDValue
|
|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
|
|
|
|
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
|
|
/*isVolatile*/false, /*AlwaysInline=*/true,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
}
|
|
|
|
/// IsTailCallConvention - Return true if the calling convention is one that
|
|
/// supports tail call optimization.
|
|
static bool IsTailCallConvention(CallingConv::ID CC) {
|
|
return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
|
|
CC == CallingConv::HiPE);
|
|
}
|
|
|
|
/// \brief Return true if the calling convention is a C calling convention.
|
|
static bool IsCCallConvention(CallingConv::ID CC) {
|
|
return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
|
|
CC == CallingConv::X86_64_SysV);
|
|
}
|
|
|
|
bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
|
|
if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
|
|
return false;
|
|
|
|
CallSite CS(CI);
|
|
CallingConv::ID CalleeCC = CS.getCallingConv();
|
|
if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// FuncIsMadeTailCallSafe - Return true if the function is being made into
|
|
/// a tailcall target by changing its ABI.
|
|
static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
|
|
bool GuaranteedTailCallOpt) {
|
|
return GuaranteedTailCallOpt && IsTailCallConvention(CC);
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerMemArgument(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
MachineFrameInfo *MFI,
|
|
unsigned i) const {
|
|
// Create the nodes corresponding to a load from this parameter slot.
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
bool AlwaysUseMutable = FuncIsMadeTailCallSafe(
|
|
CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
|
|
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
|
|
EVT ValVT;
|
|
|
|
// If value is passed by pointer we have address passed instead of the value
|
|
// itself.
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
ValVT = VA.getLocVT();
|
|
else
|
|
ValVT = VA.getValVT();
|
|
|
|
// FIXME: For now, all byval parameter objects are marked mutable. This can be
|
|
// changed with more analysis.
|
|
// In case of tail call optimization mark all arguments mutable. Since they
|
|
// could be overwritten by lowering of arguments in case of a tail call.
|
|
if (Flags.isByVal()) {
|
|
unsigned Bytes = Flags.getByValSize();
|
|
if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
|
|
int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
|
|
return DAG.getFrameIndex(FI, getPointerTy());
|
|
} else {
|
|
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
|
|
VA.getLocMemOffset(), isImmutable);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
return DAG.getLoad(ValVT, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0);
|
|
}
|
|
}
|
|
|
|
// FIXME: Get this from tablegen.
|
|
static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
|
|
const X86Subtarget *Subtarget) {
|
|
assert(Subtarget->is64Bit());
|
|
|
|
if (Subtarget->isCallingConvWin64(CallConv)) {
|
|
static const MCPhysReg GPR64ArgRegsWin64[] = {
|
|
X86::RCX, X86::RDX, X86::R8, X86::R9
|
|
};
|
|
return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
|
|
}
|
|
|
|
static const MCPhysReg GPR64ArgRegs64Bit[] = {
|
|
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
|
|
};
|
|
return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
|
|
}
|
|
|
|
// FIXME: Get this from tablegen.
|
|
static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
|
|
CallingConv::ID CallConv,
|
|
const X86Subtarget *Subtarget) {
|
|
assert(Subtarget->is64Bit());
|
|
if (Subtarget->isCallingConvWin64(CallConv)) {
|
|
// The XMM registers which might contain var arg parameters are shadowed
|
|
// in their paired GPR. So we only need to save the GPR to their home
|
|
// slots.
|
|
// TODO: __vectorcall will change this.
|
|
return None;
|
|
}
|
|
|
|
const Function *Fn = MF.getFunction();
|
|
bool NoImplicitFloatOps = Fn->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
|
|
assert(!(MF.getTarget().Options.UseSoftFloat && NoImplicitFloatOps) &&
|
|
"SSE register cannot be used when SSE is disabled!");
|
|
if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
|
|
!Subtarget->hasSSE1())
|
|
// Kernel mode asks for SSE to be disabled, so there are no XMM argument
|
|
// registers.
|
|
return None;
|
|
|
|
static const MCPhysReg XMMArgRegs64Bit[] = {
|
|
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
|
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
|
|
};
|
|
return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl,
|
|
SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
const Function* Fn = MF.getFunction();
|
|
if (Fn->hasExternalLinkage() &&
|
|
Subtarget->isTargetCygMing() &&
|
|
Fn->getName() == "main")
|
|
FuncInfo->setForceFramePointer(true);
|
|
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
|
|
|
|
assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
|
|
"Var args not supported with calling convention fastcc, ghc or hipe");
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
// Allocate shadow area for Win64
|
|
if (IsWin64)
|
|
CCInfo.AllocateStack(32, 8);
|
|
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
|
|
|
|
unsigned LastVal = ~0U;
|
|
SDValue ArgValue;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
// TODO: If an arg is passed in two places (e.g. reg and stack), skip later
|
|
// places.
|
|
assert(VA.getValNo() != LastVal &&
|
|
"Don't support value assigned to multiple locs yet");
|
|
(void)LastVal;
|
|
LastVal = VA.getValNo();
|
|
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
const TargetRegisterClass *RC;
|
|
if (RegVT == MVT::i32)
|
|
RC = &X86::GR32RegClass;
|
|
else if (Is64Bit && RegVT == MVT::i64)
|
|
RC = &X86::GR64RegClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = &X86::FR32RegClass;
|
|
else if (RegVT == MVT::f64)
|
|
RC = &X86::FR64RegClass;
|
|
else if (RegVT.is512BitVector())
|
|
RC = &X86::VR512RegClass;
|
|
else if (RegVT.is256BitVector())
|
|
RC = &X86::VR256RegClass;
|
|
else if (RegVT.is128BitVector())
|
|
RC = &X86::VR128RegClass;
|
|
else if (RegVT == MVT::x86mmx)
|
|
RC = &X86::VR64RegClass;
|
|
else if (RegVT == MVT::i1)
|
|
RC = &X86::VK1RegClass;
|
|
else if (RegVT == MVT::v8i1)
|
|
RC = &X86::VK8RegClass;
|
|
else if (RegVT == MVT::v16i1)
|
|
RC = &X86::VK16RegClass;
|
|
else if (RegVT == MVT::v32i1)
|
|
RC = &X86::VK32RegClass;
|
|
else if (RegVT == MVT::v64i1)
|
|
RC = &X86::VK64RegClass;
|
|
else
|
|
llvm_unreachable("Unknown argument type!");
|
|
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
|
|
// If this is an 8 or 16-bit value, it is really passed promoted to 32
|
|
// bits. Insert an assert[sz]ext to capture this, then truncate to the
|
|
// right size.
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
else if (VA.getLocInfo() == CCValAssign::BCvt)
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
|
|
|
|
if (VA.isExtInLoc()) {
|
|
// Handle MMX values passed in XMM regs.
|
|
if (RegVT.isVector())
|
|
ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
|
|
else
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
}
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
|
|
}
|
|
|
|
// If value is passed via pointer - do a load.
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
|
|
if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
// The x86-64 ABIs require that for returning structs by value we copy
|
|
// the sret argument into %rax/%eax (depending on ABI) for the return.
|
|
// Win32 requires us to put the sret argument to %eax as well.
|
|
// Save the argument into a virtual register so that we can access it
|
|
// from the return points.
|
|
if (Ins[i].Flags.isSRet()) {
|
|
unsigned Reg = FuncInfo->getSRetReturnReg();
|
|
if (!Reg) {
|
|
MVT PtrTy = getPointerTy();
|
|
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
|
|
FuncInfo->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned StackSize = CCInfo.getNextStackOffset();
|
|
// Align stack specially for tail calls.
|
|
if (FuncIsMadeTailCallSafe(CallConv,
|
|
MF.getTarget().Options.GuaranteedTailCallOpt))
|
|
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start. We
|
|
// can skip this if there are no va_start calls.
|
|
if (MFI->hasVAStart() &&
|
|
(Is64Bit || (CallConv != CallingConv::X86_FastCall &&
|
|
CallConv != CallingConv::X86_ThisCall))) {
|
|
FuncInfo->setVarArgsFrameIndex(
|
|
MFI->CreateFixedObject(1, StackSize, true));
|
|
}
|
|
|
|
// 64-bit calling conventions support varargs and register parameters, so we
|
|
// have to do extra work to spill them in the prologue or forward them to
|
|
// musttail calls.
|
|
if (Is64Bit && isVarArg &&
|
|
(MFI->hasVAStart() || MFI->hasMustTailInVarArgFunc())) {
|
|
// Find the first unallocated argument registers.
|
|
ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
|
|
ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
|
|
unsigned NumIntRegs =
|
|
CCInfo.getFirstUnallocated(ArgGPRs.data(), ArgGPRs.size());
|
|
unsigned NumXMMRegs =
|
|
CCInfo.getFirstUnallocated(ArgXMMs.data(), ArgXMMs.size());
|
|
assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
|
|
"SSE register cannot be used when SSE is disabled!");
|
|
|
|
// Gather all the live in physical registers.
|
|
SmallVector<SDValue, 6> LiveGPRs;
|
|
SmallVector<SDValue, 8> LiveXMMRegs;
|
|
SDValue ALVal;
|
|
for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
|
|
unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
|
|
LiveGPRs.push_back(
|
|
DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
|
|
}
|
|
if (!ArgXMMs.empty()) {
|
|
unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
|
|
ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
|
|
for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
|
|
unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
|
|
LiveXMMRegs.push_back(
|
|
DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
|
|
}
|
|
}
|
|
|
|
// Store them to the va_list returned by va_start.
|
|
if (MFI->hasVAStart()) {
|
|
if (IsWin64) {
|
|
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
|
|
// Get to the caller-allocated home save location. Add 8 to account
|
|
// for the return address.
|
|
int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
|
|
FuncInfo->setRegSaveFrameIndex(
|
|
MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
|
|
// Fixup to set vararg frame on shadow area (4 x i64).
|
|
if (NumIntRegs < 4)
|
|
FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
|
|
} else {
|
|
// For X86-64, if there are vararg parameters that are passed via
|
|
// registers, then we must store them to their spots on the stack so
|
|
// they may be loaded by deferencing the result of va_next.
|
|
FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
|
|
FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
|
|
FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
|
|
ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
|
|
}
|
|
|
|
// Store the integer parameter registers.
|
|
SmallVector<SDValue, 8> MemOps;
|
|
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
|
|
getPointerTy());
|
|
unsigned Offset = FuncInfo->getVarArgsGPOffset();
|
|
for (SDValue Val : LiveGPRs) {
|
|
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
|
|
DAG.getIntPtrConstant(Offset));
|
|
SDValue Store =
|
|
DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo::getFixedStack(
|
|
FuncInfo->getRegSaveFrameIndex(), Offset),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
Offset += 8;
|
|
}
|
|
|
|
if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
|
|
// Now store the XMM (fp + vector) parameter registers.
|
|
SmallVector<SDValue, 12> SaveXMMOps;
|
|
SaveXMMOps.push_back(Chain);
|
|
SaveXMMOps.push_back(ALVal);
|
|
SaveXMMOps.push_back(DAG.getIntPtrConstant(
|
|
FuncInfo->getRegSaveFrameIndex()));
|
|
SaveXMMOps.push_back(DAG.getIntPtrConstant(
|
|
FuncInfo->getVarArgsFPOffset()));
|
|
SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
|
|
LiveXMMRegs.end());
|
|
MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
|
|
MVT::Other, SaveXMMOps));
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
|
} else {
|
|
// Add all GPRs, al, and XMMs to the list of forwards. We will add then
|
|
// to the liveout set on a musttail call.
|
|
assert(MFI->hasMustTailInVarArgFunc());
|
|
auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
|
|
typedef X86MachineFunctionInfo::Forward Forward;
|
|
|
|
for (unsigned I = 0, E = LiveGPRs.size(); I != E; ++I) {
|
|
unsigned VReg =
|
|
MF.getRegInfo().createVirtualRegister(&X86::GR64RegClass);
|
|
Chain = DAG.getCopyToReg(Chain, dl, VReg, LiveGPRs[I]);
|
|
Forwards.push_back(Forward(VReg, ArgGPRs[NumIntRegs + I], MVT::i64));
|
|
}
|
|
|
|
if (!ArgXMMs.empty()) {
|
|
unsigned ALVReg =
|
|
MF.getRegInfo().createVirtualRegister(&X86::GR8RegClass);
|
|
Chain = DAG.getCopyToReg(Chain, dl, ALVReg, ALVal);
|
|
Forwards.push_back(Forward(ALVReg, X86::AL, MVT::i8));
|
|
|
|
for (unsigned I = 0, E = LiveXMMRegs.size(); I != E; ++I) {
|
|
unsigned VReg =
|
|
MF.getRegInfo().createVirtualRegister(&X86::VR128RegClass);
|
|
Chain = DAG.getCopyToReg(Chain, dl, VReg, LiveXMMRegs[I]);
|
|
Forwards.push_back(
|
|
Forward(VReg, ArgXMMs[NumXMMRegs + I], MVT::v4f32));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some CCs need callee pop.
|
|
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
|
|
MF.getTarget().Options.GuaranteedTailCallOpt)) {
|
|
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
|
|
} else {
|
|
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
|
|
// If this is an sret function, the return should pop the hidden pointer.
|
|
if (!Is64Bit && !IsTailCallConvention(CallConv) &&
|
|
!Subtarget->getTargetTriple().isOSMSVCRT() &&
|
|
argsAreStructReturn(Ins) == StackStructReturn)
|
|
FuncInfo->setBytesToPopOnReturn(4);
|
|
}
|
|
|
|
if (!Is64Bit) {
|
|
// RegSaveFrameIndex is X86-64 only.
|
|
FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
|
|
if (CallConv == CallingConv::X86_FastCall ||
|
|
CallConv == CallingConv::X86_ThisCall)
|
|
// fastcc functions can't have varargs.
|
|
FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
|
|
}
|
|
|
|
FuncInfo->setArgumentStackSize(StackSize);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
|
|
SDValue StackPtr, SDValue Arg,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
if (Flags.isByVal())
|
|
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
|
|
|
|
return DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo::getStack(LocMemOffset),
|
|
false, false, 0);
|
|
}
|
|
|
|
/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
|
|
/// optimization is performed and it is required.
|
|
SDValue
|
|
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
|
|
SDValue &OutRetAddr, SDValue Chain,
|
|
bool IsTailCall, bool Is64Bit,
|
|
int FPDiff, SDLoc dl) const {
|
|
// Adjust the Return address stack slot.
|
|
EVT VT = getPointerTy();
|
|
OutRetAddr = getReturnAddressFrameIndex(DAG);
|
|
|
|
// Load the "old" Return address.
|
|
OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
return SDValue(OutRetAddr.getNode(), 1);
|
|
}
|
|
|
|
/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
|
|
/// optimization is performed and it is required (FPDiff!=0).
|
|
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
|
|
SDValue Chain, SDValue RetAddrFrIdx,
|
|
EVT PtrVT, unsigned SlotSize,
|
|
int FPDiff, SDLoc dl) {
|
|
// Store the return address to the appropriate stack slot.
|
|
if (!FPDiff) return Chain;
|
|
// Calculate the new stack slot for the return address.
|
|
int NewReturnAddrFI =
|
|
MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
|
|
false);
|
|
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
|
|
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
|
|
MachinePointerInfo::getFixedStack(NewReturnAddrFI),
|
|
false, false, 0);
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
bool isVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
|
|
StructReturnType SR = callIsStructReturn(Outs);
|
|
bool IsSibcall = false;
|
|
X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
if (MF.getTarget().Options.DisableTailCalls)
|
|
isTailCall = false;
|
|
|
|
bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
|
|
if (IsMustTail) {
|
|
// Force this to be a tail call. The verifier rules are enough to ensure
|
|
// that we can lower this successfully without moving the return address
|
|
// around.
|
|
isTailCall = true;
|
|
} else if (isTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
|
|
isVarArg, SR != NotStructReturn,
|
|
MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
|
|
Outs, OutVals, Ins, DAG);
|
|
|
|
// Sibcalls are automatically detected tailcalls which do not require
|
|
// ABI changes.
|
|
if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
|
|
IsSibcall = true;
|
|
|
|
if (isTailCall)
|
|
++NumTailCalls;
|
|
}
|
|
|
|
assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
|
|
"Var args not supported with calling convention fastcc, ghc or hipe");
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
|
|
|
|
// Allocate shadow area for Win64
|
|
if (IsWin64)
|
|
CCInfo.AllocateStack(32, 8);
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
if (IsSibcall)
|
|
// This is a sibcall. The memory operands are available in caller's
|
|
// own caller's stack.
|
|
NumBytes = 0;
|
|
else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
IsTailCallConvention(CallConv))
|
|
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
|
|
|
|
int FPDiff = 0;
|
|
if (isTailCall && !IsSibcall && !IsMustTail) {
|
|
// Lower arguments at fp - stackoffset + fpdiff.
|
|
unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
|
|
|
|
FPDiff = NumBytesCallerPushed - NumBytes;
|
|
|
|
// Set the delta of movement of the returnaddr stackslot.
|
|
// But only set if delta is greater than previous delta.
|
|
if (FPDiff < X86Info->getTCReturnAddrDelta())
|
|
X86Info->setTCReturnAddrDelta(FPDiff);
|
|
}
|
|
|
|
unsigned NumBytesToPush = NumBytes;
|
|
unsigned NumBytesToPop = NumBytes;
|
|
|
|
// If we have an inalloca argument, all stack space has already been allocated
|
|
// for us and be right at the top of the stack. We don't support multiple
|
|
// arguments passed in memory when using inalloca.
|
|
if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
|
|
NumBytesToPush = 0;
|
|
if (!ArgLocs.back().isMemLoc())
|
|
report_fatal_error("cannot use inalloca attribute on a register "
|
|
"parameter");
|
|
if (ArgLocs.back().getLocMemOffset() != 0)
|
|
report_fatal_error("any parameter with the inalloca attribute must be "
|
|
"the only memory argument");
|
|
}
|
|
|
|
if (!IsSibcall)
|
|
Chain = DAG.getCALLSEQ_START(
|
|
Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
|
|
|
|
SDValue RetAddrFrIdx;
|
|
// Load return address for tail calls.
|
|
if (isTailCall && FPDiff)
|
|
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
|
|
Is64Bit, FPDiff, dl);
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SDValue StackPtr;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads. In the case
|
|
// of tail call optimization arguments are handle later.
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
// Skip inalloca arguments, they have already been written.
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (Flags.isInAlloca())
|
|
continue;
|
|
|
|
CCValAssign &VA = ArgLocs[i];
|
|
EVT RegVT = VA.getLocVT();
|
|
SDValue Arg = OutVals[i];
|
|
bool isByVal = Flags.isByVal();
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
if (RegVT.is128BitVector()) {
|
|
// Special case: passing MMX values in XMM registers.
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
|
|
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
|
|
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
|
|
} else
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::Indirect: {
|
|
// Store the argument.
|
|
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
|
|
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
Arg = SpillSlot;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
if (isVarArg && IsWin64) {
|
|
// Win64 ABI requires argument XMM reg to be copied to the corresponding
|
|
// shadow reg if callee is a varargs function.
|
|
unsigned ShadowReg = 0;
|
|
switch (VA.getLocReg()) {
|
|
case X86::XMM0: ShadowReg = X86::RCX; break;
|
|
case X86::XMM1: ShadowReg = X86::RDX; break;
|
|
case X86::XMM2: ShadowReg = X86::R8; break;
|
|
case X86::XMM3: ShadowReg = X86::R9; break;
|
|
}
|
|
if (ShadowReg)
|
|
RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
|
|
}
|
|
} else if (!IsSibcall && (!isTailCall || isByVal)) {
|
|
assert(VA.isMemLoc());
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
|
|
getPointerTy());
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
|
|
|
if (Subtarget->isPICStyleGOT()) {
|
|
// ELF / PIC requires GOT in the EBX register before function calls via PLT
|
|
// GOT pointer.
|
|
if (!isTailCall) {
|
|
RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
|
|
} else {
|
|
// If we are tail calling and generating PIC/GOT style code load the
|
|
// address of the callee into ECX. The value in ecx is used as target of
|
|
// the tail jump. This is done to circumvent the ebx/callee-saved problem
|
|
// for tail calls on PIC/GOT architectures. Normally we would just put the
|
|
// address of GOT into ebx and then call target@PLT. But for tail calls
|
|
// ebx would be restored (since ebx is callee saved) before jumping to the
|
|
// target@PLT.
|
|
|
|
// Note: The actual moving to ECX is done further down.
|
|
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
|
|
if (G && !G->getGlobal()->hasHiddenVisibility() &&
|
|
!G->getGlobal()->hasProtectedVisibility())
|
|
Callee = LowerGlobalAddress(Callee, DAG);
|
|
else if (isa<ExternalSymbolSDNode>(Callee))
|
|
Callee = LowerExternalSymbol(Callee, DAG);
|
|
}
|
|
}
|
|
|
|
if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
|
|
// From AMD64 ABI document:
|
|
// For calls that may call functions that use varargs or stdargs
|
|
// (prototype-less calls or calls to functions containing ellipsis (...) in
|
|
// the declaration) %al is used as hidden argument to specify the number
|
|
// of SSE registers used. The contents of %al do not need to match exactly
|
|
// the number of registers, but must be an ubound on the number of SSE
|
|
// registers used and is in the range 0 - 8 inclusive.
|
|
|
|
// Count the number of XMM registers allocated.
|
|
static const MCPhysReg XMMArgRegs[] = {
|
|
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
|
|
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
|
|
};
|
|
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
|
|
assert((Subtarget->hasSSE1() || !NumXMMRegs)
|
|
&& "SSE registers cannot be used when SSE is disabled");
|
|
|
|
RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
|
|
DAG.getConstant(NumXMMRegs, MVT::i8)));
|
|
}
|
|
|
|
if (Is64Bit && isVarArg && IsMustTail) {
|
|
const auto &Forwards = X86Info->getForwardedMustTailRegParms();
|
|
for (const auto &F : Forwards) {
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
|
|
RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
|
|
}
|
|
}
|
|
|
|
// For tail calls lower the arguments to the 'real' stack slots. Sibcalls
|
|
// don't need this because the eligibility check rejects calls that require
|
|
// shuffling arguments passed in memory.
|
|
if (!IsSibcall && isTailCall) {
|
|
// Force all the incoming stack arguments to be loaded from the stack
|
|
// before any new outgoing arguments are stored to the stack, because the
|
|
// outgoing stack slots may alias the incoming argument stack slots, and
|
|
// the alias isn't otherwise explicit. This is slightly more conservative
|
|
// than necessary, because it means that each store effectively depends
|
|
// on every argument instead of just those arguments it would clobber.
|
|
SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
|
|
|
|
SmallVector<SDValue, 8> MemOpChains2;
|
|
SDValue FIN;
|
|
int FI = 0;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
if (VA.isRegLoc())
|
|
continue;
|
|
assert(VA.isMemLoc());
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
// Skip inalloca arguments. They don't require any work.
|
|
if (Flags.isInAlloca())
|
|
continue;
|
|
// Create frame index.
|
|
int32_t Offset = VA.getLocMemOffset()+FPDiff;
|
|
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
|
|
FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
|
|
FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
|
|
if (Flags.isByVal()) {
|
|
// Copy relative to framepointer.
|
|
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl,
|
|
RegInfo->getStackRegister(),
|
|
getPointerTy());
|
|
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
|
|
|
|
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
|
|
ArgChain,
|
|
Flags, DAG, dl));
|
|
} else {
|
|
// Store relative to framepointer.
|
|
MemOpChains2.push_back(
|
|
DAG.getStore(ArgChain, dl, Arg, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains2.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
|
|
|
|
// Store the return address to the appropriate stack slot.
|
|
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
|
|
getPointerTy(), RegInfo->getSlotSize(),
|
|
FPDiff, dl);
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into registers.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
|
|
assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
|
|
// In the 64-bit large code model, we have to make all calls
|
|
// through a register, since the call instruction's 32-bit
|
|
// pc-relative offset may not be large enough to hold the whole
|
|
// address.
|
|
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
// If the callee is a GlobalAddress node (quite common, every direct call
|
|
// is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
|
|
// it.
|
|
|
|
// We should use extra load for direct calls to dllimported functions in
|
|
// non-JIT mode.
|
|
const GlobalValue *GV = G->getGlobal();
|
|
if (!GV->hasDLLImportStorageClass()) {
|
|
unsigned char OpFlags = 0;
|
|
bool ExtraLoad = false;
|
|
unsigned WrapperKind = ISD::DELETED_NODE;
|
|
|
|
// On ELF targets, in both X86-64 and X86-32 mode, direct calls to
|
|
// external symbols most go through the PLT in PIC mode. If the symbol
|
|
// has hidden or protected visibility, or if it is static or local, then
|
|
// we don't need to use the PLT - we can directly call it.
|
|
if (Subtarget->isTargetELF() &&
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
|
|
GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
|
|
OpFlags = X86II::MO_PLT;
|
|
} else if (Subtarget->isPICStyleStubAny() &&
|
|
(GV->isDeclaration() || GV->isWeakForLinker()) &&
|
|
(!Subtarget->getTargetTriple().isMacOSX() ||
|
|
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
|
|
// PC-relative references to external symbols should go through $stub,
|
|
// unless we're building with the leopard linker or later, which
|
|
// automatically synthesizes these stubs.
|
|
OpFlags = X86II::MO_DARWIN_STUB;
|
|
} else if (Subtarget->isPICStyleRIPRel() &&
|
|
isa<Function>(GV) &&
|
|
cast<Function>(GV)->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NonLazyBind)) {
|
|
// If the function is marked as non-lazy, generate an indirect call
|
|
// which loads from the GOT directly. This avoids runtime overhead
|
|
// at the cost of eager binding (and one extra byte of encoding).
|
|
OpFlags = X86II::MO_GOTPCREL;
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
ExtraLoad = true;
|
|
}
|
|
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
|
|
G->getOffset(), OpFlags);
|
|
|
|
// Add a wrapper if needed.
|
|
if (WrapperKind != ISD::DELETED_NODE)
|
|
Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
|
|
// Add extra indirection if needed.
|
|
if (ExtraLoad)
|
|
Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
|
|
MachinePointerInfo::getGOT(),
|
|
false, false, false, 0);
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
unsigned char OpFlags = 0;
|
|
|
|
// On ELF targets, in either X86-64 or X86-32 mode, direct calls to
|
|
// external symbols should go through the PLT.
|
|
if (Subtarget->isTargetELF() &&
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
|
|
OpFlags = X86II::MO_PLT;
|
|
} else if (Subtarget->isPICStyleStubAny() &&
|
|
(!Subtarget->getTargetTriple().isMacOSX() ||
|
|
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
|
|
// PC-relative references to external symbols should go through $stub,
|
|
// unless we're building with the leopard linker or later, which
|
|
// automatically synthesizes these stubs.
|
|
OpFlags = X86II::MO_DARWIN_STUB;
|
|
}
|
|
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
|
|
OpFlags);
|
|
} else if (Subtarget->isTarget64BitILP32() && Callee->getValueType(0) == MVT::i32) {
|
|
// Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
|
|
Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
|
|
}
|
|
|
|
// Returns a chain & a flag for retval copy to use.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
if (!IsSibcall && isTailCall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getIntPtrConstant(NumBytesToPop, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag, dl);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
if (isTailCall)
|
|
Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
if (isTailCall) {
|
|
// We used to do:
|
|
//// If this is the first return lowered for this function, add the regs
|
|
//// to the liveout set for the function.
|
|
// This isn't right, although it's probably harmless on x86; liveouts
|
|
// should be computed from returns not tail calls. Consider a void
|
|
// function making a tail call to a function returning int.
|
|
return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
|
|
}
|
|
|
|
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node.
|
|
unsigned NumBytesForCalleeToPop;
|
|
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
|
|
DAG.getTarget().Options.GuaranteedTailCallOpt))
|
|
NumBytesForCalleeToPop = NumBytes; // Callee pops everything
|
|
else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
|
|
!Subtarget->getTargetTriple().isOSMSVCRT() &&
|
|
SR == StackStructReturn)
|
|
// If this is a call to a struct-return function, the callee
|
|
// pops the hidden struct pointer, so we have to push it back.
|
|
// This is common for Darwin/X86, Linux & Mingw32 targets.
|
|
// For MSVC Win32 targets, the caller pops the hidden struct pointer.
|
|
NumBytesForCalleeToPop = 4;
|
|
else
|
|
NumBytesForCalleeToPop = 0; // Callee pops nothing.
|
|
|
|
// Returns a flag for retval copy to use.
|
|
if (!IsSibcall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getIntPtrConstant(NumBytesToPop, true),
|
|
DAG.getIntPtrConstant(NumBytesForCalleeToPop,
|
|
true),
|
|
InFlag, dl);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
|
Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Fast Calling Convention (tail call) implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Like std call, callee cleans arguments, convention except that ECX is
|
|
// reserved for storing the tail called function address. Only 2 registers are
|
|
// free for argument passing (inreg). Tail call optimization is performed
|
|
// provided:
|
|
// * tailcallopt is enabled
|
|
// * caller/callee are fastcc
|
|
// On X86_64 architecture with GOT-style position independent code only local
|
|
// (within module) calls are supported at the moment.
|
|
// To keep the stack aligned according to platform abi the function
|
|
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
|
|
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
|
|
// If a tail called function callee has more arguments than the caller the
|
|
// caller needs to make sure that there is room to move the RETADDR to. This is
|
|
// achieved by reserving an area the size of the argument delta right after the
|
|
// original RETADDR, but before the saved framepointer or the spilled registers
|
|
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
|
|
// stack layout:
|
|
// arg1
|
|
// arg2
|
|
// RETADDR
|
|
// [ new RETADDR
|
|
// move area ]
|
|
// (possible EBP)
|
|
// ESI
|
|
// EDI
|
|
// local1 ..
|
|
|
|
/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
|
|
/// for a 16 byte align requirement.
|
|
unsigned
|
|
X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
|
|
SelectionDAG& DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
TM.getSubtargetImpl()->getRegisterInfo());
|
|
const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
|
|
unsigned StackAlignment = TFI.getStackAlignment();
|
|
uint64_t AlignMask = StackAlignment - 1;
|
|
int64_t Offset = StackSize;
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
|
|
// Number smaller than 12 so just add the difference.
|
|
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
|
|
} else {
|
|
// Mask out lower bits, add stackalignment once plus the 12 bytes.
|
|
Offset = ((~AlignMask) & Offset) + StackAlignment +
|
|
(StackAlignment-SlotSize);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
/// MatchingStackOffset - Return true if the given stack call argument is
|
|
/// already available in the same position (relatively) of the caller's
|
|
/// incoming argument stack.
|
|
static
|
|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
|
|
MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
|
|
const X86InstrInfo *TII) {
|
|
unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
|
|
int FI = INT_MAX;
|
|
if (Arg.getOpcode() == ISD::CopyFromReg) {
|
|
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VR))
|
|
return false;
|
|
MachineInstr *Def = MRI->getVRegDef(VR);
|
|
if (!Def)
|
|
return false;
|
|
if (!Flags.isByVal()) {
|
|
if (!TII->isLoadFromStackSlot(Def, FI))
|
|
return false;
|
|
} else {
|
|
unsigned Opcode = Def->getOpcode();
|
|
if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
|
|
Def->getOperand(1).isFI()) {
|
|
FI = Def->getOperand(1).getIndex();
|
|
Bytes = Flags.getByValSize();
|
|
} else
|
|
return false;
|
|
}
|
|
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
|
|
if (Flags.isByVal())
|
|
// ByVal argument is passed in as a pointer but it's now being
|
|
// dereferenced. e.g.
|
|
// define @foo(%struct.X* %A) {
|
|
// tail call @bar(%struct.X* byval %A)
|
|
// }
|
|
return false;
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
|
|
if (!FINode)
|
|
return false;
|
|
FI = FINode->getIndex();
|
|
} else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
|
|
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
|
|
FI = FINode->getIndex();
|
|
Bytes = Flags.getByValSize();
|
|
} else
|
|
return false;
|
|
|
|
assert(FI != INT_MAX);
|
|
if (!MFI->isFixedObjectIndex(FI))
|
|
return false;
|
|
return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
Type *RetTy,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG &DAG) const {
|
|
if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
|
|
return false;
|
|
|
|
// If -tailcallopt is specified, make fastcc functions tail-callable.
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function *CallerF = MF.getFunction();
|
|
|
|
// If the function return type is x86_fp80 and the callee return type is not,
|
|
// then the FP_EXTEND of the call result is not a nop. It's not safe to
|
|
// perform a tailcall optimization here.
|
|
if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
|
|
return false;
|
|
|
|
CallingConv::ID CallerCC = CallerF->getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
|
|
bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
|
|
|
|
if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
|
|
if (IsTailCallConvention(CalleeCC) && CCMatch)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Look for obvious safe cases to perform tail call optimization that do not
|
|
// require ABI changes. This is what gcc calls sibcall.
|
|
|
|
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
|
|
// emit a special epilogue.
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
return false;
|
|
|
|
// Also avoid sibcall optimization if either caller or callee uses struct
|
|
// return semantics.
|
|
if (isCalleeStructRet || isCallerStructRet)
|
|
return false;
|
|
|
|
// An stdcall/thiscall caller is expected to clean up its arguments; the
|
|
// callee isn't going to do that.
|
|
// FIXME: this is more restrictive than needed. We could produce a tailcall
|
|
// when the stack adjustment matches. For example, with a thiscall that takes
|
|
// only one argument.
|
|
if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
|
|
CallerCC == CallingConv::X86_ThisCall))
|
|
return false;
|
|
|
|
// Do not sibcall optimize vararg calls unless all arguments are passed via
|
|
// registers.
|
|
if (isVarArg && !Outs.empty()) {
|
|
|
|
// Optimizing for varargs on Win64 is unlikely to be safe without
|
|
// additional testing.
|
|
if (IsCalleeWin64 || IsCallerWin64)
|
|
return false;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
|
|
if (!ArgLocs[i].isRegLoc())
|
|
return false;
|
|
}
|
|
|
|
// If the call result is in ST0 / ST1, it needs to be popped off the x87
|
|
// stack. Therefore, if it's not used by the call it is not safe to optimize
|
|
// this into a sibcall.
|
|
bool Unused = false;
|
|
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
|
|
if (!Ins[i].Used) {
|
|
Unused = true;
|
|
break;
|
|
}
|
|
}
|
|
if (Unused) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the calling conventions do not match, then we'd better make sure the
|
|
// results are returned in the same way as what the caller expects.
|
|
if (!CCMatch) {
|
|
SmallVector<CCValAssign, 16> RVLocs1;
|
|
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
|
|
*DAG.getContext());
|
|
CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs2;
|
|
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
|
|
*DAG.getContext());
|
|
CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
|
|
|
|
if (RVLocs1.size() != RVLocs2.size())
|
|
return false;
|
|
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
|
|
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
|
|
return false;
|
|
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
|
|
return false;
|
|
if (RVLocs1[i].isRegLoc()) {
|
|
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
|
|
return false;
|
|
} else {
|
|
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the callee takes no arguments then go on to check the results of the
|
|
// call.
|
|
if (!Outs.empty()) {
|
|
// Check if stack adjustment is needed. For now, do not do this if any
|
|
// argument is passed on the stack.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// Allocate shadow area for Win64
|
|
if (IsCalleeWin64)
|
|
CCInfo.AllocateStack(32, 8);
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
|
|
if (CCInfo.getNextStackOffset()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
|
|
return false;
|
|
|
|
// Check if the arguments are already laid out in the right way as
|
|
// the caller's fixed stack objects.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const MachineRegisterInfo *MRI = &MF.getRegInfo();
|
|
const X86InstrInfo *TII =
|
|
static_cast<const X86InstrInfo *>(DAG.getSubtarget().getInstrInfo());
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
if (!VA.isRegLoc()) {
|
|
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
|
|
MFI, MRI, TII))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the tailcall address may be in a register, then make sure it's
|
|
// possible to register allocate for it. In 32-bit, the call address can
|
|
// only target EAX, EDX, or ECX since the tail call must be scheduled after
|
|
// callee-saved registers are restored. These happen to be the same
|
|
// registers used to pass 'inreg' arguments so watch out for those.
|
|
if (!Subtarget->is64Bit() &&
|
|
((!isa<GlobalAddressSDNode>(Callee) &&
|
|
!isa<ExternalSymbolSDNode>(Callee)) ||
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
|
|
unsigned NumInRegs = 0;
|
|
// In PIC we need an extra register to formulate the address computation
|
|
// for the callee.
|
|
unsigned MaxInRegs =
|
|
(DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
if (!VA.isRegLoc())
|
|
continue;
|
|
unsigned Reg = VA.getLocReg();
|
|
switch (Reg) {
|
|
default: break;
|
|
case X86::EAX: case X86::EDX: case X86::ECX:
|
|
if (++NumInRegs == MaxInRegs)
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
FastISel *
|
|
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
return X86::createFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool MayFoldLoad(SDValue Op) {
|
|
return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
|
|
}
|
|
|
|
static bool MayFoldIntoStore(SDValue Op) {
|
|
return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
|
|
}
|
|
|
|
static bool isTargetShuffle(unsigned Opcode) {
|
|
switch(Opcode) {
|
|
default: return false;
|
|
case X86ISD::BLENDI:
|
|
case X86ISD::PSHUFB:
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::SHUFP:
|
|
case X86ISD::PALIGNR:
|
|
case X86ISD::MOVLHPS:
|
|
case X86ISD::MOVLHPD:
|
|
case X86ISD::MOVHLPS:
|
|
case X86ISD::MOVLPS:
|
|
case X86ISD::MOVLPD:
|
|
case X86ISD::MOVSHDUP:
|
|
case X86ISD::MOVSLDUP:
|
|
case X86ISD::MOVDDUP:
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD:
|
|
case X86ISD::UNPCKL:
|
|
case X86ISD::UNPCKH:
|
|
case X86ISD::VPERMILPI:
|
|
case X86ISD::VPERM2X128:
|
|
case X86ISD::VPERMI:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
|
|
SDValue V1, SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::MOVSHDUP:
|
|
case X86ISD::MOVSLDUP:
|
|
case X86ISD::MOVDDUP:
|
|
return DAG.getNode(Opc, dl, VT, V1);
|
|
}
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
|
|
SDValue V1, unsigned TargetMask,
|
|
SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::VPERMILPI:
|
|
case X86ISD::VPERMI:
|
|
return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
|
|
}
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
|
|
SDValue V1, SDValue V2, unsigned TargetMask,
|
|
SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::PALIGNR:
|
|
case X86ISD::VALIGN:
|
|
case X86ISD::SHUFP:
|
|
case X86ISD::VPERM2X128:
|
|
return DAG.getNode(Opc, dl, VT, V1, V2,
|
|
DAG.getConstant(TargetMask, MVT::i8));
|
|
}
|
|
}
|
|
|
|
static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
|
|
SDValue V1, SDValue V2, SelectionDAG &DAG) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown x86 shuffle node");
|
|
case X86ISD::MOVLHPS:
|
|
case X86ISD::MOVLHPD:
|
|
case X86ISD::MOVHLPS:
|
|
case X86ISD::MOVLPS:
|
|
case X86ISD::MOVLPD:
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD:
|
|
case X86ISD::UNPCKL:
|
|
case X86ISD::UNPCKH:
|
|
return DAG.getNode(Opc, dl, VT, V1, V2);
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
int ReturnAddrIndex = FuncInfo->getRAIndex();
|
|
|
|
if (ReturnAddrIndex == 0) {
|
|
// Set up a frame object for the return address.
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
|
|
-(int64_t)SlotSize,
|
|
false);
|
|
FuncInfo->setRAIndex(ReturnAddrIndex);
|
|
}
|
|
|
|
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
|
|
}
|
|
|
|
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
|
|
bool hasSymbolicDisplacement) {
|
|
// Offset should fit into 32 bit immediate field.
|
|
if (!isInt<32>(Offset))
|
|
return false;
|
|
|
|
// If we don't have a symbolic displacement - we don't have any extra
|
|
// restrictions.
|
|
if (!hasSymbolicDisplacement)
|
|
return true;
|
|
|
|
// FIXME: Some tweaks might be needed for medium code model.
|
|
if (M != CodeModel::Small && M != CodeModel::Kernel)
|
|
return false;
|
|
|
|
// For small code model we assume that latest object is 16MB before end of 31
|
|
// bits boundary. We may also accept pretty large negative constants knowing
|
|
// that all objects are in the positive half of address space.
|
|
if (M == CodeModel::Small && Offset < 16*1024*1024)
|
|
return true;
|
|
|
|
// For kernel code model we know that all object resist in the negative half
|
|
// of 32bits address space. We may not accept negative offsets, since they may
|
|
// be just off and we may accept pretty large positive ones.
|
|
if (M == CodeModel::Kernel && Offset > 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isCalleePop - Determines whether the callee is required to pop its
|
|
/// own arguments. Callee pop is necessary to support tail calls.
|
|
bool X86::isCalleePop(CallingConv::ID CallingConv,
|
|
bool is64Bit, bool IsVarArg, bool TailCallOpt) {
|
|
switch (CallingConv) {
|
|
default:
|
|
return false;
|
|
case CallingConv::X86_StdCall:
|
|
case CallingConv::X86_FastCall:
|
|
case CallingConv::X86_ThisCall:
|
|
return !is64Bit;
|
|
case CallingConv::Fast:
|
|
case CallingConv::GHC:
|
|
case CallingConv::HiPE:
|
|
if (IsVarArg)
|
|
return false;
|
|
return TailCallOpt;
|
|
}
|
|
}
|
|
|
|
/// \brief Return true if the condition is an unsigned comparison operation.
|
|
static bool isX86CCUnsigned(unsigned X86CC) {
|
|
switch (X86CC) {
|
|
default: llvm_unreachable("Invalid integer condition!");
|
|
case X86::COND_E: return true;
|
|
case X86::COND_G: return false;
|
|
case X86::COND_GE: return false;
|
|
case X86::COND_L: return false;
|
|
case X86::COND_LE: return false;
|
|
case X86::COND_NE: return true;
|
|
case X86::COND_B: return true;
|
|
case X86::COND_A: return true;
|
|
case X86::COND_BE: return true;
|
|
case X86::COND_AE: return true;
|
|
}
|
|
llvm_unreachable("covered switch fell through?!");
|
|
}
|
|
|
|
/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
|
|
/// specific condition code, returning the condition code and the LHS/RHS of the
|
|
/// comparison to make.
|
|
static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
|
|
SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
|
|
if (!isFP) {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
|
|
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
|
|
// X > -1 -> X == 0, jump !sign.
|
|
RHS = DAG.getConstant(0, RHS.getValueType());
|
|
return X86::COND_NS;
|
|
}
|
|
if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
|
|
// X < 0 -> X == 0, jump on sign.
|
|
return X86::COND_S;
|
|
}
|
|
if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
|
|
// X < 1 -> X <= 0
|
|
RHS = DAG.getConstant(0, RHS.getValueType());
|
|
return X86::COND_LE;
|
|
}
|
|
}
|
|
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Invalid integer condition!");
|
|
case ISD::SETEQ: return X86::COND_E;
|
|
case ISD::SETGT: return X86::COND_G;
|
|
case ISD::SETGE: return X86::COND_GE;
|
|
case ISD::SETLT: return X86::COND_L;
|
|
case ISD::SETLE: return X86::COND_LE;
|
|
case ISD::SETNE: return X86::COND_NE;
|
|
case ISD::SETULT: return X86::COND_B;
|
|
case ISD::SETUGT: return X86::COND_A;
|
|
case ISD::SETULE: return X86::COND_BE;
|
|
case ISD::SETUGE: return X86::COND_AE;
|
|
}
|
|
}
|
|
|
|
// First determine if it is required or is profitable to flip the operands.
|
|
|
|
// If LHS is a foldable load, but RHS is not, flip the condition.
|
|
if (ISD::isNON_EXTLoad(LHS.getNode()) &&
|
|
!ISD::isNON_EXTLoad(RHS.getNode())) {
|
|
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
|
|
std::swap(LHS, RHS);
|
|
}
|
|
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
std::swap(LHS, RHS);
|
|
break;
|
|
}
|
|
|
|
// On a floating point condition, the flags are set as follows:
|
|
// ZF PF CF op
|
|
// 0 | 0 | 0 | X > Y
|
|
// 0 | 0 | 1 | X < Y
|
|
// 1 | 0 | 0 | X == Y
|
|
// 1 | 1 | 1 | unordered
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Condcode should be pre-legalized away");
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ: return X86::COND_E;
|
|
case ISD::SETOLT: // flipped
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: return X86::COND_A;
|
|
case ISD::SETOLE: // flipped
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: return X86::COND_AE;
|
|
case ISD::SETUGT: // flipped
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: return X86::COND_B;
|
|
case ISD::SETUGE: // flipped
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: return X86::COND_BE;
|
|
case ISD::SETONE:
|
|
case ISD::SETNE: return X86::COND_NE;
|
|
case ISD::SETUO: return X86::COND_P;
|
|
case ISD::SETO: return X86::COND_NP;
|
|
case ISD::SETOEQ:
|
|
case ISD::SETUNE: return X86::COND_INVALID;
|
|
}
|
|
}
|
|
|
|
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
|
|
/// code. Current x86 isa includes the following FP cmov instructions:
|
|
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
|
|
static bool hasFPCMov(unsigned X86CC) {
|
|
switch (X86CC) {
|
|
default:
|
|
return false;
|
|
case X86::COND_B:
|
|
case X86::COND_BE:
|
|
case X86::COND_E:
|
|
case X86::COND_P:
|
|
case X86::COND_A:
|
|
case X86::COND_AE:
|
|
case X86::COND_NE:
|
|
case X86::COND_NP:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// isFPImmLegal - Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
|
|
if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0 || BitSize > 64)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isUndefOrInRange - Return true if Val is undef or if its value falls within
|
|
/// the specified range (L, H].
|
|
static bool isUndefOrInRange(int Val, int Low, int Hi) {
|
|
return (Val < 0) || (Val >= Low && Val < Hi);
|
|
}
|
|
|
|
/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
|
|
/// specified value.
|
|
static bool isUndefOrEqual(int Val, int CmpVal) {
|
|
return (Val < 0 || Val == CmpVal);
|
|
}
|
|
|
|
/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
|
|
/// from position Pos and ending in Pos+Size, falls within the specified
|
|
/// sequential range (L, L+Pos]. or is undef.
|
|
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
|
|
unsigned Pos, unsigned Size, int Low) {
|
|
for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
|
|
if (!isUndefOrEqual(Mask[i], Low))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PSHUFD. That is, it doesn't reference the other
|
|
/// operand - by default will match for first operand.
|
|
static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT,
|
|
bool TestSecondOperand = false) {
|
|
if (VT != MVT::v4f32 && VT != MVT::v4i32 &&
|
|
VT != MVT::v2f64 && VT != MVT::v2i64)
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned Lo = TestSecondOperand ? NumElems : 0;
|
|
unsigned Hi = Lo + NumElems;
|
|
|
|
for (unsigned i = 0; i < NumElems; ++i)
|
|
if (!isUndefOrInRange(Mask[i], (int)Lo, (int)Hi))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PSHUFHW.
|
|
static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
|
|
if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
|
|
return false;
|
|
|
|
// Lower quadword copied in order or undef.
|
|
if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
|
|
return false;
|
|
|
|
// Upper quadword shuffled.
|
|
for (unsigned i = 4; i != 8; ++i)
|
|
if (!isUndefOrInRange(Mask[i], 4, 8))
|
|
return false;
|
|
|
|
if (VT == MVT::v16i16) {
|
|
// Lower quadword copied in order or undef.
|
|
if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
|
|
return false;
|
|
|
|
// Upper quadword shuffled.
|
|
for (unsigned i = 12; i != 16; ++i)
|
|
if (!isUndefOrInRange(Mask[i], 12, 16))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
|
|
/// is suitable for input to PSHUFLW.
|
|
static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
|
|
if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
|
|
return false;
|
|
|
|
// Upper quadword copied in order.
|
|
if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
|
|
return false;
|
|
|
|
// Lower quadword shuffled.
|
|
for (unsigned i = 0; i != 4; ++i)
|
|
if (!isUndefOrInRange(Mask[i], 0, 4))
|
|
return false;
|
|
|
|
if (VT == MVT::v16i16) {
|
|
// Upper quadword copied in order.
|
|
if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
|
|
return false;
|
|
|
|
// Lower quadword shuffled.
|
|
for (unsigned i = 8; i != 12; ++i)
|
|
if (!isUndefOrInRange(Mask[i], 8, 12))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Return true if the mask specifies a shuffle of elements that is
|
|
/// suitable for input to intralane (palignr) or interlane (valign) vector
|
|
/// right-shift.
|
|
static bool isAlignrMask(ArrayRef<int> Mask, MVT VT, bool InterLane) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumLanes = InterLane ? 1: VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
// Do not handle 64-bit element shuffles with palignr.
|
|
if (NumLaneElts == 2)
|
|
return false;
|
|
|
|
for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
|
|
unsigned i;
|
|
for (i = 0; i != NumLaneElts; ++i) {
|
|
if (Mask[i+l] >= 0)
|
|
break;
|
|
}
|
|
|
|
// Lane is all undef, go to next lane
|
|
if (i == NumLaneElts)
|
|
continue;
|
|
|
|
int Start = Mask[i+l];
|
|
|
|
// Make sure its in this lane in one of the sources
|
|
if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
|
|
!isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
|
|
return false;
|
|
|
|
// If not lane 0, then we must match lane 0
|
|
if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
|
|
return false;
|
|
|
|
// Correct second source to be contiguous with first source
|
|
if (Start >= (int)NumElts)
|
|
Start -= NumElts - NumLaneElts;
|
|
|
|
// Make sure we're shifting in the right direction.
|
|
if (Start <= (int)(i+l))
|
|
return false;
|
|
|
|
Start -= i;
|
|
|
|
// Check the rest of the elements to see if they are consecutive.
|
|
for (++i; i != NumLaneElts; ++i) {
|
|
int Idx = Mask[i+l];
|
|
|
|
// Make sure its in this lane
|
|
if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
|
|
!isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
|
|
return false;
|
|
|
|
// If not lane 0, then we must match lane 0
|
|
if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
|
|
return false;
|
|
|
|
if (Idx >= (int)NumElts)
|
|
Idx -= NumElts - NumLaneElts;
|
|
|
|
if (!isUndefOrEqual(Idx, Start+i))
|
|
return false;
|
|
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Return true if the node specifies a shuffle of elements that is
|
|
/// suitable for input to PALIGNR.
|
|
static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
|
|
const X86Subtarget *Subtarget) {
|
|
if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
|
|
(VT.is256BitVector() && !Subtarget->hasInt256()) ||
|
|
VT.is512BitVector())
|
|
// FIXME: Add AVX512BW.
|
|
return false;
|
|
|
|
return isAlignrMask(Mask, VT, false);
|
|
}
|
|
|
|
/// \brief Return true if the node specifies a shuffle of elements that is
|
|
/// suitable for input to VALIGN.
|
|
static bool isVALIGNMask(ArrayRef<int> Mask, MVT VT,
|
|
const X86Subtarget *Subtarget) {
|
|
// FIXME: Add AVX512VL.
|
|
if (!VT.is512BitVector() || !Subtarget->hasAVX512())
|
|
return false;
|
|
return isAlignrMask(Mask, VT, true);
|
|
}
|
|
|
|
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
|
|
/// the two vector operands have swapped position.
|
|
static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
|
|
unsigned NumElems) {
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int idx = Mask[i];
|
|
if (idx < 0)
|
|
continue;
|
|
else if (idx < (int)NumElems)
|
|
Mask[i] = idx + NumElems;
|
|
else
|
|
Mask[i] = idx - NumElems;
|
|
}
|
|
}
|
|
|
|
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to 128/256-bit
|
|
/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
|
|
/// reverse of what x86 shuffles want.
|
|
static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElems = NumElems/NumLanes;
|
|
|
|
if (NumLaneElems != 2 && NumLaneElems != 4)
|
|
return false;
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
bool symetricMaskRequired =
|
|
(VT.getSizeInBits() >= 256) && (EltSize == 32);
|
|
|
|
// VSHUFPSY divides the resulting vector into 4 chunks.
|
|
// The sources are also splitted into 4 chunks, and each destination
|
|
// chunk must come from a different source chunk.
|
|
//
|
|
// SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
|
|
// SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
|
|
//
|
|
// DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
|
|
// Y3..Y0, Y3..Y0, X3..X0, X3..X0
|
|
//
|
|
// VSHUFPDY divides the resulting vector into 4 chunks.
|
|
// The sources are also splitted into 4 chunks, and each destination
|
|
// chunk must come from a different source chunk.
|
|
//
|
|
// SRC1 => X3 X2 X1 X0
|
|
// SRC2 => Y3 Y2 Y1 Y0
|
|
//
|
|
// DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
|
|
//
|
|
SmallVector<int, 4> MaskVal(NumLaneElems, -1);
|
|
unsigned HalfLaneElems = NumLaneElems/2;
|
|
for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
|
|
for (unsigned i = 0; i != NumLaneElems; ++i) {
|
|
int Idx = Mask[i+l];
|
|
unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
|
|
if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
|
|
return false;
|
|
// For VSHUFPSY, the mask of the second half must be the same as the
|
|
// first but with the appropriate offsets. This works in the same way as
|
|
// VPERMILPS works with masks.
|
|
if (!symetricMaskRequired || Idx < 0)
|
|
continue;
|
|
if (MaskVal[i] < 0) {
|
|
MaskVal[i] = Idx - l;
|
|
continue;
|
|
}
|
|
if ((signed)(Idx - l) != MaskVal[i])
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
|
|
static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (NumElems != 4)
|
|
return false;
|
|
|
|
// Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
|
|
return isUndefOrEqual(Mask[0], 6) &&
|
|
isUndefOrEqual(Mask[1], 7) &&
|
|
isUndefOrEqual(Mask[2], 2) &&
|
|
isUndefOrEqual(Mask[3], 3);
|
|
}
|
|
|
|
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
|
|
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
|
|
/// <2, 3, 2, 3>
|
|
static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (NumElems != 4)
|
|
return false;
|
|
|
|
return isUndefOrEqual(Mask[0], 2) &&
|
|
isUndefOrEqual(Mask[1], 3) &&
|
|
isUndefOrEqual(Mask[2], 2) &&
|
|
isUndefOrEqual(Mask[3], 3);
|
|
}
|
|
|
|
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
|
|
static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i + NumElems))
|
|
return false;
|
|
|
|
for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
|
|
static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i + e], i + NumElems))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isINSERTPSMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to INSERTPS.
|
|
/// i. e: If all but one element come from the same vector.
|
|
static bool isINSERTPSMask(ArrayRef<int> Mask, MVT VT) {
|
|
// TODO: Deal with AVX's VINSERTPS
|
|
if (!VT.is128BitVector() || (VT != MVT::v4f32 && VT != MVT::v4i32))
|
|
return false;
|
|
|
|
unsigned CorrectPosV1 = 0;
|
|
unsigned CorrectPosV2 = 0;
|
|
for (int i = 0, e = (int)VT.getVectorNumElements(); i != e; ++i) {
|
|
if (Mask[i] == -1) {
|
|
++CorrectPosV1;
|
|
++CorrectPosV2;
|
|
continue;
|
|
}
|
|
|
|
if (Mask[i] == i)
|
|
++CorrectPosV1;
|
|
else if (Mask[i] == i + 4)
|
|
++CorrectPosV2;
|
|
}
|
|
|
|
if (CorrectPosV1 == 3 || CorrectPosV2 == 3)
|
|
// We have 3 elements (undefs count as elements from any vector) from one
|
|
// vector, and one from another.
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Some special combinations that can be optimized.
|
|
//
|
|
static
|
|
SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
SDLoc dl(SVOp);
|
|
|
|
if (VT != MVT::v8i32 && VT != MVT::v8f32)
|
|
return SDValue();
|
|
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
|
|
// These are the special masks that may be optimized.
|
|
static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
|
|
static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15};
|
|
bool MatchEvenMask = true;
|
|
bool MatchOddMask = true;
|
|
for (int i=0; i<8; ++i) {
|
|
if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
|
|
MatchEvenMask = false;
|
|
if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
|
|
MatchOddMask = false;
|
|
}
|
|
|
|
if (!MatchEvenMask && !MatchOddMask)
|
|
return SDValue();
|
|
|
|
SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
|
|
|
|
SDValue Op0 = SVOp->getOperand(0);
|
|
SDValue Op1 = SVOp->getOperand(1);
|
|
|
|
if (MatchEvenMask) {
|
|
// Shift the second operand right to 32 bits.
|
|
static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
|
|
Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
|
|
} else {
|
|
// Shift the first operand left to 32 bits.
|
|
static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
|
|
Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
|
|
}
|
|
static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
|
|
return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
|
|
}
|
|
|
|
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
|
|
static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
|
|
bool HasInt256, bool V2IsSplat = false) {
|
|
|
|
assert(VT.getSizeInBits() >= 128 &&
|
|
"Unsupported vector type for unpckl");
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
|
|
(!HasInt256 || (NumElts != 16 && NumElts != 32)))
|
|
return false;
|
|
|
|
assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) &&
|
|
"Unsupported vector type for unpckh");
|
|
|
|
// AVX defines UNPCK* to operate independently on 128-bit lanes.
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
|
|
int BitI = Mask[l+i];
|
|
int BitI1 = Mask[l+i+1];
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (V2IsSplat) {
|
|
if (!isUndefOrEqual(BitI1, NumElts))
|
|
return false;
|
|
} else {
|
|
if (!isUndefOrEqual(BitI1, j + NumElts))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
|
|
static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
|
|
bool HasInt256, bool V2IsSplat = false) {
|
|
assert(VT.getSizeInBits() >= 128 &&
|
|
"Unsupported vector type for unpckh");
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
|
|
(!HasInt256 || (NumElts != 16 && NumElts != 32)))
|
|
return false;
|
|
|
|
assert((!VT.is512BitVector() || VT.getScalarType().getSizeInBits() >= 32) &&
|
|
"Unsupported vector type for unpckh");
|
|
|
|
// AVX defines UNPCK* to operate independently on 128-bit lanes.
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
|
|
int BitI = Mask[l+i];
|
|
int BitI1 = Mask[l+i+1];
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (V2IsSplat) {
|
|
if (isUndefOrEqual(BitI1, NumElts))
|
|
return false;
|
|
} else {
|
|
if (!isUndefOrEqual(BitI1, j+NumElts))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
|
|
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
|
|
/// <0, 0, 1, 1>
|
|
static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool Is256BitVec = VT.is256BitVector();
|
|
|
|
if (VT.is512BitVector())
|
|
return false;
|
|
assert((VT.is128BitVector() || VT.is256BitVector()) &&
|
|
"Unsupported vector type for unpckh");
|
|
|
|
if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
|
|
(!HasInt256 || (NumElts != 16 && NumElts != 32)))
|
|
return false;
|
|
|
|
// For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
|
|
// FIXME: Need a better way to get rid of this, there's no latency difference
|
|
// between UNPCKLPD and MOVDDUP, the later should always be checked first and
|
|
// the former later. We should also remove the "_undef" special mask.
|
|
if (NumElts == 4 && Is256BitVec)
|
|
return false;
|
|
|
|
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
|
|
int BitI = Mask[l+i];
|
|
int BitI1 = Mask[l+i+1];
|
|
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (!isUndefOrEqual(BitI1, j))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
|
|
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
|
|
/// <2, 2, 3, 3>
|
|
static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
if (VT.is512BitVector())
|
|
return false;
|
|
|
|
assert((VT.is128BitVector() || VT.is256BitVector()) &&
|
|
"Unsupported vector type for unpckh");
|
|
|
|
if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
|
|
(!HasInt256 || (NumElts != 16 && NumElts != 32)))
|
|
return false;
|
|
|
|
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
|
|
int BitI = Mask[l+i];
|
|
int BitI1 = Mask[l+i+1];
|
|
if (!isUndefOrEqual(BitI, j))
|
|
return false;
|
|
if (!isUndefOrEqual(BitI1, j))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Match for INSERTI64x4 INSERTF64x4 instructions (src0[0], src1[0]) or
|
|
// (src1[0], src0[1]), manipulation with 256-bit sub-vectors
|
|
static bool isINSERT64x4Mask(ArrayRef<int> Mask, MVT VT, unsigned int *Imm) {
|
|
if (!VT.is512BitVector())
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned HalfSize = NumElts/2;
|
|
if (isSequentialOrUndefInRange(Mask, 0, HalfSize, 0)) {
|
|
if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, NumElts)) {
|
|
*Imm = 1;
|
|
return true;
|
|
}
|
|
}
|
|
if (isSequentialOrUndefInRange(Mask, 0, HalfSize, NumElts)) {
|
|
if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, HalfSize)) {
|
|
*Imm = 0;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSS,
|
|
/// MOVSD, and MOVD, i.e. setting the lowest element.
|
|
static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
|
|
if (VT.getVectorElementType().getSizeInBits() < 32)
|
|
return false;
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
if (!isUndefOrEqual(Mask[0], NumElts))
|
|
return false;
|
|
|
|
for (unsigned i = 1; i != NumElts; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
|
|
/// as permutations between 128-bit chunks or halves. As an example: this
|
|
/// shuffle bellow:
|
|
/// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
|
|
/// The first half comes from the second half of V1 and the second half from the
|
|
/// the second half of V2.
|
|
static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
|
|
if (!HasFp256 || !VT.is256BitVector())
|
|
return false;
|
|
|
|
// The shuffle result is divided into half A and half B. In total the two
|
|
// sources have 4 halves, namely: C, D, E, F. The final values of A and
|
|
// B must come from C, D, E or F.
|
|
unsigned HalfSize = VT.getVectorNumElements()/2;
|
|
bool MatchA = false, MatchB = false;
|
|
|
|
// Check if A comes from one of C, D, E, F.
|
|
for (unsigned Half = 0; Half != 4; ++Half) {
|
|
if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
|
|
MatchA = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if B comes from one of C, D, E, F.
|
|
for (unsigned Half = 0; Half != 4; ++Half) {
|
|
if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
|
|
MatchB = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return MatchA && MatchB;
|
|
}
|
|
|
|
/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
|
|
static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
|
|
unsigned HalfSize = VT.getVectorNumElements()/2;
|
|
|
|
unsigned FstHalf = 0, SndHalf = 0;
|
|
for (unsigned i = 0; i < HalfSize; ++i) {
|
|
if (SVOp->getMaskElt(i) > 0) {
|
|
FstHalf = SVOp->getMaskElt(i)/HalfSize;
|
|
break;
|
|
}
|
|
}
|
|
for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
|
|
if (SVOp->getMaskElt(i) > 0) {
|
|
SndHalf = SVOp->getMaskElt(i)/HalfSize;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (FstHalf | (SndHalf << 4));
|
|
}
|
|
|
|
// Symetric in-lane mask. Each lane has 4 elements (for imm8)
|
|
static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSize < 32)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
Imm8 = 0;
|
|
if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
Imm8 |= Mask[i] << (i*2);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned LaneSize = 4;
|
|
SmallVector<int, 4> MaskVal(LaneSize, -1);
|
|
|
|
for (unsigned l = 0; l != NumElts; l += LaneSize) {
|
|
for (unsigned i = 0; i != LaneSize; ++i) {
|
|
if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
|
|
return false;
|
|
if (Mask[i+l] < 0)
|
|
continue;
|
|
if (MaskVal[i] < 0) {
|
|
MaskVal[i] = Mask[i+l] - l;
|
|
Imm8 |= MaskVal[i] << (i*2);
|
|
continue;
|
|
}
|
|
if (Mask[i+l] != (signed)(MaskVal[i]+l))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
|
|
/// Note that VPERMIL mask matching is different depending whether theunderlying
|
|
/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
|
|
/// to the same elements of the low, but to the higher half of the source.
|
|
/// In VPERMILPD the two lanes could be shuffled independently of each other
|
|
/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
|
|
static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (VT.getSizeInBits() < 256 || EltSize < 32)
|
|
return false;
|
|
bool symetricMaskRequired = (EltSize == 32);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned LaneSize = NumElts/NumLanes;
|
|
// 2 or 4 elements in one lane
|
|
|
|
SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
|
|
for (unsigned l = 0; l != NumElts; l += LaneSize) {
|
|
for (unsigned i = 0; i != LaneSize; ++i) {
|
|
if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
|
|
return false;
|
|
if (symetricMaskRequired) {
|
|
if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
|
|
ExpectedMaskVal[i] = Mask[i+l] - l;
|
|
continue;
|
|
}
|
|
if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
|
|
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
|
|
/// element of vector 2 and the other elements to come from vector 1 in order.
|
|
static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
|
|
bool V2IsSplat = false, bool V2IsUndef = false) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned NumOps = VT.getVectorNumElements();
|
|
if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
|
|
return false;
|
|
|
|
if (!isUndefOrEqual(Mask[0], 0))
|
|
return false;
|
|
|
|
for (unsigned i = 1; i != NumOps; ++i)
|
|
if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
|
|
(V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
|
|
(V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
|
|
/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
|
|
static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
|
|
const X86Subtarget *Subtarget) {
|
|
if (!Subtarget->hasSSE3())
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if ((VT.is128BitVector() && NumElems != 4) ||
|
|
(VT.is256BitVector() && NumElems != 8) ||
|
|
(VT.is512BitVector() && NumElems != 16))
|
|
return false;
|
|
|
|
// "i+1" is the value the indexed mask element must have
|
|
for (unsigned i = 0; i != NumElems; i += 2)
|
|
if (!isUndefOrEqual(Mask[i], i+1) ||
|
|
!isUndefOrEqual(Mask[i+1], i+1))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
|
|
/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
|
|
static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
|
|
const X86Subtarget *Subtarget) {
|
|
if (!Subtarget->hasSSE3())
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if ((VT.is128BitVector() && NumElems != 4) ||
|
|
(VT.is256BitVector() && NumElems != 8) ||
|
|
(VT.is512BitVector() && NumElems != 16))
|
|
return false;
|
|
|
|
// "i" is the value the indexed mask element must have
|
|
for (unsigned i = 0; i != NumElems; i += 2)
|
|
if (!isUndefOrEqual(Mask[i], i) ||
|
|
!isUndefOrEqual(Mask[i+1], i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to 256-bit
|
|
/// version of MOVDDUP.
|
|
static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
|
|
if (!HasFp256 || !VT.is256BitVector())
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts != 4)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i != NumElts/2; ++i)
|
|
if (!isUndefOrEqual(Mask[i], 0))
|
|
return false;
|
|
for (unsigned i = NumElts/2; i != NumElts; ++i)
|
|
if (!isUndefOrEqual(Mask[i], NumElts/2))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to 128-bit
|
|
/// version of MOVDDUP.
|
|
static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
unsigned e = VT.getVectorNumElements() / 2;
|
|
for (unsigned i = 0; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i))
|
|
return false;
|
|
for (unsigned i = 0; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[e+i], i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isVEXTRACTIndex - Return true if the specified
|
|
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
|
|
/// suitable for instruction that extract 128 or 256 bit vectors
|
|
static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
|
|
assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
|
|
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
|
|
return false;
|
|
|
|
// The index should be aligned on a vecWidth-bit boundary.
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
unsigned ElSize = VT.getVectorElementType().getSizeInBits();
|
|
bool Result = (Index * ElSize) % vecWidth == 0;
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
|
|
/// operand specifies a subvector insert that is suitable for input to
|
|
/// insertion of 128 or 256-bit subvectors
|
|
static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
|
|
assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
|
|
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
|
|
return false;
|
|
// The index should be aligned on a vecWidth-bit boundary.
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
unsigned ElSize = VT.getVectorElementType().getSizeInBits();
|
|
bool Result = (Index * ElSize) % vecWidth == 0;
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool X86::isVINSERT128Index(SDNode *N) {
|
|
return isVINSERTIndex(N, 128);
|
|
}
|
|
|
|
bool X86::isVINSERT256Index(SDNode *N) {
|
|
return isVINSERTIndex(N, 256);
|
|
}
|
|
|
|
bool X86::isVEXTRACT128Index(SDNode *N) {
|
|
return isVEXTRACTIndex(N, 128);
|
|
}
|
|
|
|
bool X86::isVEXTRACT256Index(SDNode *N) {
|
|
return isVEXTRACTIndex(N, 256);
|
|
}
|
|
|
|
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
|
|
/// Handles 128-bit and 256-bit.
|
|
static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
assert((VT.getSizeInBits() >= 128) &&
|
|
"Unsupported vector type for PSHUF/SHUFP");
|
|
|
|
// Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
|
|
// independently on 128-bit lanes.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
|
|
"Only supports 2, 4 or 8 elements per lane");
|
|
|
|
unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
|
|
unsigned Mask = 0;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Elt = N->getMaskElt(i);
|
|
if (Elt < 0) continue;
|
|
Elt &= NumLaneElts - 1;
|
|
unsigned ShAmt = (i << Shift) % 8;
|
|
Mask |= Elt << ShAmt;
|
|
}
|
|
|
|
return Mask;
|
|
}
|
|
|
|
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
|
|
static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
|
|
"Unsupported vector type for PSHUFHW");
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
unsigned Mask = 0;
|
|
for (unsigned l = 0; l != NumElts; l += 8) {
|
|
// 8 nodes per lane, but we only care about the last 4.
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
int Elt = N->getMaskElt(l+i+4);
|
|
if (Elt < 0) continue;
|
|
Elt &= 0x3; // only 2-bits.
|
|
Mask |= Elt << (i * 2);
|
|
}
|
|
}
|
|
|
|
return Mask;
|
|
}
|
|
|
|
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
|
|
static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
|
|
assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
|
|
"Unsupported vector type for PSHUFHW");
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
unsigned Mask = 0;
|
|
for (unsigned l = 0; l != NumElts; l += 8) {
|
|
// 8 nodes per lane, but we only care about the first 4.
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
int Elt = N->getMaskElt(l+i);
|
|
if (Elt < 0) continue;
|
|
Elt &= 0x3; // only 2-bits
|
|
Mask |= Elt << (i * 2);
|
|
}
|
|
}
|
|
|
|
return Mask;
|
|
}
|
|
|
|
/// \brief Return the appropriate immediate to shuffle the specified
|
|
/// VECTOR_SHUFFLE mask with the PALIGNR (if InterLane is false) or with
|
|
/// VALIGN (if Interlane is true) instructions.
|
|
static unsigned getShuffleAlignrImmediate(ShuffleVectorSDNode *SVOp,
|
|
bool InterLane) {
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
unsigned EltSize = InterLane ? 1 :
|
|
VT.getVectorElementType().getSizeInBits() >> 3;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts/NumLanes;
|
|
|
|
int Val = 0;
|
|
unsigned i;
|
|
for (i = 0; i != NumElts; ++i) {
|
|
Val = SVOp->getMaskElt(i);
|
|
if (Val >= 0)
|
|
break;
|
|
}
|
|
if (Val >= (int)NumElts)
|
|
Val -= NumElts - NumLaneElts;
|
|
|
|
assert(Val - i > 0 && "PALIGNR imm should be positive");
|
|
return (Val - i) * EltSize;
|
|
}
|
|
|
|
/// \brief Return the appropriate immediate to shuffle the specified
|
|
/// VECTOR_SHUFFLE mask with the PALIGNR instruction.
|
|
static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
|
|
return getShuffleAlignrImmediate(SVOp, false);
|
|
}
|
|
|
|
/// \brief Return the appropriate immediate to shuffle the specified
|
|
/// VECTOR_SHUFFLE mask with the VALIGN instruction.
|
|
static unsigned getShuffleVALIGNImmediate(ShuffleVectorSDNode *SVOp) {
|
|
return getShuffleAlignrImmediate(SVOp, true);
|
|
}
|
|
|
|
|
|
static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
|
|
assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
|
|
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
|
|
llvm_unreachable("Illegal extract subvector for VEXTRACT");
|
|
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
|
|
|
|
MVT VecVT = N->getOperand(0).getSimpleValueType();
|
|
MVT ElVT = VecVT.getVectorElementType();
|
|
|
|
unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
|
|
return Index / NumElemsPerChunk;
|
|
}
|
|
|
|
static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
|
|
assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
|
|
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
|
|
llvm_unreachable("Illegal insert subvector for VINSERT");
|
|
|
|
uint64_t Index =
|
|
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
|
|
|
|
MVT VecVT = N->getSimpleValueType(0);
|
|
MVT ElVT = VecVT.getVectorElementType();
|
|
|
|
unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
|
|
return Index / NumElemsPerChunk;
|
|
}
|
|
|
|
/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
|
|
/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
|
|
/// and VINSERTI128 instructions.
|
|
unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
|
|
return getExtractVEXTRACTImmediate(N, 128);
|
|
}
|
|
|
|
/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
|
|
/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
|
|
/// and VINSERTI64x4 instructions.
|
|
unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
|
|
return getExtractVEXTRACTImmediate(N, 256);
|
|
}
|
|
|
|
/// getInsertVINSERT128Immediate - Return the appropriate immediate
|
|
/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
|
|
/// and VINSERTI128 instructions.
|
|
unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
|
|
return getInsertVINSERTImmediate(N, 128);
|
|
}
|
|
|
|
/// getInsertVINSERT256Immediate - Return the appropriate immediate
|
|
/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
|
|
/// and VINSERTI64x4 instructions.
|
|
unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
|
|
return getInsertVINSERTImmediate(N, 256);
|
|
}
|
|
|
|
/// isZero - Returns true if Elt is a constant integer zero
|
|
static bool isZero(SDValue V) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
|
|
return C && C->isNullValue();
|
|
}
|
|
|
|
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
|
|
/// constant +0.0.
|
|
bool X86::isZeroNode(SDValue Elt) {
|
|
if (isZero(Elt))
|
|
return true;
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
|
|
return CFP->getValueAPF().isPosZero();
|
|
return false;
|
|
}
|
|
|
|
/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
|
|
/// match movhlps. The lower half elements should come from upper half of
|
|
/// V1 (and in order), and the upper half elements should come from the upper
|
|
/// half of V2 (and in order).
|
|
static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
if (VT.getVectorNumElements() != 4)
|
|
return false;
|
|
for (unsigned i = 0, e = 2; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i+2))
|
|
return false;
|
|
for (unsigned i = 2; i != 4; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i+4))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isScalarLoadToVector - Returns true if the node is a scalar load that
|
|
/// is promoted to a vector. It also returns the LoadSDNode by reference if
|
|
/// required.
|
|
static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = nullptr) {
|
|
if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
|
|
return false;
|
|
N = N->getOperand(0).getNode();
|
|
if (!ISD::isNON_EXTLoad(N))
|
|
return false;
|
|
if (LD)
|
|
*LD = cast<LoadSDNode>(N);
|
|
return true;
|
|
}
|
|
|
|
// Test whether the given value is a vector value which will be legalized
|
|
// into a load.
|
|
static bool WillBeConstantPoolLoad(SDNode *N) {
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
|
|
// Check for any non-constant elements.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
switch (N->getOperand(i).getNode()->getOpcode()) {
|
|
case ISD::UNDEF:
|
|
case ISD::ConstantFP:
|
|
case ISD::Constant:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Vectors of all-zeros and all-ones are materialized with special
|
|
// instructions rather than being loaded.
|
|
return !ISD::isBuildVectorAllZeros(N) &&
|
|
!ISD::isBuildVectorAllOnes(N);
|
|
}
|
|
|
|
/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
|
|
/// match movlp{s|d}. The lower half elements should come from lower half of
|
|
/// V1 (and in order), and the upper half elements should come from the upper
|
|
/// half of V2 (and in order). And since V1 will become the source of the
|
|
/// MOVLP, it must be either a vector load or a scalar load to vector.
|
|
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
|
|
ArrayRef<int> Mask, MVT VT) {
|
|
if (!VT.is128BitVector())
|
|
return false;
|
|
|
|
if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
|
|
return false;
|
|
// Is V2 is a vector load, don't do this transformation. We will try to use
|
|
// load folding shufps op.
|
|
if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
|
|
return false;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (NumElems != 2 && NumElems != 4)
|
|
return false;
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i))
|
|
return false;
|
|
for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
|
|
if (!isUndefOrEqual(Mask[i], i+NumElems))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
|
|
/// to an zero vector.
|
|
/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
|
|
static bool isZeroShuffle(ShuffleVectorSDNode *N) {
|
|
SDValue V1 = N->getOperand(0);
|
|
SDValue V2 = N->getOperand(1);
|
|
unsigned NumElems = N->getValueType(0).getVectorNumElements();
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int Idx = N->getMaskElt(i);
|
|
if (Idx >= (int)NumElems) {
|
|
unsigned Opc = V2.getOpcode();
|
|
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
|
|
continue;
|
|
if (Opc != ISD::BUILD_VECTOR ||
|
|
!X86::isZeroNode(V2.getOperand(Idx-NumElems)))
|
|
return false;
|
|
} else if (Idx >= 0) {
|
|
unsigned Opc = V1.getOpcode();
|
|
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
|
|
continue;
|
|
if (Opc != ISD::BUILD_VECTOR ||
|
|
!X86::isZeroNode(V1.getOperand(Idx)))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getZeroVector - Returns a vector of specified type with all zero elements.
|
|
///
|
|
static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG, SDLoc dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
|
|
// Always build SSE zero vectors as <4 x i32> bitcasted
|
|
// to their dest type. This ensures they get CSE'd.
|
|
SDValue Vec;
|
|
if (VT.is128BitVector()) { // SSE
|
|
if (Subtarget->hasSSE2()) { // SSE2
|
|
SDValue Cst = DAG.getConstant(0, MVT::i32);
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
|
|
} else { // SSE1
|
|
SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
|
|
}
|
|
} else if (VT.is256BitVector()) { // AVX
|
|
if (Subtarget->hasInt256()) { // AVX2
|
|
SDValue Cst = DAG.getConstant(0, MVT::i32);
|
|
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
|
|
} else {
|
|
// 256-bit logic and arithmetic instructions in AVX are all
|
|
// floating-point, no support for integer ops. Emit fp zeroed vectors.
|
|
SDValue Cst = DAG.getConstantFP(+0.0, MVT::f32);
|
|
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
|
|
}
|
|
} else if (VT.is512BitVector()) { // AVX-512
|
|
SDValue Cst = DAG.getConstant(0, MVT::i32);
|
|
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
|
|
Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
|
|
} else if (VT.getScalarType() == MVT::i1) {
|
|
assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
|
|
SDValue Cst = DAG.getConstant(0, MVT::i1);
|
|
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
|
|
} else
|
|
llvm_unreachable("Unexpected vector type");
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
|
|
}
|
|
|
|
/// getOnesVector - Returns a vector of specified type with all bits set.
|
|
/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
|
|
/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
|
|
/// Then bitcast to their original type, ensuring they get CSE'd.
|
|
static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
|
|
SDValue Cst = DAG.getConstant(~0U, MVT::i32);
|
|
SDValue Vec;
|
|
if (VT.is256BitVector()) {
|
|
if (HasInt256) { // AVX2
|
|
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
|
|
} else { // AVX
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
|
|
Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
|
|
}
|
|
} else if (VT.is128BitVector()) {
|
|
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
|
|
} else
|
|
llvm_unreachable("Unexpected vector type");
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
|
|
}
|
|
|
|
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
|
|
/// that point to V2 points to its first element.
|
|
static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
if (Mask[i] > (int)NumElems) {
|
|
Mask[i] = NumElems;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
|
|
/// operation of specified width.
|
|
static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
|
|
SDValue V2) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> Mask;
|
|
Mask.push_back(NumElems);
|
|
for (unsigned i = 1; i != NumElems; ++i)
|
|
Mask.push_back(i);
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
|
|
}
|
|
|
|
/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
|
|
static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
|
|
SDValue V2) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> Mask;
|
|
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
|
|
Mask.push_back(i);
|
|
Mask.push_back(i + NumElems);
|
|
}
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
|
|
}
|
|
|
|
/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
|
|
static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
|
|
SDValue V2) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> Mask;
|
|
for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
|
|
Mask.push_back(i + Half);
|
|
Mask.push_back(i + NumElems + Half);
|
|
}
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
|
|
}
|
|
|
|
// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
|
|
// a generic shuffle instruction because the target has no such instructions.
|
|
// Generate shuffles which repeat i16 and i8 several times until they can be
|
|
// represented by v4f32 and then be manipulated by target suported shuffles.
|
|
static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
|
|
MVT VT = V.getSimpleValueType();
|
|
int NumElems = VT.getVectorNumElements();
|
|
SDLoc dl(V);
|
|
|
|
while (NumElems > 4) {
|
|
if (EltNo < NumElems/2) {
|
|
V = getUnpackl(DAG, dl, VT, V, V);
|
|
} else {
|
|
V = getUnpackh(DAG, dl, VT, V, V);
|
|
EltNo -= NumElems/2;
|
|
}
|
|
NumElems >>= 1;
|
|
}
|
|
return V;
|
|
}
|
|
|
|
/// getLegalSplat - Generate a legal splat with supported x86 shuffles
|
|
static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
|
|
MVT VT = V.getSimpleValueType();
|
|
SDLoc dl(V);
|
|
|
|
if (VT.is128BitVector()) {
|
|
V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
|
|
int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
|
|
V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
|
|
&SplatMask[0]);
|
|
} else if (VT.is256BitVector()) {
|
|
// To use VPERMILPS to splat scalars, the second half of indicies must
|
|
// refer to the higher part, which is a duplication of the lower one,
|
|
// because VPERMILPS can only handle in-lane permutations.
|
|
int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
|
|
EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
|
|
|
|
V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
|
|
V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
|
|
&SplatMask[0]);
|
|
} else
|
|
llvm_unreachable("Vector size not supported");
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, V);
|
|
}
|
|
|
|
/// PromoteSplat - Splat is promoted to target supported vector shuffles.
|
|
static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
|
|
MVT SrcVT = SV->getSimpleValueType(0);
|
|
SDValue V1 = SV->getOperand(0);
|
|
SDLoc dl(SV);
|
|
|
|
int EltNo = SV->getSplatIndex();
|
|
int NumElems = SrcVT.getVectorNumElements();
|
|
bool Is256BitVec = SrcVT.is256BitVector();
|
|
|
|
assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
|
|
"Unknown how to promote splat for type");
|
|
|
|
// Extract the 128-bit part containing the splat element and update
|
|
// the splat element index when it refers to the higher register.
|
|
if (Is256BitVec) {
|
|
V1 = Extract128BitVector(V1, EltNo, DAG, dl);
|
|
if (EltNo >= NumElems/2)
|
|
EltNo -= NumElems/2;
|
|
}
|
|
|
|
// All i16 and i8 vector types can't be used directly by a generic shuffle
|
|
// instruction because the target has no such instruction. Generate shuffles
|
|
// which repeat i16 and i8 several times until they fit in i32, and then can
|
|
// be manipulated by target suported shuffles.
|
|
MVT EltVT = SrcVT.getVectorElementType();
|
|
if (EltVT == MVT::i8 || EltVT == MVT::i16)
|
|
V1 = PromoteSplati8i16(V1, DAG, EltNo);
|
|
|
|
// Recreate the 256-bit vector and place the same 128-bit vector
|
|
// into the low and high part. This is necessary because we want
|
|
// to use VPERM* to shuffle the vectors
|
|
if (Is256BitVec) {
|
|
V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
|
|
}
|
|
|
|
return getLegalSplat(DAG, V1, EltNo);
|
|
}
|
|
|
|
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
|
|
/// vector of zero or undef vector. This produces a shuffle where the low
|
|
/// element of V2 is swizzled into the zero/undef vector, landing at element
|
|
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
|
|
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
|
|
bool IsZero,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = V2.getSimpleValueType();
|
|
SDValue V1 = IsZero
|
|
? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 16> MaskVec;
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
// If this is the insertion idx, put the low elt of V2 here.
|
|
MaskVec.push_back(i == Idx ? NumElems : i);
|
|
return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
|
|
}
|
|
|
|
/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
|
|
/// target specific opcode. Returns true if the Mask could be calculated. Sets
|
|
/// IsUnary to true if only uses one source. Note that this will set IsUnary for
|
|
/// shuffles which use a single input multiple times, and in those cases it will
|
|
/// adjust the mask to only have indices within that single input.
|
|
static bool getTargetShuffleMask(SDNode *N, MVT VT,
|
|
SmallVectorImpl<int> &Mask, bool &IsUnary) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SDValue ImmN;
|
|
|
|
IsUnary = false;
|
|
bool IsFakeUnary = false;
|
|
switch(N->getOpcode()) {
|
|
case X86ISD::BLENDI:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
break;
|
|
case X86ISD::SHUFP:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
|
|
break;
|
|
case X86ISD::UNPCKH:
|
|
DecodeUNPCKHMask(VT, Mask);
|
|
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
|
|
break;
|
|
case X86ISD::UNPCKL:
|
|
DecodeUNPCKLMask(VT, Mask);
|
|
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
|
|
break;
|
|
case X86ISD::MOVHLPS:
|
|
DecodeMOVHLPSMask(NumElems, Mask);
|
|
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
|
|
break;
|
|
case X86ISD::MOVLHPS:
|
|
DecodeMOVLHPSMask(NumElems, Mask);
|
|
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
|
|
break;
|
|
case X86ISD::PALIGNR:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
break;
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::VPERMILPI:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
IsUnary = true;
|
|
break;
|
|
case X86ISD::PSHUFHW:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
IsUnary = true;
|
|
break;
|
|
case X86ISD::PSHUFLW:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
IsUnary = true;
|
|
break;
|
|
case X86ISD::PSHUFB: {
|
|
IsUnary = true;
|
|
SDValue MaskNode = N->getOperand(1);
|
|
while (MaskNode->getOpcode() == ISD::BITCAST)
|
|
MaskNode = MaskNode->getOperand(0);
|
|
|
|
if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
|
|
// If we have a build-vector, then things are easy.
|
|
EVT VT = MaskNode.getValueType();
|
|
assert(VT.isVector() &&
|
|
"Can't produce a non-vector with a build_vector!");
|
|
if (!VT.isInteger())
|
|
return false;
|
|
|
|
int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
|
|
|
|
SmallVector<uint64_t, 32> RawMask;
|
|
for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
|
|
SDValue Op = MaskNode->getOperand(i);
|
|
if (Op->getOpcode() == ISD::UNDEF) {
|
|
RawMask.push_back((uint64_t)SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
|
|
if (!CN)
|
|
return false;
|
|
APInt MaskElement = CN->getAPIntValue();
|
|
|
|
// We now have to decode the element which could be any integer size and
|
|
// extract each byte of it.
|
|
for (int j = 0; j < NumBytesPerElement; ++j) {
|
|
// Note that this is x86 and so always little endian: the low byte is
|
|
// the first byte of the mask.
|
|
RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
|
|
MaskElement = MaskElement.lshr(8);
|
|
}
|
|
}
|
|
DecodePSHUFBMask(RawMask, Mask);
|
|
break;
|
|
}
|
|
|
|
auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
|
|
if (!MaskLoad)
|
|
return false;
|
|
|
|
SDValue Ptr = MaskLoad->getBasePtr();
|
|
if (Ptr->getOpcode() == X86ISD::Wrapper)
|
|
Ptr = Ptr->getOperand(0);
|
|
|
|
auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
|
|
if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
|
|
return false;
|
|
|
|
if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
|
|
// FIXME: Support AVX-512 here.
|
|
Type *Ty = C->getType();
|
|
if (!Ty->isVectorTy() || (Ty->getVectorNumElements() != 16 &&
|
|
Ty->getVectorNumElements() != 32))
|
|
return false;
|
|
|
|
DecodePSHUFBMask(C, Mask);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
case X86ISD::VPERMI:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
IsUnary = true;
|
|
break;
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD: {
|
|
// The index 0 always comes from the first element of the second source,
|
|
// this is why MOVSS and MOVSD are used in the first place. The other
|
|
// elements come from the other positions of the first source vector
|
|
Mask.push_back(NumElems);
|
|
for (unsigned i = 1; i != NumElems; ++i) {
|
|
Mask.push_back(i);
|
|
}
|
|
break;
|
|
}
|
|
case X86ISD::VPERM2X128:
|
|
ImmN = N->getOperand(N->getNumOperands()-1);
|
|
DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
|
|
if (Mask.empty()) return false;
|
|
break;
|
|
case X86ISD::MOVSLDUP:
|
|
DecodeMOVSLDUPMask(VT, Mask);
|
|
break;
|
|
case X86ISD::MOVSHDUP:
|
|
DecodeMOVSHDUPMask(VT, Mask);
|
|
break;
|
|
case X86ISD::MOVDDUP:
|
|
case X86ISD::MOVLHPD:
|
|
case X86ISD::MOVLPD:
|
|
case X86ISD::MOVLPS:
|
|
// Not yet implemented
|
|
return false;
|
|
default: llvm_unreachable("unknown target shuffle node");
|
|
}
|
|
|
|
// If we have a fake unary shuffle, the shuffle mask is spread across two
|
|
// inputs that are actually the same node. Re-map the mask to always point
|
|
// into the first input.
|
|
if (IsFakeUnary)
|
|
for (int &M : Mask)
|
|
if (M >= (int)Mask.size())
|
|
M -= Mask.size();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
|
|
/// element of the result of the vector shuffle.
|
|
static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
|
|
unsigned Depth) {
|
|
if (Depth == 6)
|
|
return SDValue(); // Limit search depth.
|
|
|
|
SDValue V = SDValue(N, 0);
|
|
EVT VT = V.getValueType();
|
|
unsigned Opcode = V.getOpcode();
|
|
|
|
// Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
|
|
if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
|
|
int Elt = SV->getMaskElt(Index);
|
|
|
|
if (Elt < 0)
|
|
return DAG.getUNDEF(VT.getVectorElementType());
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
|
|
: SV->getOperand(1);
|
|
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
|
|
}
|
|
|
|
// Recurse into target specific vector shuffles to find scalars.
|
|
if (isTargetShuffle(Opcode)) {
|
|
MVT ShufVT = V.getSimpleValueType();
|
|
unsigned NumElems = ShufVT.getVectorNumElements();
|
|
SmallVector<int, 16> ShuffleMask;
|
|
bool IsUnary;
|
|
|
|
if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
|
|
return SDValue();
|
|
|
|
int Elt = ShuffleMask[Index];
|
|
if (Elt < 0)
|
|
return DAG.getUNDEF(ShufVT.getVectorElementType());
|
|
|
|
SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
|
|
: N->getOperand(1);
|
|
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
|
|
Depth+1);
|
|
}
|
|
|
|
// Actual nodes that may contain scalar elements
|
|
if (Opcode == ISD::BITCAST) {
|
|
V = V.getOperand(0);
|
|
EVT SrcVT = V.getValueType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
|
|
return SDValue();
|
|
}
|
|
|
|
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
return (Index == 0) ? V.getOperand(0)
|
|
: DAG.getUNDEF(VT.getVectorElementType());
|
|
|
|
if (V.getOpcode() == ISD::BUILD_VECTOR)
|
|
return V.getOperand(Index);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// getNumOfConsecutiveZeros - Return the number of elements of a vector
|
|
/// shuffle operation which come from a consecutively from a zero. The
|
|
/// search can start in two different directions, from left or right.
|
|
/// We count undefs as zeros until PreferredNum is reached.
|
|
static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
|
|
unsigned NumElems, bool ZerosFromLeft,
|
|
SelectionDAG &DAG,
|
|
unsigned PreferredNum = -1U) {
|
|
unsigned NumZeros = 0;
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
|
|
SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
|
|
if (!Elt.getNode())
|
|
break;
|
|
|
|
if (X86::isZeroNode(Elt))
|
|
++NumZeros;
|
|
else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
|
|
NumZeros = std::min(NumZeros + 1, PreferredNum);
|
|
else
|
|
break;
|
|
}
|
|
|
|
return NumZeros;
|
|
}
|
|
|
|
/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
|
|
/// correspond consecutively to elements from one of the vector operands,
|
|
/// starting from its index OpIdx. Also tell OpNum which source vector operand.
|
|
static
|
|
bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
|
|
unsigned MaskI, unsigned MaskE, unsigned OpIdx,
|
|
unsigned NumElems, unsigned &OpNum) {
|
|
bool SeenV1 = false;
|
|
bool SeenV2 = false;
|
|
|
|
for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
|
|
int Idx = SVOp->getMaskElt(i);
|
|
// Ignore undef indicies
|
|
if (Idx < 0)
|
|
continue;
|
|
|
|
if (Idx < (int)NumElems)
|
|
SeenV1 = true;
|
|
else
|
|
SeenV2 = true;
|
|
|
|
// Only accept consecutive elements from the same vector
|
|
if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
|
|
return false;
|
|
}
|
|
|
|
OpNum = SeenV1 ? 0 : 1;
|
|
return true;
|
|
}
|
|
|
|
/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
|
|
/// logical left shift of a vector.
|
|
static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
|
|
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
|
|
unsigned NumElems =
|
|
SVOp->getSimpleValueType(0).getVectorNumElements();
|
|
unsigned NumZeros = getNumOfConsecutiveZeros(
|
|
SVOp, NumElems, false /* check zeros from right */, DAG,
|
|
SVOp->getMaskElt(0));
|
|
unsigned OpSrc;
|
|
|
|
if (!NumZeros)
|
|
return false;
|
|
|
|
// Considering the elements in the mask that are not consecutive zeros,
|
|
// check if they consecutively come from only one of the source vectors.
|
|
//
|
|
// V1 = {X, A, B, C} 0
|
|
// \ \ \ /
|
|
// vector_shuffle V1, V2 <1, 2, 3, X>
|
|
//
|
|
if (!isShuffleMaskConsecutive(SVOp,
|
|
0, // Mask Start Index
|
|
NumElems-NumZeros, // Mask End Index(exclusive)
|
|
NumZeros, // Where to start looking in the src vector
|
|
NumElems, // Number of elements in vector
|
|
OpSrc)) // Which source operand ?
|
|
return false;
|
|
|
|
isLeft = false;
|
|
ShAmt = NumZeros;
|
|
ShVal = SVOp->getOperand(OpSrc);
|
|
return true;
|
|
}
|
|
|
|
/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
|
|
/// logical left shift of a vector.
|
|
static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
|
|
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
|
|
unsigned NumElems =
|
|
SVOp->getSimpleValueType(0).getVectorNumElements();
|
|
unsigned NumZeros = getNumOfConsecutiveZeros(
|
|
SVOp, NumElems, true /* check zeros from left */, DAG,
|
|
NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
|
|
unsigned OpSrc;
|
|
|
|
if (!NumZeros)
|
|
return false;
|
|
|
|
// Considering the elements in the mask that are not consecutive zeros,
|
|
// check if they consecutively come from only one of the source vectors.
|
|
//
|
|
// 0 { A, B, X, X } = V2
|
|
// / \ / /
|
|
// vector_shuffle V1, V2 <X, X, 4, 5>
|
|
//
|
|
if (!isShuffleMaskConsecutive(SVOp,
|
|
NumZeros, // Mask Start Index
|
|
NumElems, // Mask End Index(exclusive)
|
|
0, // Where to start looking in the src vector
|
|
NumElems, // Number of elements in vector
|
|
OpSrc)) // Which source operand ?
|
|
return false;
|
|
|
|
isLeft = true;
|
|
ShAmt = NumZeros;
|
|
ShVal = SVOp->getOperand(OpSrc);
|
|
return true;
|
|
}
|
|
|
|
/// isVectorShift - Returns true if the shuffle can be implemented as a
|
|
/// logical left or right shift of a vector.
|
|
static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
|
|
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
|
|
// Although the logic below support any bitwidth size, there are no
|
|
// shift instructions which handle more than 128-bit vectors.
|
|
if (!SVOp->getSimpleValueType(0).is128BitVector())
|
|
return false;
|
|
|
|
if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
|
|
isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
|
|
///
|
|
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
|
|
unsigned NumNonZero, unsigned NumZero,
|
|
SelectionDAG &DAG,
|
|
const X86Subtarget* Subtarget,
|
|
const TargetLowering &TLI) {
|
|
if (NumNonZero > 8)
|
|
return SDValue();
|
|
|
|
SDLoc dl(Op);
|
|
SDValue V;
|
|
bool First = true;
|
|
for (unsigned i = 0; i < 16; ++i) {
|
|
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
|
|
if (ThisIsNonZero && First) {
|
|
if (NumZero)
|
|
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
|
|
else
|
|
V = DAG.getUNDEF(MVT::v8i16);
|
|
First = false;
|
|
}
|
|
|
|
if ((i & 1) != 0) {
|
|
SDValue ThisElt, LastElt;
|
|
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
|
|
if (LastIsNonZero) {
|
|
LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
|
|
MVT::i16, Op.getOperand(i-1));
|
|
}
|
|
if (ThisIsNonZero) {
|
|
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
|
|
ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
|
|
ThisElt, DAG.getConstant(8, MVT::i8));
|
|
if (LastIsNonZero)
|
|
ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
|
|
} else
|
|
ThisElt = LastElt;
|
|
|
|
if (ThisElt.getNode())
|
|
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
|
|
DAG.getIntPtrConstant(i/2));
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
|
|
}
|
|
|
|
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
|
|
///
|
|
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
|
|
unsigned NumNonZero, unsigned NumZero,
|
|
SelectionDAG &DAG,
|
|
const X86Subtarget* Subtarget,
|
|
const TargetLowering &TLI) {
|
|
if (NumNonZero > 4)
|
|
return SDValue();
|
|
|
|
SDLoc dl(Op);
|
|
SDValue V;
|
|
bool First = true;
|
|
for (unsigned i = 0; i < 8; ++i) {
|
|
bool isNonZero = (NonZeros & (1 << i)) != 0;
|
|
if (isNonZero) {
|
|
if (First) {
|
|
if (NumZero)
|
|
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
|
|
else
|
|
V = DAG.getUNDEF(MVT::v8i16);
|
|
First = false;
|
|
}
|
|
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
|
|
MVT::v8i16, V, Op.getOperand(i),
|
|
DAG.getIntPtrConstant(i));
|
|
}
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
|
|
static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget,
|
|
const TargetLowering &TLI) {
|
|
// Find all zeroable elements.
|
|
bool Zeroable[4];
|
|
for (int i=0; i < 4; ++i) {
|
|
SDValue Elt = Op->getOperand(i);
|
|
Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt));
|
|
}
|
|
assert(std::count_if(&Zeroable[0], &Zeroable[4],
|
|
[](bool M) { return !M; }) > 1 &&
|
|
"We expect at least two non-zero elements!");
|
|
|
|
// We only know how to deal with build_vector nodes where elements are either
|
|
// zeroable or extract_vector_elt with constant index.
|
|
SDValue FirstNonZero;
|
|
unsigned FirstNonZeroIdx;
|
|
for (unsigned i=0; i < 4; ++i) {
|
|
if (Zeroable[i])
|
|
continue;
|
|
SDValue Elt = Op->getOperand(i);
|
|
if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(Elt.getOperand(1)))
|
|
return SDValue();
|
|
// Make sure that this node is extracting from a 128-bit vector.
|
|
MVT VT = Elt.getOperand(0).getSimpleValueType();
|
|
if (!VT.is128BitVector())
|
|
return SDValue();
|
|
if (!FirstNonZero.getNode()) {
|
|
FirstNonZero = Elt;
|
|
FirstNonZeroIdx = i;
|
|
}
|
|
}
|
|
|
|
assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
|
|
SDValue V1 = FirstNonZero.getOperand(0);
|
|
MVT VT = V1.getSimpleValueType();
|
|
|
|
// See if this build_vector can be lowered as a blend with zero.
|
|
SDValue Elt;
|
|
unsigned EltMaskIdx, EltIdx;
|
|
int Mask[4];
|
|
for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
|
|
if (Zeroable[EltIdx]) {
|
|
// The zero vector will be on the right hand side.
|
|
Mask[EltIdx] = EltIdx+4;
|
|
continue;
|
|
}
|
|
|
|
Elt = Op->getOperand(EltIdx);
|
|
// By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
|
|
EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
|
|
if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
|
|
break;
|
|
Mask[EltIdx] = EltIdx;
|
|
}
|
|
|
|
if (EltIdx == 4) {
|
|
// Let the shuffle legalizer deal with blend operations.
|
|
SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
|
|
if (V1.getSimpleValueType() != VT)
|
|
V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1);
|
|
return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
|
|
}
|
|
|
|
// See if we can lower this build_vector to a INSERTPS.
|
|
if (!Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
SDValue V2 = Elt.getOperand(0);
|
|
if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
|
|
V1 = SDValue();
|
|
|
|
bool CanFold = true;
|
|
for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
|
|
if (Zeroable[i])
|
|
continue;
|
|
|
|
SDValue Current = Op->getOperand(i);
|
|
SDValue SrcVector = Current->getOperand(0);
|
|
if (!V1.getNode())
|
|
V1 = SrcVector;
|
|
CanFold = SrcVector == V1 &&
|
|
cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
|
|
}
|
|
|
|
if (!CanFold)
|
|
return SDValue();
|
|
|
|
assert(V1.getNode() && "Expected at least two non-zero elements!");
|
|
if (V1.getSimpleValueType() != MVT::v4f32)
|
|
V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1);
|
|
if (V2.getSimpleValueType() != MVT::v4f32)
|
|
V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2);
|
|
|
|
// Ok, we can emit an INSERTPS instruction.
|
|
unsigned ZMask = 0;
|
|
for (int i = 0; i < 4; ++i)
|
|
if (Zeroable[i])
|
|
ZMask |= 1 << i;
|
|
|
|
unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
|
|
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
|
|
SDValue Result = DAG.getNode(X86ISD::INSERTPS, SDLoc(Op), MVT::v4f32, V1, V2,
|
|
DAG.getIntPtrConstant(InsertPSMask));
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(Op), VT, Result);
|
|
}
|
|
|
|
/// getVShift - Return a vector logical shift node.
|
|
///
|
|
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
|
|
unsigned NumBits, SelectionDAG &DAG,
|
|
const TargetLowering &TLI, SDLoc dl) {
|
|
assert(VT.is128BitVector() && "Unknown type for VShift");
|
|
EVT ShVT = MVT::v2i64;
|
|
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
|
|
SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(Opc, dl, ShVT, SrcOp,
|
|
DAG.getConstant(NumBits,
|
|
TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
|
|
}
|
|
|
|
static SDValue
|
|
LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
|
|
|
|
// Check if the scalar load can be widened into a vector load. And if
|
|
// the address is "base + cst" see if the cst can be "absorbed" into
|
|
// the shuffle mask.
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
|
|
SDValue Ptr = LD->getBasePtr();
|
|
if (!ISD::isNormalLoad(LD) || LD->isVolatile())
|
|
return SDValue();
|
|
EVT PVT = LD->getValueType(0);
|
|
if (PVT != MVT::i32 && PVT != MVT::f32)
|
|
return SDValue();
|
|
|
|
int FI = -1;
|
|
int64_t Offset = 0;
|
|
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
|
|
FI = FINode->getIndex();
|
|
Offset = 0;
|
|
} else if (DAG.isBaseWithConstantOffset(Ptr) &&
|
|
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
|
|
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
|
|
Offset = Ptr.getConstantOperandVal(1);
|
|
Ptr = Ptr.getOperand(0);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
// FIXME: 256-bit vector instructions don't require a strict alignment,
|
|
// improve this code to support it better.
|
|
unsigned RequiredAlign = VT.getSizeInBits()/8;
|
|
SDValue Chain = LD->getChain();
|
|
// Make sure the stack object alignment is at least 16 or 32.
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
|
|
if (MFI->isFixedObjectIndex(FI)) {
|
|
// Can't change the alignment. FIXME: It's possible to compute
|
|
// the exact stack offset and reference FI + adjust offset instead.
|
|
// If someone *really* cares about this. That's the way to implement it.
|
|
return SDValue();
|
|
} else {
|
|
MFI->setObjectAlignment(FI, RequiredAlign);
|
|
}
|
|
}
|
|
|
|
// (Offset % 16 or 32) must be multiple of 4. Then address is then
|
|
// Ptr + (Offset & ~15).
|
|
if (Offset < 0)
|
|
return SDValue();
|
|
if ((Offset % RequiredAlign) & 3)
|
|
return SDValue();
|
|
int64_t StartOffset = Offset & ~(RequiredAlign-1);
|
|
if (StartOffset)
|
|
Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
|
|
Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
|
|
|
|
int EltNo = (Offset - StartOffset) >> 2;
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
|
|
SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(StartOffset),
|
|
false, false, false, 0);
|
|
|
|
SmallVector<int, 8> Mask;
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
Mask.push_back(EltNo);
|
|
|
|
return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
|
|
/// vector of type 'VT', see if the elements can be replaced by a single large
|
|
/// load which has the same value as a build_vector whose operands are 'elts'.
|
|
///
|
|
/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
|
|
///
|
|
/// FIXME: we'd also like to handle the case where the last elements are zero
|
|
/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
|
|
/// There's even a handy isZeroNode for that purpose.
|
|
static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
|
|
SDLoc &DL, SelectionDAG &DAG,
|
|
bool isAfterLegalize) {
|
|
EVT EltVT = VT.getVectorElementType();
|
|
unsigned NumElems = Elts.size();
|
|
|
|
LoadSDNode *LDBase = nullptr;
|
|
unsigned LastLoadedElt = -1U;
|
|
|
|
// For each element in the initializer, see if we've found a load or an undef.
|
|
// If we don't find an initial load element, or later load elements are
|
|
// non-consecutive, bail out.
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue Elt = Elts[i];
|
|
|
|
if (!Elt.getNode() ||
|
|
(Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
|
|
return SDValue();
|
|
if (!LDBase) {
|
|
if (Elt.getNode()->getOpcode() == ISD::UNDEF)
|
|
return SDValue();
|
|
LDBase = cast<LoadSDNode>(Elt.getNode());
|
|
LastLoadedElt = i;
|
|
continue;
|
|
}
|
|
if (Elt.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
|
|
LoadSDNode *LD = cast<LoadSDNode>(Elt);
|
|
if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
|
|
return SDValue();
|
|
LastLoadedElt = i;
|
|
}
|
|
|
|
// If we have found an entire vector of loads and undefs, then return a large
|
|
// load of the entire vector width starting at the base pointer. If we found
|
|
// consecutive loads for the low half, generate a vzext_load node.
|
|
if (LastLoadedElt == NumElems - 1) {
|
|
|
|
if (isAfterLegalize &&
|
|
!DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
|
|
return SDValue();
|
|
|
|
SDValue NewLd = SDValue();
|
|
|
|
if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
|
|
NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
|
|
LDBase->getPointerInfo(),
|
|
LDBase->isVolatile(), LDBase->isNonTemporal(),
|
|
LDBase->isInvariant(), 0);
|
|
NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
|
|
LDBase->getPointerInfo(),
|
|
LDBase->isVolatile(), LDBase->isNonTemporal(),
|
|
LDBase->isInvariant(), LDBase->getAlignment());
|
|
|
|
if (LDBase->hasAnyUseOfValue(1)) {
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
|
|
SDValue(LDBase, 1),
|
|
SDValue(NewLd.getNode(), 1));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
|
|
DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
|
|
SDValue(NewLd.getNode(), 1));
|
|
}
|
|
|
|
return NewLd;
|
|
}
|
|
if (NumElems == 4 && LastLoadedElt == 1 &&
|
|
DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
|
|
SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
|
|
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
|
|
SDValue ResNode =
|
|
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
|
|
LDBase->getPointerInfo(),
|
|
LDBase->getAlignment(),
|
|
false/*isVolatile*/, true/*ReadMem*/,
|
|
false/*WriteMem*/);
|
|
|
|
// Make sure the newly-created LOAD is in the same position as LDBase in
|
|
// terms of dependency. We create a TokenFactor for LDBase and ResNode, and
|
|
// update uses of LDBase's output chain to use the TokenFactor.
|
|
if (LDBase->hasAnyUseOfValue(1)) {
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
|
|
SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
|
|
DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
|
|
SDValue(ResNode.getNode(), 1));
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
|
|
/// to generate a splat value for the following cases:
|
|
/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
|
|
/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
|
|
/// a scalar load, or a constant.
|
|
/// The VBROADCAST node is returned when a pattern is found,
|
|
/// or SDValue() otherwise.
|
|
static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
|
|
SelectionDAG &DAG) {
|
|
// VBROADCAST requires AVX.
|
|
// TODO: Splats could be generated for non-AVX CPUs using SSE
|
|
// instructions, but there's less potential gain for only 128-bit vectors.
|
|
if (!Subtarget->hasAVX())
|
|
return SDValue();
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
|
|
"Unsupported vector type for broadcast.");
|
|
|
|
SDValue Ld;
|
|
bool ConstSplatVal;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
// Unknown pattern found.
|
|
return SDValue();
|
|
|
|
case ISD::BUILD_VECTOR: {
|
|
auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
|
|
BitVector UndefElements;
|
|
SDValue Splat = BVOp->getSplatValue(&UndefElements);
|
|
|
|
// We need a splat of a single value to use broadcast, and it doesn't
|
|
// make any sense if the value is only in one element of the vector.
|
|
if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
|
|
return SDValue();
|
|
|
|
Ld = Splat;
|
|
ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
|
|
Ld.getOpcode() == ISD::ConstantFP);
|
|
|
|
// Make sure that all of the users of a non-constant load are from the
|
|
// BUILD_VECTOR node.
|
|
if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
|
|
// Shuffles must have a splat mask where the first element is
|
|
// broadcasted.
|
|
if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
|
|
return SDValue();
|
|
|
|
SDValue Sc = Op.getOperand(0);
|
|
if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
|
|
Sc.getOpcode() != ISD::BUILD_VECTOR) {
|
|
|
|
if (!Subtarget->hasInt256())
|
|
return SDValue();
|
|
|
|
// Use the register form of the broadcast instruction available on AVX2.
|
|
if (VT.getSizeInBits() >= 256)
|
|
Sc = Extract128BitVector(Sc, 0, DAG, dl);
|
|
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
|
|
}
|
|
|
|
Ld = Sc.getOperand(0);
|
|
ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
|
|
Ld.getOpcode() == ISD::ConstantFP);
|
|
|
|
// The scalar_to_vector node and the suspected
|
|
// load node must have exactly one user.
|
|
// Constants may have multiple users.
|
|
|
|
// AVX-512 has register version of the broadcast
|
|
bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
|
|
Ld.getValueType().getSizeInBits() >= 32;
|
|
if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
|
|
!hasRegVer))
|
|
return SDValue();
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned ScalarSize = Ld.getValueType().getSizeInBits();
|
|
bool IsGE256 = (VT.getSizeInBits() >= 256);
|
|
|
|
// When optimizing for size, generate up to 5 extra bytes for a broadcast
|
|
// instruction to save 8 or more bytes of constant pool data.
|
|
// TODO: If multiple splats are generated to load the same constant,
|
|
// it may be detrimental to overall size. There needs to be a way to detect
|
|
// that condition to know if this is truly a size win.
|
|
const Function *F = DAG.getMachineFunction().getFunction();
|
|
bool OptForSize = F->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
|
|
|
|
// Handle broadcasting a single constant scalar from the constant pool
|
|
// into a vector.
|
|
// On Sandybridge (no AVX2), it is still better to load a constant vector
|
|
// from the constant pool and not to broadcast it from a scalar.
|
|
// But override that restriction when optimizing for size.
|
|
// TODO: Check if splatting is recommended for other AVX-capable CPUs.
|
|
if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
|
|
EVT CVT = Ld.getValueType();
|
|
assert(!CVT.isVector() && "Must not broadcast a vector type");
|
|
|
|
// Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
|
|
// For size optimization, also splat v2f64 and v2i64, and for size opt
|
|
// with AVX2, also splat i8 and i16.
|
|
// With pattern matching, the VBROADCAST node may become a VMOVDDUP.
|
|
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
|
|
(OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
|
|
const Constant *C = nullptr;
|
|
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
|
|
C = CI->getConstantIntValue();
|
|
else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
|
|
C = CF->getConstantFPValue();
|
|
|
|
assert(C && "Invalid constant type");
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
|
|
Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, Alignment);
|
|
|
|
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
|
|
}
|
|
}
|
|
|
|
bool IsLoad = ISD::isNormalLoad(Ld.getNode());
|
|
|
|
// Handle AVX2 in-register broadcasts.
|
|
if (!IsLoad && Subtarget->hasInt256() &&
|
|
(ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
|
|
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
|
|
|
|
// The scalar source must be a normal load.
|
|
if (!IsLoad)
|
|
return SDValue();
|
|
|
|
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
|
|
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
|
|
|
|
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
|
|
// double since there is no vbroadcastsd xmm
|
|
if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
|
|
if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
|
|
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
|
|
}
|
|
|
|
// Unsupported broadcast.
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
|
|
/// underlying vector and index.
|
|
///
|
|
/// Modifies \p ExtractedFromVec to the real vector and returns the real
|
|
/// index.
|
|
static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
|
|
SDValue ExtIdx) {
|
|
int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
|
|
if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
|
|
return Idx;
|
|
|
|
// For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
|
|
// lowered this:
|
|
// (extract_vector_elt (v8f32 %vreg1), Constant<6>)
|
|
// to:
|
|
// (extract_vector_elt (vector_shuffle<2,u,u,u>
|
|
// (extract_subvector (v8f32 %vreg0), Constant<4>),
|
|
// undef)
|
|
// Constant<0>)
|
|
// In this case the vector is the extract_subvector expression and the index
|
|
// is 2, as specified by the shuffle.
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
|
|
SDValue ShuffleVec = SVOp->getOperand(0);
|
|
MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
|
|
assert(ShuffleVecVT.getVectorElementType() ==
|
|
ExtractedFromVec.getSimpleValueType().getVectorElementType());
|
|
|
|
int ShuffleIdx = SVOp->getMaskElt(Idx);
|
|
if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
|
|
ExtractedFromVec = ShuffleVec;
|
|
return ShuffleIdx;
|
|
}
|
|
return Idx;
|
|
}
|
|
|
|
static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
// Skip if insert_vec_elt is not supported.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
unsigned NumElems = Op.getNumOperands();
|
|
|
|
SDValue VecIn1;
|
|
SDValue VecIn2;
|
|
SmallVector<unsigned, 4> InsertIndices;
|
|
SmallVector<int, 8> Mask(NumElems, -1);
|
|
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
unsigned Opc = Op.getOperand(i).getOpcode();
|
|
|
|
if (Opc == ISD::UNDEF)
|
|
continue;
|
|
|
|
if (Opc != ISD::EXTRACT_VECTOR_ELT) {
|
|
// Quit if more than 1 elements need inserting.
|
|
if (InsertIndices.size() > 1)
|
|
return SDValue();
|
|
|
|
InsertIndices.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
|
|
SDValue ExtIdx = Op.getOperand(i).getOperand(1);
|
|
// Quit if non-constant index.
|
|
if (!isa<ConstantSDNode>(ExtIdx))
|
|
return SDValue();
|
|
int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
|
|
|
|
// Quit if extracted from vector of different type.
|
|
if (ExtractedFromVec.getValueType() != VT)
|
|
return SDValue();
|
|
|
|
if (!VecIn1.getNode())
|
|
VecIn1 = ExtractedFromVec;
|
|
else if (VecIn1 != ExtractedFromVec) {
|
|
if (!VecIn2.getNode())
|
|
VecIn2 = ExtractedFromVec;
|
|
else if (VecIn2 != ExtractedFromVec)
|
|
// Quit if more than 2 vectors to shuffle
|
|
return SDValue();
|
|
}
|
|
|
|
if (ExtractedFromVec == VecIn1)
|
|
Mask[i] = Idx;
|
|
else if (ExtractedFromVec == VecIn2)
|
|
Mask[i] = Idx + NumElems;
|
|
}
|
|
|
|
if (!VecIn1.getNode())
|
|
return SDValue();
|
|
|
|
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
|
|
SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
|
|
for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
|
|
unsigned Idx = InsertIndices[i];
|
|
NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
|
|
DAG.getIntPtrConstant(Idx));
|
|
}
|
|
|
|
return NV;
|
|
}
|
|
|
|
// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
|
|
SDValue
|
|
X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
|
|
"Unexpected type in LowerBUILD_VECTORvXi1!");
|
|
|
|
SDLoc dl(Op);
|
|
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
|
|
SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
|
|
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
|
|
}
|
|
|
|
if (ISD::isBuildVectorAllOnes(Op.getNode())) {
|
|
SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
|
|
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
|
|
}
|
|
|
|
bool AllContants = true;
|
|
uint64_t Immediate = 0;
|
|
int NonConstIdx = -1;
|
|
bool IsSplat = true;
|
|
unsigned NumNonConsts = 0;
|
|
unsigned NumConsts = 0;
|
|
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
|
|
SDValue In = Op.getOperand(idx);
|
|
if (In.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
if (!isa<ConstantSDNode>(In)) {
|
|
AllContants = false;
|
|
NonConstIdx = idx;
|
|
NumNonConsts++;
|
|
}
|
|
else {
|
|
NumConsts++;
|
|
if (cast<ConstantSDNode>(In)->getZExtValue())
|
|
Immediate |= (1ULL << idx);
|
|
}
|
|
if (In != Op.getOperand(0))
|
|
IsSplat = false;
|
|
}
|
|
|
|
if (AllContants) {
|
|
SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
|
|
DAG.getConstant(Immediate, MVT::i16));
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
if (NumNonConsts == 1 && NonConstIdx != 0) {
|
|
SDValue DstVec;
|
|
if (NumConsts) {
|
|
SDValue VecAsImm = DAG.getConstant(Immediate,
|
|
MVT::getIntegerVT(VT.getSizeInBits()));
|
|
DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
|
|
}
|
|
else
|
|
DstVec = DAG.getUNDEF(VT);
|
|
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
|
|
Op.getOperand(NonConstIdx),
|
|
DAG.getIntPtrConstant(NonConstIdx));
|
|
}
|
|
if (!IsSplat && (NonConstIdx != 0))
|
|
llvm_unreachable("Unsupported BUILD_VECTOR operation");
|
|
MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
|
|
SDValue Select;
|
|
if (IsSplat)
|
|
Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
|
|
DAG.getConstant(-1, SelectVT),
|
|
DAG.getConstant(0, SelectVT));
|
|
else
|
|
Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
|
|
DAG.getConstant((Immediate | 1), SelectVT),
|
|
DAG.getConstant(Immediate, SelectVT));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Select);
|
|
}
|
|
|
|
/// \brief Return true if \p N implements a horizontal binop and return the
|
|
/// operands for the horizontal binop into V0 and V1.
|
|
///
|
|
/// This is a helper function of PerformBUILD_VECTORCombine.
|
|
/// This function checks that the build_vector \p N in input implements a
|
|
/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
|
|
/// operation to match.
|
|
/// For example, if \p Opcode is equal to ISD::ADD, then this function
|
|
/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
|
|
/// is equal to ISD::SUB, then this function checks if this is a horizontal
|
|
/// arithmetic sub.
|
|
///
|
|
/// This function only analyzes elements of \p N whose indices are
|
|
/// in range [BaseIdx, LastIdx).
|
|
static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
|
|
SelectionDAG &DAG,
|
|
unsigned BaseIdx, unsigned LastIdx,
|
|
SDValue &V0, SDValue &V1) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
|
|
assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
|
|
"Invalid Vector in input!");
|
|
|
|
bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
|
|
bool CanFold = true;
|
|
unsigned ExpectedVExtractIdx = BaseIdx;
|
|
unsigned NumElts = LastIdx - BaseIdx;
|
|
V0 = DAG.getUNDEF(VT);
|
|
V1 = DAG.getUNDEF(VT);
|
|
|
|
// Check if N implements a horizontal binop.
|
|
for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
|
|
SDValue Op = N->getOperand(i + BaseIdx);
|
|
|
|
// Skip UNDEFs.
|
|
if (Op->getOpcode() == ISD::UNDEF) {
|
|
// Update the expected vector extract index.
|
|
if (i * 2 == NumElts)
|
|
ExpectedVExtractIdx = BaseIdx;
|
|
ExpectedVExtractIdx += 2;
|
|
continue;
|
|
}
|
|
|
|
CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
|
|
|
|
if (!CanFold)
|
|
break;
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
// Try to match the following pattern:
|
|
// (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
|
|
CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
Op0.getOperand(0) == Op1.getOperand(0) &&
|
|
isa<ConstantSDNode>(Op0.getOperand(1)) &&
|
|
isa<ConstantSDNode>(Op1.getOperand(1)));
|
|
if (!CanFold)
|
|
break;
|
|
|
|
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
|
|
unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
|
|
|
|
if (i * 2 < NumElts) {
|
|
if (V0.getOpcode() == ISD::UNDEF)
|
|
V0 = Op0.getOperand(0);
|
|
} else {
|
|
if (V1.getOpcode() == ISD::UNDEF)
|
|
V1 = Op0.getOperand(0);
|
|
if (i * 2 == NumElts)
|
|
ExpectedVExtractIdx = BaseIdx;
|
|
}
|
|
|
|
SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
|
|
if (I0 == ExpectedVExtractIdx)
|
|
CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
|
|
else if (IsCommutable && I1 == ExpectedVExtractIdx) {
|
|
// Try to match the following dag sequence:
|
|
// (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
|
|
CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
|
|
} else
|
|
CanFold = false;
|
|
|
|
ExpectedVExtractIdx += 2;
|
|
}
|
|
|
|
return CanFold;
|
|
}
|
|
|
|
/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
|
|
/// a concat_vector.
|
|
///
|
|
/// This is a helper function of PerformBUILD_VECTORCombine.
|
|
/// This function expects two 256-bit vectors called V0 and V1.
|
|
/// At first, each vector is split into two separate 128-bit vectors.
|
|
/// Then, the resulting 128-bit vectors are used to implement two
|
|
/// horizontal binary operations.
|
|
///
|
|
/// The kind of horizontal binary operation is defined by \p X86Opcode.
|
|
///
|
|
/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
|
|
/// the two new horizontal binop.
|
|
/// When Mode is set, the first horizontal binop dag node would take as input
|
|
/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
|
|
/// horizontal binop dag node would take as input the lower 128-bit of V1
|
|
/// and the upper 128-bit of V1.
|
|
/// Example:
|
|
/// HADD V0_LO, V0_HI
|
|
/// HADD V1_LO, V1_HI
|
|
///
|
|
/// Otherwise, the first horizontal binop dag node takes as input the lower
|
|
/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
|
|
/// dag node takes the the upper 128-bit of V0 and the upper 128-bit of V1.
|
|
/// Example:
|
|
/// HADD V0_LO, V1_LO
|
|
/// HADD V0_HI, V1_HI
|
|
///
|
|
/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
|
|
/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
|
|
/// the upper 128-bits of the result.
|
|
static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
|
|
SDLoc DL, SelectionDAG &DAG,
|
|
unsigned X86Opcode, bool Mode,
|
|
bool isUndefLO, bool isUndefHI) {
|
|
EVT VT = V0.getValueType();
|
|
assert(VT.is256BitVector() && VT == V1.getValueType() &&
|
|
"Invalid nodes in input!");
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
|
|
SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
|
|
SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
|
|
SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
|
|
EVT NewVT = V0_LO.getValueType();
|
|
|
|
SDValue LO = DAG.getUNDEF(NewVT);
|
|
SDValue HI = DAG.getUNDEF(NewVT);
|
|
|
|
if (Mode) {
|
|
// Don't emit a horizontal binop if the result is expected to be UNDEF.
|
|
if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
|
|
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
|
|
if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
|
|
HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
|
|
} else {
|
|
// Don't emit a horizontal binop if the result is expected to be UNDEF.
|
|
if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
|
|
V1_LO->getOpcode() != ISD::UNDEF))
|
|
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
|
|
|
|
if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
|
|
V1_HI->getOpcode() != ISD::UNDEF))
|
|
HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
|
|
}
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
|
|
}
|
|
|
|
/// \brief Try to fold a build_vector that performs an 'addsub' into the
|
|
/// sequence of 'vadd + vsub + blendi'.
|
|
static SDValue matchAddSub(const BuildVectorSDNode *BV, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(BV);
|
|
EVT VT = BV->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
SDValue InVec0 = DAG.getUNDEF(VT);
|
|
SDValue InVec1 = DAG.getUNDEF(VT);
|
|
|
|
assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f64) && "build_vector with an invalid type found!");
|
|
|
|
// Odd-numbered elements in the input build vector are obtained from
|
|
// adding two integer/float elements.
|
|
// Even-numbered elements in the input build vector are obtained from
|
|
// subtracting two integer/float elements.
|
|
unsigned ExpectedOpcode = ISD::FSUB;
|
|
unsigned NextExpectedOpcode = ISD::FADD;
|
|
bool AddFound = false;
|
|
bool SubFound = false;
|
|
|
|
for (unsigned i = 0, e = NumElts; i != e; i++) {
|
|
SDValue Op = BV->getOperand(i);
|
|
|
|
// Skip 'undef' values.
|
|
unsigned Opcode = Op.getOpcode();
|
|
if (Opcode == ISD::UNDEF) {
|
|
std::swap(ExpectedOpcode, NextExpectedOpcode);
|
|
continue;
|
|
}
|
|
|
|
// Early exit if we found an unexpected opcode.
|
|
if (Opcode != ExpectedOpcode)
|
|
return SDValue();
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
// Try to match the following pattern:
|
|
// (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
|
|
// Early exit if we cannot match that sequence.
|
|
if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(Op0.getOperand(1)) ||
|
|
!isa<ConstantSDNode>(Op1.getOperand(1)) ||
|
|
Op0.getOperand(1) != Op1.getOperand(1))
|
|
return SDValue();
|
|
|
|
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
|
|
if (I0 != i)
|
|
return SDValue();
|
|
|
|
// We found a valid add/sub node. Update the information accordingly.
|
|
if (i & 1)
|
|
AddFound = true;
|
|
else
|
|
SubFound = true;
|
|
|
|
// Update InVec0 and InVec1.
|
|
if (InVec0.getOpcode() == ISD::UNDEF)
|
|
InVec0 = Op0.getOperand(0);
|
|
if (InVec1.getOpcode() == ISD::UNDEF)
|
|
InVec1 = Op1.getOperand(0);
|
|
|
|
// Make sure that operands in input to each add/sub node always
|
|
// come from a same pair of vectors.
|
|
if (InVec0 != Op0.getOperand(0)) {
|
|
if (ExpectedOpcode == ISD::FSUB)
|
|
return SDValue();
|
|
|
|
// FADD is commutable. Try to commute the operands
|
|
// and then test again.
|
|
std::swap(Op0, Op1);
|
|
if (InVec0 != Op0.getOperand(0))
|
|
return SDValue();
|
|
}
|
|
|
|
if (InVec1 != Op1.getOperand(0))
|
|
return SDValue();
|
|
|
|
// Update the pair of expected opcodes.
|
|
std::swap(ExpectedOpcode, NextExpectedOpcode);
|
|
}
|
|
|
|
// Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
|
|
if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
|
|
InVec1.getOpcode() != ISD::UNDEF)
|
|
return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
|
|
SDValue InVec0, InVec1;
|
|
|
|
// Try to match an ADDSUB.
|
|
if ((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
|
|
(Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) {
|
|
SDValue Value = matchAddSub(BV, DAG, Subtarget);
|
|
if (Value.getNode())
|
|
return Value;
|
|
}
|
|
|
|
// Try to match horizontal ADD/SUB.
|
|
unsigned NumUndefsLO = 0;
|
|
unsigned NumUndefsHI = 0;
|
|
unsigned Half = NumElts/2;
|
|
|
|
// Count the number of UNDEF operands in the build_vector in input.
|
|
for (unsigned i = 0, e = Half; i != e; ++i)
|
|
if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
|
|
NumUndefsLO++;
|
|
|
|
for (unsigned i = Half, e = NumElts; i != e; ++i)
|
|
if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
|
|
NumUndefsHI++;
|
|
|
|
// Early exit if this is either a build_vector of all UNDEFs or all the
|
|
// operands but one are UNDEF.
|
|
if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
|
|
return SDValue();
|
|
|
|
if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
|
|
// Try to match an SSE3 float HADD/HSUB.
|
|
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
|
|
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
|
|
|
|
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
|
|
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
|
|
} else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
|
|
// Try to match an SSSE3 integer HADD/HSUB.
|
|
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
|
|
return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
|
|
|
|
if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
|
|
return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
|
|
}
|
|
|
|
if (!Subtarget->hasAVX())
|
|
return SDValue();
|
|
|
|
if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
|
|
// Try to match an AVX horizontal add/sub of packed single/double
|
|
// precision floating point values from 256-bit vectors.
|
|
SDValue InVec2, InVec3;
|
|
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
|
|
isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
|
|
((InVec0.getOpcode() == ISD::UNDEF ||
|
|
InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
|
|
((InVec1.getOpcode() == ISD::UNDEF ||
|
|
InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
|
|
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
|
|
|
|
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
|
|
isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
|
|
((InVec0.getOpcode() == ISD::UNDEF ||
|
|
InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
|
|
((InVec1.getOpcode() == ISD::UNDEF ||
|
|
InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
|
|
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
|
|
} else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
|
|
// Try to match an AVX2 horizontal add/sub of signed integers.
|
|
SDValue InVec2, InVec3;
|
|
unsigned X86Opcode;
|
|
bool CanFold = true;
|
|
|
|
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
|
|
isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
|
|
((InVec0.getOpcode() == ISD::UNDEF ||
|
|
InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
|
|
((InVec1.getOpcode() == ISD::UNDEF ||
|
|
InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
|
|
X86Opcode = X86ISD::HADD;
|
|
else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
|
|
isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
|
|
((InVec0.getOpcode() == ISD::UNDEF ||
|
|
InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
|
|
((InVec1.getOpcode() == ISD::UNDEF ||
|
|
InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
|
|
X86Opcode = X86ISD::HSUB;
|
|
else
|
|
CanFold = false;
|
|
|
|
if (CanFold) {
|
|
// Fold this build_vector into a single horizontal add/sub.
|
|
// Do this only if the target has AVX2.
|
|
if (Subtarget->hasAVX2())
|
|
return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
|
|
|
|
// Do not try to expand this build_vector into a pair of horizontal
|
|
// add/sub if we can emit a pair of scalar add/sub.
|
|
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
|
|
return SDValue();
|
|
|
|
// Convert this build_vector into a pair of horizontal binop followed by
|
|
// a concat vector.
|
|
bool isUndefLO = NumUndefsLO == Half;
|
|
bool isUndefHI = NumUndefsHI == Half;
|
|
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
|
|
isUndefLO, isUndefHI);
|
|
}
|
|
}
|
|
|
|
if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
|
|
VT == MVT::v16i16) && Subtarget->hasAVX()) {
|
|
unsigned X86Opcode;
|
|
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
|
|
X86Opcode = X86ISD::HADD;
|
|
else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
|
|
X86Opcode = X86ISD::HSUB;
|
|
else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
|
|
X86Opcode = X86ISD::FHADD;
|
|
else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
|
|
X86Opcode = X86ISD::FHSUB;
|
|
else
|
|
return SDValue();
|
|
|
|
// Don't try to expand this build_vector into a pair of horizontal add/sub
|
|
// if we can simply emit a pair of scalar add/sub.
|
|
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
|
|
return SDValue();
|
|
|
|
// Convert this build_vector into two horizontal add/sub followed by
|
|
// a concat vector.
|
|
bool isUndefLO = NumUndefsLO == Half;
|
|
bool isUndefHI = NumUndefsHI == Half;
|
|
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
|
|
isUndefLO, isUndefHI);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ExtVT = VT.getVectorElementType();
|
|
unsigned NumElems = Op.getNumOperands();
|
|
|
|
// Generate vectors for predicate vectors.
|
|
if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
|
|
return LowerBUILD_VECTORvXi1(Op, DAG);
|
|
|
|
// Vectors containing all zeros can be matched by pxor and xorps later
|
|
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
|
|
// Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
|
|
// and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
|
|
if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
|
|
return Op;
|
|
|
|
return getZeroVector(VT, Subtarget, DAG, dl);
|
|
}
|
|
|
|
// Vectors containing all ones can be matched by pcmpeqd on 128-bit width
|
|
// vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
|
|
// vpcmpeqd on 256-bit vectors.
|
|
if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
|
|
if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
|
|
return Op;
|
|
|
|
if (!VT.is512BitVector())
|
|
return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
|
|
}
|
|
|
|
SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
|
|
if (Broadcast.getNode())
|
|
return Broadcast;
|
|
|
|
unsigned EVTBits = ExtVT.getSizeInBits();
|
|
|
|
unsigned NumZero = 0;
|
|
unsigned NumNonZero = 0;
|
|
unsigned NonZeros = 0;
|
|
bool IsAllConstants = true;
|
|
SmallSet<SDValue, 8> Values;
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue Elt = Op.getOperand(i);
|
|
if (Elt.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
Values.insert(Elt);
|
|
if (Elt.getOpcode() != ISD::Constant &&
|
|
Elt.getOpcode() != ISD::ConstantFP)
|
|
IsAllConstants = false;
|
|
if (X86::isZeroNode(Elt))
|
|
NumZero++;
|
|
else {
|
|
NonZeros |= (1 << i);
|
|
NumNonZero++;
|
|
}
|
|
}
|
|
|
|
// All undef vector. Return an UNDEF. All zero vectors were handled above.
|
|
if (NumNonZero == 0)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Special case for single non-zero, non-undef, element.
|
|
if (NumNonZero == 1) {
|
|
unsigned Idx = countTrailingZeros(NonZeros);
|
|
SDValue Item = Op.getOperand(Idx);
|
|
|
|
// If this is an insertion of an i64 value on x86-32, and if the top bits of
|
|
// the value are obviously zero, truncate the value to i32 and do the
|
|
// insertion that way. Only do this if the value is non-constant or if the
|
|
// value is a constant being inserted into element 0. It is cheaper to do
|
|
// a constant pool load than it is to do a movd + shuffle.
|
|
if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
|
|
(!IsAllConstants || Idx == 0)) {
|
|
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
|
|
// Handle SSE only.
|
|
assert(VT == MVT::v2i64 && "Expected an SSE value type!");
|
|
EVT VecVT = MVT::v4i32;
|
|
unsigned VecElts = 4;
|
|
|
|
// Truncate the value (which may itself be a constant) to i32, and
|
|
// convert it to a vector with movd (S2V+shuffle to zero extend).
|
|
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
|
|
|
|
// If using the new shuffle lowering, just directly insert this.
|
|
if (ExperimentalVectorShuffleLowering)
|
|
return DAG.getNode(
|
|
ISD::BITCAST, dl, VT,
|
|
getShuffleVectorZeroOrUndef(Item, Idx * 2, true, Subtarget, DAG));
|
|
|
|
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
|
|
|
|
// Now we have our 32-bit value zero extended in the low element of
|
|
// a vector. If Idx != 0, swizzle it into place.
|
|
if (Idx != 0) {
|
|
SmallVector<int, 4> Mask;
|
|
Mask.push_back(Idx);
|
|
for (unsigned i = 1; i != VecElts; ++i)
|
|
Mask.push_back(i);
|
|
Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
|
|
&Mask[0]);
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Item);
|
|
}
|
|
}
|
|
|
|
// If we have a constant or non-constant insertion into the low element of
|
|
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
|
|
// the rest of the elements. This will be matched as movd/movq/movss/movsd
|
|
// depending on what the source datatype is.
|
|
if (Idx == 0) {
|
|
if (NumZero == 0)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
|
|
|
|
if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
|
|
(ExtVT == MVT::i64 && Subtarget->is64Bit())) {
|
|
if (VT.is256BitVector() || VT.is512BitVector()) {
|
|
SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
|
|
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
|
|
Item, DAG.getIntPtrConstant(0));
|
|
}
|
|
assert(VT.is128BitVector() && "Expected an SSE value type!");
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
|
|
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
|
|
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
|
|
}
|
|
|
|
if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
|
|
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
|
|
if (VT.is256BitVector()) {
|
|
SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
|
|
Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
|
|
} else {
|
|
assert(VT.is128BitVector() && "Expected an SSE value type!");
|
|
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Item);
|
|
}
|
|
}
|
|
|
|
// Is it a vector logical left shift?
|
|
if (NumElems == 2 && Idx == 1 &&
|
|
X86::isZeroNode(Op.getOperand(0)) &&
|
|
!X86::isZeroNode(Op.getOperand(1))) {
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
return getVShift(true, VT,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
VT, Op.getOperand(1)),
|
|
NumBits/2, DAG, *this, dl);
|
|
}
|
|
|
|
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
|
|
return SDValue();
|
|
|
|
// Otherwise, if this is a vector with i32 or f32 elements, and the element
|
|
// is a non-constant being inserted into an element other than the low one,
|
|
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
|
|
// movd/movss) to move this into the low element, then shuffle it into
|
|
// place.
|
|
if (EVTBits == 32) {
|
|
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
|
|
|
|
// If using the new shuffle lowering, just directly insert this.
|
|
if (ExperimentalVectorShuffleLowering)
|
|
return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
|
|
|
|
// Turn it into a shuffle of zero and zero-extended scalar to vector.
|
|
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
|
|
SmallVector<int, 8> MaskVec;
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
MaskVec.push_back(i == Idx ? 0 : 1);
|
|
return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
|
|
}
|
|
}
|
|
|
|
// Splat is obviously ok. Let legalizer expand it to a shuffle.
|
|
if (Values.size() == 1) {
|
|
if (EVTBits == 32) {
|
|
// Instead of a shuffle like this:
|
|
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
|
|
// Check if it's possible to issue this instead.
|
|
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
|
|
unsigned Idx = countTrailingZeros(NonZeros);
|
|
SDValue Item = Op.getOperand(Idx);
|
|
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
|
|
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// A vector full of immediates; various special cases are already
|
|
// handled, so this is best done with a single constant-pool load.
|
|
if (IsAllConstants)
|
|
return SDValue();
|
|
|
|
// For AVX-length vectors, build the individual 128-bit pieces and use
|
|
// shuffles to put them in place.
|
|
if (VT.is256BitVector() || VT.is512BitVector()) {
|
|
SmallVector<SDValue, 64> V;
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
V.push_back(Op.getOperand(i));
|
|
|
|
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
|
|
|
|
// Build both the lower and upper subvector.
|
|
SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
|
|
makeArrayRef(&V[0], NumElems/2));
|
|
SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
|
|
makeArrayRef(&V[NumElems / 2], NumElems/2));
|
|
|
|
// Recreate the wider vector with the lower and upper part.
|
|
if (VT.is256BitVector())
|
|
return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
|
|
return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
|
|
}
|
|
|
|
// Let legalizer expand 2-wide build_vectors.
|
|
if (EVTBits == 64) {
|
|
if (NumNonZero == 1) {
|
|
// One half is zero or undef.
|
|
unsigned Idx = countTrailingZeros(NonZeros);
|
|
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
|
|
Op.getOperand(Idx));
|
|
return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// If element VT is < 32 bits, convert it to inserts into a zero vector.
|
|
if (EVTBits == 8 && NumElems == 16) {
|
|
SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
|
|
Subtarget, *this);
|
|
if (V.getNode()) return V;
|
|
}
|
|
|
|
if (EVTBits == 16 && NumElems == 8) {
|
|
SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
|
|
Subtarget, *this);
|
|
if (V.getNode()) return V;
|
|
}
|
|
|
|
// If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
|
|
if (EVTBits == 32 && NumElems == 4) {
|
|
SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this);
|
|
if (V.getNode())
|
|
return V;
|
|
}
|
|
|
|
// If element VT is == 32 bits, turn it into a number of shuffles.
|
|
SmallVector<SDValue, 8> V(NumElems);
|
|
if (NumElems == 4 && NumZero > 0) {
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
bool isZero = !(NonZeros & (1 << i));
|
|
if (isZero)
|
|
V[i] = getZeroVector(VT, Subtarget, DAG, dl);
|
|
else
|
|
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
|
|
}
|
|
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
|
|
default: break;
|
|
case 0:
|
|
V[i] = V[i*2]; // Must be a zero vector.
|
|
break;
|
|
case 1:
|
|
V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
|
|
break;
|
|
case 2:
|
|
V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
|
|
break;
|
|
case 3:
|
|
V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool Reverse1 = (NonZeros & 0x3) == 2;
|
|
bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
|
|
int MaskVec[] = {
|
|
Reverse1 ? 1 : 0,
|
|
Reverse1 ? 0 : 1,
|
|
static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
|
|
static_cast<int>(Reverse2 ? NumElems : NumElems+1)
|
|
};
|
|
return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
|
|
}
|
|
|
|
if (Values.size() > 1 && VT.is128BitVector()) {
|
|
// Check for a build vector of consecutive loads.
|
|
for (unsigned i = 0; i < NumElems; ++i)
|
|
V[i] = Op.getOperand(i);
|
|
|
|
// Check for elements which are consecutive loads.
|
|
SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
|
|
if (LD.getNode())
|
|
return LD;
|
|
|
|
// Check for a build vector from mostly shuffle plus few inserting.
|
|
SDValue Sh = buildFromShuffleMostly(Op, DAG);
|
|
if (Sh.getNode())
|
|
return Sh;
|
|
|
|
// For SSE 4.1, use insertps to put the high elements into the low element.
|
|
if (getSubtarget()->hasSSE41()) {
|
|
SDValue Result;
|
|
if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
|
|
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
|
|
else
|
|
Result = DAG.getUNDEF(VT);
|
|
|
|
for (unsigned i = 1; i < NumElems; ++i) {
|
|
if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
|
|
Op.getOperand(i), DAG.getIntPtrConstant(i));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// Otherwise, expand into a number of unpckl*, start by extending each of
|
|
// our (non-undef) elements to the full vector width with the element in the
|
|
// bottom slot of the vector (which generates no code for SSE).
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
|
|
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
|
|
else
|
|
V[i] = DAG.getUNDEF(VT);
|
|
}
|
|
|
|
// Next, we iteratively mix elements, e.g. for v4f32:
|
|
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
|
|
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
|
|
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
|
|
unsigned EltStride = NumElems >> 1;
|
|
while (EltStride != 0) {
|
|
for (unsigned i = 0; i < EltStride; ++i) {
|
|
// If V[i+EltStride] is undef and this is the first round of mixing,
|
|
// then it is safe to just drop this shuffle: V[i] is already in the
|
|
// right place, the one element (since it's the first round) being
|
|
// inserted as undef can be dropped. This isn't safe for successive
|
|
// rounds because they will permute elements within both vectors.
|
|
if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
|
|
EltStride == NumElems/2)
|
|
continue;
|
|
|
|
V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
|
|
}
|
|
EltStride >>= 1;
|
|
}
|
|
return V[0];
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
|
|
// to create 256-bit vectors from two other 128-bit ones.
|
|
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
MVT ResVT = Op.getSimpleValueType();
|
|
|
|
assert((ResVT.is256BitVector() ||
|
|
ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
|
|
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
unsigned NumElems = ResVT.getVectorNumElements();
|
|
if(ResVT.is256BitVector())
|
|
return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
|
|
|
|
if (Op.getNumOperands() == 4) {
|
|
MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
|
|
ResVT.getVectorNumElements()/2);
|
|
SDValue V3 = Op.getOperand(2);
|
|
SDValue V4 = Op.getOperand(3);
|
|
return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
|
|
Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
|
|
}
|
|
return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
|
|
}
|
|
|
|
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
|
|
MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType();
|
|
assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
|
|
(VT.is512BitVector() && (Op.getNumOperands() == 2 ||
|
|
Op.getNumOperands() == 4)));
|
|
|
|
// AVX can use the vinsertf128 instruction to create 256-bit vectors
|
|
// from two other 128-bit ones.
|
|
|
|
// 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
|
|
return LowerAVXCONCAT_VECTORS(Op, DAG);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector shuffle lowering
|
|
//
|
|
// This is an experimental code path for lowering vector shuffles on x86. It is
|
|
// designed to handle arbitrary vector shuffles and blends, gracefully
|
|
// degrading performance as necessary. It works hard to recognize idiomatic
|
|
// shuffles and lower them to optimal instruction patterns without leaving
|
|
// a framework that allows reasonably efficient handling of all vector shuffle
|
|
// patterns.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Tiny helper function to identify a no-op mask.
|
|
///
|
|
/// This is a somewhat boring predicate function. It checks whether the mask
|
|
/// array input, which is assumed to be a single-input shuffle mask of the kind
|
|
/// used by the X86 shuffle instructions (not a fully general
|
|
/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
|
|
/// in-place shuffle are 'no-op's.
|
|
static bool isNoopShuffleMask(ArrayRef<int> Mask) {
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
if (Mask[i] != -1 && Mask[i] != i)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Helper function to classify a mask as a single-input mask.
|
|
///
|
|
/// This isn't a generic single-input test because in the vector shuffle
|
|
/// lowering we canonicalize single inputs to be the first input operand. This
|
|
/// means we can more quickly test for a single input by only checking whether
|
|
/// an input from the second operand exists. We also assume that the size of
|
|
/// mask corresponds to the size of the input vectors which isn't true in the
|
|
/// fully general case.
|
|
static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
|
|
for (int M : Mask)
|
|
if (M >= (int)Mask.size())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Test whether there are elements crossing 128-bit lanes in this
|
|
/// shuffle mask.
|
|
///
|
|
/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
|
|
/// and we routinely test for these.
|
|
static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
|
|
int LaneSize = 128 / VT.getScalarSizeInBits();
|
|
int Size = Mask.size();
|
|
for (int i = 0; i < Size; ++i)
|
|
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
|
|
///
|
|
/// This checks a shuffle mask to see if it is performing the same
|
|
/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
|
|
/// that it is also not lane-crossing. It may however involve a blend from the
|
|
/// same lane of a second vector.
|
|
///
|
|
/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
|
|
/// non-trivial to compute in the face of undef lanes. The representation is
|
|
/// *not* suitable for use with existing 128-bit shuffles as it will contain
|
|
/// entries from both V1 and V2 inputs to the wider mask.
|
|
static bool
|
|
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
|
|
SmallVectorImpl<int> &RepeatedMask) {
|
|
int LaneSize = 128 / VT.getScalarSizeInBits();
|
|
RepeatedMask.resize(LaneSize, -1);
|
|
int Size = Mask.size();
|
|
for (int i = 0; i < Size; ++i) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
if ((Mask[i] % Size) / LaneSize != i / LaneSize)
|
|
// This entry crosses lanes, so there is no way to model this shuffle.
|
|
return false;
|
|
|
|
// Ok, handle the in-lane shuffles by detecting if and when they repeat.
|
|
if (RepeatedMask[i % LaneSize] == -1)
|
|
// This is the first non-undef entry in this slot of a 128-bit lane.
|
|
RepeatedMask[i % LaneSize] =
|
|
Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
|
|
else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
|
|
// Found a mismatch with the repeated mask.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Hide this symbol with an anonymous namespace instead of 'static' so that MSVC
|
|
// 2013 will allow us to use it as a non-type template parameter.
|
|
namespace {
|
|
|
|
/// \brief Implementation of the \c isShuffleEquivalent variadic functor.
|
|
///
|
|
/// See its documentation for details.
|
|
bool isShuffleEquivalentImpl(ArrayRef<int> Mask, ArrayRef<const int *> Args) {
|
|
if (Mask.size() != Args.size())
|
|
return false;
|
|
for (int i = 0, e = Mask.size(); i < e; ++i) {
|
|
assert(*Args[i] >= 0 && "Arguments must be positive integers!");
|
|
if (Mask[i] != -1 && Mask[i] != *Args[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
|
|
/// arguments.
|
|
///
|
|
/// This is a fast way to test a shuffle mask against a fixed pattern:
|
|
///
|
|
/// if (isShuffleEquivalent(Mask, 3, 2, 1, 0)) { ... }
|
|
///
|
|
/// It returns true if the mask is exactly as wide as the argument list, and
|
|
/// each element of the mask is either -1 (signifying undef) or the value given
|
|
/// in the argument.
|
|
static const VariadicFunction1<
|
|
bool, ArrayRef<int>, int, isShuffleEquivalentImpl> isShuffleEquivalent = {};
|
|
|
|
/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
|
|
///
|
|
/// This helper function produces an 8-bit shuffle immediate corresponding to
|
|
/// the ubiquitous shuffle encoding scheme used in x86 instructions for
|
|
/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
|
|
/// example.
|
|
///
|
|
/// NB: We rely heavily on "undef" masks preserving the input lane.
|
|
static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) {
|
|
assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
|
|
assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
|
|
assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
|
|
assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
|
|
assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
|
|
|
|
unsigned Imm = 0;
|
|
Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
|
|
Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
|
|
Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
|
|
Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
|
|
return DAG.getConstant(Imm, MVT::i8);
|
|
}
|
|
|
|
/// \brief Try to emit a blend instruction for a shuffle.
|
|
///
|
|
/// This doesn't do any checks for the availability of instructions for blending
|
|
/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
|
|
/// be matched in the backend with the type given. What it does check for is
|
|
/// that the shuffle mask is in fact a blend.
|
|
static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
|
|
SDValue V2, ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
|
|
unsigned BlendMask = 0;
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
|
|
if (Mask[i] >= Size) {
|
|
if (Mask[i] != i + Size)
|
|
return SDValue(); // Shuffled V2 input!
|
|
BlendMask |= 1u << i;
|
|
continue;
|
|
}
|
|
if (Mask[i] >= 0 && Mask[i] != i)
|
|
return SDValue(); // Shuffled V1 input!
|
|
}
|
|
switch (VT.SimpleTy) {
|
|
case MVT::v2f64:
|
|
case MVT::v4f32:
|
|
case MVT::v4f64:
|
|
case MVT::v8f32:
|
|
return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
|
|
DAG.getConstant(BlendMask, MVT::i8));
|
|
|
|
case MVT::v4i64:
|
|
case MVT::v8i32:
|
|
assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
|
|
// FALLTHROUGH
|
|
case MVT::v2i64:
|
|
case MVT::v4i32:
|
|
// If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
|
|
// that instruction.
|
|
if (Subtarget->hasAVX2()) {
|
|
// Scale the blend by the number of 32-bit dwords per element.
|
|
int Scale = VT.getScalarSizeInBits() / 32;
|
|
BlendMask = 0;
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
if (Mask[i] >= Size)
|
|
for (int j = 0; j < Scale; ++j)
|
|
BlendMask |= 1u << (i * Scale + j);
|
|
|
|
MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, BlendVT, V2);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
|
|
DAG.getConstant(BlendMask, MVT::i8)));
|
|
}
|
|
// FALLTHROUGH
|
|
case MVT::v8i16: {
|
|
// For integer shuffles we need to expand the mask and cast the inputs to
|
|
// v8i16s prior to blending.
|
|
int Scale = 8 / VT.getVectorNumElements();
|
|
BlendMask = 0;
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
if (Mask[i] >= Size)
|
|
for (int j = 0; j < Scale; ++j)
|
|
BlendMask |= 1u << (i * Scale + j);
|
|
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
|
|
DAG.getConstant(BlendMask, MVT::i8)));
|
|
}
|
|
|
|
case MVT::v16i16: {
|
|
assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
|
|
SmallVector<int, 8> RepeatedMask;
|
|
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
|
|
// We can lower these with PBLENDW which is mirrored across 128-bit lanes.
|
|
assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
|
|
BlendMask = 0;
|
|
for (int i = 0; i < 8; ++i)
|
|
if (RepeatedMask[i] >= 16)
|
|
BlendMask |= 1u << i;
|
|
return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
|
|
DAG.getConstant(BlendMask, MVT::i8));
|
|
}
|
|
}
|
|
// FALLTHROUGH
|
|
case MVT::v32i8: {
|
|
assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
|
|
// Scale the blend by the number of bytes per element.
|
|
int Scale = VT.getScalarSizeInBits() / 8;
|
|
assert(Mask.size() * Scale == 32 && "Not a 256-bit vector!");
|
|
|
|
// Compute the VSELECT mask. Note that VSELECT is really confusing in the
|
|
// mix of LLVM's code generator and the x86 backend. We tell the code
|
|
// generator that boolean values in the elements of an x86 vector register
|
|
// are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
|
|
// mapping a select to operand #1, and 'false' mapping to operand #2. The
|
|
// reality in x86 is that vector masks (pre-AVX-512) use only the high bit
|
|
// of the element (the remaining are ignored) and 0 in that high bit would
|
|
// mean operand #1 while 1 in the high bit would mean operand #2. So while
|
|
// the LLVM model for boolean values in vector elements gets the relevant
|
|
// bit set, it is set backwards and over constrained relative to x86's
|
|
// actual model.
|
|
SDValue VSELECTMask[32];
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
for (int j = 0; j < Scale; ++j)
|
|
VSELECTMask[Scale * i + j] =
|
|
Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
|
|
: DAG.getConstant(Mask[i] < Size ? -1 : 0, MVT::i8);
|
|
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V2);
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, VT,
|
|
DAG.getNode(ISD::VSELECT, DL, MVT::v32i8,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, VSELECTMask),
|
|
V1, V2));
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("Not a supported integer vector type!");
|
|
}
|
|
}
|
|
|
|
/// \brief Generic routine to lower a shuffle and blend as a decomposed set of
|
|
/// unblended shuffles followed by an unshuffled blend.
|
|
///
|
|
/// This matches the extremely common pattern for handling combined
|
|
/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
|
|
/// operations.
|
|
static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
|
|
SDValue V1,
|
|
SDValue V2,
|
|
ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) {
|
|
// Shuffle the input elements into the desired positions in V1 and V2 and
|
|
// blend them together.
|
|
SmallVector<int, 32> V1Mask(Mask.size(), -1);
|
|
SmallVector<int, 32> V2Mask(Mask.size(), -1);
|
|
SmallVector<int, 32> BlendMask(Mask.size(), -1);
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
if (Mask[i] >= 0 && Mask[i] < Size) {
|
|
V1Mask[i] = Mask[i];
|
|
BlendMask[i] = i;
|
|
} else if (Mask[i] >= Size) {
|
|
V2Mask[i] = Mask[i] - Size;
|
|
BlendMask[i] = i + Size;
|
|
}
|
|
|
|
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
|
|
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
|
|
return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
|
|
}
|
|
|
|
/// \brief Try to lower a vector shuffle as a byte rotation.
|
|
///
|
|
/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
|
|
/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
|
|
/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
|
|
/// try to generically lower a vector shuffle through such an pattern. It
|
|
/// does not check for the profitability of lowering either as PALIGNR or
|
|
/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
|
|
/// This matches shuffle vectors that look like:
|
|
///
|
|
/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
|
|
///
|
|
/// Essentially it concatenates V1 and V2, shifts right by some number of
|
|
/// elements, and takes the low elements as the result. Note that while this is
|
|
/// specified as a *right shift* because x86 is little-endian, it is a *left
|
|
/// rotate* of the vector lanes.
|
|
///
|
|
/// Note that this only handles 128-bit vector widths currently.
|
|
static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
|
|
SDValue V2,
|
|
ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
|
|
|
|
// We need to detect various ways of spelling a rotation:
|
|
// [11, 12, 13, 14, 15, 0, 1, 2]
|
|
// [-1, 12, 13, 14, -1, -1, 1, -1]
|
|
// [-1, -1, -1, -1, -1, -1, 1, 2]
|
|
// [ 3, 4, 5, 6, 7, 8, 9, 10]
|
|
// [-1, 4, 5, 6, -1, -1, 9, -1]
|
|
// [-1, 4, 5, 6, -1, -1, -1, -1]
|
|
int Rotation = 0;
|
|
SDValue Lo, Hi;
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
assert(Mask[i] >= 0 && "Only -1 is a valid negative mask element!");
|
|
|
|
// Based on the mod-Size value of this mask element determine where
|
|
// a rotated vector would have started.
|
|
int StartIdx = i - (Mask[i] % Size);
|
|
if (StartIdx == 0)
|
|
// The identity rotation isn't interesting, stop.
|
|
return SDValue();
|
|
|
|
// If we found the tail of a vector the rotation must be the missing
|
|
// front. If we found the head of a vector, it must be how much of the head.
|
|
int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
|
|
|
|
if (Rotation == 0)
|
|
Rotation = CandidateRotation;
|
|
else if (Rotation != CandidateRotation)
|
|
// The rotations don't match, so we can't match this mask.
|
|
return SDValue();
|
|
|
|
// Compute which value this mask is pointing at.
|
|
SDValue MaskV = Mask[i] < Size ? V1 : V2;
|
|
|
|
// Compute which of the two target values this index should be assigned to.
|
|
// This reflects whether the high elements are remaining or the low elements
|
|
// are remaining.
|
|
SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
|
|
|
|
// Either set up this value if we've not encountered it before, or check
|
|
// that it remains consistent.
|
|
if (!TargetV)
|
|
TargetV = MaskV;
|
|
else if (TargetV != MaskV)
|
|
// This may be a rotation, but it pulls from the inputs in some
|
|
// unsupported interleaving.
|
|
return SDValue();
|
|
}
|
|
|
|
// Check that we successfully analyzed the mask, and normalize the results.
|
|
assert(Rotation != 0 && "Failed to locate a viable rotation!");
|
|
assert((Lo || Hi) && "Failed to find a rotated input vector!");
|
|
if (!Lo)
|
|
Lo = Hi;
|
|
else if (!Hi)
|
|
Hi = Lo;
|
|
|
|
assert(VT.getSizeInBits() == 128 &&
|
|
"Rotate-based lowering only supports 128-bit lowering!");
|
|
assert(Mask.size() <= 16 &&
|
|
"Can shuffle at most 16 bytes in a 128-bit vector!");
|
|
|
|
// The actual rotate instruction rotates bytes, so we need to scale the
|
|
// rotation based on how many bytes are in the vector.
|
|
int Scale = 16 / Mask.size();
|
|
|
|
// SSSE3 targets can use the palignr instruction
|
|
if (Subtarget->hasSSSE3()) {
|
|
// Cast the inputs to v16i8 to match PALIGNR.
|
|
Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Lo);
|
|
Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Hi);
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::PALIGNR, DL, MVT::v16i8, Hi, Lo,
|
|
DAG.getConstant(Rotation * Scale, MVT::i8)));
|
|
}
|
|
|
|
// Default SSE2 implementation
|
|
int LoByteShift = 16 - Rotation * Scale;
|
|
int HiByteShift = Rotation * Scale;
|
|
|
|
// Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
|
|
Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Lo);
|
|
Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Hi);
|
|
|
|
SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
|
|
DAG.getConstant(8 * LoByteShift, MVT::i8));
|
|
SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
|
|
DAG.getConstant(8 * HiByteShift, MVT::i8));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
|
|
}
|
|
|
|
/// \brief Compute whether each element of a shuffle is zeroable.
|
|
///
|
|
/// A "zeroable" vector shuffle element is one which can be lowered to zero.
|
|
/// Either it is an undef element in the shuffle mask, the element of the input
|
|
/// referenced is undef, or the element of the input referenced is known to be
|
|
/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
|
|
/// as many lanes with this technique as possible to simplify the remaining
|
|
/// shuffle.
|
|
static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
|
|
SDValue V1, SDValue V2) {
|
|
SmallBitVector Zeroable(Mask.size(), false);
|
|
|
|
bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
|
|
bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
|
|
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
|
|
int M = Mask[i];
|
|
// Handle the easy cases.
|
|
if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
|
|
Zeroable[i] = true;
|
|
continue;
|
|
}
|
|
|
|
// If this is an index into a build_vector node, dig out the input value and
|
|
// use it.
|
|
SDValue V = M < Size ? V1 : V2;
|
|
if (V.getOpcode() != ISD::BUILD_VECTOR)
|
|
continue;
|
|
|
|
SDValue Input = V.getOperand(M % Size);
|
|
// The UNDEF opcode check really should be dead code here, but not quite
|
|
// worth asserting on (it isn't invalid, just unexpected).
|
|
if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
|
|
Zeroable[i] = true;
|
|
}
|
|
|
|
return Zeroable;
|
|
}
|
|
|
|
/// \brief Try to lower a vector shuffle as a byte shift (shifts in zeros).
|
|
///
|
|
/// Attempts to match a shuffle mask against the PSRLDQ and PSLLDQ SSE2
|
|
/// byte-shift instructions. The mask must consist of a shifted sequential
|
|
/// shuffle from one of the input vectors and zeroable elements for the
|
|
/// remaining 'shifted in' elements.
|
|
///
|
|
/// Note that this only handles 128-bit vector widths currently.
|
|
static SDValue lowerVectorShuffleAsByteShift(SDLoc DL, MVT VT, SDValue V1,
|
|
SDValue V2, ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) {
|
|
assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
|
|
|
|
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
|
|
|
|
int Size = Mask.size();
|
|
int Scale = 16 / Size;
|
|
|
|
auto isSequential = [](int Base, int StartIndex, int EndIndex, int MaskOffset,
|
|
ArrayRef<int> Mask) {
|
|
for (int i = StartIndex; i < EndIndex; i++) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
if (i + Base != Mask[i] - MaskOffset)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
for (int Shift = 1; Shift < Size; Shift++) {
|
|
int ByteShift = Shift * Scale;
|
|
|
|
// PSRLDQ : (little-endian) right byte shift
|
|
// [ 5, 6, 7, zz, zz, zz, zz, zz]
|
|
// [ -1, 5, 6, 7, zz, zz, zz, zz]
|
|
// [ 1, 2, -1, -1, -1, -1, zz, zz]
|
|
bool ZeroableRight = true;
|
|
for (int i = Size - Shift; i < Size; i++) {
|
|
ZeroableRight &= Zeroable[i];
|
|
}
|
|
|
|
if (ZeroableRight) {
|
|
bool ValidShiftRight1 = isSequential(Shift, 0, Size - Shift, 0, Mask);
|
|
bool ValidShiftRight2 = isSequential(Shift, 0, Size - Shift, Size, Mask);
|
|
|
|
if (ValidShiftRight1 || ValidShiftRight2) {
|
|
// Cast the inputs to v2i64 to match PSRLDQ.
|
|
SDValue &TargetV = ValidShiftRight1 ? V1 : V2;
|
|
SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TargetV);
|
|
SDValue Shifted = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, V,
|
|
DAG.getConstant(ByteShift * 8, MVT::i8));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Shifted);
|
|
}
|
|
}
|
|
|
|
// PSLLDQ : (little-endian) left byte shift
|
|
// [ zz, 0, 1, 2, 3, 4, 5, 6]
|
|
// [ zz, zz, -1, -1, 2, 3, 4, -1]
|
|
// [ zz, zz, zz, zz, zz, zz, -1, 1]
|
|
bool ZeroableLeft = true;
|
|
for (int i = 0; i < Shift; i++) {
|
|
ZeroableLeft &= Zeroable[i];
|
|
}
|
|
|
|
if (ZeroableLeft) {
|
|
bool ValidShiftLeft1 = isSequential(-Shift, Shift, Size, 0, Mask);
|
|
bool ValidShiftLeft2 = isSequential(-Shift, Shift, Size, Size, Mask);
|
|
|
|
if (ValidShiftLeft1 || ValidShiftLeft2) {
|
|
// Cast the inputs to v2i64 to match PSLLDQ.
|
|
SDValue &TargetV = ValidShiftLeft1 ? V1 : V2;
|
|
SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TargetV);
|
|
SDValue Shifted = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, V,
|
|
DAG.getConstant(ByteShift * 8, MVT::i8));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Shifted);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Lower a vector shuffle as a zero or any extension.
|
|
///
|
|
/// Given a specific number of elements, element bit width, and extension
|
|
/// stride, produce either a zero or any extension based on the available
|
|
/// features of the subtarget.
|
|
static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
|
|
SDLoc DL, MVT VT, int NumElements, int Scale, bool AnyExt, SDValue InputV,
|
|
const X86Subtarget *Subtarget, SelectionDAG &DAG) {
|
|
assert(Scale > 1 && "Need a scale to extend.");
|
|
int EltBits = VT.getSizeInBits() / NumElements;
|
|
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
|
|
"Only 8, 16, and 32 bit elements can be extended.");
|
|
assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
|
|
|
|
// Found a valid zext mask! Try various lowering strategies based on the
|
|
// input type and available ISA extensions.
|
|
if (Subtarget->hasSSE41()) {
|
|
MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
|
|
MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
|
|
NumElements / Scale);
|
|
InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV));
|
|
}
|
|
|
|
// For any extends we can cheat for larger element sizes and use shuffle
|
|
// instructions that can fold with a load and/or copy.
|
|
if (AnyExt && EltBits == 32) {
|
|
int PSHUFDMask[4] = {0, -1, 1, -1};
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
|
|
getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
|
|
}
|
|
if (AnyExt && EltBits == 16 && Scale > 2) {
|
|
int PSHUFDMask[4] = {0, -1, 0, -1};
|
|
InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, InputV),
|
|
getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG));
|
|
int PSHUFHWMask[4] = {1, -1, -1, -1};
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, InputV),
|
|
getV4X86ShuffleImm8ForMask(PSHUFHWMask, DAG)));
|
|
}
|
|
|
|
// If this would require more than 2 unpack instructions to expand, use
|
|
// pshufb when available. We can only use more than 2 unpack instructions
|
|
// when zero extending i8 elements which also makes it easier to use pshufb.
|
|
if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
|
|
assert(NumElements == 16 && "Unexpected byte vector width!");
|
|
SDValue PSHUFBMask[16];
|
|
for (int i = 0; i < 16; ++i)
|
|
PSHUFBMask[i] =
|
|
DAG.getConstant((i % Scale == 0) ? i / Scale : 0x80, MVT::i8);
|
|
InputV = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, InputV);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL,
|
|
MVT::v16i8, PSHUFBMask)));
|
|
}
|
|
|
|
// Otherwise emit a sequence of unpacks.
|
|
do {
|
|
MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
|
|
SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
|
|
: getZeroVector(InputVT, Subtarget, DAG, DL);
|
|
InputV = DAG.getNode(ISD::BITCAST, DL, InputVT, InputV);
|
|
InputV = DAG.getNode(X86ISD::UNPCKL, DL, InputVT, InputV, Ext);
|
|
Scale /= 2;
|
|
EltBits *= 2;
|
|
NumElements /= 2;
|
|
} while (Scale > 1);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, InputV);
|
|
}
|
|
|
|
/// \brief Try to lower a vector shuffle as a zero extension on any micrarch.
|
|
///
|
|
/// This routine will try to do everything in its power to cleverly lower
|
|
/// a shuffle which happens to match the pattern of a zero extend. It doesn't
|
|
/// check for the profitability of this lowering, it tries to aggressively
|
|
/// match this pattern. It will use all of the micro-architectural details it
|
|
/// can to emit an efficient lowering. It handles both blends with all-zero
|
|
/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
|
|
/// masking out later).
|
|
///
|
|
/// The reason we have dedicated lowering for zext-style shuffles is that they
|
|
/// are both incredibly common and often quite performance sensitive.
|
|
static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
|
|
SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget, SelectionDAG &DAG) {
|
|
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
|
|
|
|
int Bits = VT.getSizeInBits();
|
|
int NumElements = Mask.size();
|
|
|
|
// Define a helper function to check a particular ext-scale and lower to it if
|
|
// valid.
|
|
auto Lower = [&](int Scale) -> SDValue {
|
|
SDValue InputV;
|
|
bool AnyExt = true;
|
|
for (int i = 0; i < NumElements; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue; // Valid anywhere but doesn't tell us anything.
|
|
if (i % Scale != 0) {
|
|
// Each of the extend elements needs to be zeroable.
|
|
if (!Zeroable[i])
|
|
return SDValue();
|
|
|
|
// We no lorger are in the anyext case.
|
|
AnyExt = false;
|
|
continue;
|
|
}
|
|
|
|
// Each of the base elements needs to be consecutive indices into the
|
|
// same input vector.
|
|
SDValue V = Mask[i] < NumElements ? V1 : V2;
|
|
if (!InputV)
|
|
InputV = V;
|
|
else if (InputV != V)
|
|
return SDValue(); // Flip-flopping inputs.
|
|
|
|
if (Mask[i] % NumElements != i / Scale)
|
|
return SDValue(); // Non-consecutive strided elemenst.
|
|
}
|
|
|
|
// If we fail to find an input, we have a zero-shuffle which should always
|
|
// have already been handled.
|
|
// FIXME: Maybe handle this here in case during blending we end up with one?
|
|
if (!InputV)
|
|
return SDValue();
|
|
|
|
return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
|
|
DL, VT, NumElements, Scale, AnyExt, InputV, Subtarget, DAG);
|
|
};
|
|
|
|
// The widest scale possible for extending is to a 64-bit integer.
|
|
assert(Bits % 64 == 0 &&
|
|
"The number of bits in a vector must be divisible by 64 on x86!");
|
|
int NumExtElements = Bits / 64;
|
|
|
|
// Each iteration, try extending the elements half as much, but into twice as
|
|
// many elements.
|
|
for (; NumExtElements < NumElements; NumExtElements *= 2) {
|
|
assert(NumElements % NumExtElements == 0 &&
|
|
"The input vector size must be divisble by the extended size.");
|
|
if (SDValue V = Lower(NumElements / NumExtElements))
|
|
return V;
|
|
}
|
|
|
|
// No viable ext lowering found.
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Try to get a scalar value for a specific element of a vector.
|
|
///
|
|
/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
|
|
static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = V.getSimpleValueType();
|
|
MVT EltVT = VT.getVectorElementType();
|
|
while (V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
// If the bitcasts shift the element size, we can't extract an equivalent
|
|
// element from it.
|
|
MVT NewVT = V.getSimpleValueType();
|
|
if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
if (V.getOpcode() == ISD::BUILD_VECTOR ||
|
|
(Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR))
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, V.getOperand(Idx));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Helper to test for a load that can be folded with x86 shuffles.
|
|
///
|
|
/// This is particularly important because the set of instructions varies
|
|
/// significantly based on whether the operand is a load or not.
|
|
static bool isShuffleFoldableLoad(SDValue V) {
|
|
while (V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
|
|
return ISD::isNON_EXTLoad(V.getNode());
|
|
}
|
|
|
|
/// \brief Try to lower insertion of a single element into a zero vector.
|
|
///
|
|
/// This is a common pattern that we have especially efficient patterns to lower
|
|
/// across all subtarget feature sets.
|
|
static SDValue lowerVectorShuffleAsElementInsertion(
|
|
MVT VT, SDLoc DL, SDValue V1, SDValue V2, ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget, SelectionDAG &DAG) {
|
|
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
|
|
MVT ExtVT = VT;
|
|
MVT EltVT = VT.getVectorElementType();
|
|
|
|
int V2Index = std::find_if(Mask.begin(), Mask.end(),
|
|
[&Mask](int M) { return M >= (int)Mask.size(); }) -
|
|
Mask.begin();
|
|
bool IsV1Zeroable = true;
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
if (i != V2Index && !Zeroable[i]) {
|
|
IsV1Zeroable = false;
|
|
break;
|
|
}
|
|
|
|
// Check for a single input from a SCALAR_TO_VECTOR node.
|
|
// FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
|
|
// all the smarts here sunk into that routine. However, the current
|
|
// lowering of BUILD_VECTOR makes that nearly impossible until the old
|
|
// vector shuffle lowering is dead.
|
|
if (SDValue V2S = getScalarValueForVectorElement(
|
|
V2, Mask[V2Index] - Mask.size(), DAG)) {
|
|
// We need to zext the scalar if it is smaller than an i32.
|
|
V2S = DAG.getNode(ISD::BITCAST, DL, EltVT, V2S);
|
|
if (EltVT == MVT::i8 || EltVT == MVT::i16) {
|
|
// Using zext to expand a narrow element won't work for non-zero
|
|
// insertions.
|
|
if (!IsV1Zeroable)
|
|
return SDValue();
|
|
|
|
// Zero-extend directly to i32.
|
|
ExtVT = MVT::v4i32;
|
|
V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
|
|
}
|
|
V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
|
|
} else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
|
|
EltVT == MVT::i16) {
|
|
// Either not inserting from the low element of the input or the input
|
|
// element size is too small to use VZEXT_MOVL to clear the high bits.
|
|
return SDValue();
|
|
}
|
|
|
|
if (!IsV1Zeroable) {
|
|
// If V1 can't be treated as a zero vector we have fewer options to lower
|
|
// this. We can't support integer vectors or non-zero targets cheaply, and
|
|
// the V1 elements can't be permuted in any way.
|
|
assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
|
|
if (!VT.isFloatingPoint() || V2Index != 0)
|
|
return SDValue();
|
|
SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
|
|
V1Mask[V2Index] = -1;
|
|
if (!isNoopShuffleMask(V1Mask))
|
|
return SDValue();
|
|
// This is essentially a special case blend operation, but if we have
|
|
// general purpose blend operations, they are always faster. Bail and let
|
|
// the rest of the lowering handle these as blends.
|
|
if (Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
// Otherwise, use MOVSD or MOVSS.
|
|
assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
|
|
"Only two types of floating point element types to handle!");
|
|
return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
|
|
ExtVT, V1, V2);
|
|
}
|
|
|
|
V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
|
|
if (ExtVT != VT)
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
|
|
|
|
if (V2Index != 0) {
|
|
// If we have 4 or fewer lanes we can cheaply shuffle the element into
|
|
// the desired position. Otherwise it is more efficient to do a vector
|
|
// shift left. We know that we can do a vector shift left because all
|
|
// the inputs are zero.
|
|
if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
|
|
SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
|
|
V2Shuffle[V2Index] = 0;
|
|
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
|
|
} else {
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, V2);
|
|
V2 = DAG.getNode(
|
|
X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
|
|
DAG.getConstant(
|
|
V2Index * EltVT.getSizeInBits(),
|
|
DAG.getTargetLoweringInfo().getScalarShiftAmountTy(MVT::v2i64)));
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, VT, V2);
|
|
}
|
|
}
|
|
return V2;
|
|
}
|
|
|
|
/// \brief Try to lower broadcast of a single element.
|
|
///
|
|
/// For convenience, this code also bundles all of the subtarget feature set
|
|
/// filtering. While a little annoying to re-dispatch on type here, there isn't
|
|
/// a convenient way to factor it out.
|
|
static SDValue lowerVectorShuffleAsBroadcast(MVT VT, SDLoc DL, SDValue V,
|
|
ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
if (!Subtarget->hasAVX())
|
|
return SDValue();
|
|
if (VT.isInteger() && !Subtarget->hasAVX2())
|
|
return SDValue();
|
|
|
|
// Check that the mask is a broadcast.
|
|
int BroadcastIdx = -1;
|
|
for (int M : Mask)
|
|
if (M >= 0 && BroadcastIdx == -1)
|
|
BroadcastIdx = M;
|
|
else if (M >= 0 && M != BroadcastIdx)
|
|
return SDValue();
|
|
|
|
assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
|
|
"a sorted mask where the broadcast "
|
|
"comes from V1.");
|
|
|
|
// Go up the chain of (vector) values to try and find a scalar load that
|
|
// we can combine with the broadcast.
|
|
for (;;) {
|
|
switch (V.getOpcode()) {
|
|
case ISD::CONCAT_VECTORS: {
|
|
int OperandSize = Mask.size() / V.getNumOperands();
|
|
V = V.getOperand(BroadcastIdx / OperandSize);
|
|
BroadcastIdx %= OperandSize;
|
|
continue;
|
|
}
|
|
|
|
case ISD::INSERT_SUBVECTOR: {
|
|
SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
|
|
auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
|
|
if (!ConstantIdx)
|
|
break;
|
|
|
|
int BeginIdx = (int)ConstantIdx->getZExtValue();
|
|
int EndIdx =
|
|
BeginIdx + (int)VInner.getValueType().getVectorNumElements();
|
|
if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
|
|
BroadcastIdx -= BeginIdx;
|
|
V = VInner;
|
|
} else {
|
|
V = VOuter;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Check if this is a broadcast of a scalar. We special case lowering
|
|
// for scalars so that we can more effectively fold with loads.
|
|
if (V.getOpcode() == ISD::BUILD_VECTOR ||
|
|
(V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
|
|
V = V.getOperand(BroadcastIdx);
|
|
|
|
// If the scalar isn't a load we can't broadcast from it in AVX1, only with
|
|
// AVX2.
|
|
if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
|
|
return SDValue();
|
|
} else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
|
|
// We can't broadcast from a vector register w/o AVX2, and we can only
|
|
// broadcast from the zero-element of a vector register.
|
|
return SDValue();
|
|
}
|
|
|
|
return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V);
|
|
}
|
|
|
|
/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
|
|
///
|
|
/// This is the basis function for the 2-lane 64-bit shuffles as we have full
|
|
/// support for floating point shuffles but not integer shuffles. These
|
|
/// instructions will incur a domain crossing penalty on some chips though so
|
|
/// it is better to avoid lowering through this for integer vectors where
|
|
/// possible.
|
|
static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
|
|
assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
|
|
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
// Straight shuffle of a single input vector. Simulate this by using the
|
|
// single input as both of the "inputs" to this instruction..
|
|
unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
|
|
|
|
if (Subtarget->hasAVX()) {
|
|
// If we have AVX, we can use VPERMILPS which will allow folding a load
|
|
// into the shuffle.
|
|
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
|
|
DAG.getConstant(SHUFPDMask, MVT::i8));
|
|
}
|
|
|
|
return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V1,
|
|
DAG.getConstant(SHUFPDMask, MVT::i8));
|
|
}
|
|
assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
|
|
assert(Mask[1] >= 2 && "Non-canonicalized blend!");
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 2))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2f64, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 1, 3))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2f64, V1, V2);
|
|
|
|
// If we have a single input, insert that into V1 if we can do so cheaply.
|
|
if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
|
|
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
|
|
MVT::v2f64, DL, V1, V2, Mask, Subtarget, DAG))
|
|
return Insertion;
|
|
// Try inverting the insertion since for v2 masks it is easy to do and we
|
|
// can't reliably sort the mask one way or the other.
|
|
int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
|
|
Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
|
|
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
|
|
MVT::v2f64, DL, V2, V1, InverseMask, Subtarget, DAG))
|
|
return Insertion;
|
|
}
|
|
|
|
// Try to use one of the special instruction patterns to handle two common
|
|
// blend patterns if a zero-blend above didn't work.
|
|
if (isShuffleEquivalent(Mask, 0, 3) || isShuffleEquivalent(Mask, 1, 3))
|
|
if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
|
|
// We can either use a special instruction to load over the low double or
|
|
// to move just the low double.
|
|
return DAG.getNode(
|
|
isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
|
|
DL, MVT::v2f64, V2,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
|
|
|
|
if (Subtarget->hasSSE41())
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
|
|
return DAG.getNode(X86ISD::SHUFP, SDLoc(Op), MVT::v2f64, V1, V2,
|
|
DAG.getConstant(SHUFPDMask, MVT::i8));
|
|
}
|
|
|
|
/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
|
|
///
|
|
/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
|
|
/// the integer unit to minimize domain crossing penalties. However, for blends
|
|
/// it falls back to the floating point shuffle operation with appropriate bit
|
|
/// casting.
|
|
static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
|
|
assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
|
|
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v2i64, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// Straight shuffle of a single input vector. For everything from SSE2
|
|
// onward this has a single fast instruction with no scary immediates.
|
|
// We have to map the mask as it is actually a v4i32 shuffle instruction.
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V1);
|
|
int WidenedMask[4] = {
|
|
std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
|
|
std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, MVT::v2i64,
|
|
DAG.getNode(X86ISD::PSHUFD, SDLoc(Op), MVT::v4i32, V1,
|
|
getV4X86ShuffleImm8ForMask(WidenedMask, DAG)));
|
|
}
|
|
|
|
// Try to use byte shift instructions.
|
|
if (SDValue Shift = lowerVectorShuffleAsByteShift(
|
|
DL, MVT::v2i64, V1, V2, Mask, DAG))
|
|
return Shift;
|
|
|
|
// If we have a single input from V2 insert that into V1 if we can do so
|
|
// cheaply.
|
|
if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
|
|
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
|
|
MVT::v2i64, DL, V1, V2, Mask, Subtarget, DAG))
|
|
return Insertion;
|
|
// Try inverting the insertion since for v2 masks it is easy to do and we
|
|
// can't reliably sort the mask one way or the other.
|
|
int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
|
|
Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
|
|
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
|
|
MVT::v2i64, DL, V2, V1, InverseMask, Subtarget, DAG))
|
|
return Insertion;
|
|
}
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 2))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 1, 3))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v2i64, V1, V2);
|
|
|
|
if (Subtarget->hasSSE41())
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Try to use byte rotation instructions.
|
|
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
|
|
if (Subtarget->hasSSSE3())
|
|
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
|
|
DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
|
|
return Rotate;
|
|
|
|
// We implement this with SHUFPD which is pretty lame because it will likely
|
|
// incur 2 cycles of stall for integer vectors on Nehalem and older chips.
|
|
// However, all the alternatives are still more cycles and newer chips don't
|
|
// have this problem. It would be really nice if x86 had better shuffles here.
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, V2);
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
|
|
DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
|
|
}
|
|
|
|
/// \brief Lower a vector shuffle using the SHUFPS instruction.
|
|
///
|
|
/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
|
|
/// It makes no assumptions about whether this is the *best* lowering, it simply
|
|
/// uses it.
|
|
static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
|
|
ArrayRef<int> Mask, SDValue V1,
|
|
SDValue V2, SelectionDAG &DAG) {
|
|
SDValue LowV = V1, HighV = V2;
|
|
int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
|
|
|
|
int NumV2Elements =
|
|
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
|
|
|
|
if (NumV2Elements == 1) {
|
|
int V2Index =
|
|
std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
|
|
Mask.begin();
|
|
|
|
// Compute the index adjacent to V2Index and in the same half by toggling
|
|
// the low bit.
|
|
int V2AdjIndex = V2Index ^ 1;
|
|
|
|
if (Mask[V2AdjIndex] == -1) {
|
|
// Handles all the cases where we have a single V2 element and an undef.
|
|
// This will only ever happen in the high lanes because we commute the
|
|
// vector otherwise.
|
|
if (V2Index < 2)
|
|
std::swap(LowV, HighV);
|
|
NewMask[V2Index] -= 4;
|
|
} else {
|
|
// Handle the case where the V2 element ends up adjacent to a V1 element.
|
|
// To make this work, blend them together as the first step.
|
|
int V1Index = V2AdjIndex;
|
|
int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
|
|
V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
|
|
getV4X86ShuffleImm8ForMask(BlendMask, DAG));
|
|
|
|
// Now proceed to reconstruct the final blend as we have the necessary
|
|
// high or low half formed.
|
|
if (V2Index < 2) {
|
|
LowV = V2;
|
|
HighV = V1;
|
|
} else {
|
|
HighV = V2;
|
|
}
|
|
NewMask[V1Index] = 2; // We put the V1 element in V2[2].
|
|
NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
|
|
}
|
|
} else if (NumV2Elements == 2) {
|
|
if (Mask[0] < 4 && Mask[1] < 4) {
|
|
// Handle the easy case where we have V1 in the low lanes and V2 in the
|
|
// high lanes.
|
|
NewMask[2] -= 4;
|
|
NewMask[3] -= 4;
|
|
} else if (Mask[2] < 4 && Mask[3] < 4) {
|
|
// We also handle the reversed case because this utility may get called
|
|
// when we detect a SHUFPS pattern but can't easily commute the shuffle to
|
|
// arrange things in the right direction.
|
|
NewMask[0] -= 4;
|
|
NewMask[1] -= 4;
|
|
HighV = V1;
|
|
LowV = V2;
|
|
} else {
|
|
// We have a mixture of V1 and V2 in both low and high lanes. Rather than
|
|
// trying to place elements directly, just blend them and set up the final
|
|
// shuffle to place them.
|
|
|
|
// The first two blend mask elements are for V1, the second two are for
|
|
// V2.
|
|
int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
|
|
Mask[2] < 4 ? Mask[2] : Mask[3],
|
|
(Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
|
|
(Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
|
|
V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
|
|
getV4X86ShuffleImm8ForMask(BlendMask, DAG));
|
|
|
|
// Now we do a normal shuffle of V1 by giving V1 as both operands to
|
|
// a blend.
|
|
LowV = HighV = V1;
|
|
NewMask[0] = Mask[0] < 4 ? 0 : 2;
|
|
NewMask[1] = Mask[0] < 4 ? 2 : 0;
|
|
NewMask[2] = Mask[2] < 4 ? 1 : 3;
|
|
NewMask[3] = Mask[2] < 4 ? 3 : 1;
|
|
}
|
|
}
|
|
return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
|
|
getV4X86ShuffleImm8ForMask(NewMask, DAG));
|
|
}
|
|
|
|
/// \brief Lower 4-lane 32-bit floating point shuffles.
|
|
///
|
|
/// Uses instructions exclusively from the floating point unit to minimize
|
|
/// domain crossing penalties, as these are sufficient to implement all v4f32
|
|
/// shuffles.
|
|
static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
|
|
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
|
|
|
|
int NumV2Elements =
|
|
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
|
|
|
|
if (NumV2Elements == 0) {
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f32, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
if (Subtarget->hasAVX()) {
|
|
// If we have AVX, we can use VPERMILPS which will allow folding a load
|
|
// into the shuffle.
|
|
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
}
|
|
|
|
// Otherwise, use a straight shuffle of a single input vector. We pass the
|
|
// input vector to both operands to simulate this with a SHUFPS.
|
|
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
}
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 4, 1, 5))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f32, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 2, 6, 3, 7))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f32, V1, V2);
|
|
|
|
// There are special ways we can lower some single-element blends. However, we
|
|
// have custom ways we can lower more complex single-element blends below that
|
|
// we defer to if both this and BLENDPS fail to match, so restrict this to
|
|
// when the V2 input is targeting element 0 of the mask -- that is the fast
|
|
// case here.
|
|
if (NumV2Elements == 1 && Mask[0] >= 4)
|
|
if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4f32, DL, V1, V2,
|
|
Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
if (Subtarget->hasSSE41())
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Check for whether we can use INSERTPS to perform the blend. We only use
|
|
// INSERTPS when the V1 elements are already in the correct locations
|
|
// because otherwise we can just always use two SHUFPS instructions which
|
|
// are much smaller to encode than a SHUFPS and an INSERTPS.
|
|
if (NumV2Elements == 1 && Subtarget->hasSSE41()) {
|
|
int V2Index =
|
|
std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
|
|
Mask.begin();
|
|
|
|
// When using INSERTPS we can zero any lane of the destination. Collect
|
|
// the zero inputs into a mask and drop them from the lanes of V1 which
|
|
// actually need to be present as inputs to the INSERTPS.
|
|
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
|
|
|
|
// Synthesize a shuffle mask for the non-zero and non-v2 inputs.
|
|
bool InsertNeedsShuffle = false;
|
|
unsigned ZMask = 0;
|
|
for (int i = 0; i < 4; ++i)
|
|
if (i != V2Index) {
|
|
if (Zeroable[i]) {
|
|
ZMask |= 1 << i;
|
|
} else if (Mask[i] != i) {
|
|
InsertNeedsShuffle = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We don't want to use INSERTPS or other insertion techniques if it will
|
|
// require shuffling anyways.
|
|
if (!InsertNeedsShuffle) {
|
|
// If all of V1 is zeroable, replace it with undef.
|
|
if ((ZMask | 1 << V2Index) == 0xF)
|
|
V1 = DAG.getUNDEF(MVT::v4f32);
|
|
|
|
unsigned InsertPSMask = (Mask[V2Index] - 4) << 6 | V2Index << 4 | ZMask;
|
|
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
|
|
|
|
// Insert the V2 element into the desired position.
|
|
return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
|
|
DAG.getConstant(InsertPSMask, MVT::i8));
|
|
}
|
|
}
|
|
|
|
// Otherwise fall back to a SHUFPS lowering strategy.
|
|
return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
|
|
}
|
|
|
|
/// \brief Lower 4-lane i32 vector shuffles.
|
|
///
|
|
/// We try to handle these with integer-domain shuffles where we can, but for
|
|
/// blends we use the floating point domain blend instructions.
|
|
static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
|
|
assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
|
|
|
|
// Whenever we can lower this as a zext, that instruction is strictly faster
|
|
// than any alternative. It also allows us to fold memory operands into the
|
|
// shuffle in many cases.
|
|
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
|
|
Mask, Subtarget, DAG))
|
|
return ZExt;
|
|
|
|
int NumV2Elements =
|
|
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
|
|
|
|
if (NumV2Elements == 0) {
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i32, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// Straight shuffle of a single input vector. For everything from SSE2
|
|
// onward this has a single fast instruction with no scary immediates.
|
|
// We coerce the shuffle pattern to be compatible with UNPCK instructions
|
|
// but we aren't actually going to use the UNPCK instruction because doing
|
|
// so prevents folding a load into this instruction or making a copy.
|
|
const int UnpackLoMask[] = {0, 0, 1, 1};
|
|
const int UnpackHiMask[] = {2, 2, 3, 3};
|
|
if (isShuffleEquivalent(Mask, 0, 0, 1, 1))
|
|
Mask = UnpackLoMask;
|
|
else if (isShuffleEquivalent(Mask, 2, 2, 3, 3))
|
|
Mask = UnpackHiMask;
|
|
|
|
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
}
|
|
|
|
// Try to use byte shift instructions.
|
|
if (SDValue Shift = lowerVectorShuffleAsByteShift(
|
|
DL, MVT::v4i32, V1, V2, Mask, DAG))
|
|
return Shift;
|
|
|
|
// There are special ways we can lower some single-element blends.
|
|
if (NumV2Elements == 1)
|
|
if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v4i32, DL, V1, V2,
|
|
Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 4, 1, 5))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i32, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 2, 6, 3, 7))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i32, V1, V2);
|
|
|
|
if (Subtarget->hasSSE41())
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Try to use byte rotation instructions.
|
|
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
|
|
if (Subtarget->hasSSSE3())
|
|
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
|
|
DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
|
|
return Rotate;
|
|
|
|
// We implement this with SHUFPS because it can blend from two vectors.
|
|
// Because we're going to eventually use SHUFPS, we use SHUFPS even to build
|
|
// up the inputs, bypassing domain shift penalties that we would encur if we
|
|
// directly used PSHUFD on Nehalem and older. For newer chips, this isn't
|
|
// relevant.
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v4i32,
|
|
DAG.getVectorShuffle(
|
|
MVT::v4f32, DL,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V1),
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v4f32, V2), Mask));
|
|
}
|
|
|
|
/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
|
|
/// shuffle lowering, and the most complex part.
|
|
///
|
|
/// The lowering strategy is to try to form pairs of input lanes which are
|
|
/// targeted at the same half of the final vector, and then use a dword shuffle
|
|
/// to place them onto the right half, and finally unpack the paired lanes into
|
|
/// their final position.
|
|
///
|
|
/// The exact breakdown of how to form these dword pairs and align them on the
|
|
/// correct sides is really tricky. See the comments within the function for
|
|
/// more of the details.
|
|
static SDValue lowerV8I16SingleInputVectorShuffle(
|
|
SDLoc DL, SDValue V, MutableArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget, SelectionDAG &DAG) {
|
|
assert(V.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
|
|
MutableArrayRef<int> LoMask = Mask.slice(0, 4);
|
|
MutableArrayRef<int> HiMask = Mask.slice(4, 4);
|
|
|
|
SmallVector<int, 4> LoInputs;
|
|
std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
|
|
[](int M) { return M >= 0; });
|
|
std::sort(LoInputs.begin(), LoInputs.end());
|
|
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
|
|
SmallVector<int, 4> HiInputs;
|
|
std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
|
|
[](int M) { return M >= 0; });
|
|
std::sort(HiInputs.begin(), HiInputs.end());
|
|
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
|
|
int NumLToL =
|
|
std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
|
|
int NumHToL = LoInputs.size() - NumLToL;
|
|
int NumLToH =
|
|
std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
|
|
int NumHToH = HiInputs.size() - NumLToH;
|
|
MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
|
|
MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
|
|
MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
|
|
MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i16, DL, V,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// Try to use byte shift instructions.
|
|
if (SDValue Shift = lowerVectorShuffleAsByteShift(
|
|
DL, MVT::v8i16, V, V, Mask, DAG))
|
|
return Shift;
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 0, 1, 1, 2, 2, 3, 3))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V, V);
|
|
if (isShuffleEquivalent(Mask, 4, 4, 5, 5, 6, 6, 7, 7))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V, V);
|
|
|
|
// Try to use byte rotation instructions.
|
|
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
|
|
DL, MVT::v8i16, V, V, Mask, Subtarget, DAG))
|
|
return Rotate;
|
|
|
|
// Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
|
|
// such inputs we can swap two of the dwords across the half mark and end up
|
|
// with <=2 inputs to each half in each half. Once there, we can fall through
|
|
// to the generic code below. For example:
|
|
//
|
|
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
|
|
// Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
|
|
//
|
|
// However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
|
|
// and an existing 2-into-2 on the other half. In this case we may have to
|
|
// pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
|
|
// 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
|
|
// Fortunately, we don't have to handle anything but a 2-into-2 pattern
|
|
// because any other situation (including a 3-into-1 or 1-into-3 in the other
|
|
// half than the one we target for fixing) will be fixed when we re-enter this
|
|
// path. We will also combine away any sequence of PSHUFD instructions that
|
|
// result into a single instruction. Here is an example of the tricky case:
|
|
//
|
|
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
|
|
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
|
|
//
|
|
// This now has a 1-into-3 in the high half! Instead, we do two shuffles:
|
|
//
|
|
// Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
|
|
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
|
|
//
|
|
// Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
|
|
// Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
|
|
//
|
|
// The result is fine to be handled by the generic logic.
|
|
auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
|
|
ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
|
|
int AOffset, int BOffset) {
|
|
assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
|
|
"Must call this with A having 3 or 1 inputs from the A half.");
|
|
assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
|
|
"Must call this with B having 1 or 3 inputs from the B half.");
|
|
assert(AToAInputs.size() + BToAInputs.size() == 4 &&
|
|
"Must call this with either 3:1 or 1:3 inputs (summing to 4).");
|
|
|
|
// Compute the index of dword with only one word among the three inputs in
|
|
// a half by taking the sum of the half with three inputs and subtracting
|
|
// the sum of the actual three inputs. The difference is the remaining
|
|
// slot.
|
|
int ADWord, BDWord;
|
|
int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord;
|
|
int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord;
|
|
int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset;
|
|
ArrayRef<int> TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs;
|
|
int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0];
|
|
int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
|
|
int TripleNonInputIdx =
|
|
TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
|
|
TripleDWord = TripleNonInputIdx / 2;
|
|
|
|
// We use xor with one to compute the adjacent DWord to whichever one the
|
|
// OneInput is in.
|
|
OneInputDWord = (OneInput / 2) ^ 1;
|
|
|
|
// Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
|
|
// and BToA inputs. If there is also such a problem with the BToB and AToB
|
|
// inputs, we don't try to fix it necessarily -- we'll recurse and see it in
|
|
// the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
|
|
// is essential that we don't *create* a 3<-1 as then we might oscillate.
|
|
if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
|
|
// Compute how many inputs will be flipped by swapping these DWords. We
|
|
// need
|
|
// to balance this to ensure we don't form a 3-1 shuffle in the other
|
|
// half.
|
|
int NumFlippedAToBInputs =
|
|
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
|
|
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
|
|
int NumFlippedBToBInputs =
|
|
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
|
|
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
|
|
if ((NumFlippedAToBInputs == 1 &&
|
|
(NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
|
|
(NumFlippedBToBInputs == 1 &&
|
|
(NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
|
|
// We choose whether to fix the A half or B half based on whether that
|
|
// half has zero flipped inputs. At zero, we may not be able to fix it
|
|
// with that half. We also bias towards fixing the B half because that
|
|
// will more commonly be the high half, and we have to bias one way.
|
|
auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
|
|
ArrayRef<int> Inputs) {
|
|
int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
|
|
bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
|
|
PinnedIdx ^ 1) != Inputs.end();
|
|
// Determine whether the free index is in the flipped dword or the
|
|
// unflipped dword based on where the pinned index is. We use this bit
|
|
// in an xor to conditionally select the adjacent dword.
|
|
int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
|
|
bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
|
|
FixFreeIdx) != Inputs.end();
|
|
if (IsFixIdxInput == IsFixFreeIdxInput)
|
|
FixFreeIdx += 1;
|
|
IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
|
|
FixFreeIdx) != Inputs.end();
|
|
assert(IsFixIdxInput != IsFixFreeIdxInput &&
|
|
"We need to be changing the number of flipped inputs!");
|
|
int PSHUFHalfMask[] = {0, 1, 2, 3};
|
|
std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
|
|
V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
|
|
MVT::v8i16, V,
|
|
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DAG));
|
|
|
|
for (int &M : Mask)
|
|
if (M != -1 && M == FixIdx)
|
|
M = FixFreeIdx;
|
|
else if (M != -1 && M == FixFreeIdx)
|
|
M = FixIdx;
|
|
};
|
|
if (NumFlippedBToBInputs != 0) {
|
|
int BPinnedIdx =
|
|
BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
|
|
FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
|
|
} else {
|
|
assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
|
|
int APinnedIdx =
|
|
AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
|
|
FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
|
|
}
|
|
}
|
|
}
|
|
|
|
int PSHUFDMask[] = {0, 1, 2, 3};
|
|
PSHUFDMask[ADWord] = BDWord;
|
|
PSHUFDMask[BDWord] = ADWord;
|
|
V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
|
|
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
|
|
getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
|
|
|
|
// Adjust the mask to match the new locations of A and B.
|
|
for (int &M : Mask)
|
|
if (M != -1 && M/2 == ADWord)
|
|
M = 2 * BDWord + M % 2;
|
|
else if (M != -1 && M/2 == BDWord)
|
|
M = 2 * ADWord + M % 2;
|
|
|
|
// Recurse back into this routine to re-compute state now that this isn't
|
|
// a 3 and 1 problem.
|
|
return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
|
|
Mask);
|
|
};
|
|
if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
|
|
return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
|
|
else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
|
|
return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
|
|
|
|
// At this point there are at most two inputs to the low and high halves from
|
|
// each half. That means the inputs can always be grouped into dwords and
|
|
// those dwords can then be moved to the correct half with a dword shuffle.
|
|
// We use at most one low and one high word shuffle to collect these paired
|
|
// inputs into dwords, and finally a dword shuffle to place them.
|
|
int PSHUFLMask[4] = {-1, -1, -1, -1};
|
|
int PSHUFHMask[4] = {-1, -1, -1, -1};
|
|
int PSHUFDMask[4] = {-1, -1, -1, -1};
|
|
|
|
// First fix the masks for all the inputs that are staying in their
|
|
// original halves. This will then dictate the targets of the cross-half
|
|
// shuffles.
|
|
auto fixInPlaceInputs =
|
|
[&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
|
|
MutableArrayRef<int> SourceHalfMask,
|
|
MutableArrayRef<int> HalfMask, int HalfOffset) {
|
|
if (InPlaceInputs.empty())
|
|
return;
|
|
if (InPlaceInputs.size() == 1) {
|
|
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
|
|
InPlaceInputs[0] - HalfOffset;
|
|
PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
|
|
return;
|
|
}
|
|
if (IncomingInputs.empty()) {
|
|
// Just fix all of the in place inputs.
|
|
for (int Input : InPlaceInputs) {
|
|
SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
|
|
PSHUFDMask[Input / 2] = Input / 2;
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
|
|
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
|
|
InPlaceInputs[0] - HalfOffset;
|
|
// Put the second input next to the first so that they are packed into
|
|
// a dword. We find the adjacent index by toggling the low bit.
|
|
int AdjIndex = InPlaceInputs[0] ^ 1;
|
|
SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
|
|
std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
|
|
PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
|
|
};
|
|
fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
|
|
fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
|
|
|
|
// Now gather the cross-half inputs and place them into a free dword of
|
|
// their target half.
|
|
// FIXME: This operation could almost certainly be simplified dramatically to
|
|
// look more like the 3-1 fixing operation.
|
|
auto moveInputsToRightHalf = [&PSHUFDMask](
|
|
MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
|
|
MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
|
|
MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
|
|
int DestOffset) {
|
|
auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
|
|
return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
|
|
};
|
|
auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
|
|
int Word) {
|
|
int LowWord = Word & ~1;
|
|
int HighWord = Word | 1;
|
|
return isWordClobbered(SourceHalfMask, LowWord) ||
|
|
isWordClobbered(SourceHalfMask, HighWord);
|
|
};
|
|
|
|
if (IncomingInputs.empty())
|
|
return;
|
|
|
|
if (ExistingInputs.empty()) {
|
|
// Map any dwords with inputs from them into the right half.
|
|
for (int Input : IncomingInputs) {
|
|
// If the source half mask maps over the inputs, turn those into
|
|
// swaps and use the swapped lane.
|
|
if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
|
|
if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
|
|
SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
|
|
Input - SourceOffset;
|
|
// We have to swap the uses in our half mask in one sweep.
|
|
for (int &M : HalfMask)
|
|
if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
|
|
M = Input;
|
|
else if (M == Input)
|
|
M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
|
|
} else {
|
|
assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
|
|
Input - SourceOffset &&
|
|
"Previous placement doesn't match!");
|
|
}
|
|
// Note that this correctly re-maps both when we do a swap and when
|
|
// we observe the other side of the swap above. We rely on that to
|
|
// avoid swapping the members of the input list directly.
|
|
Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
|
|
}
|
|
|
|
// Map the input's dword into the correct half.
|
|
if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
|
|
PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
|
|
else
|
|
assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
|
|
Input / 2 &&
|
|
"Previous placement doesn't match!");
|
|
}
|
|
|
|
// And just directly shift any other-half mask elements to be same-half
|
|
// as we will have mirrored the dword containing the element into the
|
|
// same position within that half.
|
|
for (int &M : HalfMask)
|
|
if (M >= SourceOffset && M < SourceOffset + 4) {
|
|
M = M - SourceOffset + DestOffset;
|
|
assert(M >= 0 && "This should never wrap below zero!");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Ensure we have the input in a viable dword of its current half. This
|
|
// is particularly tricky because the original position may be clobbered
|
|
// by inputs being moved and *staying* in that half.
|
|
if (IncomingInputs.size() == 1) {
|
|
if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
|
|
int InputFixed = std::find(std::begin(SourceHalfMask),
|
|
std::end(SourceHalfMask), -1) -
|
|
std::begin(SourceHalfMask) + SourceOffset;
|
|
SourceHalfMask[InputFixed - SourceOffset] =
|
|
IncomingInputs[0] - SourceOffset;
|
|
std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
|
|
InputFixed);
|
|
IncomingInputs[0] = InputFixed;
|
|
}
|
|
} else if (IncomingInputs.size() == 2) {
|
|
if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
|
|
isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
|
|
// We have two non-adjacent or clobbered inputs we need to extract from
|
|
// the source half. To do this, we need to map them into some adjacent
|
|
// dword slot in the source mask.
|
|
int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
|
|
IncomingInputs[1] - SourceOffset};
|
|
|
|
// If there is a free slot in the source half mask adjacent to one of
|
|
// the inputs, place the other input in it. We use (Index XOR 1) to
|
|
// compute an adjacent index.
|
|
if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
|
|
SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
|
|
SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
|
|
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
|
|
InputsFixed[1] = InputsFixed[0] ^ 1;
|
|
} else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
|
|
SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
|
|
SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
|
|
SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
|
|
InputsFixed[0] = InputsFixed[1] ^ 1;
|
|
} else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
|
|
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
|
|
// The two inputs are in the same DWord but it is clobbered and the
|
|
// adjacent DWord isn't used at all. Move both inputs to the free
|
|
// slot.
|
|
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
|
|
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
|
|
InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
|
|
InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
|
|
} else {
|
|
// The only way we hit this point is if there is no clobbering
|
|
// (because there are no off-half inputs to this half) and there is no
|
|
// free slot adjacent to one of the inputs. In this case, we have to
|
|
// swap an input with a non-input.
|
|
for (int i = 0; i < 4; ++i)
|
|
assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
|
|
"We can't handle any clobbers here!");
|
|
assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
|
|
"Cannot have adjacent inputs here!");
|
|
|
|
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
|
|
SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
|
|
|
|
// We also have to update the final source mask in this case because
|
|
// it may need to undo the above swap.
|
|
for (int &M : FinalSourceHalfMask)
|
|
if (M == (InputsFixed[0] ^ 1) + SourceOffset)
|
|
M = InputsFixed[1] + SourceOffset;
|
|
else if (M == InputsFixed[1] + SourceOffset)
|
|
M = (InputsFixed[0] ^ 1) + SourceOffset;
|
|
|
|
InputsFixed[1] = InputsFixed[0] ^ 1;
|
|
}
|
|
|
|
// Point everything at the fixed inputs.
|
|
for (int &M : HalfMask)
|
|
if (M == IncomingInputs[0])
|
|
M = InputsFixed[0] + SourceOffset;
|
|
else if (M == IncomingInputs[1])
|
|
M = InputsFixed[1] + SourceOffset;
|
|
|
|
IncomingInputs[0] = InputsFixed[0] + SourceOffset;
|
|
IncomingInputs[1] = InputsFixed[1] + SourceOffset;
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unhandled input size!");
|
|
}
|
|
|
|
// Now hoist the DWord down to the right half.
|
|
int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
|
|
assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
|
|
PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
|
|
for (int &M : HalfMask)
|
|
for (int Input : IncomingInputs)
|
|
if (M == Input)
|
|
M = FreeDWord * 2 + Input % 2;
|
|
};
|
|
moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
|
|
/*SourceOffset*/ 4, /*DestOffset*/ 0);
|
|
moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
|
|
/*SourceOffset*/ 0, /*DestOffset*/ 4);
|
|
|
|
// Now enact all the shuffles we've computed to move the inputs into their
|
|
// target half.
|
|
if (!isNoopShuffleMask(PSHUFLMask))
|
|
V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
|
|
getV4X86ShuffleImm8ForMask(PSHUFLMask, DAG));
|
|
if (!isNoopShuffleMask(PSHUFHMask))
|
|
V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
|
|
getV4X86ShuffleImm8ForMask(PSHUFHMask, DAG));
|
|
if (!isNoopShuffleMask(PSHUFDMask))
|
|
V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
|
|
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V),
|
|
getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
|
|
|
|
// At this point, each half should contain all its inputs, and we can then
|
|
// just shuffle them into their final position.
|
|
assert(std::count_if(LoMask.begin(), LoMask.end(),
|
|
[](int M) { return M >= 4; }) == 0 &&
|
|
"Failed to lift all the high half inputs to the low mask!");
|
|
assert(std::count_if(HiMask.begin(), HiMask.end(),
|
|
[](int M) { return M >= 0 && M < 4; }) == 0 &&
|
|
"Failed to lift all the low half inputs to the high mask!");
|
|
|
|
// Do a half shuffle for the low mask.
|
|
if (!isNoopShuffleMask(LoMask))
|
|
V = DAG.getNode(X86ISD::PSHUFLW, DL, MVT::v8i16, V,
|
|
getV4X86ShuffleImm8ForMask(LoMask, DAG));
|
|
|
|
// Do a half shuffle with the high mask after shifting its values down.
|
|
for (int &M : HiMask)
|
|
if (M >= 0)
|
|
M -= 4;
|
|
if (!isNoopShuffleMask(HiMask))
|
|
V = DAG.getNode(X86ISD::PSHUFHW, DL, MVT::v8i16, V,
|
|
getV4X86ShuffleImm8ForMask(HiMask, DAG));
|
|
|
|
return V;
|
|
}
|
|
|
|
/// \brief Detect whether the mask pattern should be lowered through
|
|
/// interleaving.
|
|
///
|
|
/// This essentially tests whether viewing the mask as an interleaving of two
|
|
/// sub-sequences reduces the cross-input traffic of a blend operation. If so,
|
|
/// lowering it through interleaving is a significantly better strategy.
|
|
static bool shouldLowerAsInterleaving(ArrayRef<int> Mask) {
|
|
int NumEvenInputs[2] = {0, 0};
|
|
int NumOddInputs[2] = {0, 0};
|
|
int NumLoInputs[2] = {0, 0};
|
|
int NumHiInputs[2] = {0, 0};
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
|
|
int InputIdx = Mask[i] >= Size;
|
|
|
|
if (i < Size / 2)
|
|
++NumLoInputs[InputIdx];
|
|
else
|
|
++NumHiInputs[InputIdx];
|
|
|
|
if ((i % 2) == 0)
|
|
++NumEvenInputs[InputIdx];
|
|
else
|
|
++NumOddInputs[InputIdx];
|
|
}
|
|
|
|
// The minimum number of cross-input results for both the interleaved and
|
|
// split cases. If interleaving results in fewer cross-input results, return
|
|
// true.
|
|
int InterleavedCrosses = std::min(NumEvenInputs[1] + NumOddInputs[0],
|
|
NumEvenInputs[0] + NumOddInputs[1]);
|
|
int SplitCrosses = std::min(NumLoInputs[1] + NumHiInputs[0],
|
|
NumLoInputs[0] + NumHiInputs[1]);
|
|
return InterleavedCrosses < SplitCrosses;
|
|
}
|
|
|
|
/// \brief Blend two v8i16 vectors using a naive unpack strategy.
|
|
///
|
|
/// This strategy only works when the inputs from each vector fit into a single
|
|
/// half of that vector, and generally there are not so many inputs as to leave
|
|
/// the in-place shuffles required highly constrained (and thus expensive). It
|
|
/// shifts all the inputs into a single side of both input vectors and then
|
|
/// uses an unpack to interleave these inputs in a single vector. At that
|
|
/// point, we will fall back on the generic single input shuffle lowering.
|
|
static SDValue lowerV8I16BasicBlendVectorShuffle(SDLoc DL, SDValue V1,
|
|
SDValue V2,
|
|
MutableArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
|
|
assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad input type!");
|
|
SmallVector<int, 3> LoV1Inputs, HiV1Inputs, LoV2Inputs, HiV2Inputs;
|
|
for (int i = 0; i < 8; ++i)
|
|
if (Mask[i] >= 0 && Mask[i] < 4)
|
|
LoV1Inputs.push_back(i);
|
|
else if (Mask[i] >= 4 && Mask[i] < 8)
|
|
HiV1Inputs.push_back(i);
|
|
else if (Mask[i] >= 8 && Mask[i] < 12)
|
|
LoV2Inputs.push_back(i);
|
|
else if (Mask[i] >= 12)
|
|
HiV2Inputs.push_back(i);
|
|
|
|
int NumV1Inputs = LoV1Inputs.size() + HiV1Inputs.size();
|
|
int NumV2Inputs = LoV2Inputs.size() + HiV2Inputs.size();
|
|
(void)NumV1Inputs;
|
|
(void)NumV2Inputs;
|
|
assert(NumV1Inputs > 0 && NumV1Inputs <= 3 && "At most 3 inputs supported");
|
|
assert(NumV2Inputs > 0 && NumV2Inputs <= 3 && "At most 3 inputs supported");
|
|
assert(NumV1Inputs + NumV2Inputs <= 4 && "At most 4 combined inputs");
|
|
|
|
bool MergeFromLo = LoV1Inputs.size() + LoV2Inputs.size() >=
|
|
HiV1Inputs.size() + HiV2Inputs.size();
|
|
|
|
auto moveInputsToHalf = [&](SDValue V, ArrayRef<int> LoInputs,
|
|
ArrayRef<int> HiInputs, bool MoveToLo,
|
|
int MaskOffset) {
|
|
ArrayRef<int> GoodInputs = MoveToLo ? LoInputs : HiInputs;
|
|
ArrayRef<int> BadInputs = MoveToLo ? HiInputs : LoInputs;
|
|
if (BadInputs.empty())
|
|
return V;
|
|
|
|
int MoveMask[] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
int MoveOffset = MoveToLo ? 0 : 4;
|
|
|
|
if (GoodInputs.empty()) {
|
|
for (int BadInput : BadInputs) {
|
|
MoveMask[Mask[BadInput] % 4 + MoveOffset] = Mask[BadInput] - MaskOffset;
|
|
Mask[BadInput] = Mask[BadInput] % 4 + MoveOffset + MaskOffset;
|
|
}
|
|
} else {
|
|
if (GoodInputs.size() == 2) {
|
|
// If the low inputs are spread across two dwords, pack them into
|
|
// a single dword.
|
|
MoveMask[MoveOffset] = Mask[GoodInputs[0]] - MaskOffset;
|
|
MoveMask[MoveOffset + 1] = Mask[GoodInputs[1]] - MaskOffset;
|
|
Mask[GoodInputs[0]] = MoveOffset + MaskOffset;
|
|
Mask[GoodInputs[1]] = MoveOffset + 1 + MaskOffset;
|
|
} else {
|
|
// Otherwise pin the good inputs.
|
|
for (int GoodInput : GoodInputs)
|
|
MoveMask[Mask[GoodInput] - MaskOffset] = Mask[GoodInput] - MaskOffset;
|
|
}
|
|
|
|
if (BadInputs.size() == 2) {
|
|
// If we have two bad inputs then there may be either one or two good
|
|
// inputs fixed in place. Find a fixed input, and then find the *other*
|
|
// two adjacent indices by using modular arithmetic.
|
|
int GoodMaskIdx =
|
|
std::find_if(std::begin(MoveMask) + MoveOffset, std::end(MoveMask),
|
|
[](int M) { return M >= 0; }) -
|
|
std::begin(MoveMask);
|
|
int MoveMaskIdx =
|
|
((((GoodMaskIdx - MoveOffset) & ~1) + 2) % 4) + MoveOffset;
|
|
assert(MoveMask[MoveMaskIdx] == -1 && "Expected empty slot");
|
|
assert(MoveMask[MoveMaskIdx + 1] == -1 && "Expected empty slot");
|
|
MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
|
|
MoveMask[MoveMaskIdx + 1] = Mask[BadInputs[1]] - MaskOffset;
|
|
Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
|
|
Mask[BadInputs[1]] = MoveMaskIdx + 1 + MaskOffset;
|
|
} else {
|
|
assert(BadInputs.size() == 1 && "All sizes handled");
|
|
int MoveMaskIdx = std::find(std::begin(MoveMask) + MoveOffset,
|
|
std::end(MoveMask), -1) -
|
|
std::begin(MoveMask);
|
|
MoveMask[MoveMaskIdx] = Mask[BadInputs[0]] - MaskOffset;
|
|
Mask[BadInputs[0]] = MoveMaskIdx + MaskOffset;
|
|
}
|
|
}
|
|
|
|
return DAG.getVectorShuffle(MVT::v8i16, DL, V, DAG.getUNDEF(MVT::v8i16),
|
|
MoveMask);
|
|
};
|
|
V1 = moveInputsToHalf(V1, LoV1Inputs, HiV1Inputs, MergeFromLo,
|
|
/*MaskOffset*/ 0);
|
|
V2 = moveInputsToHalf(V2, LoV2Inputs, HiV2Inputs, MergeFromLo,
|
|
/*MaskOffset*/ 8);
|
|
|
|
// FIXME: Select an interleaving of the merge of V1 and V2 that minimizes
|
|
// cross-half traffic in the final shuffle.
|
|
|
|
// Munge the mask to be a single-input mask after the unpack merges the
|
|
// results.
|
|
for (int &M : Mask)
|
|
if (M != -1)
|
|
M = 2 * (M % 4) + (M / 8);
|
|
|
|
return DAG.getVectorShuffle(
|
|
MVT::v8i16, DL, DAG.getNode(MergeFromLo ? X86ISD::UNPCKL : X86ISD::UNPCKH,
|
|
DL, MVT::v8i16, V1, V2),
|
|
DAG.getUNDEF(MVT::v8i16), Mask);
|
|
}
|
|
|
|
/// \brief Generic lowering of 8-lane i16 shuffles.
|
|
///
|
|
/// This handles both single-input shuffles and combined shuffle/blends with
|
|
/// two inputs. The single input shuffles are immediately delegated to
|
|
/// a dedicated lowering routine.
|
|
///
|
|
/// The blends are lowered in one of three fundamental ways. If there are few
|
|
/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
|
|
/// of the input is significantly cheaper when lowered as an interleaving of
|
|
/// the two inputs, try to interleave them. Otherwise, blend the low and high
|
|
/// halves of the inputs separately (making them have relatively few inputs)
|
|
/// and then concatenate them.
|
|
static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
|
|
assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> OrigMask = SVOp->getMask();
|
|
int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
|
|
OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
|
|
MutableArrayRef<int> Mask(MaskStorage);
|
|
|
|
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
|
|
|
|
// Whenever we can lower this as a zext, that instruction is strictly faster
|
|
// than any alternative.
|
|
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
|
|
DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
|
|
return ZExt;
|
|
|
|
auto isV1 = [](int M) { return M >= 0 && M < 8; };
|
|
auto isV2 = [](int M) { return M >= 8; };
|
|
|
|
int NumV1Inputs = std::count_if(Mask.begin(), Mask.end(), isV1);
|
|
int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
|
|
|
|
if (NumV2Inputs == 0)
|
|
return lowerV8I16SingleInputVectorShuffle(DL, V1, Mask, Subtarget, DAG);
|
|
|
|
assert(NumV1Inputs > 0 && "All single-input shuffles should be canonicalized "
|
|
"to be V1-input shuffles.");
|
|
|
|
// Try to use byte shift instructions.
|
|
if (SDValue Shift = lowerVectorShuffleAsByteShift(
|
|
DL, MVT::v8i16, V1, V2, Mask, DAG))
|
|
return Shift;
|
|
|
|
// There are special ways we can lower some single-element blends.
|
|
if (NumV2Inputs == 1)
|
|
if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v8i16, DL, V1, V2,
|
|
Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 2, 10, 3, 11))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 4, 12, 5, 13, 6, 14, 7, 15))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i16, V1, V2);
|
|
|
|
if (Subtarget->hasSSE41())
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Try to use byte rotation instructions.
|
|
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
|
|
DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
|
|
return Rotate;
|
|
|
|
if (NumV1Inputs + NumV2Inputs <= 4)
|
|
return lowerV8I16BasicBlendVectorShuffle(DL, V1, V2, Mask, Subtarget, DAG);
|
|
|
|
// Check whether an interleaving lowering is likely to be more efficient.
|
|
// This isn't perfect but it is a strong heuristic that tends to work well on
|
|
// the kinds of shuffles that show up in practice.
|
|
//
|
|
// FIXME: Handle 1x, 2x, and 4x interleaving.
|
|
if (shouldLowerAsInterleaving(Mask)) {
|
|
// FIXME: Figure out whether we should pack these into the low or high
|
|
// halves.
|
|
|
|
int EMask[8], OMask[8];
|
|
for (int i = 0; i < 4; ++i) {
|
|
EMask[i] = Mask[2*i];
|
|
OMask[i] = Mask[2*i + 1];
|
|
EMask[i + 4] = -1;
|
|
OMask[i + 4] = -1;
|
|
}
|
|
|
|
SDValue Evens = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, EMask);
|
|
SDValue Odds = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, OMask);
|
|
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i16, Evens, Odds);
|
|
}
|
|
|
|
int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
LoBlendMask[i] = Mask[i];
|
|
HiBlendMask[i] = Mask[i + 4];
|
|
}
|
|
|
|
SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
|
|
SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
|
|
LoV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, LoV);
|
|
HiV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, HiV);
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
|
|
DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, LoV, HiV));
|
|
}
|
|
|
|
/// \brief Check whether a compaction lowering can be done by dropping even
|
|
/// elements and compute how many times even elements must be dropped.
|
|
///
|
|
/// This handles shuffles which take every Nth element where N is a power of
|
|
/// two. Example shuffle masks:
|
|
///
|
|
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
|
|
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
|
|
/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
|
|
/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
|
|
/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
|
|
/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
|
|
///
|
|
/// Any of these lanes can of course be undef.
|
|
///
|
|
/// This routine only supports N <= 3.
|
|
/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
|
|
/// for larger N.
|
|
///
|
|
/// \returns N above, or the number of times even elements must be dropped if
|
|
/// there is such a number. Otherwise returns zero.
|
|
static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
|
|
// Figure out whether we're looping over two inputs or just one.
|
|
bool IsSingleInput = isSingleInputShuffleMask(Mask);
|
|
|
|
// The modulus for the shuffle vector entries is based on whether this is
|
|
// a single input or not.
|
|
int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
|
|
assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
|
|
"We should only be called with masks with a power-of-2 size!");
|
|
|
|
uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
|
|
|
|
// We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
|
|
// and 2^3 simultaneously. This is because we may have ambiguity with
|
|
// partially undef inputs.
|
|
bool ViableForN[3] = {true, true, true};
|
|
|
|
for (int i = 0, e = Mask.size(); i < e; ++i) {
|
|
// Ignore undef lanes, we'll optimistically collapse them to the pattern we
|
|
// want.
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
|
|
bool IsAnyViable = false;
|
|
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
|
|
if (ViableForN[j]) {
|
|
uint64_t N = j + 1;
|
|
|
|
// The shuffle mask must be equal to (i * 2^N) % M.
|
|
if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
|
|
IsAnyViable = true;
|
|
else
|
|
ViableForN[j] = false;
|
|
}
|
|
// Early exit if we exhaust the possible powers of two.
|
|
if (!IsAnyViable)
|
|
break;
|
|
}
|
|
|
|
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
|
|
if (ViableForN[j])
|
|
return j + 1;
|
|
|
|
// Return 0 as there is no viable power of two.
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Generic lowering of v16i8 shuffles.
|
|
///
|
|
/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
|
|
/// detect any complexity reducing interleaving. If that doesn't help, it uses
|
|
/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
|
|
/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
|
|
/// back together.
|
|
static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
|
|
assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> OrigMask = SVOp->getMask();
|
|
assert(OrigMask.size() == 16 && "Unexpected mask size for v16 shuffle!");
|
|
|
|
// Try to use byte shift instructions.
|
|
if (SDValue Shift = lowerVectorShuffleAsByteShift(
|
|
DL, MVT::v16i8, V1, V2, OrigMask, DAG))
|
|
return Shift;
|
|
|
|
// Try to use byte rotation instructions.
|
|
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
|
|
DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG))
|
|
return Rotate;
|
|
|
|
// Try to use a zext lowering.
|
|
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
|
|
DL, MVT::v16i8, V1, V2, OrigMask, Subtarget, DAG))
|
|
return ZExt;
|
|
|
|
int MaskStorage[16] = {
|
|
OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
|
|
OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7],
|
|
OrigMask[8], OrigMask[9], OrigMask[10], OrigMask[11],
|
|
OrigMask[12], OrigMask[13], OrigMask[14], OrigMask[15]};
|
|
MutableArrayRef<int> Mask(MaskStorage);
|
|
MutableArrayRef<int> LoMask = Mask.slice(0, 8);
|
|
MutableArrayRef<int> HiMask = Mask.slice(8, 8);
|
|
|
|
int NumV2Elements =
|
|
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
|
|
|
|
// For single-input shuffles, there are some nicer lowering tricks we can use.
|
|
if (NumV2Elements == 0) {
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i8, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// Check whether we can widen this to an i16 shuffle by duplicating bytes.
|
|
// Notably, this handles splat and partial-splat shuffles more efficiently.
|
|
// However, it only makes sense if the pre-duplication shuffle simplifies
|
|
// things significantly. Currently, this means we need to be able to
|
|
// express the pre-duplication shuffle as an i16 shuffle.
|
|
//
|
|
// FIXME: We should check for other patterns which can be widened into an
|
|
// i16 shuffle as well.
|
|
auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
|
|
for (int i = 0; i < 16; i += 2)
|
|
if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
auto tryToWidenViaDuplication = [&]() -> SDValue {
|
|
if (!canWidenViaDuplication(Mask))
|
|
return SDValue();
|
|
SmallVector<int, 4> LoInputs;
|
|
std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
|
|
[](int M) { return M >= 0 && M < 8; });
|
|
std::sort(LoInputs.begin(), LoInputs.end());
|
|
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
|
|
LoInputs.end());
|
|
SmallVector<int, 4> HiInputs;
|
|
std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
|
|
[](int M) { return M >= 8; });
|
|
std::sort(HiInputs.begin(), HiInputs.end());
|
|
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
|
|
HiInputs.end());
|
|
|
|
bool TargetLo = LoInputs.size() >= HiInputs.size();
|
|
ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
|
|
ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
|
|
|
|
int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
SmallDenseMap<int, int, 8> LaneMap;
|
|
for (int I : InPlaceInputs) {
|
|
PreDupI16Shuffle[I/2] = I/2;
|
|
LaneMap[I] = I;
|
|
}
|
|
int j = TargetLo ? 0 : 4, je = j + 4;
|
|
for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
|
|
// Check if j is already a shuffle of this input. This happens when
|
|
// there are two adjacent bytes after we move the low one.
|
|
if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
|
|
// If we haven't yet mapped the input, search for a slot into which
|
|
// we can map it.
|
|
while (j < je && PreDupI16Shuffle[j] != -1)
|
|
++j;
|
|
|
|
if (j == je)
|
|
// We can't place the inputs into a single half with a simple i16 shuffle, so bail.
|
|
return SDValue();
|
|
|
|
// Map this input with the i16 shuffle.
|
|
PreDupI16Shuffle[j] = MovingInputs[i] / 2;
|
|
}
|
|
|
|
// Update the lane map based on the mapping we ended up with.
|
|
LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
|
|
}
|
|
V1 = DAG.getNode(
|
|
ISD::BITCAST, DL, MVT::v16i8,
|
|
DAG.getVectorShuffle(MVT::v8i16, DL,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
|
|
DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
|
|
|
|
// Unpack the bytes to form the i16s that will be shuffled into place.
|
|
V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
|
|
MVT::v16i8, V1, V1);
|
|
|
|
int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
for (int i = 0; i < 16; ++i)
|
|
if (Mask[i] != -1) {
|
|
int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
|
|
assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
|
|
if (PostDupI16Shuffle[i / 2] == -1)
|
|
PostDupI16Shuffle[i / 2] = MappedMask;
|
|
else
|
|
assert(PostDupI16Shuffle[i / 2] == MappedMask &&
|
|
"Conflicting entrties in the original shuffle!");
|
|
}
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, MVT::v16i8,
|
|
DAG.getVectorShuffle(MVT::v8i16, DL,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1),
|
|
DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
|
|
};
|
|
if (SDValue V = tryToWidenViaDuplication())
|
|
return V;
|
|
}
|
|
|
|
// Check whether an interleaving lowering is likely to be more efficient.
|
|
// This isn't perfect but it is a strong heuristic that tends to work well on
|
|
// the kinds of shuffles that show up in practice.
|
|
//
|
|
// FIXME: We need to handle other interleaving widths (i16, i32, ...).
|
|
if (shouldLowerAsInterleaving(Mask)) {
|
|
int NumLoHalf = std::count_if(Mask.begin(), Mask.end(), [](int M) {
|
|
return (M >= 0 && M < 8) || (M >= 16 && M < 24);
|
|
});
|
|
int NumHiHalf = std::count_if(Mask.begin(), Mask.end(), [](int M) {
|
|
return (M >= 8 && M < 16) || M >= 24;
|
|
});
|
|
int EMask[16] = {-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1};
|
|
int OMask[16] = {-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1};
|
|
bool UnpackLo = NumLoHalf >= NumHiHalf;
|
|
MutableArrayRef<int> TargetEMask(UnpackLo ? EMask : EMask + 8, 8);
|
|
MutableArrayRef<int> TargetOMask(UnpackLo ? OMask : OMask + 8, 8);
|
|
for (int i = 0; i < 8; ++i) {
|
|
TargetEMask[i] = Mask[2 * i];
|
|
TargetOMask[i] = Mask[2 * i + 1];
|
|
}
|
|
|
|
SDValue Evens = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, EMask);
|
|
SDValue Odds = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2, OMask);
|
|
|
|
return DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
|
|
MVT::v16i8, Evens, Odds);
|
|
}
|
|
|
|
// Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
|
|
// with PSHUFB. It is important to do this before we attempt to generate any
|
|
// blends but after all of the single-input lowerings. If the single input
|
|
// lowerings can find an instruction sequence that is faster than a PSHUFB, we
|
|
// want to preserve that and we can DAG combine any longer sequences into
|
|
// a PSHUFB in the end. But once we start blending from multiple inputs,
|
|
// the complexity of DAG combining bad patterns back into PSHUFB is too high,
|
|
// and there are *very* few patterns that would actually be faster than the
|
|
// PSHUFB approach because of its ability to zero lanes.
|
|
//
|
|
// FIXME: The only exceptions to the above are blends which are exact
|
|
// interleavings with direct instructions supporting them. We currently don't
|
|
// handle those well here.
|
|
if (Subtarget->hasSSSE3()) {
|
|
SDValue V1Mask[16];
|
|
SDValue V2Mask[16];
|
|
for (int i = 0; i < 16; ++i)
|
|
if (Mask[i] == -1) {
|
|
V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
|
|
} else {
|
|
V1Mask[i] = DAG.getConstant(Mask[i] < 16 ? Mask[i] : 0x80, MVT::i8);
|
|
V2Mask[i] =
|
|
DAG.getConstant(Mask[i] < 16 ? 0x80 : Mask[i] - 16, MVT::i8);
|
|
}
|
|
V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
|
|
if (isSingleInputShuffleMask(Mask))
|
|
return V1; // Single inputs are easy.
|
|
|
|
// Otherwise, blend the two.
|
|
V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, V2,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
|
|
return DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
|
|
}
|
|
|
|
// There are special ways we can lower some single-element blends.
|
|
if (NumV2Elements == 1)
|
|
if (SDValue V = lowerVectorShuffleAsElementInsertion(MVT::v16i8, DL, V1, V2,
|
|
Mask, Subtarget, DAG))
|
|
return V;
|
|
|
|
// Check whether a compaction lowering can be done. This handles shuffles
|
|
// which take every Nth element for some even N. See the helper function for
|
|
// details.
|
|
//
|
|
// We special case these as they can be particularly efficiently handled with
|
|
// the PACKUSB instruction on x86 and they show up in common patterns of
|
|
// rearranging bytes to truncate wide elements.
|
|
if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
|
|
// NumEvenDrops is the power of two stride of the elements. Another way of
|
|
// thinking about it is that we need to drop the even elements this many
|
|
// times to get the original input.
|
|
bool IsSingleInput = isSingleInputShuffleMask(Mask);
|
|
|
|
// First we need to zero all the dropped bytes.
|
|
assert(NumEvenDrops <= 3 &&
|
|
"No support for dropping even elements more than 3 times.");
|
|
// We use the mask type to pick which bytes are preserved based on how many
|
|
// elements are dropped.
|
|
MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
|
|
SDValue ByteClearMask =
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v16i8,
|
|
DAG.getConstant(0xFF, MaskVTs[NumEvenDrops - 1]));
|
|
V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
|
|
if (!IsSingleInput)
|
|
V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
|
|
|
|
// Now pack things back together.
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V1);
|
|
V2 = IsSingleInput ? V1 : DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V2);
|
|
SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
|
|
for (int i = 1; i < NumEvenDrops; ++i) {
|
|
Result = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Result);
|
|
Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
int V1LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
int V1HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
int V2LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
int V2HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
|
|
|
|
auto buildBlendMasks = [](MutableArrayRef<int> HalfMask,
|
|
MutableArrayRef<int> V1HalfBlendMask,
|
|
MutableArrayRef<int> V2HalfBlendMask) {
|
|
for (int i = 0; i < 8; ++i)
|
|
if (HalfMask[i] >= 0 && HalfMask[i] < 16) {
|
|
V1HalfBlendMask[i] = HalfMask[i];
|
|
HalfMask[i] = i;
|
|
} else if (HalfMask[i] >= 16) {
|
|
V2HalfBlendMask[i] = HalfMask[i] - 16;
|
|
HalfMask[i] = i + 8;
|
|
}
|
|
};
|
|
buildBlendMasks(LoMask, V1LoBlendMask, V2LoBlendMask);
|
|
buildBlendMasks(HiMask, V1HiBlendMask, V2HiBlendMask);
|
|
|
|
SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
|
|
|
|
auto buildLoAndHiV8s = [&](SDValue V, MutableArrayRef<int> LoBlendMask,
|
|
MutableArrayRef<int> HiBlendMask) {
|
|
SDValue V1, V2;
|
|
// Check if any of the odd lanes in the v16i8 are used. If not, we can mask
|
|
// them out and avoid using UNPCK{L,H} to extract the elements of V as
|
|
// i16s.
|
|
if (std::none_of(LoBlendMask.begin(), LoBlendMask.end(),
|
|
[](int M) { return M >= 0 && M % 2 == 1; }) &&
|
|
std::none_of(HiBlendMask.begin(), HiBlendMask.end(),
|
|
[](int M) { return M >= 0 && M % 2 == 1; })) {
|
|
// Use a mask to drop the high bytes.
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
|
|
V1 = DAG.getNode(ISD::AND, DL, MVT::v8i16, V1,
|
|
DAG.getConstant(0x00FF, MVT::v8i16));
|
|
|
|
// This will be a single vector shuffle instead of a blend so nuke V2.
|
|
V2 = DAG.getUNDEF(MVT::v8i16);
|
|
|
|
// Squash the masks to point directly into V1.
|
|
for (int &M : LoBlendMask)
|
|
if (M >= 0)
|
|
M /= 2;
|
|
for (int &M : HiBlendMask)
|
|
if (M >= 0)
|
|
M /= 2;
|
|
} else {
|
|
// Otherwise just unpack the low half of V into V1 and the high half into
|
|
// V2 so that we can blend them as i16s.
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
|
|
DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16,
|
|
DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
|
|
}
|
|
|
|
SDValue BlendedLo = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, LoBlendMask);
|
|
SDValue BlendedHi = DAG.getVectorShuffle(MVT::v8i16, DL, V1, V2, HiBlendMask);
|
|
return std::make_pair(BlendedLo, BlendedHi);
|
|
};
|
|
SDValue V1Lo, V1Hi, V2Lo, V2Hi;
|
|
std::tie(V1Lo, V1Hi) = buildLoAndHiV8s(V1, V1LoBlendMask, V1HiBlendMask);
|
|
std::tie(V2Lo, V2Hi) = buildLoAndHiV8s(V2, V2LoBlendMask, V2HiBlendMask);
|
|
|
|
SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Lo, V2Lo, LoMask);
|
|
SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, V1Hi, V2Hi, HiMask);
|
|
|
|
return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
|
|
}
|
|
|
|
/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
|
|
///
|
|
/// This routine breaks down the specific type of 128-bit shuffle and
|
|
/// dispatches to the lowering routines accordingly.
|
|
static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
MVT VT, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
switch (VT.SimpleTy) {
|
|
case MVT::v2i64:
|
|
return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v2f64:
|
|
return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v4i32:
|
|
return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v4f32:
|
|
return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v8i16:
|
|
return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v16i8:
|
|
return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
|
|
default:
|
|
llvm_unreachable("Unimplemented!");
|
|
}
|
|
}
|
|
|
|
/// \brief Helper function to test whether a shuffle mask could be
|
|
/// simplified by widening the elements being shuffled.
|
|
///
|
|
/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
|
|
/// leaves it in an unspecified state.
|
|
///
|
|
/// NOTE: This must handle normal vector shuffle masks and *target* vector
|
|
/// shuffle masks. The latter have the special property of a '-2' representing
|
|
/// a zero-ed lane of a vector.
|
|
static bool canWidenShuffleElements(ArrayRef<int> Mask,
|
|
SmallVectorImpl<int> &WidenedMask) {
|
|
for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
|
|
// If both elements are undef, its trivial.
|
|
if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
|
|
WidenedMask.push_back(SM_SentinelUndef);
|
|
continue;
|
|
}
|
|
|
|
// Check for an undef mask and a mask value properly aligned to fit with
|
|
// a pair of values. If we find such a case, use the non-undef mask's value.
|
|
if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
|
|
WidenedMask.push_back(Mask[i + 1] / 2);
|
|
continue;
|
|
}
|
|
if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
|
|
WidenedMask.push_back(Mask[i] / 2);
|
|
continue;
|
|
}
|
|
|
|
// When zeroing, we need to spread the zeroing across both lanes to widen.
|
|
if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
|
|
if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
|
|
(Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
|
|
WidenedMask.push_back(SM_SentinelZero);
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Finally check if the two mask values are adjacent and aligned with
|
|
// a pair.
|
|
if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
|
|
WidenedMask.push_back(Mask[i] / 2);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise we can't safely widen the elements used in this shuffle.
|
|
return false;
|
|
}
|
|
assert(WidenedMask.size() == Mask.size() / 2 &&
|
|
"Incorrect size of mask after widening the elements!");
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Generic routine to split ector shuffle into half-sized shuffles.
|
|
///
|
|
/// This routine just extracts two subvectors, shuffles them independently, and
|
|
/// then concatenates them back together. This should work effectively with all
|
|
/// AVX vector shuffle types.
|
|
static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
|
|
SDValue V2, ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) {
|
|
assert(VT.getSizeInBits() >= 256 &&
|
|
"Only for 256-bit or wider vector shuffles!");
|
|
assert(V1.getSimpleValueType() == VT && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == VT && "Bad operand type!");
|
|
|
|
ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
|
|
ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
|
|
|
|
int NumElements = VT.getVectorNumElements();
|
|
int SplitNumElements = NumElements / 2;
|
|
MVT ScalarVT = VT.getScalarType();
|
|
MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
|
|
|
|
SDValue LoV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue HiV1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V1,
|
|
DAG.getIntPtrConstant(SplitNumElements));
|
|
SDValue LoV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue HiV2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, V2,
|
|
DAG.getIntPtrConstant(SplitNumElements));
|
|
|
|
// Now create two 4-way blends of these half-width vectors.
|
|
auto HalfBlend = [&](ArrayRef<int> HalfMask) {
|
|
bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
|
|
SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
|
|
for (int i = 0; i < SplitNumElements; ++i) {
|
|
int M = HalfMask[i];
|
|
if (M >= NumElements) {
|
|
if (M >= NumElements + SplitNumElements)
|
|
UseHiV2 = true;
|
|
else
|
|
UseLoV2 = true;
|
|
V2BlendMask.push_back(M - NumElements);
|
|
V1BlendMask.push_back(-1);
|
|
BlendMask.push_back(SplitNumElements + i);
|
|
} else if (M >= 0) {
|
|
if (M >= SplitNumElements)
|
|
UseHiV1 = true;
|
|
else
|
|
UseLoV1 = true;
|
|
V2BlendMask.push_back(-1);
|
|
V1BlendMask.push_back(M);
|
|
BlendMask.push_back(i);
|
|
} else {
|
|
V2BlendMask.push_back(-1);
|
|
V1BlendMask.push_back(-1);
|
|
BlendMask.push_back(-1);
|
|
}
|
|
}
|
|
|
|
// Because the lowering happens after all combining takes place, we need to
|
|
// manually combine these blend masks as much as possible so that we create
|
|
// a minimal number of high-level vector shuffle nodes.
|
|
|
|
// First try just blending the halves of V1 or V2.
|
|
if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
|
|
return DAG.getUNDEF(SplitVT);
|
|
if (!UseLoV2 && !UseHiV2)
|
|
return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
|
|
if (!UseLoV1 && !UseHiV1)
|
|
return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
|
|
|
|
SDValue V1Blend, V2Blend;
|
|
if (UseLoV1 && UseHiV1) {
|
|
V1Blend =
|
|
DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
|
|
} else {
|
|
// We only use half of V1 so map the usage down into the final blend mask.
|
|
V1Blend = UseLoV1 ? LoV1 : HiV1;
|
|
for (int i = 0; i < SplitNumElements; ++i)
|
|
if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
|
|
BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
|
|
}
|
|
if (UseLoV2 && UseHiV2) {
|
|
V2Blend =
|
|
DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
|
|
} else {
|
|
// We only use half of V2 so map the usage down into the final blend mask.
|
|
V2Blend = UseLoV2 ? LoV2 : HiV2;
|
|
for (int i = 0; i < SplitNumElements; ++i)
|
|
if (BlendMask[i] >= SplitNumElements)
|
|
BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
|
|
}
|
|
return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
|
|
};
|
|
SDValue Lo = HalfBlend(LoMask);
|
|
SDValue Hi = HalfBlend(HiMask);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
|
|
}
|
|
|
|
/// \brief Either split a vector in halves or decompose the shuffles and the
|
|
/// blend.
|
|
///
|
|
/// This is provided as a good fallback for many lowerings of non-single-input
|
|
/// shuffles with more than one 128-bit lane. In those cases, we want to select
|
|
/// between splitting the shuffle into 128-bit components and stitching those
|
|
/// back together vs. extracting the single-input shuffles and blending those
|
|
/// results.
|
|
static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
|
|
SDValue V2, ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) {
|
|
assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
|
|
"lower single-input shuffles as it "
|
|
"could then recurse on itself.");
|
|
int Size = Mask.size();
|
|
|
|
// If this can be modeled as a broadcast of two elements followed by a blend,
|
|
// prefer that lowering. This is especially important because broadcasts can
|
|
// often fold with memory operands.
|
|
auto DoBothBroadcast = [&] {
|
|
int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
|
|
for (int M : Mask)
|
|
if (M >= Size) {
|
|
if (V2BroadcastIdx == -1)
|
|
V2BroadcastIdx = M - Size;
|
|
else if (M - Size != V2BroadcastIdx)
|
|
return false;
|
|
} else if (M >= 0) {
|
|
if (V1BroadcastIdx == -1)
|
|
V1BroadcastIdx = M;
|
|
else if (M != V1BroadcastIdx)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
if (DoBothBroadcast())
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
|
|
DAG);
|
|
|
|
// If the inputs all stem from a single 128-bit lane of each input, then we
|
|
// split them rather than blending because the split will decompose to
|
|
// unusually few instructions.
|
|
int LaneCount = VT.getSizeInBits() / 128;
|
|
int LaneSize = Size / LaneCount;
|
|
SmallBitVector LaneInputs[2];
|
|
LaneInputs[0].resize(LaneCount, false);
|
|
LaneInputs[1].resize(LaneCount, false);
|
|
for (int i = 0; i < Size; ++i)
|
|
if (Mask[i] >= 0)
|
|
LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
|
|
if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
|
|
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
|
|
|
|
// Otherwise, just fall back to decomposed shuffles and a blend. This requires
|
|
// that the decomposed single-input shuffles don't end up here.
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
|
|
/// a permutation and blend of those lanes.
|
|
///
|
|
/// This essentially blends the out-of-lane inputs to each lane into the lane
|
|
/// from a permuted copy of the vector. This lowering strategy results in four
|
|
/// instructions in the worst case for a single-input cross lane shuffle which
|
|
/// is lower than any other fully general cross-lane shuffle strategy I'm aware
|
|
/// of. Special cases for each particular shuffle pattern should be handled
|
|
/// prior to trying this lowering.
|
|
static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
|
|
SDValue V1, SDValue V2,
|
|
ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) {
|
|
// FIXME: This should probably be generalized for 512-bit vectors as well.
|
|
assert(VT.getSizeInBits() == 256 && "Only for 256-bit vector shuffles!");
|
|
int LaneSize = Mask.size() / 2;
|
|
|
|
// If there are only inputs from one 128-bit lane, splitting will in fact be
|
|
// less expensive. The flags track wether the given lane contains an element
|
|
// that crosses to another lane.
|
|
bool LaneCrossing[2] = {false, false};
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
|
|
LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
|
|
if (!LaneCrossing[0] || !LaneCrossing[1])
|
|
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
|
|
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
SmallVector<int, 32> FlippedBlendMask;
|
|
for (int i = 0, Size = Mask.size(); i < Size; ++i)
|
|
FlippedBlendMask.push_back(
|
|
Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
|
|
? Mask[i]
|
|
: Mask[i] % LaneSize +
|
|
(i / LaneSize) * LaneSize + Size));
|
|
|
|
// Flip the vector, and blend the results which should now be in-lane. The
|
|
// VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
|
|
// 5 for the high source. The value 3 selects the high half of source 2 and
|
|
// the value 2 selects the low half of source 2. We only use source 2 to
|
|
// allow folding it into a memory operand.
|
|
unsigned PERMMask = 3 | 2 << 4;
|
|
SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
|
|
V1, DAG.getConstant(PERMMask, MVT::i8));
|
|
return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
|
|
}
|
|
|
|
// This now reduces to two single-input shuffles of V1 and V2 which at worst
|
|
// will be handled by the above logic and a blend of the results, much like
|
|
// other patterns in AVX.
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering 2-lane 128-bit shuffles.
|
|
static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
|
|
SDValue V2, ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
// Blends are faster and handle all the non-lane-crossing cases.
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
|
|
VT.getVectorNumElements() / 2);
|
|
// Check for patterns which can be matched with a single insert of a 128-bit
|
|
// subvector.
|
|
if (isShuffleEquivalent(Mask, 0, 1, 0, 1) ||
|
|
isShuffleEquivalent(Mask, 0, 1, 4, 5)) {
|
|
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
|
|
Mask[2] < 4 ? V1 : V2, DAG.getIntPtrConstant(0));
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
|
|
}
|
|
if (isShuffleEquivalent(Mask, 0, 1, 6, 7)) {
|
|
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
|
|
DAG.getIntPtrConstant(2));
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
|
|
}
|
|
|
|
// Otherwise form a 128-bit permutation.
|
|
// FIXME: Detect zero-vector inputs and use the VPERM2X128 to zero that half.
|
|
unsigned PermMask = Mask[0] / 2 | (Mask[2] / 2) << 4;
|
|
return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
|
|
DAG.getConstant(PermMask, MVT::i8));
|
|
}
|
|
|
|
/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
|
|
/// shuffling each lane.
|
|
///
|
|
/// This will only succeed when the result of fixing the 128-bit lanes results
|
|
/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
|
|
/// each 128-bit lanes. This handles many cases where we can quickly blend away
|
|
/// the lane crosses early and then use simpler shuffles within each lane.
|
|
///
|
|
/// FIXME: It might be worthwhile at some point to support this without
|
|
/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
|
|
/// in x86 only floating point has interesting non-repeating shuffles, and even
|
|
/// those are still *marginally* more expensive.
|
|
static SDValue lowerVectorShuffleByMerging128BitLanes(
|
|
SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
|
|
const X86Subtarget *Subtarget, SelectionDAG &DAG) {
|
|
assert(!isSingleInputShuffleMask(Mask) &&
|
|
"This is only useful with multiple inputs.");
|
|
|
|
int Size = Mask.size();
|
|
int LaneSize = 128 / VT.getScalarSizeInBits();
|
|
int NumLanes = Size / LaneSize;
|
|
assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
|
|
|
|
// See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
|
|
// check whether the in-128-bit lane shuffles share a repeating pattern.
|
|
SmallVector<int, 4> Lanes;
|
|
Lanes.resize(NumLanes, -1);
|
|
SmallVector<int, 4> InLaneMask;
|
|
InLaneMask.resize(LaneSize, -1);
|
|
for (int i = 0; i < Size; ++i) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
|
|
int j = i / LaneSize;
|
|
|
|
if (Lanes[j] < 0) {
|
|
// First entry we've seen for this lane.
|
|
Lanes[j] = Mask[i] / LaneSize;
|
|
} else if (Lanes[j] != Mask[i] / LaneSize) {
|
|
// This doesn't match the lane selected previously!
|
|
return SDValue();
|
|
}
|
|
|
|
// Check that within each lane we have a consistent shuffle mask.
|
|
int k = i % LaneSize;
|
|
if (InLaneMask[k] < 0) {
|
|
InLaneMask[k] = Mask[i] % LaneSize;
|
|
} else if (InLaneMask[k] != Mask[i] % LaneSize) {
|
|
// This doesn't fit a repeating in-lane mask.
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// First shuffle the lanes into place.
|
|
MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
|
|
VT.getSizeInBits() / 64);
|
|
SmallVector<int, 8> LaneMask;
|
|
LaneMask.resize(NumLanes * 2, -1);
|
|
for (int i = 0; i < NumLanes; ++i)
|
|
if (Lanes[i] >= 0) {
|
|
LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
|
|
LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
|
|
}
|
|
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, LaneVT, V2);
|
|
SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
|
|
|
|
// Cast it back to the type we actually want.
|
|
LaneShuffle = DAG.getNode(ISD::BITCAST, DL, VT, LaneShuffle);
|
|
|
|
// Now do a simple shuffle that isn't lane crossing.
|
|
SmallVector<int, 8> NewMask;
|
|
NewMask.resize(Size, -1);
|
|
for (int i = 0; i < Size; ++i)
|
|
if (Mask[i] >= 0)
|
|
NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
|
|
assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
|
|
"Must not introduce lane crosses at this point!");
|
|
|
|
return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
|
|
}
|
|
|
|
/// \brief Test whether the specified input (0 or 1) is in-place blended by the
|
|
/// given mask.
|
|
///
|
|
/// This returns true if the elements from a particular input are already in the
|
|
/// slot required by the given mask and require no permutation.
|
|
static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
|
|
assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
|
|
int Size = Mask.size();
|
|
for (int i = 0; i < Size; ++i)
|
|
if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
|
|
///
|
|
/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
|
|
/// isn't available.
|
|
static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
|
|
|
|
SmallVector<int, 4> WidenedMask;
|
|
if (canWidenShuffleElements(Mask, WidenedMask))
|
|
return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget,
|
|
DAG);
|
|
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4f64, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
|
|
// Non-half-crossing single input shuffles can be lowerid with an
|
|
// interleaved permutation.
|
|
unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
|
|
((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
|
|
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
|
|
DAG.getConstant(VPERMILPMask, MVT::i8));
|
|
}
|
|
|
|
// With AVX2 we have direct support for this permutation.
|
|
if (Subtarget->hasAVX2())
|
|
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
|
|
// Otherwise, fall back.
|
|
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
|
|
DAG);
|
|
}
|
|
|
|
// X86 has dedicated unpack instructions that can handle specific blend
|
|
// operations: UNPCKH and UNPCKL.
|
|
if (isShuffleEquivalent(Mask, 0, 4, 2, 6))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4f64, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 1, 5, 3, 7))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4f64, V1, V2);
|
|
|
|
// If we have a single input to the zero element, insert that into V1 if we
|
|
// can do so cheaply.
|
|
int NumV2Elements =
|
|
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
|
|
if (NumV2Elements == 1 && Mask[0] >= 4)
|
|
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
|
|
MVT::v4f64, DL, V1, V2, Mask, Subtarget, DAG))
|
|
return Insertion;
|
|
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Check if the blend happens to exactly fit that of SHUFPD.
|
|
if ((Mask[0] == -1 || Mask[0] < 2) &&
|
|
(Mask[1] == -1 || (Mask[1] >= 4 && Mask[1] < 6)) &&
|
|
(Mask[2] == -1 || (Mask[2] >= 2 && Mask[2] < 4)) &&
|
|
(Mask[3] == -1 || Mask[3] >= 6)) {
|
|
unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 5) << 1) |
|
|
((Mask[2] == 3) << 2) | ((Mask[3] == 7) << 3);
|
|
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V1, V2,
|
|
DAG.getConstant(SHUFPDMask, MVT::i8));
|
|
}
|
|
if ((Mask[0] == -1 || (Mask[0] >= 4 && Mask[0] < 6)) &&
|
|
(Mask[1] == -1 || Mask[1] < 2) &&
|
|
(Mask[2] == -1 || Mask[2] >= 6) &&
|
|
(Mask[3] == -1 || (Mask[3] >= 2 && Mask[3] < 4))) {
|
|
unsigned SHUFPDMask = (Mask[0] == 5) | ((Mask[1] == 1) << 1) |
|
|
((Mask[2] == 7) << 2) | ((Mask[3] == 3) << 3);
|
|
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f64, V2, V1,
|
|
DAG.getConstant(SHUFPDMask, MVT::i8));
|
|
}
|
|
|
|
// Try to simplify this by merging 128-bit lanes to enable a lane-based
|
|
// shuffle. However, if we have AVX2 and either inputs are already in place,
|
|
// we will be able to shuffle even across lanes the other input in a single
|
|
// instruction so skip this pattern.
|
|
if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
|
|
isShuffleMaskInputInPlace(1, Mask))))
|
|
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
|
|
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
|
|
return Result;
|
|
|
|
// If we have AVX2 then we always want to lower with a blend because an v4 we
|
|
// can fully permute the elements.
|
|
if (Subtarget->hasAVX2())
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
|
|
Mask, DAG);
|
|
|
|
// Otherwise fall back on generic lowering.
|
|
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
|
|
///
|
|
/// This routine is only called when we have AVX2 and thus a reasonable
|
|
/// instruction set for v4i64 shuffling..
|
|
static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
|
|
assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
|
|
|
|
SmallVector<int, 4> WidenedMask;
|
|
if (canWidenShuffleElements(Mask, WidenedMask))
|
|
return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget,
|
|
DAG);
|
|
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v4i64, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// When the shuffle is mirrored between the 128-bit lanes of the unit, we can
|
|
// use lower latency instructions that will operate on both 128-bit lanes.
|
|
SmallVector<int, 2> RepeatedMask;
|
|
if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
int PSHUFDMask[] = {-1, -1, -1, -1};
|
|
for (int i = 0; i < 2; ++i)
|
|
if (RepeatedMask[i] >= 0) {
|
|
PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
|
|
PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
|
|
}
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, MVT::v4i64,
|
|
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, V1),
|
|
getV4X86ShuffleImm8ForMask(PSHUFDMask, DAG)));
|
|
}
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 4, 2, 6))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v4i64, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 1, 5, 3, 7))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v4i64, V1, V2);
|
|
}
|
|
|
|
// AVX2 provides a direct instruction for permuting a single input across
|
|
// lanes.
|
|
if (isSingleInputShuffleMask(Mask))
|
|
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
|
|
// Try to simplify this by merging 128-bit lanes to enable a lane-based
|
|
// shuffle. However, if we have AVX2 and either inputs are already in place,
|
|
// we will be able to shuffle even across lanes the other input in a single
|
|
// instruction so skip this pattern.
|
|
if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
|
|
isShuffleMaskInputInPlace(1, Mask))))
|
|
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
|
|
DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
|
|
return Result;
|
|
|
|
// Otherwise fall back on generic blend lowering.
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
|
|
Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
|
|
///
|
|
/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
|
|
/// isn't available.
|
|
static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
|
|
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8f32, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// If the shuffle mask is repeated in each 128-bit lane, we have many more
|
|
// options to efficiently lower the shuffle.
|
|
SmallVector<int, 4> RepeatedMask;
|
|
if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
|
|
assert(RepeatedMask.size() == 4 &&
|
|
"Repeated masks must be half the mask width!");
|
|
if (isSingleInputShuffleMask(Mask))
|
|
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
|
|
getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8f32, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8f32, V1, V2);
|
|
|
|
// Otherwise, fall back to a SHUFPS sequence. Here it is important that we
|
|
// have already handled any direct blends. We also need to squash the
|
|
// repeated mask into a simulated v4f32 mask.
|
|
for (int i = 0; i < 4; ++i)
|
|
if (RepeatedMask[i] >= 8)
|
|
RepeatedMask[i] -= 4;
|
|
return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
|
|
}
|
|
|
|
// If we have a single input shuffle with different shuffle patterns in the
|
|
// two 128-bit lanes use the variable mask to VPERMILPS.
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
SDValue VPermMask[8];
|
|
for (int i = 0; i < 8; ++i)
|
|
VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
|
|
: DAG.getConstant(Mask[i], MVT::i32);
|
|
if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
|
|
return DAG.getNode(
|
|
X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
|
|
|
|
if (Subtarget->hasAVX2())
|
|
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v8f32,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL,
|
|
MVT::v8i32, VPermMask)),
|
|
V1);
|
|
|
|
// Otherwise, fall back.
|
|
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
|
|
DAG);
|
|
}
|
|
|
|
// Try to simplify this by merging 128-bit lanes to enable a lane-based
|
|
// shuffle.
|
|
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
|
|
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
|
|
return Result;
|
|
|
|
// If we have AVX2 then we always want to lower with a blend because at v8 we
|
|
// can fully permute the elements.
|
|
if (Subtarget->hasAVX2())
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
|
|
Mask, DAG);
|
|
|
|
// Otherwise fall back on generic lowering.
|
|
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
|
|
///
|
|
/// This routine is only called when we have AVX2 and thus a reasonable
|
|
/// instruction set for v8i32 shuffling..
|
|
static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
|
|
assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
|
|
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v8i32, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// If the shuffle mask is repeated in each 128-bit lane we can use more
|
|
// efficient instructions that mirror the shuffles across the two 128-bit
|
|
// lanes.
|
|
SmallVector<int, 4> RepeatedMask;
|
|
if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
|
|
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
|
|
if (isSingleInputShuffleMask(Mask))
|
|
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
|
|
getV4X86ShuffleImm8ForMask(RepeatedMask, DAG));
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask, 0, 8, 1, 9, 4, 12, 5, 13))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v8i32, V1, V2);
|
|
if (isShuffleEquivalent(Mask, 2, 10, 3, 11, 6, 14, 7, 15))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v8i32, V1, V2);
|
|
}
|
|
|
|
// If the shuffle patterns aren't repeated but it is a single input, directly
|
|
// generate a cross-lane VPERMD instruction.
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
SDValue VPermMask[8];
|
|
for (int i = 0; i < 8; ++i)
|
|
VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
|
|
: DAG.getConstant(Mask[i], MVT::i32);
|
|
return DAG.getNode(
|
|
X86ISD::VPERMV, DL, MVT::v8i32,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
|
|
}
|
|
|
|
// Try to simplify this by merging 128-bit lanes to enable a lane-based
|
|
// shuffle.
|
|
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
|
|
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
|
|
return Result;
|
|
|
|
// Otherwise fall back on generic blend lowering.
|
|
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
|
|
Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
|
|
///
|
|
/// This routine is only called when we have AVX2 and thus a reasonable
|
|
/// instruction set for v16i16 shuffling..
|
|
static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
|
|
assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v16i16, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
if (isShuffleEquivalent(Mask,
|
|
// First 128-bit lane:
|
|
0, 16, 1, 17, 2, 18, 3, 19,
|
|
// Second 128-bit lane:
|
|
8, 24, 9, 25, 10, 26, 11, 27))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i16, V1, V2);
|
|
if (isShuffleEquivalent(Mask,
|
|
// First 128-bit lane:
|
|
4, 20, 5, 21, 6, 22, 7, 23,
|
|
// Second 128-bit lane:
|
|
12, 28, 13, 29, 14, 30, 15, 31))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i16, V1, V2);
|
|
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
// There are no generalized cross-lane shuffle operations available on i16
|
|
// element types.
|
|
if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
|
|
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
|
|
Mask, DAG);
|
|
|
|
SDValue PSHUFBMask[32];
|
|
for (int i = 0; i < 16; ++i) {
|
|
if (Mask[i] == -1) {
|
|
PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
|
|
continue;
|
|
}
|
|
|
|
int M = i < 8 ? Mask[i] : Mask[i] - 8;
|
|
assert(M >= 0 && M < 8 && "Invalid single-input mask!");
|
|
PSHUFBMask[2 * i] = DAG.getConstant(2 * M, MVT::i8);
|
|
PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, MVT::i8);
|
|
}
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, MVT::v16i16,
|
|
DAG.getNode(
|
|
X86ISD::PSHUFB, DL, MVT::v32i8,
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, V1),
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)));
|
|
}
|
|
|
|
// Try to simplify this by merging 128-bit lanes to enable a lane-based
|
|
// shuffle.
|
|
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
|
|
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
|
|
return Result;
|
|
|
|
// Otherwise fall back on generic lowering.
|
|
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
|
|
///
|
|
/// This routine is only called when we have AVX2 and thus a reasonable
|
|
/// instruction set for v32i8 shuffling..
|
|
static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
|
|
assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(MVT::v32i8, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
|
|
Subtarget, DAG))
|
|
return Blend;
|
|
|
|
// Use dedicated unpack instructions for masks that match their pattern.
|
|
// Note that these are repeated 128-bit lane unpacks, not unpacks across all
|
|
// 256-bit lanes.
|
|
if (isShuffleEquivalent(
|
|
Mask,
|
|
// First 128-bit lane:
|
|
0, 32, 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39,
|
|
// Second 128-bit lane:
|
|
16, 48, 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55))
|
|
return DAG.getNode(X86ISD::UNPCKL, DL, MVT::v32i8, V1, V2);
|
|
if (isShuffleEquivalent(
|
|
Mask,
|
|
// First 128-bit lane:
|
|
8, 40, 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47,
|
|
// Second 128-bit lane:
|
|
24, 56, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, 63))
|
|
return DAG.getNode(X86ISD::UNPCKH, DL, MVT::v32i8, V1, V2);
|
|
|
|
if (isSingleInputShuffleMask(Mask)) {
|
|
// There are no generalized cross-lane shuffle operations available on i8
|
|
// element types.
|
|
if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
|
|
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
|
|
Mask, DAG);
|
|
|
|
SDValue PSHUFBMask[32];
|
|
for (int i = 0; i < 32; ++i)
|
|
PSHUFBMask[i] =
|
|
Mask[i] < 0
|
|
? DAG.getUNDEF(MVT::i8)
|
|
: DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, MVT::i8);
|
|
|
|
return DAG.getNode(
|
|
X86ISD::PSHUFB, DL, MVT::v32i8, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
|
|
}
|
|
|
|
// Try to simplify this by merging 128-bit lanes to enable a lane-based
|
|
// shuffle.
|
|
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
|
|
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
|
|
return Result;
|
|
|
|
// Otherwise fall back on generic lowering.
|
|
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
|
|
///
|
|
/// This routine either breaks down the specific type of a 256-bit x86 vector
|
|
/// shuffle or splits it into two 128-bit shuffles and fuses the results back
|
|
/// together based on the available instructions.
|
|
static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
MVT VT, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
|
|
// There is a really nice hard cut-over between AVX1 and AVX2 that means we can
|
|
// check for those subtargets here and avoid much of the subtarget querying in
|
|
// the per-vector-type lowering routines. With AVX1 we have essentially *zero*
|
|
// ability to manipulate a 256-bit vector with integer types. Since we'll use
|
|
// floating point types there eventually, just immediately cast everything to
|
|
// a float and operate entirely in that domain.
|
|
if (VT.isInteger() && !Subtarget->hasAVX2()) {
|
|
int ElementBits = VT.getScalarSizeInBits();
|
|
if (ElementBits < 32)
|
|
// No floating point type available, decompose into 128-bit vectors.
|
|
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
|
|
|
|
MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
|
|
VT.getVectorNumElements());
|
|
V1 = DAG.getNode(ISD::BITCAST, DL, FpVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, DL, FpVT, V2);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
|
|
}
|
|
|
|
switch (VT.SimpleTy) {
|
|
case MVT::v4f64:
|
|
return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v4i64:
|
|
return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v8f32:
|
|
return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v8i32:
|
|
return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v16i16:
|
|
return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v32i8:
|
|
return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
|
|
default:
|
|
llvm_unreachable("Not a valid 256-bit x86 vector type!");
|
|
}
|
|
}
|
|
|
|
/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
|
|
static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
|
|
|
|
// FIXME: Implement direct support for this type!
|
|
return splitAndLowerVectorShuffle(DL, MVT::v8f64, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
|
|
static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
|
|
|
|
// FIXME: Implement direct support for this type!
|
|
return splitAndLowerVectorShuffle(DL, MVT::v16f32, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
|
|
static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
|
|
|
|
// FIXME: Implement direct support for this type!
|
|
return splitAndLowerVectorShuffle(DL, MVT::v8i64, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
|
|
static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
|
|
|
|
// FIXME: Implement direct support for this type!
|
|
return splitAndLowerVectorShuffle(DL, MVT::v16i32, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
|
|
static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
|
|
assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
|
|
|
|
// FIXME: Implement direct support for this type!
|
|
return splitAndLowerVectorShuffle(DL, MVT::v32i16, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
|
|
static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
|
|
assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
|
|
assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
|
|
|
|
// FIXME: Implement direct support for this type!
|
|
return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
|
|
///
|
|
/// This routine either breaks down the specific type of a 512-bit x86 vector
|
|
/// shuffle or splits it into two 256-bit shuffles and fuses the results back
|
|
/// together based on the available instructions.
|
|
static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
|
|
MVT VT, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
assert(Subtarget->hasAVX512() &&
|
|
"Cannot lower 512-bit vectors w/ basic ISA!");
|
|
|
|
// Check for being able to broadcast a single element.
|
|
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(VT.SimpleTy, DL, V1,
|
|
Mask, Subtarget, DAG))
|
|
return Broadcast;
|
|
|
|
// Dispatch to each element type for lowering. If we don't have supprot for
|
|
// specific element type shuffles at 512 bits, immediately split them and
|
|
// lower them. Each lowering routine of a given type is allowed to assume that
|
|
// the requisite ISA extensions for that element type are available.
|
|
switch (VT.SimpleTy) {
|
|
case MVT::v8f64:
|
|
return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v16f32:
|
|
return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v8i64:
|
|
return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v16i32:
|
|
return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
case MVT::v32i16:
|
|
if (Subtarget->hasBWI())
|
|
return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
break;
|
|
case MVT::v64i8:
|
|
if (Subtarget->hasBWI())
|
|
return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Not a valid 512-bit x86 vector type!");
|
|
}
|
|
|
|
// Otherwise fall back on splitting.
|
|
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
|
|
}
|
|
|
|
/// \brief Top-level lowering for x86 vector shuffles.
|
|
///
|
|
/// This handles decomposition, canonicalization, and lowering of all x86
|
|
/// vector shuffles. Most of the specific lowering strategies are encapsulated
|
|
/// above in helper routines. The canonicalization attempts to widen shuffles
|
|
/// to involve fewer lanes of wider elements, consolidate symmetric patterns
|
|
/// s.t. only one of the two inputs needs to be tested, etc.
|
|
static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
ArrayRef<int> Mask = SVOp->getMask();
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT VT = Op.getSimpleValueType();
|
|
int NumElements = VT.getVectorNumElements();
|
|
SDLoc dl(Op);
|
|
|
|
assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
|
|
|
|
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
|
|
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
|
|
if (V1IsUndef && V2IsUndef)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// When we create a shuffle node we put the UNDEF node to second operand,
|
|
// but in some cases the first operand may be transformed to UNDEF.
|
|
// In this case we should just commute the node.
|
|
if (V1IsUndef)
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
|
|
// Check for non-undef masks pointing at an undef vector and make the masks
|
|
// undef as well. This makes it easier to match the shuffle based solely on
|
|
// the mask.
|
|
if (V2IsUndef)
|
|
for (int M : Mask)
|
|
if (M >= NumElements) {
|
|
SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
|
|
for (int &M : NewMask)
|
|
if (M >= NumElements)
|
|
M = -1;
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
|
|
}
|
|
|
|
// Try to collapse shuffles into using a vector type with fewer elements but
|
|
// wider element types. We cap this to not form integers or floating point
|
|
// elements wider than 64 bits, but it might be interesting to form i128
|
|
// integers to handle flipping the low and high halves of AVX 256-bit vectors.
|
|
SmallVector<int, 16> WidenedMask;
|
|
if (VT.getScalarSizeInBits() < 64 &&
|
|
canWidenShuffleElements(Mask, WidenedMask)) {
|
|
MVT NewEltVT = VT.isFloatingPoint()
|
|
? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
|
|
: MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
|
|
MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
|
|
// Make sure that the new vector type is legal. For example, v2f64 isn't
|
|
// legal on SSE1.
|
|
if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
|
|
}
|
|
}
|
|
|
|
int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
|
|
for (int M : SVOp->getMask())
|
|
if (M < 0)
|
|
++NumUndefElements;
|
|
else if (M < NumElements)
|
|
++NumV1Elements;
|
|
else
|
|
++NumV2Elements;
|
|
|
|
// Commute the shuffle as needed such that more elements come from V1 than
|
|
// V2. This allows us to match the shuffle pattern strictly on how many
|
|
// elements come from V1 without handling the symmetric cases.
|
|
if (NumV2Elements > NumV1Elements)
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
|
|
// When the number of V1 and V2 elements are the same, try to minimize the
|
|
// number of uses of V2 in the low half of the vector. When that is tied,
|
|
// ensure that the sum of indices for V1 is equal to or lower than the sum
|
|
// indices for V2. When those are equal, try to ensure that the number of odd
|
|
// indices for V1 is lower than the number of odd indices for V2.
|
|
if (NumV1Elements == NumV2Elements) {
|
|
int LowV1Elements = 0, LowV2Elements = 0;
|
|
for (int M : SVOp->getMask().slice(0, NumElements / 2))
|
|
if (M >= NumElements)
|
|
++LowV2Elements;
|
|
else if (M >= 0)
|
|
++LowV1Elements;
|
|
if (LowV2Elements > LowV1Elements) {
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
} else if (LowV2Elements == LowV1Elements) {
|
|
int SumV1Indices = 0, SumV2Indices = 0;
|
|
for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
|
|
if (SVOp->getMask()[i] >= NumElements)
|
|
SumV2Indices += i;
|
|
else if (SVOp->getMask()[i] >= 0)
|
|
SumV1Indices += i;
|
|
if (SumV2Indices < SumV1Indices) {
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
} else if (SumV2Indices == SumV1Indices) {
|
|
int NumV1OddIndices = 0, NumV2OddIndices = 0;
|
|
for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
|
|
if (SVOp->getMask()[i] >= NumElements)
|
|
NumV2OddIndices += i % 2;
|
|
else if (SVOp->getMask()[i] >= 0)
|
|
NumV1OddIndices += i % 2;
|
|
if (NumV2OddIndices < NumV1OddIndices)
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For each vector width, delegate to a specialized lowering routine.
|
|
if (VT.getSizeInBits() == 128)
|
|
return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
|
|
|
|
if (VT.getSizeInBits() == 256)
|
|
return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
|
|
|
|
// Force AVX-512 vectors to be scalarized for now.
|
|
// FIXME: Implement AVX-512 support!
|
|
if (VT.getSizeInBits() == 512)
|
|
return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
|
|
|
|
llvm_unreachable("Unimplemented!");
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Legacy vector shuffle lowering
|
|
//
|
|
// This code is the legacy code handling vector shuffles until the above
|
|
// replaces its functionality and performance.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isBlendMask(ArrayRef<int> MaskVals, MVT VT, bool hasSSE41,
|
|
bool hasInt256, unsigned *MaskOut = nullptr) {
|
|
MVT EltVT = VT.getVectorElementType();
|
|
|
|
// There is no blend with immediate in AVX-512.
|
|
if (VT.is512BitVector())
|
|
return false;
|
|
|
|
if (!hasSSE41 || EltVT == MVT::i8)
|
|
return false;
|
|
if (!hasInt256 && VT == MVT::v16i16)
|
|
return false;
|
|
|
|
unsigned MaskValue = 0;
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
// There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
|
|
unsigned NumLanes = (NumElems - 1) / 8 + 1;
|
|
unsigned NumElemsInLane = NumElems / NumLanes;
|
|
|
|
// Blend for v16i16 should be symetric for the both lanes.
|
|
for (unsigned i = 0; i < NumElemsInLane; ++i) {
|
|
|
|
int SndLaneEltIdx = (NumLanes == 2) ? MaskVals[i + NumElemsInLane] : -1;
|
|
int EltIdx = MaskVals[i];
|
|
|
|
if ((EltIdx < 0 || EltIdx == (int)i) &&
|
|
(SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
|
|
continue;
|
|
|
|
if (((unsigned)EltIdx == (i + NumElems)) &&
|
|
(SndLaneEltIdx < 0 ||
|
|
(unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
|
|
MaskValue |= (1 << i);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (MaskOut)
|
|
*MaskOut = MaskValue;
|
|
return true;
|
|
}
|
|
|
|
// Try to lower a shuffle node into a simple blend instruction.
|
|
// This function assumes isBlendMask returns true for this
|
|
// SuffleVectorSDNode
|
|
static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
|
|
unsigned MaskValue,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
MVT EltVT = VT.getVectorElementType();
|
|
assert(isBlendMask(SVOp->getMask(), VT, Subtarget->hasSSE41(),
|
|
Subtarget->hasInt256() && "Trying to lower a "
|
|
"VECTOR_SHUFFLE to a Blend but "
|
|
"with the wrong mask"));
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
SDLoc dl(SVOp);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// Convert i32 vectors to floating point if it is not AVX2.
|
|
// AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
|
|
MVT BlendVT = VT;
|
|
if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
|
|
BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
|
|
NumElems);
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
|
|
}
|
|
|
|
SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
|
|
DAG.getConstant(MaskValue, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
|
|
}
|
|
|
|
/// In vector type \p VT, return true if the element at index \p InputIdx
|
|
/// falls on a different 128-bit lane than \p OutputIdx.
|
|
static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx,
|
|
unsigned OutputIdx) {
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128;
|
|
}
|
|
|
|
/// Generate a PSHUFB if possible. Selects elements from \p V1 according to
|
|
/// \p MaskVals. MaskVals[OutputIdx] = InputIdx specifies that we want to
|
|
/// shuffle the element at InputIdx in V1 to OutputIdx in the result. If \p
|
|
/// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a
|
|
/// zero.
|
|
static SDValue getPSHUFB(ArrayRef<int> MaskVals, SDValue V1, SDLoc &dl,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = V1.getSimpleValueType();
|
|
assert(VT.is128BitVector() || VT.is256BitVector());
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
SmallVector<SDValue, 32> PshufbMask;
|
|
for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) {
|
|
int InputIdx = MaskVals[OutputIdx];
|
|
unsigned InputByteIdx;
|
|
|
|
if (InputIdx < 0 || NumElts <= (unsigned)InputIdx)
|
|
InputByteIdx = 0x80;
|
|
else {
|
|
// Cross lane is not allowed.
|
|
if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx))
|
|
return SDValue();
|
|
InputByteIdx = InputIdx * EltSizeInBytes;
|
|
// Index is an byte offset within the 128-bit lane.
|
|
InputByteIdx &= 0xf;
|
|
}
|
|
|
|
for (unsigned j = 0; j < EltSizeInBytes; ++j) {
|
|
PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8));
|
|
if (InputByteIdx != 0x80)
|
|
++InputByteIdx;
|
|
}
|
|
}
|
|
|
|
MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size());
|
|
if (ShufVT != VT)
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1);
|
|
return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, PshufbMask));
|
|
}
|
|
|
|
// v8i16 shuffles - Prefer shuffles in the following order:
|
|
// 1. [all] pshuflw, pshufhw, optional move
|
|
// 2. [ssse3] 1 x pshufb
|
|
// 3. [ssse3] 2 x pshufb + 1 x por
|
|
// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
|
|
static SDValue
|
|
LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
SDLoc dl(SVOp);
|
|
SmallVector<int, 8> MaskVals;
|
|
|
|
// Determine if more than 1 of the words in each of the low and high quadwords
|
|
// of the result come from the same quadword of one of the two inputs. Undef
|
|
// mask values count as coming from any quadword, for better codegen.
|
|
//
|
|
// Lo/HiQuad[i] = j indicates how many words from the ith quad of the input
|
|
// feeds this quad. For i, 0 and 1 refer to V1, 2 and 3 refer to V2.
|
|
unsigned LoQuad[] = { 0, 0, 0, 0 };
|
|
unsigned HiQuad[] = { 0, 0, 0, 0 };
|
|
// Indices of quads used.
|
|
std::bitset<4> InputQuads;
|
|
for (unsigned i = 0; i < 8; ++i) {
|
|
unsigned *Quad = i < 4 ? LoQuad : HiQuad;
|
|
int EltIdx = SVOp->getMaskElt(i);
|
|
MaskVals.push_back(EltIdx);
|
|
if (EltIdx < 0) {
|
|
++Quad[0];
|
|
++Quad[1];
|
|
++Quad[2];
|
|
++Quad[3];
|
|
continue;
|
|
}
|
|
++Quad[EltIdx / 4];
|
|
InputQuads.set(EltIdx / 4);
|
|
}
|
|
|
|
int BestLoQuad = -1;
|
|
unsigned MaxQuad = 1;
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
if (LoQuad[i] > MaxQuad) {
|
|
BestLoQuad = i;
|
|
MaxQuad = LoQuad[i];
|
|
}
|
|
}
|
|
|
|
int BestHiQuad = -1;
|
|
MaxQuad = 1;
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
if (HiQuad[i] > MaxQuad) {
|
|
BestHiQuad = i;
|
|
MaxQuad = HiQuad[i];
|
|
}
|
|
}
|
|
|
|
// For SSSE3, If all 8 words of the result come from only 1 quadword of each
|
|
// of the two input vectors, shuffle them into one input vector so only a
|
|
// single pshufb instruction is necessary. If there are more than 2 input
|
|
// quads, disable the next transformation since it does not help SSSE3.
|
|
bool V1Used = InputQuads[0] || InputQuads[1];
|
|
bool V2Used = InputQuads[2] || InputQuads[3];
|
|
if (Subtarget->hasSSSE3()) {
|
|
if (InputQuads.count() == 2 && V1Used && V2Used) {
|
|
BestLoQuad = InputQuads[0] ? 0 : 1;
|
|
BestHiQuad = InputQuads[2] ? 2 : 3;
|
|
}
|
|
if (InputQuads.count() > 2) {
|
|
BestLoQuad = -1;
|
|
BestHiQuad = -1;
|
|
}
|
|
}
|
|
|
|
// If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
|
|
// the shuffle mask. If a quad is scored as -1, that means that it contains
|
|
// words from all 4 input quadwords.
|
|
SDValue NewV;
|
|
if (BestLoQuad >= 0 || BestHiQuad >= 0) {
|
|
int MaskV[] = {
|
|
BestLoQuad < 0 ? 0 : BestLoQuad,
|
|
BestHiQuad < 0 ? 1 : BestHiQuad
|
|
};
|
|
NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
|
|
NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
|
|
|
|
// Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
|
|
// source words for the shuffle, to aid later transformations.
|
|
bool AllWordsInNewV = true;
|
|
bool InOrder[2] = { true, true };
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx != (int)i)
|
|
InOrder[i/4] = false;
|
|
if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
|
|
continue;
|
|
AllWordsInNewV = false;
|
|
break;
|
|
}
|
|
|
|
bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
|
|
if (AllWordsInNewV) {
|
|
for (int i = 0; i != 8; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx < 0)
|
|
continue;
|
|
idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
|
|
if ((idx != i) && idx < 4)
|
|
pshufhw = false;
|
|
if ((idx != i) && idx > 3)
|
|
pshuflw = false;
|
|
}
|
|
V1 = NewV;
|
|
V2Used = false;
|
|
BestLoQuad = 0;
|
|
BestHiQuad = 1;
|
|
}
|
|
|
|
// If we've eliminated the use of V2, and the new mask is a pshuflw or
|
|
// pshufhw, that's as cheap as it gets. Return the new shuffle.
|
|
if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
|
|
unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
|
|
unsigned TargetMask = 0;
|
|
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
|
|
DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
|
|
TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
|
|
getShufflePSHUFLWImmediate(SVOp);
|
|
V1 = NewV.getOperand(0);
|
|
return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
|
|
}
|
|
}
|
|
|
|
// Promote splats to a larger type which usually leads to more efficient code.
|
|
// FIXME: Is this true if pshufb is available?
|
|
if (SVOp->isSplat())
|
|
return PromoteSplat(SVOp, DAG);
|
|
|
|
// If we have SSSE3, and all words of the result are from 1 input vector,
|
|
// case 2 is generated, otherwise case 3 is generated. If no SSSE3
|
|
// is present, fall back to case 4.
|
|
if (Subtarget->hasSSSE3()) {
|
|
SmallVector<SDValue,16> pshufbMask;
|
|
|
|
// If we have elements from both input vectors, set the high bit of the
|
|
// shuffle mask element to zero out elements that come from V2 in the V1
|
|
// mask, and elements that come from V1 in the V2 mask, so that the two
|
|
// results can be OR'd together.
|
|
bool TwoInputs = V1Used && V2Used;
|
|
V1 = getPSHUFB(MaskVals, V1, dl, DAG);
|
|
if (!TwoInputs)
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
|
|
|
|
// Calculate the shuffle mask for the second input, shuffle it, and
|
|
// OR it with the first shuffled input.
|
|
CommuteVectorShuffleMask(MaskVals, 8);
|
|
V2 = getPSHUFB(MaskVals, V2, dl, DAG);
|
|
V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
|
|
}
|
|
|
|
// If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
|
|
// and update MaskVals with new element order.
|
|
std::bitset<8> InOrder;
|
|
if (BestLoQuad >= 0) {
|
|
int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
|
|
for (int i = 0; i != 4; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx < 0) {
|
|
InOrder.set(i);
|
|
} else if ((idx / 4) == BestLoQuad) {
|
|
MaskV[i] = idx & 3;
|
|
InOrder.set(i);
|
|
}
|
|
}
|
|
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
|
|
&MaskV[0]);
|
|
|
|
if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
|
|
NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
|
|
NewV.getOperand(0),
|
|
getShufflePSHUFLWImmediate(SVOp), DAG);
|
|
}
|
|
}
|
|
|
|
// If BestHi >= 0, generate a pshufhw to put the high elements in order,
|
|
// and update MaskVals with the new element order.
|
|
if (BestHiQuad >= 0) {
|
|
int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
|
|
for (unsigned i = 4; i != 8; ++i) {
|
|
int idx = MaskVals[i];
|
|
if (idx < 0) {
|
|
InOrder.set(i);
|
|
} else if ((idx / 4) == BestHiQuad) {
|
|
MaskV[i] = (idx & 3) + 4;
|
|
InOrder.set(i);
|
|
}
|
|
}
|
|
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
|
|
&MaskV[0]);
|
|
|
|
if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
|
|
NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
|
|
NewV.getOperand(0),
|
|
getShufflePSHUFHWImmediate(SVOp), DAG);
|
|
}
|
|
}
|
|
|
|
// In case BestHi & BestLo were both -1, which means each quadword has a word
|
|
// from each of the four input quadwords, calculate the InOrder bitvector now
|
|
// before falling through to the insert/extract cleanup.
|
|
if (BestLoQuad == -1 && BestHiQuad == -1) {
|
|
NewV = V1;
|
|
for (int i = 0; i != 8; ++i)
|
|
if (MaskVals[i] < 0 || MaskVals[i] == i)
|
|
InOrder.set(i);
|
|
}
|
|
|
|
// The other elements are put in the right place using pextrw and pinsrw.
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
if (InOrder[i])
|
|
continue;
|
|
int EltIdx = MaskVals[i];
|
|
if (EltIdx < 0)
|
|
continue;
|
|
SDValue ExtOp = (EltIdx < 8) ?
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
|
|
DAG.getIntPtrConstant(EltIdx)) :
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
|
|
DAG.getIntPtrConstant(EltIdx - 8));
|
|
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
|
|
DAG.getIntPtrConstant(i));
|
|
}
|
|
return NewV;
|
|
}
|
|
|
|
/// \brief v16i16 shuffles
|
|
///
|
|
/// FIXME: We only support generation of a single pshufb currently. We can
|
|
/// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as
|
|
/// well (e.g 2 x pshufb + 1 x por).
|
|
static SDValue
|
|
LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
SDLoc dl(SVOp);
|
|
|
|
if (V2.getOpcode() != ISD::UNDEF)
|
|
return SDValue();
|
|
|
|
SmallVector<int, 16> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
|
|
return getPSHUFB(MaskVals, V1, dl, DAG);
|
|
}
|
|
|
|
// v16i8 shuffles - Prefer shuffles in the following order:
|
|
// 1. [ssse3] 1 x pshufb
|
|
// 2. [ssse3] 2 x pshufb + 1 x por
|
|
// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
|
|
static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
|
|
const X86Subtarget* Subtarget,
|
|
SelectionDAG &DAG) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
SDLoc dl(SVOp);
|
|
ArrayRef<int> MaskVals = SVOp->getMask();
|
|
|
|
// Promote splats to a larger type which usually leads to more efficient code.
|
|
// FIXME: Is this true if pshufb is available?
|
|
if (SVOp->isSplat())
|
|
return PromoteSplat(SVOp, DAG);
|
|
|
|
// If we have SSSE3, case 1 is generated when all result bytes come from
|
|
// one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
|
|
// present, fall back to case 3.
|
|
|
|
// If SSSE3, use 1 pshufb instruction per vector with elements in the result.
|
|
if (Subtarget->hasSSSE3()) {
|
|
SmallVector<SDValue,16> pshufbMask;
|
|
|
|
// If all result elements are from one input vector, then only translate
|
|
// undef mask values to 0x80 (zero out result) in the pshufb mask.
|
|
//
|
|
// Otherwise, we have elements from both input vectors, and must zero out
|
|
// elements that come from V2 in the first mask, and V1 in the second mask
|
|
// so that we can OR them together.
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
int EltIdx = MaskVals[i];
|
|
if (EltIdx < 0 || EltIdx >= 16)
|
|
EltIdx = 0x80;
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
|
|
}
|
|
V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
MVT::v16i8, pshufbMask));
|
|
|
|
// As PSHUFB will zero elements with negative indices, it's safe to ignore
|
|
// the 2nd operand if it's undefined or zero.
|
|
if (V2.getOpcode() == ISD::UNDEF ||
|
|
ISD::isBuildVectorAllZeros(V2.getNode()))
|
|
return V1;
|
|
|
|
// Calculate the shuffle mask for the second input, shuffle it, and
|
|
// OR it with the first shuffled input.
|
|
pshufbMask.clear();
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
int EltIdx = MaskVals[i];
|
|
EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
|
|
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
|
|
}
|
|
V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
MVT::v16i8, pshufbMask));
|
|
return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
|
|
}
|
|
|
|
// No SSSE3 - Calculate in place words and then fix all out of place words
|
|
// With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
|
|
// the 16 different words that comprise the two doublequadword input vectors.
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
|
|
SDValue NewV = V1;
|
|
for (int i = 0; i != 8; ++i) {
|
|
int Elt0 = MaskVals[i*2];
|
|
int Elt1 = MaskVals[i*2+1];
|
|
|
|
// This word of the result is all undef, skip it.
|
|
if (Elt0 < 0 && Elt1 < 0)
|
|
continue;
|
|
|
|
// This word of the result is already in the correct place, skip it.
|
|
if ((Elt0 == i*2) && (Elt1 == i*2+1))
|
|
continue;
|
|
|
|
SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
|
|
SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
|
|
SDValue InsElt;
|
|
|
|
// If Elt0 and Elt1 are defined, are consecutive, and can be load
|
|
// using a single extract together, load it and store it.
|
|
if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
|
|
InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
|
|
DAG.getIntPtrConstant(Elt1 / 2));
|
|
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
|
|
DAG.getIntPtrConstant(i));
|
|
continue;
|
|
}
|
|
|
|
// If Elt1 is defined, extract it from the appropriate source. If the
|
|
// source byte is not also odd, shift the extracted word left 8 bits
|
|
// otherwise clear the bottom 8 bits if we need to do an or.
|
|
if (Elt1 >= 0) {
|
|
InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
|
|
DAG.getIntPtrConstant(Elt1 / 2));
|
|
if ((Elt1 & 1) == 0)
|
|
InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
|
|
DAG.getConstant(8,
|
|
TLI.getShiftAmountTy(InsElt.getValueType())));
|
|
else if (Elt0 >= 0)
|
|
InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
|
|
DAG.getConstant(0xFF00, MVT::i16));
|
|
}
|
|
// If Elt0 is defined, extract it from the appropriate source. If the
|
|
// source byte is not also even, shift the extracted word right 8 bits. If
|
|
// Elt1 was also defined, OR the extracted values together before
|
|
// inserting them in the result.
|
|
if (Elt0 >= 0) {
|
|
SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
|
|
Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
|
|
if ((Elt0 & 1) != 0)
|
|
InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
|
|
DAG.getConstant(8,
|
|
TLI.getShiftAmountTy(InsElt0.getValueType())));
|
|
else if (Elt1 >= 0)
|
|
InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
|
|
DAG.getConstant(0x00FF, MVT::i16));
|
|
InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
|
|
: InsElt0;
|
|
}
|
|
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
|
|
DAG.getIntPtrConstant(i));
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
|
|
}
|
|
|
|
// v32i8 shuffles - Translate to VPSHUFB if possible.
|
|
static
|
|
SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
SDLoc dl(SVOp);
|
|
SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
|
|
|
|
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
|
|
bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
|
|
bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
|
|
|
|
// VPSHUFB may be generated if
|
|
// (1) one of input vector is undefined or zeroinitializer.
|
|
// The mask value 0x80 puts 0 in the corresponding slot of the vector.
|
|
// And (2) the mask indexes don't cross the 128-bit lane.
|
|
if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
|
|
(!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
|
|
return SDValue();
|
|
|
|
if (V1IsAllZero && !V2IsAllZero) {
|
|
CommuteVectorShuffleMask(MaskVals, 32);
|
|
V1 = V2;
|
|
}
|
|
return getPSHUFB(MaskVals, V1, dl, DAG);
|
|
}
|
|
|
|
/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
|
|
/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
|
|
/// done when every pair / quad of shuffle mask elements point to elements in
|
|
/// the right sequence. e.g.
|
|
/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
|
|
static
|
|
SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
SDLoc dl(SVOp);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
MVT NewVT;
|
|
unsigned Scale;
|
|
switch (VT.SimpleTy) {
|
|
default: llvm_unreachable("Unexpected!");
|
|
case MVT::v2i64:
|
|
case MVT::v2f64:
|
|
return SDValue(SVOp, 0);
|
|
case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break;
|
|
case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break;
|
|
case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break;
|
|
case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break;
|
|
case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
|
|
case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break;
|
|
}
|
|
|
|
SmallVector<int, 8> MaskVec;
|
|
for (unsigned i = 0; i != NumElems; i += Scale) {
|
|
int StartIdx = -1;
|
|
for (unsigned j = 0; j != Scale; ++j) {
|
|
int EltIdx = SVOp->getMaskElt(i+j);
|
|
if (EltIdx < 0)
|
|
continue;
|
|
if (StartIdx < 0)
|
|
StartIdx = (EltIdx / Scale);
|
|
if (EltIdx != (int)(StartIdx*Scale + j))
|
|
return SDValue();
|
|
}
|
|
MaskVec.push_back(StartIdx);
|
|
}
|
|
|
|
SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
|
|
SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
|
|
return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
|
|
}
|
|
|
|
/// getVZextMovL - Return a zero-extending vector move low node.
|
|
///
|
|
static SDValue getVZextMovL(MVT VT, MVT OpVT,
|
|
SDValue SrcOp, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget, SDLoc dl) {
|
|
if (VT == MVT::v2f64 || VT == MVT::v4f32) {
|
|
LoadSDNode *LD = nullptr;
|
|
if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
|
|
LD = dyn_cast<LoadSDNode>(SrcOp);
|
|
if (!LD) {
|
|
// movssrr and movsdrr do not clear top bits. Try to use movd, movq
|
|
// instead.
|
|
MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
|
|
if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
|
|
SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
|
|
SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
|
|
// PR2108
|
|
OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
OpVT,
|
|
SrcOp.getOperand(0)
|
|
.getOperand(0))));
|
|
}
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
|
|
DAG.getNode(ISD::BITCAST, dl,
|
|
OpVT, SrcOp)));
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
|
|
/// which could not be matched by any known target speficic shuffle
|
|
static SDValue
|
|
LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
|
|
|
|
SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned NumLaneElems = NumElems / 2;
|
|
|
|
SDLoc dl(SVOp);
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
|
|
SDValue Output[2];
|
|
|
|
SmallVector<int, 16> Mask;
|
|
for (unsigned l = 0; l < 2; ++l) {
|
|
// Build a shuffle mask for the output, discovering on the fly which
|
|
// input vectors to use as shuffle operands (recorded in InputUsed).
|
|
// If building a suitable shuffle vector proves too hard, then bail
|
|
// out with UseBuildVector set.
|
|
bool UseBuildVector = false;
|
|
int InputUsed[2] = { -1, -1 }; // Not yet discovered.
|
|
unsigned LaneStart = l * NumLaneElems;
|
|
for (unsigned i = 0; i != NumLaneElems; ++i) {
|
|
// The mask element. This indexes into the input.
|
|
int Idx = SVOp->getMaskElt(i+LaneStart);
|
|
if (Idx < 0) {
|
|
// the mask element does not index into any input vector.
|
|
Mask.push_back(-1);
|
|
continue;
|
|
}
|
|
|
|
// The input vector this mask element indexes into.
|
|
int Input = Idx / NumLaneElems;
|
|
|
|
// Turn the index into an offset from the start of the input vector.
|
|
Idx -= Input * NumLaneElems;
|
|
|
|
// Find or create a shuffle vector operand to hold this input.
|
|
unsigned OpNo;
|
|
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
|
|
if (InputUsed[OpNo] == Input)
|
|
// This input vector is already an operand.
|
|
break;
|
|
if (InputUsed[OpNo] < 0) {
|
|
// Create a new operand for this input vector.
|
|
InputUsed[OpNo] = Input;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OpNo >= array_lengthof(InputUsed)) {
|
|
// More than two input vectors used! Give up on trying to create a
|
|
// shuffle vector. Insert all elements into a BUILD_VECTOR instead.
|
|
UseBuildVector = true;
|
|
break;
|
|
}
|
|
|
|
// Add the mask index for the new shuffle vector.
|
|
Mask.push_back(Idx + OpNo * NumLaneElems);
|
|
}
|
|
|
|
if (UseBuildVector) {
|
|
SmallVector<SDValue, 16> SVOps;
|
|
for (unsigned i = 0; i != NumLaneElems; ++i) {
|
|
// The mask element. This indexes into the input.
|
|
int Idx = SVOp->getMaskElt(i+LaneStart);
|
|
if (Idx < 0) {
|
|
SVOps.push_back(DAG.getUNDEF(EltVT));
|
|
continue;
|
|
}
|
|
|
|
// The input vector this mask element indexes into.
|
|
int Input = Idx / NumElems;
|
|
|
|
// Turn the index into an offset from the start of the input vector.
|
|
Idx -= Input * NumElems;
|
|
|
|
// Extract the vector element by hand.
|
|
SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
|
|
SVOp->getOperand(Input),
|
|
DAG.getIntPtrConstant(Idx)));
|
|
}
|
|
|
|
// Construct the output using a BUILD_VECTOR.
|
|
Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, SVOps);
|
|
} else if (InputUsed[0] < 0) {
|
|
// No input vectors were used! The result is undefined.
|
|
Output[l] = DAG.getUNDEF(NVT);
|
|
} else {
|
|
SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
|
|
(InputUsed[0] % 2) * NumLaneElems,
|
|
DAG, dl);
|
|
// If only one input was used, use an undefined vector for the other.
|
|
SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
|
|
Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
|
|
(InputUsed[1] % 2) * NumLaneElems, DAG, dl);
|
|
// At least one input vector was used. Create a new shuffle vector.
|
|
Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
|
|
}
|
|
|
|
Mask.clear();
|
|
}
|
|
|
|
// Concatenate the result back
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
|
|
/// 4 elements, and match them with several different shuffle types.
|
|
static SDValue
|
|
LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
SDLoc dl(SVOp);
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
|
|
assert(VT.is128BitVector() && "Unsupported vector size");
|
|
|
|
std::pair<int, int> Locs[4];
|
|
int Mask1[] = { -1, -1, -1, -1 };
|
|
SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
|
|
|
|
unsigned NumHi = 0;
|
|
unsigned NumLo = 0;
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
int Idx = PermMask[i];
|
|
if (Idx < 0) {
|
|
Locs[i] = std::make_pair(-1, -1);
|
|
} else {
|
|
assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
|
|
if (Idx < 4) {
|
|
Locs[i] = std::make_pair(0, NumLo);
|
|
Mask1[NumLo] = Idx;
|
|
NumLo++;
|
|
} else {
|
|
Locs[i] = std::make_pair(1, NumHi);
|
|
if (2+NumHi < 4)
|
|
Mask1[2+NumHi] = Idx;
|
|
NumHi++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NumLo <= 2 && NumHi <= 2) {
|
|
// If no more than two elements come from either vector. This can be
|
|
// implemented with two shuffles. First shuffle gather the elements.
|
|
// The second shuffle, which takes the first shuffle as both of its
|
|
// vector operands, put the elements into the right order.
|
|
V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
|
|
|
|
int Mask2[] = { -1, -1, -1, -1 };
|
|
|
|
for (unsigned i = 0; i != 4; ++i)
|
|
if (Locs[i].first != -1) {
|
|
unsigned Idx = (i < 2) ? 0 : 4;
|
|
Idx += Locs[i].first * 2 + Locs[i].second;
|
|
Mask2[i] = Idx;
|
|
}
|
|
|
|
return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
|
|
}
|
|
|
|
if (NumLo == 3 || NumHi == 3) {
|
|
// Otherwise, we must have three elements from one vector, call it X, and
|
|
// one element from the other, call it Y. First, use a shufps to build an
|
|
// intermediate vector with the one element from Y and the element from X
|
|
// that will be in the same half in the final destination (the indexes don't
|
|
// matter). Then, use a shufps to build the final vector, taking the half
|
|
// containing the element from Y from the intermediate, and the other half
|
|
// from X.
|
|
if (NumHi == 3) {
|
|
// Normalize it so the 3 elements come from V1.
|
|
CommuteVectorShuffleMask(PermMask, 4);
|
|
std::swap(V1, V2);
|
|
}
|
|
|
|
// Find the element from V2.
|
|
unsigned HiIndex;
|
|
for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
|
|
int Val = PermMask[HiIndex];
|
|
if (Val < 0)
|
|
continue;
|
|
if (Val >= 4)
|
|
break;
|
|
}
|
|
|
|
Mask1[0] = PermMask[HiIndex];
|
|
Mask1[1] = -1;
|
|
Mask1[2] = PermMask[HiIndex^1];
|
|
Mask1[3] = -1;
|
|
V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
|
|
|
|
if (HiIndex >= 2) {
|
|
Mask1[0] = PermMask[0];
|
|
Mask1[1] = PermMask[1];
|
|
Mask1[2] = HiIndex & 1 ? 6 : 4;
|
|
Mask1[3] = HiIndex & 1 ? 4 : 6;
|
|
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
|
|
}
|
|
|
|
Mask1[0] = HiIndex & 1 ? 2 : 0;
|
|
Mask1[1] = HiIndex & 1 ? 0 : 2;
|
|
Mask1[2] = PermMask[2];
|
|
Mask1[3] = PermMask[3];
|
|
if (Mask1[2] >= 0)
|
|
Mask1[2] += 4;
|
|
if (Mask1[3] >= 0)
|
|
Mask1[3] += 4;
|
|
return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
|
|
}
|
|
|
|
// Break it into (shuffle shuffle_hi, shuffle_lo).
|
|
int LoMask[] = { -1, -1, -1, -1 };
|
|
int HiMask[] = { -1, -1, -1, -1 };
|
|
|
|
int *MaskPtr = LoMask;
|
|
unsigned MaskIdx = 0;
|
|
unsigned LoIdx = 0;
|
|
unsigned HiIdx = 2;
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (i == 2) {
|
|
MaskPtr = HiMask;
|
|
MaskIdx = 1;
|
|
LoIdx = 0;
|
|
HiIdx = 2;
|
|
}
|
|
int Idx = PermMask[i];
|
|
if (Idx < 0) {
|
|
Locs[i] = std::make_pair(-1, -1);
|
|
} else if (Idx < 4) {
|
|
Locs[i] = std::make_pair(MaskIdx, LoIdx);
|
|
MaskPtr[LoIdx] = Idx;
|
|
LoIdx++;
|
|
} else {
|
|
Locs[i] = std::make_pair(MaskIdx, HiIdx);
|
|
MaskPtr[HiIdx] = Idx;
|
|
HiIdx++;
|
|
}
|
|
}
|
|
|
|
SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
|
|
SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
|
|
int MaskOps[] = { -1, -1, -1, -1 };
|
|
for (unsigned i = 0; i != 4; ++i)
|
|
if (Locs[i].first != -1)
|
|
MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
|
|
return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
|
|
}
|
|
|
|
static bool MayFoldVectorLoad(SDValue V) {
|
|
while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
|
|
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
V = V.getOperand(0);
|
|
if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
|
|
V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
|
|
// BUILD_VECTOR (load), undef
|
|
V = V.getOperand(0);
|
|
|
|
return MayFoldLoad(V);
|
|
}
|
|
|
|
static
|
|
SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
// Canonizalize to v2f64.
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
|
|
V1, DAG));
|
|
}
|
|
|
|
static
|
|
SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
|
|
bool HasSSE2) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
assert(VT != MVT::v2i64 && "unsupported shuffle type");
|
|
|
|
if (HasSSE2 && VT == MVT::v2f64)
|
|
return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
|
|
|
|
// v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
|
|
}
|
|
|
|
static
|
|
SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
|
|
"unsupported shuffle type");
|
|
|
|
if (V2.getOpcode() == ISD::UNDEF)
|
|
V2 = V1;
|
|
|
|
// v4i32 or v4f32
|
|
return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
static
|
|
SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
|
|
// operand of these instructions is only memory, so check if there's a
|
|
// potencial load folding here, otherwise use SHUFPS or MOVSD to match the
|
|
// same masks.
|
|
bool CanFoldLoad = false;
|
|
|
|
// Trivial case, when V2 comes from a load.
|
|
if (MayFoldVectorLoad(V2))
|
|
CanFoldLoad = true;
|
|
|
|
// When V1 is a load, it can be folded later into a store in isel, example:
|
|
// (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
|
|
// turns into:
|
|
// (MOVLPSmr addr:$src1, VR128:$src2)
|
|
// So, recognize this potential and also use MOVLPS or MOVLPD
|
|
else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
|
|
CanFoldLoad = true;
|
|
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
if (CanFoldLoad) {
|
|
if (HasSSE2 && NumElems == 2)
|
|
return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
|
|
|
|
if (NumElems == 4)
|
|
// If we don't care about the second element, proceed to use movss.
|
|
if (SVOp->getMaskElt(1) != -1)
|
|
return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
// movl and movlp will both match v2i64, but v2i64 is never matched by
|
|
// movl earlier because we make it strict to avoid messing with the movlp load
|
|
// folding logic (see the code above getMOVLP call). Match it here then,
|
|
// this is horrible, but will stay like this until we move all shuffle
|
|
// matching to x86 specific nodes. Note that for the 1st condition all
|
|
// types are matched with movsd.
|
|
if (HasSSE2) {
|
|
// FIXME: isMOVLMask should be checked and matched before getMOVLP,
|
|
// as to remove this logic from here, as much as possible
|
|
if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
|
|
return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
|
|
return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
assert(VT != MVT::v4i32 && "unsupported shuffle type");
|
|
|
|
// Invert the operand order and use SHUFPS to match it.
|
|
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
|
|
getShuffleSHUFImmediate(SVOp), DAG);
|
|
}
|
|
|
|
static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(Load);
|
|
MVT VT = Load->getSimpleValueType(0);
|
|
MVT EVT = VT.getVectorElementType();
|
|
SDValue Addr = Load->getOperand(1);
|
|
SDValue NewAddr = DAG.getNode(
|
|
ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
|
|
DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
|
|
|
|
SDValue NewLoad =
|
|
DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
|
|
DAG.getMachineFunction().getMachineMemOperand(
|
|
Load->getMemOperand(), 0, EVT.getStoreSize()));
|
|
return NewLoad;
|
|
}
|
|
|
|
// It is only safe to call this function if isINSERTPSMask is true for
|
|
// this shufflevector mask.
|
|
static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl,
|
|
SelectionDAG &DAG) {
|
|
// Generate an insertps instruction when inserting an f32 from memory onto a
|
|
// v4f32 or when copying a member from one v4f32 to another.
|
|
// We also use it for transferring i32 from one register to another,
|
|
// since it simply copies the same bits.
|
|
// If we're transferring an i32 from memory to a specific element in a
|
|
// register, we output a generic DAG that will match the PINSRD
|
|
// instruction.
|
|
MVT VT = SVOp->getSimpleValueType(0);
|
|
MVT EVT = VT.getVectorElementType();
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
auto Mask = SVOp->getMask();
|
|
assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
|
|
"unsupported vector type for insertps/pinsrd");
|
|
|
|
auto FromV1Predicate = [](const int &i) { return i < 4 && i > -1; };
|
|
auto FromV2Predicate = [](const int &i) { return i >= 4; };
|
|
int FromV1 = std::count_if(Mask.begin(), Mask.end(), FromV1Predicate);
|
|
|
|
SDValue From;
|
|
SDValue To;
|
|
unsigned DestIndex;
|
|
if (FromV1 == 1) {
|
|
From = V1;
|
|
To = V2;
|
|
DestIndex = std::find_if(Mask.begin(), Mask.end(), FromV1Predicate) -
|
|
Mask.begin();
|
|
|
|
// If we have 1 element from each vector, we have to check if we're
|
|
// changing V1's element's place. If so, we're done. Otherwise, we
|
|
// should assume we're changing V2's element's place and behave
|
|
// accordingly.
|
|
int FromV2 = std::count_if(Mask.begin(), Mask.end(), FromV2Predicate);
|
|
assert(DestIndex <= INT32_MAX && "truncated destination index");
|
|
if (FromV1 == FromV2 &&
|
|
static_cast<int>(DestIndex) == Mask[DestIndex] % 4) {
|
|
From = V2;
|
|
To = V1;
|
|
DestIndex =
|
|
std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
|
|
}
|
|
} else {
|
|
assert(std::count_if(Mask.begin(), Mask.end(), FromV2Predicate) == 1 &&
|
|
"More than one element from V1 and from V2, or no elements from one "
|
|
"of the vectors. This case should not have returned true from "
|
|
"isINSERTPSMask");
|
|
From = V2;
|
|
To = V1;
|
|
DestIndex =
|
|
std::find_if(Mask.begin(), Mask.end(), FromV2Predicate) - Mask.begin();
|
|
}
|
|
|
|
// Get an index into the source vector in the range [0,4) (the mask is
|
|
// in the range [0,8) because it can address V1 and V2)
|
|
unsigned SrcIndex = Mask[DestIndex] % 4;
|
|
if (MayFoldLoad(From)) {
|
|
// Trivial case, when From comes from a load and is only used by the
|
|
// shuffle. Make it use insertps from the vector that we need from that
|
|
// load.
|
|
SDValue NewLoad =
|
|
NarrowVectorLoadToElement(cast<LoadSDNode>(From), SrcIndex, DAG);
|
|
if (!NewLoad.getNode())
|
|
return SDValue();
|
|
|
|
if (EVT == MVT::f32) {
|
|
// Create this as a scalar to vector to match the instruction pattern.
|
|
SDValue LoadScalarToVector =
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, NewLoad);
|
|
SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4);
|
|
return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, LoadScalarToVector,
|
|
InsertpsMask);
|
|
} else { // EVT == MVT::i32
|
|
// If we're getting an i32 from memory, use an INSERT_VECTOR_ELT
|
|
// instruction, to match the PINSRD instruction, which loads an i32 to a
|
|
// certain vector element.
|
|
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, To, NewLoad,
|
|
DAG.getConstant(DestIndex, MVT::i32));
|
|
}
|
|
}
|
|
|
|
// Vector-element-to-vector
|
|
SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4 | SrcIndex << 6);
|
|
return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, From, InsertpsMask);
|
|
}
|
|
|
|
// Reduce a vector shuffle to zext.
|
|
static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
// PMOVZX is only available from SSE41.
|
|
if (!Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
// Only AVX2 support 256-bit vector integer extending.
|
|
if (!Subtarget->hasInt256() && VT.is256BitVector())
|
|
return SDValue();
|
|
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
SDLoc DL(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// Extending is an unary operation and the element type of the source vector
|
|
// won't be equal to or larger than i64.
|
|
if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
|
|
VT.getVectorElementType() == MVT::i64)
|
|
return SDValue();
|
|
|
|
// Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
|
|
unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
|
|
while ((1U << Shift) < NumElems) {
|
|
if (SVOp->getMaskElt(1U << Shift) == 1)
|
|
break;
|
|
Shift += 1;
|
|
// The maximal ratio is 8, i.e. from i8 to i64.
|
|
if (Shift > 3)
|
|
return SDValue();
|
|
}
|
|
|
|
// Check the shuffle mask.
|
|
unsigned Mask = (1U << Shift) - 1;
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int EltIdx = SVOp->getMaskElt(i);
|
|
if ((i & Mask) != 0 && EltIdx != -1)
|
|
return SDValue();
|
|
if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
|
|
MVT NeVT = MVT::getIntegerVT(NBits);
|
|
MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
|
|
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
|
|
}
|
|
|
|
static SDValue NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
|
|
if (isZeroShuffle(SVOp))
|
|
return getZeroVector(VT, Subtarget, DAG, dl);
|
|
|
|
// Handle splat operations
|
|
if (SVOp->isSplat()) {
|
|
// Use vbroadcast whenever the splat comes from a foldable load
|
|
SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
|
|
if (Broadcast.getNode())
|
|
return Broadcast;
|
|
}
|
|
|
|
// Check integer expanding shuffles.
|
|
SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
|
|
// If the shuffle can be profitably rewritten as a narrower shuffle, then
|
|
// do it!
|
|
if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 ||
|
|
VT == MVT::v32i8) {
|
|
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
|
|
if (NewOp.getNode())
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
|
|
} else if (VT.is128BitVector() && Subtarget->hasSSE2()) {
|
|
// FIXME: Figure out a cleaner way to do this.
|
|
if (ISD::isBuildVectorAllZeros(V2.getNode())) {
|
|
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
|
|
if (NewOp.getNode()) {
|
|
MVT NewVT = NewOp.getSimpleValueType();
|
|
if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
|
|
NewVT, true, false))
|
|
return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget,
|
|
dl);
|
|
}
|
|
} else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
|
|
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
|
|
if (NewOp.getNode()) {
|
|
MVT NewVT = NewOp.getSimpleValueType();
|
|
if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
|
|
return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget,
|
|
dl);
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
|
|
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
|
|
bool V1IsSplat = false;
|
|
bool V2IsSplat = false;
|
|
bool HasSSE2 = Subtarget->hasSSE2();
|
|
bool HasFp256 = Subtarget->hasFp256();
|
|
bool HasInt256 = Subtarget->hasInt256();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool OptForSize = MF.getFunction()->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
|
|
|
|
// Check if we should use the experimental vector shuffle lowering. If so,
|
|
// delegate completely to that code path.
|
|
if (ExperimentalVectorShuffleLowering)
|
|
return lowerVectorShuffle(Op, Subtarget, DAG);
|
|
|
|
assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
|
|
|
|
if (V1IsUndef && V2IsUndef)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// When we create a shuffle node we put the UNDEF node to second operand,
|
|
// but in some cases the first operand may be transformed to UNDEF.
|
|
// In this case we should just commute the node.
|
|
if (V1IsUndef)
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
|
|
// Vector shuffle lowering takes 3 steps:
|
|
//
|
|
// 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
|
|
// narrowing and commutation of operands should be handled.
|
|
// 2) Matching of shuffles with known shuffle masks to x86 target specific
|
|
// shuffle nodes.
|
|
// 3) Rewriting of unmatched masks into new generic shuffle operations,
|
|
// so the shuffle can be broken into other shuffles and the legalizer can
|
|
// try the lowering again.
|
|
//
|
|
// The general idea is that no vector_shuffle operation should be left to
|
|
// be matched during isel, all of them must be converted to a target specific
|
|
// node here.
|
|
|
|
// Normalize the input vectors. Here splats, zeroed vectors, profitable
|
|
// narrowing and commutation of operands should be handled. The actual code
|
|
// doesn't include all of those, work in progress...
|
|
SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
|
|
SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
|
|
|
|
// NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
|
|
// unpckh_undef). Only use pshufd if speed is more important than size.
|
|
if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
|
|
if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
|
|
|
|
if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
|
|
V2IsUndef && MayFoldVectorLoad(V1))
|
|
return getMOVDDup(Op, dl, V1, DAG);
|
|
|
|
if (isMOVHLPS_v_undef_Mask(M, VT))
|
|
return getMOVHighToLow(Op, dl, DAG);
|
|
|
|
// Use to match splats
|
|
if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
|
|
(VT == MVT::v2f64 || VT == MVT::v2i64))
|
|
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
|
|
|
|
if (isPSHUFDMask(M, VT)) {
|
|
// The actual implementation will match the mask in the if above and then
|
|
// during isel it can match several different instructions, not only pshufd
|
|
// as its name says, sad but true, emulate the behavior for now...
|
|
if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
|
|
return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
|
|
|
|
unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
|
|
|
|
if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
|
|
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
|
|
|
|
if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
|
|
return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1, TargetMask,
|
|
DAG);
|
|
|
|
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
|
|
TargetMask, DAG);
|
|
}
|
|
|
|
if (isPALIGNRMask(M, VT, Subtarget))
|
|
return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
|
|
getShufflePALIGNRImmediate(SVOp),
|
|
DAG);
|
|
|
|
if (isVALIGNMask(M, VT, Subtarget))
|
|
return getTargetShuffleNode(X86ISD::VALIGN, dl, VT, V1, V2,
|
|
getShuffleVALIGNImmediate(SVOp),
|
|
DAG);
|
|
|
|
// Check if this can be converted into a logical shift.
|
|
bool isLeft = false;
|
|
unsigned ShAmt = 0;
|
|
SDValue ShVal;
|
|
bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
|
|
if (isShift && ShVal.hasOneUse()) {
|
|
// If the shifted value has multiple uses, it may be cheaper to use
|
|
// v_set0 + movlhps or movhlps, etc.
|
|
MVT EltVT = VT.getVectorElementType();
|
|
ShAmt *= EltVT.getSizeInBits();
|
|
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
|
|
}
|
|
|
|
if (isMOVLMask(M, VT)) {
|
|
if (ISD::isBuildVectorAllZeros(V1.getNode()))
|
|
return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
|
|
if (!isMOVLPMask(M, VT)) {
|
|
if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
|
|
return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
|
|
|
|
if (VT == MVT::v4i32 || VT == MVT::v4f32)
|
|
return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
|
|
}
|
|
}
|
|
|
|
// FIXME: fold these into legal mask.
|
|
if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
|
|
return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
|
|
|
|
if (isMOVHLPSMask(M, VT))
|
|
return getMOVHighToLow(Op, dl, DAG);
|
|
|
|
if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
|
|
return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
|
|
|
|
if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
|
|
return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
|
|
|
|
if (isMOVLPMask(M, VT))
|
|
return getMOVLP(Op, dl, DAG, HasSSE2);
|
|
|
|
if (ShouldXformToMOVHLPS(M, VT) ||
|
|
ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
|
|
if (isShift) {
|
|
// No better options. Use a vshldq / vsrldq.
|
|
MVT EltVT = VT.getVectorElementType();
|
|
ShAmt *= EltVT.getSizeInBits();
|
|
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
|
|
}
|
|
|
|
bool Commuted = false;
|
|
// FIXME: This should also accept a bitcast of a splat? Be careful, not
|
|
// 1,1,1,1 -> v8i16 though.
|
|
BitVector UndefElements;
|
|
if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V1.getNode()))
|
|
if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
|
|
V1IsSplat = true;
|
|
if (auto *BVOp = dyn_cast<BuildVectorSDNode>(V2.getNode()))
|
|
if (BVOp->getConstantSplatNode(&UndefElements) && UndefElements.none())
|
|
V2IsSplat = true;
|
|
|
|
// Canonicalize the splat or undef, if present, to be on the RHS.
|
|
if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
|
|
CommuteVectorShuffleMask(M, NumElems);
|
|
std::swap(V1, V2);
|
|
std::swap(V1IsSplat, V2IsSplat);
|
|
Commuted = true;
|
|
}
|
|
|
|
if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
|
|
// Shuffling low element of v1 into undef, just return v1.
|
|
if (V2IsUndef)
|
|
return V1;
|
|
// If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
|
|
// the instruction selector will not match, so get a canonical MOVL with
|
|
// swapped operands to undo the commute.
|
|
return getMOVL(DAG, dl, VT, V2, V1);
|
|
}
|
|
|
|
if (isUNPCKLMask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
|
|
|
|
if (isUNPCKHMask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
|
|
|
|
if (V2IsSplat) {
|
|
// Normalize mask so all entries that point to V2 points to its first
|
|
// element then try to match unpck{h|l} again. If match, return a
|
|
// new vector_shuffle with the corrected mask.p
|
|
SmallVector<int, 8> NewMask(M.begin(), M.end());
|
|
NormalizeMask(NewMask, NumElems);
|
|
if (isUNPCKLMask(NewMask, VT, HasInt256, true))
|
|
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
|
|
if (isUNPCKHMask(NewMask, VT, HasInt256, true))
|
|
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
if (Commuted) {
|
|
// Commute is back and try unpck* again.
|
|
// FIXME: this seems wrong.
|
|
CommuteVectorShuffleMask(M, NumElems);
|
|
std::swap(V1, V2);
|
|
std::swap(V1IsSplat, V2IsSplat);
|
|
|
|
if (isUNPCKLMask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
|
|
|
|
if (isUNPCKHMask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
|
|
}
|
|
|
|
// Normalize the node to match x86 shuffle ops if needed
|
|
if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
|
|
return DAG.getCommutedVectorShuffle(*SVOp);
|
|
|
|
// The checks below are all present in isShuffleMaskLegal, but they are
|
|
// inlined here right now to enable us to directly emit target specific
|
|
// nodes, and remove one by one until they don't return Op anymore.
|
|
|
|
if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
|
|
SVOp->getSplatIndex() == 0 && V2IsUndef) {
|
|
if (VT == MVT::v2f64 || VT == MVT::v2i64)
|
|
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
|
|
}
|
|
|
|
if (isPSHUFHWMask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
|
|
getShufflePSHUFHWImmediate(SVOp),
|
|
DAG);
|
|
|
|
if (isPSHUFLWMask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
|
|
getShufflePSHUFLWImmediate(SVOp),
|
|
DAG);
|
|
|
|
unsigned MaskValue;
|
|
if (isBlendMask(M, VT, Subtarget->hasSSE41(), Subtarget->hasInt256(),
|
|
&MaskValue))
|
|
return LowerVECTOR_SHUFFLEtoBlend(SVOp, MaskValue, Subtarget, DAG);
|
|
|
|
if (isSHUFPMask(M, VT))
|
|
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
|
|
getShuffleSHUFImmediate(SVOp), DAG);
|
|
|
|
if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
|
|
if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
|
|
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Generate target specific nodes for 128 or 256-bit shuffles only
|
|
// supported in the AVX instruction set.
|
|
//
|
|
|
|
// Handle VMOVDDUPY permutations
|
|
if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
|
|
return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
|
|
|
|
// Handle VPERMILPS/D* permutations
|
|
if (isVPERMILPMask(M, VT)) {
|
|
if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
|
|
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
|
|
getShuffleSHUFImmediate(SVOp), DAG);
|
|
return getTargetShuffleNode(X86ISD::VPERMILPI, dl, VT, V1,
|
|
getShuffleSHUFImmediate(SVOp), DAG);
|
|
}
|
|
|
|
unsigned Idx;
|
|
if (VT.is512BitVector() && isINSERT64x4Mask(M, VT, &Idx))
|
|
return Insert256BitVector(V1, Extract256BitVector(V2, 0, DAG, dl),
|
|
Idx*(NumElems/2), DAG, dl);
|
|
|
|
// Handle VPERM2F128/VPERM2I128 permutations
|
|
if (isVPERM2X128Mask(M, VT, HasFp256))
|
|
return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
|
|
V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
|
|
|
|
if (Subtarget->hasSSE41() && isINSERTPSMask(M, VT))
|
|
return getINSERTPS(SVOp, dl, DAG);
|
|
|
|
unsigned Imm8;
|
|
if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
|
|
return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
|
|
|
|
if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
|
|
VT.is512BitVector()) {
|
|
MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
|
|
MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
|
|
SmallVector<SDValue, 16> permclMask;
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
|
|
}
|
|
|
|
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, permclMask);
|
|
if (V2IsUndef)
|
|
// Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
|
|
return DAG.getNode(X86ISD::VPERMV, dl, VT,
|
|
DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
|
|
return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1,
|
|
DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Since no target specific shuffle was selected for this generic one,
|
|
// lower it into other known shuffles. FIXME: this isn't true yet, but
|
|
// this is the plan.
|
|
//
|
|
|
|
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
|
|
if (VT == MVT::v8i16) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
if (VT == MVT::v16i16 && Subtarget->hasInt256()) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
if (VT == MVT::v16i8) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
if (VT == MVT::v32i8) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
// Handle all 128-bit wide vectors with 4 elements, and match them with
|
|
// several different shuffle types.
|
|
if (NumElems == 4 && VT.is128BitVector())
|
|
return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
|
|
|
|
// Handle general 256-bit shuffles
|
|
if (VT.is256BitVector())
|
|
return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// This function assumes its argument is a BUILD_VECTOR of constants or
|
|
// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
|
|
// true.
|
|
static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
|
|
unsigned &MaskValue) {
|
|
MaskValue = 0;
|
|
unsigned NumElems = BuildVector->getNumOperands();
|
|
// There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
|
|
unsigned NumLanes = (NumElems - 1) / 8 + 1;
|
|
unsigned NumElemsInLane = NumElems / NumLanes;
|
|
|
|
// Blend for v16i16 should be symetric for the both lanes.
|
|
for (unsigned i = 0; i < NumElemsInLane; ++i) {
|
|
SDValue EltCond = BuildVector->getOperand(i);
|
|
SDValue SndLaneEltCond =
|
|
(NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
|
|
|
|
int Lane1Cond = -1, Lane2Cond = -1;
|
|
if (isa<ConstantSDNode>(EltCond))
|
|
Lane1Cond = !isZero(EltCond);
|
|
if (isa<ConstantSDNode>(SndLaneEltCond))
|
|
Lane2Cond = !isZero(SndLaneEltCond);
|
|
|
|
if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
|
|
// Lane1Cond != 0, means we want the first argument.
|
|
// Lane1Cond == 0, means we want the second argument.
|
|
// The encoding of this argument is 0 for the first argument, 1
|
|
// for the second. Therefore, invert the condition.
|
|
MaskValue |= !Lane1Cond << i;
|
|
else if (Lane1Cond < 0)
|
|
MaskValue |= !Lane2Cond << i;
|
|
else
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Try to lower a VSELECT instruction to an immediate-controlled blend
|
|
/// instruction.
|
|
static SDValue lowerVSELECTtoBLENDI(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDValue RHS = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT EltVT = VT.getVectorElementType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// There is no blend with immediate in AVX-512.
|
|
if (VT.is512BitVector())
|
|
return SDValue();
|
|
|
|
if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
|
|
return SDValue();
|
|
if (!Subtarget->hasInt256() && VT == MVT::v16i16)
|
|
return SDValue();
|
|
|
|
if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
|
|
return SDValue();
|
|
|
|
// Check the mask for BLEND and build the value.
|
|
unsigned MaskValue = 0;
|
|
if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
|
|
return SDValue();
|
|
|
|
// Convert i32 vectors to floating point if it is not AVX2.
|
|
// AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
|
|
MVT BlendVT = VT;
|
|
if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
|
|
BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
|
|
NumElems);
|
|
LHS = DAG.getNode(ISD::BITCAST, dl, VT, LHS);
|
|
RHS = DAG.getNode(ISD::BITCAST, dl, VT, RHS);
|
|
}
|
|
|
|
SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, LHS, RHS,
|
|
DAG.getConstant(MaskValue, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
// A vselect where all conditions and data are constants can be optimized into
|
|
// a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
|
|
if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
|
|
return SDValue();
|
|
|
|
SDValue BlendOp = lowerVSELECTtoBLENDI(Op, Subtarget, DAG);
|
|
if (BlendOp.getNode())
|
|
return BlendOp;
|
|
|
|
// Some types for vselect were previously set to Expand, not Legal or
|
|
// Custom. Return an empty SDValue so we fall-through to Expand, after
|
|
// the Custom lowering phase.
|
|
MVT VT = Op.getSimpleValueType();
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
break;
|
|
case MVT::v8i16:
|
|
case MVT::v16i16:
|
|
if (Subtarget->hasBWI() && Subtarget->hasVLX())
|
|
break;
|
|
return SDValue();
|
|
}
|
|
|
|
// We couldn't create a "Blend with immediate" node.
|
|
// This node should still be legal, but we'll have to emit a blendv*
|
|
// instruction.
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
|
|
return SDValue();
|
|
|
|
if (VT.getSizeInBits() == 8) {
|
|
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
|
|
DAG.getValueType(VT));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
|
|
}
|
|
|
|
if (VT.getSizeInBits() == 16) {
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
|
|
if (Idx == 0)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::v4i32,
|
|
Op.getOperand(0)),
|
|
Op.getOperand(1)));
|
|
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
|
|
DAG.getValueType(VT));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
|
|
}
|
|
|
|
if (VT == MVT::f32) {
|
|
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
|
|
// the result back to FR32 register. It's only worth matching if the
|
|
// result has a single use which is a store or a bitcast to i32. And in
|
|
// the case of a store, it's not worth it if the index is a constant 0,
|
|
// because a MOVSSmr can be used instead, which is smaller and faster.
|
|
if (!Op.hasOneUse())
|
|
return SDValue();
|
|
SDNode *User = *Op.getNode()->use_begin();
|
|
if ((User->getOpcode() != ISD::STORE ||
|
|
(isa<ConstantSDNode>(Op.getOperand(1)) &&
|
|
cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
|
|
(User->getOpcode() != ISD::BITCAST ||
|
|
User->getValueType(0) != MVT::i32))
|
|
return SDValue();
|
|
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
|
|
Op.getOperand(0)),
|
|
Op.getOperand(1));
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
|
|
}
|
|
|
|
if (VT == MVT::i32 || VT == MVT::i64) {
|
|
// ExtractPS/pextrq works with constant index.
|
|
if (isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return Op;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// Extract one bit from mask vector, like v16i1 or v8i1.
|
|
/// AVX-512 feature.
|
|
SDValue
|
|
X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDLoc dl(Vec);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
SDValue Idx = Op.getOperand(1);
|
|
MVT EltVT = Op.getSimpleValueType();
|
|
|
|
assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
|
|
|
|
// variable index can't be handled in mask registers,
|
|
// extend vector to VR512
|
|
if (!isa<ConstantSDNode>(Idx)) {
|
|
MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
|
|
SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
|
|
ExtVT.getVectorElementType(), Ext, Idx);
|
|
return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
|
|
}
|
|
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
const TargetRegisterClass* rc = getRegClassFor(VecVT);
|
|
unsigned MaxSift = rc->getSize()*8 - 1;
|
|
Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
|
|
DAG.getConstant(MaxSift - IdxVal, MVT::i8));
|
|
Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
|
|
DAG.getConstant(MaxSift, MVT::i8));
|
|
return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue Vec = Op.getOperand(0);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
SDValue Idx = Op.getOperand(1);
|
|
|
|
if (Op.getSimpleValueType() == MVT::i1)
|
|
return ExtractBitFromMaskVector(Op, DAG);
|
|
|
|
if (!isa<ConstantSDNode>(Idx)) {
|
|
if (VecVT.is512BitVector() ||
|
|
(VecVT.is256BitVector() && Subtarget->hasInt256() &&
|
|
VecVT.getVectorElementType().getSizeInBits() == 32)) {
|
|
|
|
MVT MaskEltVT =
|
|
MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
|
|
MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
|
|
MaskEltVT.getSizeInBits());
|
|
|
|
Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
|
|
SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
|
|
getZeroVector(MaskVT, Subtarget, DAG, dl),
|
|
Idx, DAG.getConstant(0, getPointerTy()));
|
|
SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
|
|
Perm, DAG.getConstant(0, getPointerTy()));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// If this is a 256-bit vector result, first extract the 128-bit vector and
|
|
// then extract the element from the 128-bit vector.
|
|
if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
|
|
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
// Get the 128-bit vector.
|
|
Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
|
|
MVT EltVT = VecVT.getVectorElementType();
|
|
|
|
unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
|
|
|
|
//if (IdxVal >= NumElems/2)
|
|
// IdxVal -= NumElems/2;
|
|
IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
|
|
DAG.getConstant(IdxVal, MVT::i32));
|
|
}
|
|
|
|
assert(VecVT.is128BitVector() && "Unexpected vector length");
|
|
|
|
if (Subtarget->hasSSE41()) {
|
|
SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
|
|
if (Res.getNode())
|
|
return Res;
|
|
}
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
// TODO: handle v16i8.
|
|
if (VT.getSizeInBits() == 16) {
|
|
SDValue Vec = Op.getOperand(0);
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
if (Idx == 0)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl,
|
|
MVT::v4i32, Vec),
|
|
Op.getOperand(1)));
|
|
// Transform it so it match pextrw which produces a 32-bit result.
|
|
MVT EltVT = MVT::i32;
|
|
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
|
|
DAG.getValueType(VT));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
|
|
}
|
|
|
|
if (VT.getSizeInBits() == 32) {
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
if (Idx == 0)
|
|
return Op;
|
|
|
|
// SHUFPS the element to the lowest double word, then movss.
|
|
int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
|
|
MVT VVT = Op.getOperand(0).getSimpleValueType();
|
|
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
|
|
DAG.getUNDEF(VVT), Mask);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
if (VT.getSizeInBits() == 64) {
|
|
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
|
|
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
|
|
// to match extract_elt for f64.
|
|
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
if (Idx == 0)
|
|
return Op;
|
|
|
|
// UNPCKHPD the element to the lowest double word, then movsd.
|
|
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
|
|
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
|
|
int Mask[2] = { 1, -1 };
|
|
MVT VVT = Op.getOperand(0).getSimpleValueType();
|
|
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
|
|
DAG.getUNDEF(VVT), Mask);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Insert one bit to mask vector, like v16i1 or v8i1.
|
|
/// AVX-512 feature.
|
|
SDValue
|
|
X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Elt = Op.getOperand(1);
|
|
SDValue Idx = Op.getOperand(2);
|
|
MVT VecVT = Vec.getSimpleValueType();
|
|
|
|
if (!isa<ConstantSDNode>(Idx)) {
|
|
// Non constant index. Extend source and destination,
|
|
// insert element and then truncate the result.
|
|
MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
|
|
MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32);
|
|
SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
|
|
}
|
|
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
|
|
if (Vec.getOpcode() == ISD::UNDEF)
|
|
return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
|
|
DAG.getConstant(IdxVal, MVT::i8));
|
|
const TargetRegisterClass* rc = getRegClassFor(VecVT);
|
|
unsigned MaxSift = rc->getSize()*8 - 1;
|
|
EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
|
|
DAG.getConstant(MaxSift, MVT::i8));
|
|
EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
|
|
DAG.getConstant(MaxSift - IdxVal, MVT::i8));
|
|
return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT EltVT = VT.getVectorElementType();
|
|
|
|
if (EltVT == MVT::i1)
|
|
return InsertBitToMaskVector(Op, DAG);
|
|
|
|
SDLoc dl(Op);
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2 = Op.getOperand(2);
|
|
if (!isa<ConstantSDNode>(N2))
|
|
return SDValue();
|
|
auto *N2C = cast<ConstantSDNode>(N2);
|
|
unsigned IdxVal = N2C->getZExtValue();
|
|
|
|
// If the vector is wider than 128 bits, extract the 128-bit subvector, insert
|
|
// into that, and then insert the subvector back into the result.
|
|
if (VT.is256BitVector() || VT.is512BitVector()) {
|
|
// Get the desired 128-bit vector half.
|
|
SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
|
|
|
|
// Insert the element into the desired half.
|
|
unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
|
|
unsigned IdxIn128 = IdxVal - (IdxVal / NumEltsIn128) * NumEltsIn128;
|
|
|
|
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
|
|
DAG.getConstant(IdxIn128, MVT::i32));
|
|
|
|
// Insert the changed part back to the 256-bit vector
|
|
return Insert128BitVector(N0, V, IdxVal, DAG, dl);
|
|
}
|
|
assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
|
|
|
|
if (Subtarget->hasSSE41()) {
|
|
if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
|
|
unsigned Opc;
|
|
if (VT == MVT::v8i16) {
|
|
Opc = X86ISD::PINSRW;
|
|
} else {
|
|
assert(VT == MVT::v16i8);
|
|
Opc = X86ISD::PINSRB;
|
|
}
|
|
|
|
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
|
|
// argument.
|
|
if (N1.getValueType() != MVT::i32)
|
|
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
|
|
if (N2.getValueType() != MVT::i32)
|
|
N2 = DAG.getIntPtrConstant(IdxVal);
|
|
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
|
|
}
|
|
|
|
if (EltVT == MVT::f32) {
|
|
// Bits [7:6] of the constant are the source select. This will always be
|
|
// zero here. The DAG Combiner may combine an extract_elt index into
|
|
// these
|
|
// bits. For example (insert (extract, 3), 2) could be matched by
|
|
// putting
|
|
// the '3' into bits [7:6] of X86ISD::INSERTPS.
|
|
// Bits [5:4] of the constant are the destination select. This is the
|
|
// value of the incoming immediate.
|
|
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
|
|
// combine either bitwise AND or insert of float 0.0 to set these bits.
|
|
N2 = DAG.getIntPtrConstant(IdxVal << 4);
|
|
// Create this as a scalar to vector..
|
|
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
|
|
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
|
|
}
|
|
|
|
if (EltVT == MVT::i32 || EltVT == MVT::i64) {
|
|
// PINSR* works with constant index.
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
if (EltVT == MVT::i8)
|
|
return SDValue();
|
|
|
|
if (EltVT.getSizeInBits() == 16) {
|
|
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
|
|
// as its second argument.
|
|
if (N1.getValueType() != MVT::i32)
|
|
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
|
|
if (N2.getValueType() != MVT::i32)
|
|
N2 = DAG.getIntPtrConstant(IdxVal);
|
|
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
MVT OpVT = Op.getSimpleValueType();
|
|
|
|
// If this is a 256-bit vector result, first insert into a 128-bit
|
|
// vector and then insert into the 256-bit vector.
|
|
if (!OpVT.is128BitVector()) {
|
|
// Insert into a 128-bit vector.
|
|
unsigned SizeFactor = OpVT.getSizeInBits()/128;
|
|
MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
|
|
OpVT.getVectorNumElements() / SizeFactor);
|
|
|
|
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
|
|
|
|
// Insert the 128-bit vector.
|
|
return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
|
|
}
|
|
|
|
if (OpVT == MVT::v1i64 &&
|
|
Op.getOperand(0).getValueType() == MVT::i64)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
|
|
|
|
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
|
|
assert(OpVT.is128BitVector() && "Expected an SSE type!");
|
|
return DAG.getNode(ISD::BITCAST, dl, OpVT,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
|
|
}
|
|
|
|
// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
|
|
// a simple subregister reference or explicit instructions to grab
|
|
// upper bits of a vector.
|
|
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
SDValue In = Op.getOperand(0);
|
|
SDValue Idx = Op.getOperand(1);
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
MVT ResVT = Op.getSimpleValueType();
|
|
MVT InVT = In.getSimpleValueType();
|
|
|
|
if (Subtarget->hasFp256()) {
|
|
if (ResVT.is128BitVector() &&
|
|
(InVT.is256BitVector() || InVT.is512BitVector()) &&
|
|
isa<ConstantSDNode>(Idx)) {
|
|
return Extract128BitVector(In, IdxVal, DAG, dl);
|
|
}
|
|
if (ResVT.is256BitVector() && InVT.is512BitVector() &&
|
|
isa<ConstantSDNode>(Idx)) {
|
|
return Extract256BitVector(In, IdxVal, DAG, dl);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
|
|
// simple superregister reference or explicit instructions to insert
|
|
// the upper bits of a vector.
|
|
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
if (Subtarget->hasFp256()) {
|
|
SDLoc dl(Op.getNode());
|
|
SDValue Vec = Op.getNode()->getOperand(0);
|
|
SDValue SubVec = Op.getNode()->getOperand(1);
|
|
SDValue Idx = Op.getNode()->getOperand(2);
|
|
|
|
if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
|
|
Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
|
|
SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
|
|
isa<ConstantSDNode>(Idx)) {
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
|
|
}
|
|
|
|
if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
|
|
SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
|
|
isa<ConstantSDNode>(Idx)) {
|
|
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
|
|
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOV32ri.
|
|
SDValue
|
|
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
CodeModel::Model M = DAG.getTarget().getCodeModel();
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
else if (Subtarget->isPICStyleGOT())
|
|
OpFlag = X86II::MO_GOTOFF;
|
|
else if (Subtarget->isPICStyleStubPIC())
|
|
OpFlag = X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
|
|
CP->getAlignment(),
|
|
CP->getOffset(), OpFlag);
|
|
SDLoc DL(CP);
|
|
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (OpFlag) {
|
|
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
SDLoc(), getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
CodeModel::Model M = DAG.getTarget().getCodeModel();
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
else if (Subtarget->isPICStyleGOT())
|
|
OpFlag = X86II::MO_GOTOFF;
|
|
else if (Subtarget->isPICStyleStubPIC())
|
|
OpFlag = X86II::MO_PIC_BASE_OFFSET;
|
|
|
|
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
|
|
OpFlag);
|
|
SDLoc DL(JT);
|
|
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (OpFlag)
|
|
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
SDLoc(), getPointerTy()),
|
|
Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
|
|
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
CodeModel::Model M = DAG.getTarget().getCodeModel();
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel)) {
|
|
if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
|
|
OpFlag = X86II::MO_GOTPCREL;
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
} else if (Subtarget->isPICStyleGOT()) {
|
|
OpFlag = X86II::MO_GOT;
|
|
} else if (Subtarget->isPICStyleStubPIC()) {
|
|
OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
|
|
} else if (Subtarget->isPICStyleStubNoDynamic()) {
|
|
OpFlag = X86II::MO_DARWIN_NONLAZY;
|
|
}
|
|
|
|
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
|
|
|
|
SDLoc DL(Op);
|
|
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
|
|
!Subtarget->is64Bit()) {
|
|
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
SDLoc(), getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
// For symbols that require a load from a stub to get the address, emit the
|
|
// load.
|
|
if (isGlobalStubReference(OpFlag))
|
|
Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(), false, false, false, 0);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
// Create the TargetBlockAddressAddress node.
|
|
unsigned char OpFlags =
|
|
Subtarget->ClassifyBlockAddressReference();
|
|
CodeModel::Model M = DAG.getTarget().getCodeModel();
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
|
|
SDLoc dl(Op);
|
|
SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
|
|
OpFlags);
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
|
|
else
|
|
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (isGlobalRelativeToPICBase(OpFlags)) {
|
|
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
|
|
int64_t Offset, SelectionDAG &DAG) const {
|
|
// Create the TargetGlobalAddress node, folding in the constant
|
|
// offset if it is legal.
|
|
unsigned char OpFlags =
|
|
Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
|
|
CodeModel::Model M = DAG.getTarget().getCodeModel();
|
|
SDValue Result;
|
|
if (OpFlags == X86II::MO_NO_FLAG &&
|
|
X86::isOffsetSuitableForCodeModel(Offset, M)) {
|
|
// A direct static reference to a global.
|
|
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
|
|
Offset = 0;
|
|
} else {
|
|
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
|
|
}
|
|
|
|
if (Subtarget->isPICStyleRIPRel() &&
|
|
(M == CodeModel::Small || M == CodeModel::Kernel))
|
|
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
|
|
else
|
|
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
|
|
|
|
// With PIC, the address is actually $g + Offset.
|
|
if (isGlobalRelativeToPICBase(OpFlags)) {
|
|
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
|
|
Result);
|
|
}
|
|
|
|
// For globals that require a load from a stub to get the address, emit the
|
|
// load.
|
|
if (isGlobalStubReference(OpFlags))
|
|
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(), false, false, false, 0);
|
|
|
|
// If there was a non-zero offset that we didn't fold, create an explicit
|
|
// addition for it.
|
|
if (Offset != 0)
|
|
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
|
|
DAG.getConstant(Offset, getPointerTy()));
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
|
|
return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
|
|
}
|
|
|
|
static SDValue
|
|
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
|
|
SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
|
|
unsigned char OperandFlags, bool LocalDynamic = false) {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDLoc dl(GA);
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
|
|
GA->getValueType(0),
|
|
GA->getOffset(),
|
|
OperandFlags);
|
|
|
|
X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
|
|
: X86ISD::TLSADDR;
|
|
|
|
if (InFlag) {
|
|
SDValue Ops[] = { Chain, TGA, *InFlag };
|
|
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
|
|
} else {
|
|
SDValue Ops[] = { Chain, TGA };
|
|
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
|
|
}
|
|
|
|
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
|
|
MFI->setAdjustsStack(true);
|
|
MFI->setHasCalls(true);
|
|
|
|
SDValue Flag = Chain.getValue(1);
|
|
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
|
|
static SDValue
|
|
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
|
|
const EVT PtrVT) {
|
|
SDValue InFlag;
|
|
SDLoc dl(GA); // ? function entry point might be better
|
|
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
SDLoc(), PtrVT), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
|
|
static SDValue
|
|
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
|
|
const EVT PtrVT) {
|
|
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
|
|
X86::RAX, X86II::MO_TLSGD);
|
|
}
|
|
|
|
static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG,
|
|
const EVT PtrVT,
|
|
bool is64Bit) {
|
|
SDLoc dl(GA);
|
|
|
|
// Get the start address of the TLS block for this module.
|
|
X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
|
|
.getInfo<X86MachineFunctionInfo>();
|
|
MFI->incNumLocalDynamicTLSAccesses();
|
|
|
|
SDValue Base;
|
|
if (is64Bit) {
|
|
Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
|
|
X86II::MO_TLSLD, /*LocalDynamic=*/true);
|
|
} else {
|
|
SDValue InFlag;
|
|
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
|
|
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
|
|
X86II::MO_TLSLDM, /*LocalDynamic=*/true);
|
|
}
|
|
|
|
// Note: the CleanupLocalDynamicTLSPass will remove redundant computations
|
|
// of Base.
|
|
|
|
// Build x@dtpoff.
|
|
unsigned char OperandFlags = X86II::MO_DTPOFF;
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
|
|
GA->getValueType(0),
|
|
GA->getOffset(), OperandFlags);
|
|
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
|
|
|
|
// Add x@dtpoff with the base.
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
|
|
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
|
|
const EVT PtrVT, TLSModel::Model model,
|
|
bool is64Bit, bool isPIC) {
|
|
SDLoc dl(GA);
|
|
|
|
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
|
|
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
|
|
is64Bit ? 257 : 256));
|
|
|
|
SDValue ThreadPointer =
|
|
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
|
|
MachinePointerInfo(Ptr), false, false, false, 0);
|
|
|
|
unsigned char OperandFlags = 0;
|
|
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
|
|
// initialexec.
|
|
unsigned WrapperKind = X86ISD::Wrapper;
|
|
if (model == TLSModel::LocalExec) {
|
|
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
|
|
} else if (model == TLSModel::InitialExec) {
|
|
if (is64Bit) {
|
|
OperandFlags = X86II::MO_GOTTPOFF;
|
|
WrapperKind = X86ISD::WrapperRIP;
|
|
} else {
|
|
OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unexpected model");
|
|
}
|
|
|
|
// emit "addl x@ntpoff,%eax" (local exec)
|
|
// or "addl x@indntpoff,%eax" (initial exec)
|
|
// or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
|
|
SDValue TGA =
|
|
DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
|
|
GA->getOffset(), OperandFlags);
|
|
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
|
|
|
|
if (model == TLSModel::InitialExec) {
|
|
if (isPIC && !is64Bit) {
|
|
Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
|
|
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
|
|
Offset);
|
|
}
|
|
|
|
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
|
|
MachinePointerInfo::getGOT(), false, false, false, 0);
|
|
}
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue
|
|
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
if (Subtarget->isTargetELF()) {
|
|
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
|
|
|
|
switch (model) {
|
|
case TLSModel::GeneralDynamic:
|
|
if (Subtarget->is64Bit())
|
|
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
|
|
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
|
|
case TLSModel::LocalDynamic:
|
|
return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
|
|
Subtarget->is64Bit());
|
|
case TLSModel::InitialExec:
|
|
case TLSModel::LocalExec:
|
|
return LowerToTLSExecModel(
|
|
GA, DAG, getPointerTy(), model, Subtarget->is64Bit(),
|
|
DAG.getTarget().getRelocationModel() == Reloc::PIC_);
|
|
}
|
|
llvm_unreachable("Unknown TLS model.");
|
|
}
|
|
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// Darwin only has one model of TLS. Lower to that.
|
|
unsigned char OpFlag = 0;
|
|
unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
|
|
X86ISD::WrapperRIP : X86ISD::Wrapper;
|
|
|
|
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
|
|
// global base reg.
|
|
bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
|
|
!Subtarget->is64Bit();
|
|
if (PIC32)
|
|
OpFlag = X86II::MO_TLVP_PIC_BASE;
|
|
else
|
|
OpFlag = X86II::MO_TLVP;
|
|
SDLoc DL(Op);
|
|
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
|
|
GA->getValueType(0),
|
|
GA->getOffset(), OpFlag);
|
|
SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
|
|
|
|
// With PIC32, the address is actually $g + Offset.
|
|
if (PIC32)
|
|
Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
DAG.getNode(X86ISD::GlobalBaseReg,
|
|
SDLoc(), getPointerTy()),
|
|
Offset);
|
|
|
|
// Lowering the machine isd will make sure everything is in the right
|
|
// location.
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Args[] = { Chain, Offset };
|
|
Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
|
|
|
|
// TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setAdjustsStack(true);
|
|
|
|
// And our return value (tls address) is in the standard call return value
|
|
// location.
|
|
unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
|
|
return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
|
|
Chain.getValue(1));
|
|
}
|
|
|
|
if (Subtarget->isTargetKnownWindowsMSVC() ||
|
|
Subtarget->isTargetWindowsGNU()) {
|
|
// Just use the implicit TLS architecture
|
|
// Need to generate someting similar to:
|
|
// mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
|
|
// ; from TEB
|
|
// mov ecx, dword [rel _tls_index]: Load index (from C runtime)
|
|
// mov rcx, qword [rdx+rcx*8]
|
|
// mov eax, .tls$:tlsvar
|
|
// [rax+rcx] contains the address
|
|
// Windows 64bit: gs:0x58
|
|
// Windows 32bit: fs:__tls_array
|
|
|
|
SDLoc dl(GA);
|
|
SDValue Chain = DAG.getEntryNode();
|
|
|
|
// Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
|
|
// %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
|
|
// use its literal value of 0x2C.
|
|
Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
|
|
? Type::getInt8PtrTy(*DAG.getContext(),
|
|
256)
|
|
: Type::getInt32PtrTy(*DAG.getContext(),
|
|
257));
|
|
|
|
SDValue TlsArray =
|
|
Subtarget->is64Bit()
|
|
? DAG.getIntPtrConstant(0x58)
|
|
: (Subtarget->isTargetWindowsGNU()
|
|
? DAG.getIntPtrConstant(0x2C)
|
|
: DAG.getExternalSymbol("_tls_array", getPointerTy()));
|
|
|
|
SDValue ThreadPointer =
|
|
DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
|
|
MachinePointerInfo(Ptr), false, false, false, 0);
|
|
|
|
// Load the _tls_index variable
|
|
SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
|
|
if (Subtarget->is64Bit())
|
|
IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
|
|
IDX, MachinePointerInfo(), MVT::i32,
|
|
false, false, false, 0);
|
|
else
|
|
IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
|
|
getPointerTy());
|
|
IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
|
|
|
|
SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
|
|
res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
// Get the offset of start of .tls section
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
|
|
GA->getValueType(0),
|
|
GA->getOffset(), X86II::MO_SECREL);
|
|
SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
|
|
}
|
|
|
|
llvm_unreachable("TLS not implemented for this target.");
|
|
}
|
|
|
|
/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
|
|
/// and take a 2 x i32 value to shift plus a shift amount.
|
|
static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
// X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
|
|
// generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
|
|
// during isel.
|
|
SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
|
|
DAG.getConstant(VTBits - 1, MVT::i8));
|
|
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
|
|
DAG.getConstant(VTBits - 1, MVT::i8))
|
|
: DAG.getConstant(0, VT);
|
|
|
|
SDValue Tmp2, Tmp3;
|
|
if (Op.getOpcode() == ISD::SHL_PARTS) {
|
|
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
|
|
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
|
|
} else {
|
|
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
|
|
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
|
|
}
|
|
|
|
// If the shift amount is larger or equal than the width of a part we can't
|
|
// rely on the results of shld/shrd. Insert a test and select the appropriate
|
|
// values for large shift amounts.
|
|
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i8));
|
|
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
|
|
AndNode, DAG.getConstant(0, MVT::i8));
|
|
|
|
SDValue Hi, Lo;
|
|
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
|
|
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
|
|
|
|
if (Op.getOpcode() == ISD::SHL_PARTS) {
|
|
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
|
|
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
|
|
} else {
|
|
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
|
|
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
|
|
}
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MVT SrcVT = Op.getOperand(0).getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (SrcVT.isVector()) {
|
|
if (SrcVT.getVectorElementType() == MVT::i1) {
|
|
MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
|
|
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
|
|
DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT,
|
|
Op.getOperand(0)));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
|
|
"Unknown SINT_TO_FP to lower!");
|
|
|
|
// These are really Legal; return the operand so the caller accepts it as
|
|
// Legal.
|
|
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
|
|
return Op;
|
|
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
|
|
Subtarget->is64Bit()) {
|
|
return Op;
|
|
}
|
|
|
|
unsigned Size = SrcVT.getSizeInBits()/8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
|
|
StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, 0);
|
|
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
|
|
}
|
|
|
|
SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
|
|
SDValue StackSlot,
|
|
SelectionDAG &DAG) const {
|
|
// Build the FILD
|
|
SDLoc DL(Op);
|
|
SDVTList Tys;
|
|
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
|
|
if (useSSE)
|
|
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
|
|
else
|
|
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
|
|
|
|
unsigned ByteSize = SrcVT.getSizeInBits()/8;
|
|
|
|
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
|
|
MachineMemOperand *MMO;
|
|
if (FI) {
|
|
int SSFI = FI->getIndex();
|
|
MMO =
|
|
DAG.getMachineFunction()
|
|
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOLoad, ByteSize, ByteSize);
|
|
} else {
|
|
MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
|
|
StackSlot = StackSlot.getOperand(1);
|
|
}
|
|
SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
|
|
SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
|
|
X86ISD::FILD, DL,
|
|
Tys, Ops, SrcVT, MMO);
|
|
|
|
if (useSSE) {
|
|
Chain = Result.getValue(1);
|
|
SDValue InFlag = Result.getValue(2);
|
|
|
|
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
|
|
// shouldn't be necessary except that RFP cannot be live across
|
|
// multiple blocks. When stackifier is fixed, they can be uncoupled.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
Tys = DAG.getVTList(MVT::Other);
|
|
SDValue Ops[] = {
|
|
Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
|
|
};
|
|
MachineMemOperand *MMO =
|
|
DAG.getMachineFunction()
|
|
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOStore, SSFISize, SSFISize);
|
|
|
|
Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
|
|
Ops, Op.getValueType(), MMO);
|
|
Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
|
|
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// This algorithm is not obvious. Here it is what we're trying to output:
|
|
/*
|
|
movq %rax, %xmm0
|
|
punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
|
|
subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
|
|
#ifdef __SSE3__
|
|
haddpd %xmm0, %xmm0
|
|
#else
|
|
pshufd $0x4e, %xmm0, %xmm1
|
|
addpd %xmm1, %xmm0
|
|
#endif
|
|
*/
|
|
|
|
SDLoc dl(Op);
|
|
LLVMContext *Context = DAG.getContext();
|
|
|
|
// Build some magic constants.
|
|
static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
|
|
Constant *C0 = ConstantDataVector::get(*Context, CV0);
|
|
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
|
|
|
|
SmallVector<Constant*,2> CV1;
|
|
CV1.push_back(
|
|
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
|
|
APInt(64, 0x4330000000000000ULL))));
|
|
CV1.push_back(
|
|
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
|
|
APInt(64, 0x4530000000000000ULL))));
|
|
Constant *C1 = ConstantVector::get(CV1);
|
|
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
|
|
|
|
// Load the 64-bit value into an XMM register.
|
|
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
|
|
Op.getOperand(0));
|
|
SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 16);
|
|
SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
|
|
CLod0);
|
|
|
|
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 16);
|
|
SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
|
|
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
|
|
SDValue Result;
|
|
|
|
if (Subtarget->hasSSE3()) {
|
|
// FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
|
|
Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
|
|
} else {
|
|
SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
|
|
SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
|
|
S2F, 0x4E, DAG);
|
|
Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
|
|
Sub);
|
|
}
|
|
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
|
|
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
// FP constant to bias correct the final result.
|
|
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
|
|
MVT::f64);
|
|
|
|
// Load the 32-bit value into an XMM register.
|
|
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
|
|
Op.getOperand(0));
|
|
|
|
// Zero out the upper parts of the register.
|
|
Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
|
|
|
|
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
// Or the load with the bias.
|
|
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
MVT::v2f64, Load)),
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
MVT::v2f64, Bias)));
|
|
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
// Subtract the bias.
|
|
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
|
|
|
|
// Handle final rounding.
|
|
EVT DestVT = Op.getValueType();
|
|
|
|
if (DestVT.bitsLT(MVT::f64))
|
|
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
|
|
DAG.getIntPtrConstant(0));
|
|
if (DestVT.bitsGT(MVT::f64))
|
|
return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
|
|
|
|
// Handle final rounding.
|
|
return Sub;
|
|
}
|
|
|
|
static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
|
|
const X86Subtarget &Subtarget) {
|
|
// The algorithm is the following:
|
|
// #ifdef __SSE4_1__
|
|
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
|
|
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
|
|
// (uint4) 0x53000000, 0xaa);
|
|
// #else
|
|
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
|
|
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
|
|
// #endif
|
|
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
|
|
// return (float4) lo + fhi;
|
|
|
|
SDLoc DL(Op);
|
|
SDValue V = Op->getOperand(0);
|
|
EVT VecIntVT = V.getValueType();
|
|
bool Is128 = VecIntVT == MVT::v4i32;
|
|
EVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
|
|
// If we convert to something else than the supported type, e.g., to v4f64,
|
|
// abort early.
|
|
if (VecFloatVT != Op->getValueType(0))
|
|
return SDValue();
|
|
|
|
unsigned NumElts = VecIntVT.getVectorNumElements();
|
|
assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
|
|
"Unsupported custom type");
|
|
assert(NumElts <= 8 && "The size of the constant array must be fixed");
|
|
|
|
// In the #idef/#else code, we have in common:
|
|
// - The vector of constants:
|
|
// -- 0x4b000000
|
|
// -- 0x53000000
|
|
// - A shift:
|
|
// -- v >> 16
|
|
|
|
// Create the splat vector for 0x4b000000.
|
|
SDValue CstLow = DAG.getConstant(0x4b000000, MVT::i32);
|
|
SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
|
|
CstLow, CstLow, CstLow, CstLow};
|
|
SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
|
|
makeArrayRef(&CstLowArray[0], NumElts));
|
|
// Create the splat vector for 0x53000000.
|
|
SDValue CstHigh = DAG.getConstant(0x53000000, MVT::i32);
|
|
SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
|
|
CstHigh, CstHigh, CstHigh, CstHigh};
|
|
SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
|
|
makeArrayRef(&CstHighArray[0], NumElts));
|
|
|
|
// Create the right shift.
|
|
SDValue CstShift = DAG.getConstant(16, MVT::i32);
|
|
SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
|
|
CstShift, CstShift, CstShift, CstShift};
|
|
SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
|
|
makeArrayRef(&CstShiftArray[0], NumElts));
|
|
SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
|
|
|
|
SDValue Low, High;
|
|
if (Subtarget.hasSSE41()) {
|
|
EVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
|
|
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
|
|
SDValue VecCstLowBitcast =
|
|
DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstLow);
|
|
SDValue VecBitcast = DAG.getNode(ISD::BITCAST, DL, VecI16VT, V);
|
|
// Low will be bitcasted right away, so do not bother bitcasting back to its
|
|
// original type.
|
|
Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
|
|
VecCstLowBitcast, DAG.getConstant(0xaa, MVT::i32));
|
|
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
|
|
// (uint4) 0x53000000, 0xaa);
|
|
SDValue VecCstHighBitcast =
|
|
DAG.getNode(ISD::BITCAST, DL, VecI16VT, VecCstHigh);
|
|
SDValue VecShiftBitcast =
|
|
DAG.getNode(ISD::BITCAST, DL, VecI16VT, HighShift);
|
|
// High will be bitcasted right away, so do not bother bitcasting back to
|
|
// its original type.
|
|
High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
|
|
VecCstHighBitcast, DAG.getConstant(0xaa, MVT::i32));
|
|
} else {
|
|
SDValue CstMask = DAG.getConstant(0xffff, MVT::i32);
|
|
SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
|
|
CstMask, CstMask, CstMask);
|
|
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
|
|
SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
|
|
Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
|
|
|
|
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
|
|
High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
|
|
}
|
|
|
|
// Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
|
|
SDValue CstFAdd = DAG.getConstantFP(
|
|
APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), MVT::f32);
|
|
SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
|
|
CstFAdd, CstFAdd, CstFAdd, CstFAdd};
|
|
SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
|
|
makeArrayRef(&CstFAddArray[0], NumElts));
|
|
|
|
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
|
|
SDValue HighBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, High);
|
|
SDValue FHigh =
|
|
DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
|
|
// return (float4) lo + fhi;
|
|
SDValue LowBitcast = DAG.getNode(ISD::BITCAST, DL, VecFloatVT, Low);
|
|
return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
|
|
}
|
|
|
|
SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue N0 = Op.getOperand(0);
|
|
MVT SVT = N0.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
switch (SVT.SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Custom UINT_TO_FP is not supported!");
|
|
case MVT::v4i8:
|
|
case MVT::v4i16:
|
|
case MVT::v8i8:
|
|
case MVT::v8i16: {
|
|
MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
|
|
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
|
|
}
|
|
case MVT::v4i32:
|
|
case MVT::v8i32:
|
|
return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
|
|
}
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getValueType().isVector())
|
|
return lowerUINT_TO_FP_vec(Op, DAG);
|
|
|
|
// Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
|
|
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
|
|
// the optimization here.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
|
|
|
|
MVT SrcVT = N0.getSimpleValueType();
|
|
MVT DstVT = Op.getSimpleValueType();
|
|
if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
|
|
return LowerUINT_TO_FP_i64(Op, DAG);
|
|
if (SrcVT == MVT::i32 && X86ScalarSSEf64)
|
|
return LowerUINT_TO_FP_i32(Op, DAG);
|
|
if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
|
|
return SDValue();
|
|
|
|
// Make a 64-bit buffer, and use it to build an FILD.
|
|
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
|
|
if (SrcVT == MVT::i32) {
|
|
SDValue WordOff = DAG.getConstant(4, getPointerTy());
|
|
SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
|
|
getPointerTy(), StackSlot, WordOff);
|
|
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
|
|
StackSlot, MachinePointerInfo(),
|
|
false, false, 0);
|
|
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
|
|
OffsetSlot, MachinePointerInfo(),
|
|
false, false, 0);
|
|
SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
|
|
return Fild;
|
|
}
|
|
|
|
assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
|
|
StackSlot, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// For i64 source, we need to add the appropriate power of 2 if the input
|
|
// was negative. This is the same as the optimization in
|
|
// DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
|
|
// we must be careful to do the computation in x87 extended precision, not
|
|
// in SSE. (The generic code can't know it's OK to do this, or how to.)
|
|
int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
|
|
MachineMemOperand *MMO =
|
|
DAG.getMachineFunction()
|
|
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOLoad, 8, 8);
|
|
|
|
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
|
|
SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
|
|
SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
|
|
MVT::i64, MMO);
|
|
|
|
APInt FF(32, 0x5F800000ULL);
|
|
|
|
// Check whether the sign bit is set.
|
|
SDValue SignSet = DAG.getSetCC(dl,
|
|
getSetCCResultType(*DAG.getContext(), MVT::i64),
|
|
Op.getOperand(0), DAG.getConstant(0, MVT::i64),
|
|
ISD::SETLT);
|
|
|
|
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
|
|
SDValue FudgePtr = DAG.getConstantPool(
|
|
ConstantInt::get(*DAG.getContext(), FF.zext(64)),
|
|
getPointerTy());
|
|
|
|
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
|
|
SDValue Zero = DAG.getIntPtrConstant(0);
|
|
SDValue Four = DAG.getIntPtrConstant(4);
|
|
SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
|
|
Zero, Four);
|
|
FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
|
|
|
|
// Load the value out, extending it from f32 to f80.
|
|
// FIXME: Avoid the extend by constructing the right constant pool?
|
|
SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
|
|
FudgePtr, MachinePointerInfo::getConstantPool(),
|
|
MVT::f32, false, false, false, 4);
|
|
// Extend everything to 80 bits to force it to be done on x87.
|
|
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
|
|
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
std::pair<SDValue,SDValue>
|
|
X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSigned, bool IsReplace) const {
|
|
SDLoc DL(Op);
|
|
|
|
EVT DstTy = Op.getValueType();
|
|
|
|
if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
|
|
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
|
|
DstTy = MVT::i64;
|
|
}
|
|
|
|
assert(DstTy.getSimpleVT() <= MVT::i64 &&
|
|
DstTy.getSimpleVT() >= MVT::i16 &&
|
|
"Unknown FP_TO_INT to lower!");
|
|
|
|
// These are really Legal.
|
|
if (DstTy == MVT::i32 &&
|
|
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
|
|
return std::make_pair(SDValue(), SDValue());
|
|
if (Subtarget->is64Bit() &&
|
|
DstTy == MVT::i64 &&
|
|
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
|
|
return std::make_pair(SDValue(), SDValue());
|
|
|
|
// We lower FP->int64 either into FISTP64 followed by a load from a temporary
|
|
// stack slot, or into the FTOL runtime function.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned MemSize = DstTy.getSizeInBits()/8;
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
|
|
unsigned Opc;
|
|
if (!IsSigned && isIntegerTypeFTOL(DstTy))
|
|
Opc = X86ISD::WIN_FTOL;
|
|
else
|
|
switch (DstTy.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
|
|
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
|
|
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
|
|
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
|
|
}
|
|
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDValue Value = Op.getOperand(0);
|
|
EVT TheVT = Op.getOperand(0).getValueType();
|
|
// FIXME This causes a redundant load/store if the SSE-class value is already
|
|
// in memory, such as if it is on the callstack.
|
|
if (isScalarFPTypeInSSEReg(TheVT)) {
|
|
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
|
|
Chain = DAG.getStore(Chain, DL, Value, StackSlot,
|
|
MachinePointerInfo::getFixedStack(SSFI),
|
|
false, false, 0);
|
|
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
|
|
SDValue Ops[] = {
|
|
Chain, StackSlot, DAG.getValueType(TheVT)
|
|
};
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOLoad, MemSize, MemSize);
|
|
Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
|
|
Chain = Value.getValue(1);
|
|
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
|
|
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
}
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOStore, MemSize, MemSize);
|
|
|
|
if (Opc != X86ISD::WIN_FTOL) {
|
|
// Build the FP_TO_INT*_IN_MEM
|
|
SDValue Ops[] = { Chain, Value, StackSlot };
|
|
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
|
|
Ops, DstTy, MMO);
|
|
return std::make_pair(FIST, StackSlot);
|
|
} else {
|
|
SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
|
|
DAG.getVTList(MVT::Other, MVT::Glue),
|
|
Chain, Value);
|
|
SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
|
|
MVT::i32, ftol.getValue(1));
|
|
SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
|
|
MVT::i32, eax.getValue(2));
|
|
SDValue Ops[] = { eax, edx };
|
|
SDValue pair = IsReplace
|
|
? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
|
|
: DAG.getMergeValues(Ops, DL);
|
|
return std::make_pair(pair, SDValue());
|
|
}
|
|
}
|
|
|
|
static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
SDValue In = Op->getOperand(0);
|
|
MVT InVT = In.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
// Optimize vectors in AVX mode:
|
|
//
|
|
// v8i16 -> v8i32
|
|
// Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
|
|
// Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
|
|
// Concat upper and lower parts.
|
|
//
|
|
// v4i32 -> v4i64
|
|
// Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
|
|
// Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
|
|
// Concat upper and lower parts.
|
|
//
|
|
|
|
if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
|
|
((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
|
|
((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
|
|
return SDValue();
|
|
|
|
if (Subtarget->hasInt256())
|
|
return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
|
|
|
|
SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
|
|
SDValue Undef = DAG.getUNDEF(InVT);
|
|
bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
|
|
SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
|
|
SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
|
|
|
|
MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
|
|
VT.getVectorNumElements()/2);
|
|
|
|
OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
|
|
OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
|
|
}
|
|
|
|
static SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
SDValue In = Op->getOperand(0);
|
|
MVT InVT = In.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
unsigned int NumElts = VT.getVectorNumElements();
|
|
if (NumElts != 8 && NumElts != 16)
|
|
return SDValue();
|
|
|
|
if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
|
|
return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
|
|
|
|
EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
// Now we have only mask extension
|
|
assert(InVT.getVectorElementType() == MVT::i1);
|
|
SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
|
|
const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
|
|
SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
|
|
SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, Alignment);
|
|
|
|
SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
|
|
if (VT.is512BitVector())
|
|
return Brcst;
|
|
return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
|
|
}
|
|
|
|
static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
if (Subtarget->hasFp256()) {
|
|
SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
|
|
if (Res.getNode())
|
|
return Res;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue In = Op.getOperand(0);
|
|
MVT SVT = In.getSimpleValueType();
|
|
|
|
if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
|
|
return LowerZERO_EXTEND_AVX512(Op, DAG);
|
|
|
|
if (Subtarget->hasFp256()) {
|
|
SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
|
|
if (Res.getNode())
|
|
return Res;
|
|
}
|
|
|
|
assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
|
|
VT.getVectorNumElements() != SVT.getVectorNumElements());
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue In = Op.getOperand(0);
|
|
MVT InVT = In.getSimpleValueType();
|
|
|
|
if (VT == MVT::i1) {
|
|
assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
|
|
"Invalid scalar TRUNCATE operation");
|
|
if (InVT.getSizeInBits() >= 32)
|
|
return SDValue();
|
|
In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
|
|
}
|
|
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
|
|
"Invalid TRUNCATE operation");
|
|
|
|
if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
|
|
if (VT.getVectorElementType().getSizeInBits() >=8)
|
|
return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
|
|
|
|
assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
|
|
unsigned NumElts = InVT.getVectorNumElements();
|
|
assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
|
|
if (InVT.getSizeInBits() < 512) {
|
|
MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
|
|
In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
|
|
InVT = ExtVT;
|
|
}
|
|
|
|
SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
|
|
const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
|
|
SDValue CP = DAG.getConstantPool(C, getPointerTy());
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
|
|
SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, Alignment);
|
|
SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
|
|
SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
|
|
return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
|
|
}
|
|
|
|
if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
|
|
// On AVX2, v4i64 -> v4i32 becomes VPERMD.
|
|
if (Subtarget->hasInt256()) {
|
|
static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
|
|
In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
|
|
In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
|
|
ShufMask);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
|
|
DAG.getIntPtrConstant(2));
|
|
OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
|
|
OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
|
|
static const int ShufMask[] = {0, 2, 4, 6};
|
|
return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
|
|
}
|
|
|
|
if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
|
|
// On AVX2, v8i32 -> v8i16 becomed PSHUFB.
|
|
if (Subtarget->hasInt256()) {
|
|
In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
|
|
|
|
SmallVector<SDValue,32> pshufbMask;
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
|
|
pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
|
|
for (unsigned j = 0; j < 8; ++j)
|
|
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
|
|
}
|
|
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
|
|
In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
|
|
In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
|
|
|
|
static const int ShufMask[] = {0, 2, -1, -1};
|
|
In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
|
|
&ShufMask[0]);
|
|
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
|
|
DAG.getIntPtrConstant(0));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, In);
|
|
}
|
|
|
|
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
|
|
DAG.getIntPtrConstant(4));
|
|
|
|
OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
|
|
OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
|
|
|
|
// The PSHUFB mask:
|
|
static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
|
|
-1, -1, -1, -1, -1, -1, -1, -1};
|
|
|
|
SDValue Undef = DAG.getUNDEF(MVT::v16i8);
|
|
OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
|
|
OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
|
|
|
|
OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
|
|
OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
|
|
|
|
// The MOVLHPS Mask:
|
|
static const int ShufMask2[] = {0, 1, 4, 5};
|
|
SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
|
|
}
|
|
|
|
// Handle truncation of V256 to V128 using shuffles.
|
|
if (!VT.is128BitVector() || !InVT.is256BitVector())
|
|
return SDValue();
|
|
|
|
assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
|
|
|
|
SmallVector<int, 16> MaskVec(NumElems * 2, -1);
|
|
// Prepare truncation shuffle mask
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
MaskVec[i] = i * 2;
|
|
SDValue V = DAG.getVectorShuffle(NVT, DL,
|
|
DAG.getNode(ISD::BITCAST, DL, NVT, In),
|
|
DAG.getUNDEF(NVT), &MaskVec[0]);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(!Op.getSimpleValueType().isVector());
|
|
|
|
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
|
|
/*IsSigned=*/ true, /*IsReplace=*/ false);
|
|
SDValue FIST = Vals.first, StackSlot = Vals.second;
|
|
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
|
|
if (!FIST.getNode()) return Op;
|
|
|
|
if (StackSlot.getNode())
|
|
// Load the result.
|
|
return DAG.getLoad(Op.getValueType(), SDLoc(Op),
|
|
FIST, StackSlot, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
// The node is the result.
|
|
return FIST;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
|
|
/*IsSigned=*/ false, /*IsReplace=*/ false);
|
|
SDValue FIST = Vals.first, StackSlot = Vals.second;
|
|
assert(FIST.getNode() && "Unexpected failure");
|
|
|
|
if (StackSlot.getNode())
|
|
// Load the result.
|
|
return DAG.getLoad(Op.getValueType(), SDLoc(Op),
|
|
FIST, StackSlot, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
// The node is the result.
|
|
return FIST;
|
|
}
|
|
|
|
static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue In = Op.getOperand(0);
|
|
MVT SVT = In.getSimpleValueType();
|
|
|
|
assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
|
|
|
|
return DAG.getNode(X86ISD::VFPEXT, DL, VT,
|
|
DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
|
|
In, DAG.getUNDEF(SVT)));
|
|
}
|
|
|
|
/// The only differences between FABS and FNEG are the mask and the logic op.
|
|
/// FNEG also has a folding opportunity for FNEG(FABS(x)).
|
|
static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
|
|
assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
|
|
"Wrong opcode for lowering FABS or FNEG.");
|
|
|
|
bool IsFABS = (Op.getOpcode() == ISD::FABS);
|
|
|
|
// If this is a FABS and it has an FNEG user, bail out to fold the combination
|
|
// into an FNABS. We'll lower the FABS after that if it is still in use.
|
|
if (IsFABS)
|
|
for (SDNode *User : Op->uses())
|
|
if (User->getOpcode() == ISD::FNEG)
|
|
return Op;
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
|
|
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
// Assume scalar op for initialization; update for vector if needed.
|
|
// Note that there are no scalar bitwise logical SSE/AVX instructions, so we
|
|
// generate a 16-byte vector constant and logic op even for the scalar case.
|
|
// Using a 16-byte mask allows folding the load of the mask with
|
|
// the logic op, so it can save (~4 bytes) on code size.
|
|
MVT EltVT = VT;
|
|
unsigned NumElts = VT == MVT::f64 ? 2 : 4;
|
|
// FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
|
|
// decide if we should generate a 16-byte constant mask when we only need 4 or
|
|
// 8 bytes for the scalar case.
|
|
if (VT.isVector()) {
|
|
EltVT = VT.getVectorElementType();
|
|
NumElts = VT.getVectorNumElements();
|
|
}
|
|
|
|
unsigned EltBits = EltVT.getSizeInBits();
|
|
LLVMContext *Context = DAG.getContext();
|
|
// For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
|
|
APInt MaskElt =
|
|
IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
|
|
Constant *C = ConstantInt::get(*Context, MaskElt);
|
|
C = ConstantVector::getSplat(NumElts, C);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
|
|
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, Alignment);
|
|
|
|
if (VT.isVector()) {
|
|
// For a vector, cast operands to a vector type, perform the logic op,
|
|
// and cast the result back to the original value type.
|
|
MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
|
|
SDValue MaskCasted = DAG.getNode(ISD::BITCAST, dl, VecVT, Mask);
|
|
SDValue Operand = IsFNABS ?
|
|
DAG.getNode(ISD::BITCAST, dl, VecVT, Op0.getOperand(0)) :
|
|
DAG.getNode(ISD::BITCAST, dl, VecVT, Op0);
|
|
unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
|
|
}
|
|
|
|
// If not vector, then scalar.
|
|
unsigned BitOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
|
|
SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
|
|
return DAG.getNode(BitOp, dl, VT, Operand, Mask);
|
|
}
|
|
|
|
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
LLVMContext *Context = DAG.getContext();
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT SrcVT = Op1.getSimpleValueType();
|
|
|
|
// If second operand is smaller, extend it first.
|
|
if (SrcVT.bitsLT(VT)) {
|
|
Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
|
|
SrcVT = VT;
|
|
}
|
|
// And if it is bigger, shrink it first.
|
|
if (SrcVT.bitsGT(VT)) {
|
|
Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
|
|
SrcVT = VT;
|
|
}
|
|
|
|
// At this point the operands and the result should have the same
|
|
// type, and that won't be f80 since that is not custom lowered.
|
|
|
|
// First get the sign bit of second operand.
|
|
SmallVector<Constant*,4> CV;
|
|
if (SrcVT == MVT::f64) {
|
|
const fltSemantics &Sem = APFloat::IEEEdouble;
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
|
|
} else {
|
|
const fltSemantics &Sem = APFloat::IEEEsingle;
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
|
|
}
|
|
Constant *C = ConstantVector::get(CV);
|
|
SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
|
|
SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 16);
|
|
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
|
|
|
|
// Shift sign bit right or left if the two operands have different types.
|
|
if (SrcVT.bitsGT(VT)) {
|
|
// Op0 is MVT::f32, Op1 is MVT::f64.
|
|
SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
|
|
SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
|
|
DAG.getConstant(32, MVT::i32));
|
|
SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
|
|
SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
// Clear first operand sign bit.
|
|
CV.clear();
|
|
if (VT == MVT::f64) {
|
|
const fltSemantics &Sem = APFloat::IEEEdouble;
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
|
|
APInt(64, ~(1ULL << 63)))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
|
|
} else {
|
|
const fltSemantics &Sem = APFloat::IEEEsingle;
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
|
|
APInt(32, ~(1U << 31)))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
|
|
CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
|
|
}
|
|
C = ConstantVector::get(CV);
|
|
CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
|
|
SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 16);
|
|
SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
|
|
|
|
// Or the value with the sign bit.
|
|
return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
|
|
}
|
|
|
|
static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
// Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
|
|
SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
|
|
DAG.getConstant(1, VT));
|
|
return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
|
|
}
|
|
|
|
// Check whether an OR'd tree is PTEST-able.
|
|
static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
|
|
|
|
if (!Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
if (!Op->hasOneUse())
|
|
return SDValue();
|
|
|
|
SDNode *N = Op.getNode();
|
|
SDLoc DL(N);
|
|
|
|
SmallVector<SDValue, 8> Opnds;
|
|
DenseMap<SDValue, unsigned> VecInMap;
|
|
SmallVector<SDValue, 8> VecIns;
|
|
EVT VT = MVT::Other;
|
|
|
|
// Recognize a special case where a vector is casted into wide integer to
|
|
// test all 0s.
|
|
Opnds.push_back(N->getOperand(0));
|
|
Opnds.push_back(N->getOperand(1));
|
|
|
|
for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
|
|
SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
|
|
// BFS traverse all OR'd operands.
|
|
if (I->getOpcode() == ISD::OR) {
|
|
Opnds.push_back(I->getOperand(0));
|
|
Opnds.push_back(I->getOperand(1));
|
|
// Re-evaluate the number of nodes to be traversed.
|
|
e += 2; // 2 more nodes (LHS and RHS) are pushed.
|
|
continue;
|
|
}
|
|
|
|
// Quit if a non-EXTRACT_VECTOR_ELT
|
|
if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
// Quit if without a constant index.
|
|
SDValue Idx = I->getOperand(1);
|
|
if (!isa<ConstantSDNode>(Idx))
|
|
return SDValue();
|
|
|
|
SDValue ExtractedFromVec = I->getOperand(0);
|
|
DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
|
|
if (M == VecInMap.end()) {
|
|
VT = ExtractedFromVec.getValueType();
|
|
// Quit if not 128/256-bit vector.
|
|
if (!VT.is128BitVector() && !VT.is256BitVector())
|
|
return SDValue();
|
|
// Quit if not the same type.
|
|
if (VecInMap.begin() != VecInMap.end() &&
|
|
VT != VecInMap.begin()->first.getValueType())
|
|
return SDValue();
|
|
M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
|
|
VecIns.push_back(ExtractedFromVec);
|
|
}
|
|
M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
}
|
|
|
|
assert((VT.is128BitVector() || VT.is256BitVector()) &&
|
|
"Not extracted from 128-/256-bit vector.");
|
|
|
|
unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
|
|
|
|
for (DenseMap<SDValue, unsigned>::const_iterator
|
|
I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
|
|
// Quit if not all elements are used.
|
|
if (I->second != FullMask)
|
|
return SDValue();
|
|
}
|
|
|
|
EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
|
|
|
|
// Cast all vectors into TestVT for PTEST.
|
|
for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
|
|
VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
|
|
|
|
// If more than one full vectors are evaluated, OR them first before PTEST.
|
|
for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
|
|
// Each iteration will OR 2 nodes and append the result until there is only
|
|
// 1 node left, i.e. the final OR'd value of all vectors.
|
|
SDValue LHS = VecIns[Slot];
|
|
SDValue RHS = VecIns[Slot + 1];
|
|
VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
|
|
}
|
|
|
|
return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
|
|
VecIns.back(), VecIns.back());
|
|
}
|
|
|
|
/// \brief return true if \c Op has a use that doesn't just read flags.
|
|
static bool hasNonFlagsUse(SDValue Op) {
|
|
for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
|
|
++UI) {
|
|
SDNode *User = *UI;
|
|
unsigned UOpNo = UI.getOperandNo();
|
|
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
|
|
// Look pass truncate.
|
|
UOpNo = User->use_begin().getOperandNo();
|
|
User = *User->use_begin();
|
|
}
|
|
|
|
if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
|
|
!(User->getOpcode() == ISD::SELECT && UOpNo == 0))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Emit nodes that will be selected as "test Op0,Op0", or something
|
|
/// equivalent.
|
|
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getValueType() == MVT::i1)
|
|
// KORTEST instruction should be selected
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, Op.getValueType()));
|
|
|
|
// CF and OF aren't always set the way we want. Determine which
|
|
// of these we need.
|
|
bool NeedCF = false;
|
|
bool NeedOF = false;
|
|
switch (X86CC) {
|
|
default: break;
|
|
case X86::COND_A: case X86::COND_AE:
|
|
case X86::COND_B: case X86::COND_BE:
|
|
NeedCF = true;
|
|
break;
|
|
case X86::COND_G: case X86::COND_GE:
|
|
case X86::COND_L: case X86::COND_LE:
|
|
case X86::COND_O: case X86::COND_NO: {
|
|
// Check if we really need to set the
|
|
// Overflow flag. If NoSignedWrap is present
|
|
// that is not actually needed.
|
|
switch (Op->getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::SHL: {
|
|
const BinaryWithFlagsSDNode *BinNode =
|
|
cast<BinaryWithFlagsSDNode>(Op.getNode());
|
|
if (BinNode->hasNoSignedWrap())
|
|
break;
|
|
}
|
|
default:
|
|
NeedOF = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// See if we can use the EFLAGS value from the operand instead of
|
|
// doing a separate TEST. TEST always sets OF and CF to 0, so unless
|
|
// we prove that the arithmetic won't overflow, we can't use OF or CF.
|
|
if (Op.getResNo() != 0 || NeedOF || NeedCF) {
|
|
// Emit a CMP with 0, which is the TEST pattern.
|
|
//if (Op.getValueType() == MVT::i1)
|
|
// return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
|
|
// DAG.getConstant(0, MVT::i1));
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, Op.getValueType()));
|
|
}
|
|
unsigned Opcode = 0;
|
|
unsigned NumOperands = 0;
|
|
|
|
// Truncate operations may prevent the merge of the SETCC instruction
|
|
// and the arithmetic instruction before it. Attempt to truncate the operands
|
|
// of the arithmetic instruction and use a reduced bit-width instruction.
|
|
bool NeedTruncation = false;
|
|
SDValue ArithOp = Op;
|
|
if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
|
|
SDValue Arith = Op->getOperand(0);
|
|
// Both the trunc and the arithmetic op need to have one user each.
|
|
if (Arith->hasOneUse())
|
|
switch (Arith.getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
NeedTruncation = true;
|
|
ArithOp = Arith;
|
|
}
|
|
}
|
|
}
|
|
|
|
// NOTICE: In the code below we use ArithOp to hold the arithmetic operation
|
|
// which may be the result of a CAST. We use the variable 'Op', which is the
|
|
// non-casted variable when we check for possible users.
|
|
switch (ArithOp.getOpcode()) {
|
|
case ISD::ADD:
|
|
// Due to an isel shortcoming, be conservative if this add is likely to be
|
|
// selected as part of a load-modify-store instruction. When the root node
|
|
// in a match is a store, isel doesn't know how to remap non-chain non-flag
|
|
// uses of other nodes in the match, such as the ADD in this case. This
|
|
// leads to the ADD being left around and reselected, with the result being
|
|
// two adds in the output. Alas, even if none our users are stores, that
|
|
// doesn't prove we're O.K. Ergo, if we have any parents that aren't
|
|
// CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
|
|
// climbing the DAG back to the root, and it doesn't seem to be worth the
|
|
// effort.
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI)
|
|
if (UI->getOpcode() != ISD::CopyToReg &&
|
|
UI->getOpcode() != ISD::SETCC &&
|
|
UI->getOpcode() != ISD::STORE)
|
|
goto default_case;
|
|
|
|
if (ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
|
|
// An add of one will be selected as an INC.
|
|
if (C->getAPIntValue() == 1 && !Subtarget->slowIncDec()) {
|
|
Opcode = X86ISD::INC;
|
|
NumOperands = 1;
|
|
break;
|
|
}
|
|
|
|
// An add of negative one (subtract of one) will be selected as a DEC.
|
|
if (C->getAPIntValue().isAllOnesValue() && !Subtarget->slowIncDec()) {
|
|
Opcode = X86ISD::DEC;
|
|
NumOperands = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Otherwise use a regular EFLAGS-setting add.
|
|
Opcode = X86ISD::ADD;
|
|
NumOperands = 2;
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
// If we have a constant logical shift that's only used in a comparison
|
|
// against zero turn it into an equivalent AND. This allows turning it into
|
|
// a TEST instruction later.
|
|
if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
|
|
isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
|
|
EVT VT = Op.getValueType();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
unsigned ShAmt = Op->getConstantOperandVal(1);
|
|
if (ShAmt >= BitWidth) // Avoid undefined shifts.
|
|
break;
|
|
APInt Mask = ArithOp.getOpcode() == ISD::SRL
|
|
? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
|
|
: APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
|
|
if (!Mask.isSignedIntN(32)) // Avoid large immediates.
|
|
break;
|
|
SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
|
|
DAG.getConstant(Mask, VT));
|
|
DAG.ReplaceAllUsesWith(Op, New);
|
|
Op = New;
|
|
}
|
|
break;
|
|
|
|
case ISD::AND:
|
|
// If the primary and result isn't used, don't bother using X86ISD::AND,
|
|
// because a TEST instruction will be better.
|
|
if (!hasNonFlagsUse(Op))
|
|
break;
|
|
// FALL THROUGH
|
|
case ISD::SUB:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
// Due to the ISEL shortcoming noted above, be conservative if this op is
|
|
// likely to be selected as part of a load-modify-store instruction.
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI)
|
|
if (UI->getOpcode() == ISD::STORE)
|
|
goto default_case;
|
|
|
|
// Otherwise use a regular EFLAGS-setting instruction.
|
|
switch (ArithOp.getOpcode()) {
|
|
default: llvm_unreachable("unexpected operator!");
|
|
case ISD::SUB: Opcode = X86ISD::SUB; break;
|
|
case ISD::XOR: Opcode = X86ISD::XOR; break;
|
|
case ISD::AND: Opcode = X86ISD::AND; break;
|
|
case ISD::OR: {
|
|
if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
|
|
SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
|
|
if (EFLAGS.getNode())
|
|
return EFLAGS;
|
|
}
|
|
Opcode = X86ISD::OR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
NumOperands = 2;
|
|
break;
|
|
case X86ISD::ADD:
|
|
case X86ISD::SUB:
|
|
case X86ISD::INC:
|
|
case X86ISD::DEC:
|
|
case X86ISD::OR:
|
|
case X86ISD::XOR:
|
|
case X86ISD::AND:
|
|
return SDValue(Op.getNode(), 1);
|
|
default:
|
|
default_case:
|
|
break;
|
|
}
|
|
|
|
// If we found that truncation is beneficial, perform the truncation and
|
|
// update 'Op'.
|
|
if (NeedTruncation) {
|
|
EVT VT = Op.getValueType();
|
|
SDValue WideVal = Op->getOperand(0);
|
|
EVT WideVT = WideVal.getValueType();
|
|
unsigned ConvertedOp = 0;
|
|
// Use a target machine opcode to prevent further DAGCombine
|
|
// optimizations that may separate the arithmetic operations
|
|
// from the setcc node.
|
|
switch (WideVal.getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
|
|
case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
|
|
case ISD::AND: ConvertedOp = X86ISD::AND; break;
|
|
case ISD::OR: ConvertedOp = X86ISD::OR; break;
|
|
case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
|
|
}
|
|
|
|
if (ConvertedOp) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
|
|
SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
|
|
SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
|
|
Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Opcode == 0)
|
|
// Emit a CMP with 0, which is the TEST pattern.
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, Op.getValueType()));
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned i = 0; i != NumOperands; ++i)
|
|
Ops.push_back(Op.getOperand(i));
|
|
|
|
SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
|
|
DAG.ReplaceAllUsesWith(Op, New);
|
|
return SDValue(New.getNode(), 1);
|
|
}
|
|
|
|
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
|
|
/// equivalent.
|
|
SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
|
|
if (C->getAPIntValue() == 0)
|
|
return EmitTest(Op0, X86CC, dl, DAG);
|
|
|
|
if (Op0.getValueType() == MVT::i1)
|
|
llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
|
|
}
|
|
|
|
if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
|
|
Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
|
|
// Do the comparison at i32 if it's smaller, besides the Atom case.
|
|
// This avoids subregister aliasing issues. Keep the smaller reference
|
|
// if we're optimizing for size, however, as that'll allow better folding
|
|
// of memory operations.
|
|
if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
|
|
!DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
|
|
AttributeSet::FunctionIndex, Attribute::MinSize) &&
|
|
!Subtarget->isAtom()) {
|
|
unsigned ExtendOp =
|
|
isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
|
|
Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
|
|
Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
|
|
}
|
|
// Use SUB instead of CMP to enable CSE between SUB and CMP.
|
|
SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
|
|
SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
|
|
Op0, Op1);
|
|
return SDValue(Sub.getNode(), 1);
|
|
}
|
|
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
|
|
}
|
|
|
|
/// Convert a comparison if required by the subtarget.
|
|
SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
|
|
SelectionDAG &DAG) const {
|
|
// If the subtarget does not support the FUCOMI instruction, floating-point
|
|
// comparisons have to be converted.
|
|
if (Subtarget->hasCMov() ||
|
|
Cmp.getOpcode() != X86ISD::CMP ||
|
|
!Cmp.getOperand(0).getValueType().isFloatingPoint() ||
|
|
!Cmp.getOperand(1).getValueType().isFloatingPoint())
|
|
return Cmp;
|
|
|
|
// The instruction selector will select an FUCOM instruction instead of
|
|
// FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
|
|
// build an SDNode sequence that transfers the result from FPSW into EFLAGS:
|
|
// (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
|
|
SDLoc dl(Cmp);
|
|
SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
|
|
SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
|
|
SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
|
|
DAG.getConstant(8, MVT::i8));
|
|
SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
|
|
return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
|
|
}
|
|
|
|
/// The minimum architected relative accuracy is 2^-12. We need one
|
|
/// Newton-Raphson step to have a good float result (24 bits of precision).
|
|
SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
|
|
DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps,
|
|
bool &UseOneConstNR) const {
|
|
// FIXME: We should use instruction latency models to calculate the cost of
|
|
// each potential sequence, but this is very hard to do reliably because
|
|
// at least Intel's Core* chips have variable timing based on the number of
|
|
// significant digits in the divisor and/or sqrt operand.
|
|
if (!Subtarget->useSqrtEst())
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
|
|
// SSE1 has rsqrtss and rsqrtps.
|
|
// TODO: Add support for AVX512 (v16f32).
|
|
// It is likely not profitable to do this for f64 because a double-precision
|
|
// rsqrt estimate with refinement on x86 prior to FMA requires at least 16
|
|
// instructions: convert to single, rsqrtss, convert back to double, refine
|
|
// (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
|
|
// along with FMA, this could be a throughput win.
|
|
if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
|
|
(Subtarget->hasAVX() && VT == MVT::v8f32)) {
|
|
RefinementSteps = 1;
|
|
UseOneConstNR = false;
|
|
return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// The minimum architected relative accuracy is 2^-12. We need one
|
|
/// Newton-Raphson step to have a good float result (24 bits of precision).
|
|
SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
|
|
DAGCombinerInfo &DCI,
|
|
unsigned &RefinementSteps) const {
|
|
// FIXME: We should use instruction latency models to calculate the cost of
|
|
// each potential sequence, but this is very hard to do reliably because
|
|
// at least Intel's Core* chips have variable timing based on the number of
|
|
// significant digits in the divisor.
|
|
if (!Subtarget->useReciprocalEst())
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
|
|
// SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
|
|
// TODO: Add support for AVX512 (v16f32).
|
|
// It is likely not profitable to do this for f64 because a double-precision
|
|
// reciprocal estimate with refinement on x86 prior to FMA requires
|
|
// 15 instructions: convert to single, rcpss, convert back to double, refine
|
|
// (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
|
|
// along with FMA, this could be a throughput win.
|
|
if ((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
|
|
(Subtarget->hasAVX() && VT == MVT::v8f32)) {
|
|
RefinementSteps = ReciprocalEstimateRefinementSteps;
|
|
return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static bool isAllOnes(SDValue V) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
|
|
return C && C->isAllOnesValue();
|
|
}
|
|
|
|
/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
|
|
/// if it's possible.
|
|
SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
SDValue Op0 = And.getOperand(0);
|
|
SDValue Op1 = And.getOperand(1);
|
|
if (Op0.getOpcode() == ISD::TRUNCATE)
|
|
Op0 = Op0.getOperand(0);
|
|
if (Op1.getOpcode() == ISD::TRUNCATE)
|
|
Op1 = Op1.getOperand(0);
|
|
|
|
SDValue LHS, RHS;
|
|
if (Op1.getOpcode() == ISD::SHL)
|
|
std::swap(Op0, Op1);
|
|
if (Op0.getOpcode() == ISD::SHL) {
|
|
if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
|
|
if (And00C->getZExtValue() == 1) {
|
|
// If we looked past a truncate, check that it's only truncating away
|
|
// known zeros.
|
|
unsigned BitWidth = Op0.getValueSizeInBits();
|
|
unsigned AndBitWidth = And.getValueSizeInBits();
|
|
if (BitWidth > AndBitWidth) {
|
|
APInt Zeros, Ones;
|
|
DAG.computeKnownBits(Op0, Zeros, Ones);
|
|
if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
|
|
return SDValue();
|
|
}
|
|
LHS = Op1;
|
|
RHS = Op0.getOperand(1);
|
|
}
|
|
} else if (Op1.getOpcode() == ISD::Constant) {
|
|
ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
|
|
uint64_t AndRHSVal = AndRHS->getZExtValue();
|
|
SDValue AndLHS = Op0;
|
|
|
|
if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
|
|
LHS = AndLHS.getOperand(0);
|
|
RHS = AndLHS.getOperand(1);
|
|
}
|
|
|
|
// Use BT if the immediate can't be encoded in a TEST instruction.
|
|
if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
|
|
LHS = AndLHS;
|
|
RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
|
|
}
|
|
}
|
|
|
|
if (LHS.getNode()) {
|
|
// If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
|
|
// instruction. Since the shift amount is in-range-or-undefined, we know
|
|
// that doing a bittest on the i32 value is ok. We extend to i32 because
|
|
// the encoding for the i16 version is larger than the i32 version.
|
|
// Also promote i16 to i32 for performance / code size reason.
|
|
if (LHS.getValueType() == MVT::i8 ||
|
|
LHS.getValueType() == MVT::i16)
|
|
LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
|
|
|
|
// If the operand types disagree, extend the shift amount to match. Since
|
|
// BT ignores high bits (like shifts) we can use anyextend.
|
|
if (LHS.getValueType() != RHS.getValueType())
|
|
RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
|
|
|
|
SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
|
|
X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
|
|
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(Cond, MVT::i8), BT);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
|
|
/// mask CMPs.
|
|
static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
|
|
SDValue &Op1) {
|
|
unsigned SSECC;
|
|
bool Swap = false;
|
|
|
|
// SSE Condition code mapping:
|
|
// 0 - EQ
|
|
// 1 - LT
|
|
// 2 - LE
|
|
// 3 - UNORD
|
|
// 4 - NEQ
|
|
// 5 - NLT
|
|
// 6 - NLE
|
|
// 7 - ORD
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Unexpected SETCC condition");
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: SSECC = 0; break;
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: Swap = true; // Fallthrough
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: SSECC = 1; break;
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: Swap = true; // Fallthrough
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: SSECC = 2; break;
|
|
case ISD::SETUO: SSECC = 3; break;
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: SSECC = 4; break;
|
|
case ISD::SETULE: Swap = true; // Fallthrough
|
|
case ISD::SETUGE: SSECC = 5; break;
|
|
case ISD::SETULT: Swap = true; // Fallthrough
|
|
case ISD::SETUGT: SSECC = 6; break;
|
|
case ISD::SETO: SSECC = 7; break;
|
|
case ISD::SETUEQ:
|
|
case ISD::SETONE: SSECC = 8; break;
|
|
}
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
return SSECC;
|
|
}
|
|
|
|
// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
|
|
// ones, and then concatenate the result back.
|
|
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
|
|
"Unsupported value type for operation");
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SDLoc dl(Op);
|
|
SDValue CC = Op.getOperand(2);
|
|
|
|
// Extract the LHS vectors
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
|
|
SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
|
|
|
|
// Extract the RHS vectors
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
|
|
SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
|
|
|
|
// Issue the operation on the smaller types and concatenate the result back
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
|
|
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
|
|
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
|
|
}
|
|
|
|
static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue CC = Op.getOperand(2);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 8 &&
|
|
Op.getValueType().getScalarType() == MVT::i1 &&
|
|
"Cannot set masked compare for this operation");
|
|
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
unsigned Opc = 0;
|
|
bool Unsigned = false;
|
|
bool Swap = false;
|
|
unsigned SSECC;
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Unexpected SETCC condition");
|
|
case ISD::SETNE: SSECC = 4; break;
|
|
case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break;
|
|
case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
|
|
case ISD::SETLT: Swap = true; //fall-through
|
|
case ISD::SETGT: Opc = X86ISD::PCMPGTM; break;
|
|
case ISD::SETULT: SSECC = 1; Unsigned = true; break;
|
|
case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
|
|
case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap
|
|
case ISD::SETULE: Unsigned = true; //fall-through
|
|
case ISD::SETLE: SSECC = 2; break;
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
if (Opc)
|
|
return DAG.getNode(Opc, dl, VT, Op0, Op1);
|
|
Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
|
|
return DAG.getNode(Opc, dl, VT, Op0, Op1,
|
|
DAG.getConstant(SSECC, MVT::i8));
|
|
}
|
|
|
|
/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
|
|
/// operand \p Op1. If non-trivial (for example because it's not constant)
|
|
/// return an empty value.
|
|
static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
|
|
{
|
|
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
|
|
if (!BV)
|
|
return SDValue();
|
|
|
|
MVT VT = Op1.getSimpleValueType();
|
|
MVT EVT = VT.getVectorElementType();
|
|
unsigned n = VT.getVectorNumElements();
|
|
SmallVector<SDValue, 8> ULTOp1;
|
|
|
|
for (unsigned i = 0; i < n; ++i) {
|
|
ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
|
|
if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
|
|
return SDValue();
|
|
|
|
// Avoid underflow.
|
|
APInt Val = Elt->getAPIntValue();
|
|
if (Val == 0)
|
|
return SDValue();
|
|
|
|
ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
|
|
}
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
|
|
}
|
|
|
|
static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue CC = Op.getOperand(2);
|
|
MVT VT = Op.getSimpleValueType();
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
|
|
SDLoc dl(Op);
|
|
|
|
if (isFP) {
|
|
#ifndef NDEBUG
|
|
MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
|
|
assert(EltVT == MVT::f32 || EltVT == MVT::f64);
|
|
#endif
|
|
|
|
unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
|
|
unsigned Opc = X86ISD::CMPP;
|
|
if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
|
|
assert(VT.getVectorNumElements() <= 16);
|
|
Opc = X86ISD::CMPM;
|
|
}
|
|
// In the two special cases we can't handle, emit two comparisons.
|
|
if (SSECC == 8) {
|
|
unsigned CC0, CC1;
|
|
unsigned CombineOpc;
|
|
if (SetCCOpcode == ISD::SETUEQ) {
|
|
CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
|
|
} else {
|
|
assert(SetCCOpcode == ISD::SETONE);
|
|
CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
|
|
}
|
|
|
|
SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
|
|
DAG.getConstant(CC0, MVT::i8));
|
|
SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
|
|
DAG.getConstant(CC1, MVT::i8));
|
|
return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
|
|
}
|
|
// Handle all other FP comparisons here.
|
|
return DAG.getNode(Opc, dl, VT, Op0, Op1,
|
|
DAG.getConstant(SSECC, MVT::i8));
|
|
}
|
|
|
|
// Break 256-bit integer vector compare into smaller ones.
|
|
if (VT.is256BitVector() && !Subtarget->hasInt256())
|
|
return Lower256IntVSETCC(Op, DAG);
|
|
|
|
bool MaskResult = (VT.getVectorElementType() == MVT::i1);
|
|
EVT OpVT = Op1.getValueType();
|
|
if (Subtarget->hasAVX512()) {
|
|
if (Op1.getValueType().is512BitVector() ||
|
|
(Subtarget->hasBWI() && Subtarget->hasVLX()) ||
|
|
(MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
|
|
return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
|
|
|
|
// In AVX-512 architecture setcc returns mask with i1 elements,
|
|
// But there is no compare instruction for i8 and i16 elements in KNL.
|
|
// We are not talking about 512-bit operands in this case, these
|
|
// types are illegal.
|
|
if (MaskResult &&
|
|
(OpVT.getVectorElementType().getSizeInBits() < 32 &&
|
|
OpVT.getVectorElementType().getSizeInBits() >= 8))
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
|
|
}
|
|
|
|
// We are handling one of the integer comparisons here. Since SSE only has
|
|
// GT and EQ comparisons for integer, swapping operands and multiple
|
|
// operations may be required for some comparisons.
|
|
unsigned Opc;
|
|
bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
|
|
bool Subus = false;
|
|
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Unexpected SETCC condition");
|
|
case ISD::SETNE: Invert = true;
|
|
case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
|
|
case ISD::SETLT: Swap = true;
|
|
case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
|
|
case ISD::SETGE: Swap = true;
|
|
case ISD::SETLE: Opc = X86ISD::PCMPGT;
|
|
Invert = true; break;
|
|
case ISD::SETULT: Swap = true;
|
|
case ISD::SETUGT: Opc = X86ISD::PCMPGT;
|
|
FlipSigns = true; break;
|
|
case ISD::SETUGE: Swap = true;
|
|
case ISD::SETULE: Opc = X86ISD::PCMPGT;
|
|
FlipSigns = true; Invert = true; break;
|
|
}
|
|
|
|
// Special case: Use min/max operations for SETULE/SETUGE
|
|
MVT VET = VT.getVectorElementType();
|
|
bool hasMinMax =
|
|
(Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
|
|
|| (Subtarget->hasSSE2() && (VET == MVT::i8));
|
|
|
|
if (hasMinMax) {
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
|
|
case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
|
|
}
|
|
|
|
if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
|
|
}
|
|
|
|
bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
|
|
if (!MinMax && hasSubus) {
|
|
// As another special case, use PSUBUS[BW] when it's profitable. E.g. for
|
|
// Op0 u<= Op1:
|
|
// t = psubus Op0, Op1
|
|
// pcmpeq t, <0..0>
|
|
switch (SetCCOpcode) {
|
|
default: break;
|
|
case ISD::SETULT: {
|
|
// If the comparison is against a constant we can turn this into a
|
|
// setule. With psubus, setule does not require a swap. This is
|
|
// beneficial because the constant in the register is no longer
|
|
// destructed as the destination so it can be hoisted out of a loop.
|
|
// Only do this pre-AVX since vpcmp* is no longer destructive.
|
|
if (Subtarget->hasAVX())
|
|
break;
|
|
SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
|
|
if (ULEOp1.getNode()) {
|
|
Op1 = ULEOp1;
|
|
Subus = true; Invert = false; Swap = false;
|
|
}
|
|
break;
|
|
}
|
|
// Psubus is better than flip-sign because it requires no inversion.
|
|
case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break;
|
|
case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
|
|
}
|
|
|
|
if (Subus) {
|
|
Opc = X86ISD::SUBUS;
|
|
FlipSigns = false;
|
|
}
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
// Check that the operation in question is available (most are plain SSE2,
|
|
// but PCMPGTQ and PCMPEQQ have different requirements).
|
|
if (VT == MVT::v2i64) {
|
|
if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
|
|
assert(Subtarget->hasSSE2() && "Don't know how to lower!");
|
|
|
|
// First cast everything to the right type.
|
|
Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
|
|
Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
|
|
|
|
// Since SSE has no unsigned integer comparisons, we need to flip the sign
|
|
// bits of the inputs before performing those operations. The lower
|
|
// compare is always unsigned.
|
|
SDValue SB;
|
|
if (FlipSigns) {
|
|
SB = DAG.getConstant(0x80000000U, MVT::v4i32);
|
|
} else {
|
|
SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
|
|
SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
|
|
SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
|
|
Sign, Zero, Sign, Zero);
|
|
}
|
|
Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
|
|
Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
|
|
|
|
// Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
|
|
SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
|
|
SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
|
|
|
|
// Create masks for only the low parts/high parts of the 64 bit integers.
|
|
static const int MaskHi[] = { 1, 1, 3, 3 };
|
|
static const int MaskLo[] = { 0, 0, 2, 2 };
|
|
SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
|
|
SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
|
|
SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
|
|
|
|
SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
|
|
Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
|
|
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, MVT::v4i32);
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
|
|
}
|
|
|
|
if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
|
|
// If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
|
|
// pcmpeqd + pshufd + pand.
|
|
assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
|
|
|
|
// First cast everything to the right type.
|
|
Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
|
|
Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
|
|
|
|
// Do the compare.
|
|
SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
|
|
|
|
// Make sure the lower and upper halves are both all-ones.
|
|
static const int Mask[] = { 1, 0, 3, 2 };
|
|
SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
|
|
Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
|
|
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, MVT::v4i32);
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
|
|
}
|
|
}
|
|
|
|
// Since SSE has no unsigned integer comparisons, we need to flip the sign
|
|
// bits of the inputs before performing those operations.
|
|
if (FlipSigns) {
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
|
|
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
|
|
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
|
|
}
|
|
|
|
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
|
|
|
|
// If the logical-not of the result is required, perform that now.
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, VT);
|
|
|
|
if (MinMax)
|
|
Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
|
|
|
|
if (Subus)
|
|
Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
|
|
getZeroVector(VT, Subtarget, DAG, dl));
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
|
|
|
|
assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
|
|
&& "SetCC type must be 8-bit or 1-bit integer");
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
// Optimize to BT if possible.
|
|
// Lower (X & (1 << N)) == 0 to BT(X, N).
|
|
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
|
|
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
|
|
if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
|
|
Op1.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(Op1)->isNullValue() &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
|
|
if (NewSetCC.getNode())
|
|
return NewSetCC;
|
|
}
|
|
|
|
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
|
|
// these.
|
|
if (Op1.getOpcode() == ISD::Constant &&
|
|
(cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
|
|
cast<ConstantSDNode>(Op1)->isNullValue()) &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
|
|
// If the input is a setcc, then reuse the input setcc or use a new one with
|
|
// the inverted condition.
|
|
if (Op0.getOpcode() == X86ISD::SETCC) {
|
|
X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
|
|
bool Invert = (CC == ISD::SETNE) ^
|
|
cast<ConstantSDNode>(Op1)->isNullValue();
|
|
if (!Invert)
|
|
return Op0;
|
|
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(CCode, MVT::i8),
|
|
Op0.getOperand(1));
|
|
if (VT == MVT::i1)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
|
|
return SetCC;
|
|
}
|
|
}
|
|
if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
|
|
(cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
|
|
ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
|
|
return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
|
|
}
|
|
|
|
bool isFP = Op1.getSimpleValueType().isFloatingPoint();
|
|
unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
|
|
if (X86CC == X86::COND_INVALID)
|
|
return SDValue();
|
|
|
|
SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
|
|
EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8), EFLAGS);
|
|
if (VT == MVT::i1)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
|
|
return SetCC;
|
|
}
|
|
|
|
// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
|
|
static bool isX86LogicalCmp(SDValue Op) {
|
|
unsigned Opc = Op.getNode()->getOpcode();
|
|
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
|
|
Opc == X86ISD::SAHF)
|
|
return true;
|
|
if (Op.getResNo() == 1 &&
|
|
(Opc == X86ISD::ADD ||
|
|
Opc == X86ISD::SUB ||
|
|
Opc == X86ISD::ADC ||
|
|
Opc == X86ISD::SBB ||
|
|
Opc == X86ISD::SMUL ||
|
|
Opc == X86ISD::UMUL ||
|
|
Opc == X86ISD::INC ||
|
|
Opc == X86ISD::DEC ||
|
|
Opc == X86ISD::OR ||
|
|
Opc == X86ISD::XOR ||
|
|
Opc == X86ISD::AND))
|
|
return true;
|
|
|
|
if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
|
|
if (V.getOpcode() != ISD::TRUNCATE)
|
|
return false;
|
|
|
|
SDValue VOp0 = V.getOperand(0);
|
|
unsigned InBits = VOp0.getValueSizeInBits();
|
|
unsigned Bits = V.getValueSizeInBits();
|
|
return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
bool addTest = true;
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
EVT VT = Op1.getValueType();
|
|
SDValue CC;
|
|
|
|
// Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
|
|
// are available. Otherwise fp cmovs get lowered into a less efficient branch
|
|
// sequence later on.
|
|
if (Cond.getOpcode() == ISD::SETCC &&
|
|
((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
|
|
(Subtarget->hasSSE1() && VT == MVT::f32)) &&
|
|
VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
|
|
SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
|
|
int SSECC = translateX86FSETCC(
|
|
cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
|
|
|
|
if (SSECC != 8) {
|
|
if (Subtarget->hasAVX512()) {
|
|
SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
|
|
DAG.getConstant(SSECC, MVT::i8));
|
|
return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
|
|
}
|
|
SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
|
|
DAG.getConstant(SSECC, MVT::i8));
|
|
SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
|
|
SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
|
|
return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
|
|
}
|
|
}
|
|
|
|
if (Cond.getOpcode() == ISD::SETCC) {
|
|
SDValue NewCond = LowerSETCC(Cond, DAG);
|
|
if (NewCond.getNode())
|
|
Cond = NewCond;
|
|
}
|
|
|
|
// (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
|
|
// (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
|
|
// (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
|
|
// (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
|
|
if (Cond.getOpcode() == X86ISD::SETCC &&
|
|
Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
|
|
isZero(Cond.getOperand(1).getOperand(1))) {
|
|
SDValue Cmp = Cond.getOperand(1);
|
|
|
|
unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
|
|
|
|
if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
|
|
(CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
|
|
SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
|
|
|
|
SDValue CmpOp0 = Cmp.getOperand(0);
|
|
// Apply further optimizations for special cases
|
|
// (select (x != 0), -1, 0) -> neg & sbb
|
|
// (select (x == 0), 0, -1) -> neg & sbb
|
|
if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
|
|
if (YC->isNullValue() &&
|
|
(isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
|
|
SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
|
|
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
|
|
DAG.getConstant(0, CmpOp0.getValueType()),
|
|
CmpOp0);
|
|
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
|
|
DAG.getConstant(X86::COND_B, MVT::i8),
|
|
SDValue(Neg.getNode(), 1));
|
|
return Res;
|
|
}
|
|
|
|
Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
|
|
CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
|
|
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
|
|
|
|
SDValue Res = // Res = 0 or -1.
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
|
|
DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
|
|
|
|
if (isAllOnes(Op1) != (CondCode == X86::COND_E))
|
|
Res = DAG.getNOT(DL, Res, Res.getValueType());
|
|
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
|
|
if (!N2C || !N2C->isNullValue())
|
|
Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// Look past (and (setcc_carry (cmp ...)), 1).
|
|
if (Cond.getOpcode() == ISD::AND &&
|
|
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
if (C && C->getAPIntValue() == 1)
|
|
Cond = Cond.getOperand(0);
|
|
}
|
|
|
|
// If condition flag is set by a X86ISD::CMP, then use it as the condition
|
|
// setting operand in place of the X86ISD::SETCC.
|
|
unsigned CondOpcode = Cond.getOpcode();
|
|
if (CondOpcode == X86ISD::SETCC ||
|
|
CondOpcode == X86ISD::SETCC_CARRY) {
|
|
CC = Cond.getOperand(0);
|
|
|
|
SDValue Cmp = Cond.getOperand(1);
|
|
unsigned Opc = Cmp.getOpcode();
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
bool IllegalFPCMov = false;
|
|
if (VT.isFloatingPoint() && !VT.isVector() &&
|
|
!isScalarFPTypeInSSEReg(VT)) // FPStack?
|
|
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
|
|
|
|
if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
|
|
Opc == X86ISD::BT) { // FIXME
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
} else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
|
|
CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
|
|
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
|
|
Cond.getOperand(0).getValueType() != MVT::i8)) {
|
|
SDValue LHS = Cond.getOperand(0);
|
|
SDValue RHS = Cond.getOperand(1);
|
|
unsigned X86Opcode;
|
|
unsigned X86Cond;
|
|
SDVTList VTs;
|
|
switch (CondOpcode) {
|
|
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
|
|
case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
|
|
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
|
|
case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
|
|
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
|
|
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
|
|
default: llvm_unreachable("unexpected overflowing operator");
|
|
}
|
|
if (CondOpcode == ISD::UMULO)
|
|
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
|
|
MVT::i32);
|
|
else
|
|
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
|
|
|
|
SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
|
|
|
|
if (CondOpcode == ISD::UMULO)
|
|
Cond = X86Op.getValue(2);
|
|
else
|
|
Cond = X86Op.getValue(1);
|
|
|
|
CC = DAG.getConstant(X86Cond, MVT::i8);
|
|
addTest = false;
|
|
}
|
|
|
|
if (addTest) {
|
|
// Look pass the truncate if the high bits are known zero.
|
|
if (isTruncWithZeroHighBitsInput(Cond, DAG))
|
|
Cond = Cond.getOperand(0);
|
|
|
|
// We know the result of AND is compared against zero. Try to match
|
|
// it to BT.
|
|
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
|
|
SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
|
|
if (NewSetCC.getNode()) {
|
|
CC = NewSetCC.getOperand(0);
|
|
Cond = NewSetCC.getOperand(1);
|
|
addTest = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
|
|
}
|
|
|
|
// a < b ? -1 : 0 -> RES = ~setcc_carry
|
|
// a < b ? 0 : -1 -> RES = setcc_carry
|
|
// a >= b ? -1 : 0 -> RES = setcc_carry
|
|
// a >= b ? 0 : -1 -> RES = ~setcc_carry
|
|
if (Cond.getOpcode() == X86ISD::SUB) {
|
|
Cond = ConvertCmpIfNecessary(Cond, DAG);
|
|
unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
|
|
|
|
if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
|
|
(isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
|
|
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
|
|
DAG.getConstant(X86::COND_B, MVT::i8), Cond);
|
|
if (isAllOnes(Op1) != (CondCode == X86::COND_B))
|
|
return DAG.getNOT(DL, Res, Res.getValueType());
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// X86 doesn't have an i8 cmov. If both operands are the result of a truncate
|
|
// widen the cmov and push the truncate through. This avoids introducing a new
|
|
// branch during isel and doesn't add any extensions.
|
|
if (Op.getValueType() == MVT::i8 &&
|
|
Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
|
|
SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
|
|
if (T1.getValueType() == T2.getValueType() &&
|
|
// Blacklist CopyFromReg to avoid partial register stalls.
|
|
T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
|
|
SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
|
|
SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
|
|
}
|
|
}
|
|
|
|
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
|
|
// condition is true.
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
SDValue Ops[] = { Op2, Op1, CC, Cond };
|
|
return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
|
|
}
|
|
|
|
static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
SDValue In = Op->getOperand(0);
|
|
MVT InVT = In.getSimpleValueType();
|
|
MVT VTElt = VT.getVectorElementType();
|
|
MVT InVTElt = InVT.getVectorElementType();
|
|
SDLoc dl(Op);
|
|
|
|
// SKX processor
|
|
if ((InVTElt == MVT::i1) &&
|
|
(((Subtarget->hasBWI() && Subtarget->hasVLX() &&
|
|
VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
|
|
|
|
((Subtarget->hasBWI() && VT.is512BitVector() &&
|
|
VTElt.getSizeInBits() <= 16)) ||
|
|
|
|
((Subtarget->hasDQI() && Subtarget->hasVLX() &&
|
|
VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
|
|
|
|
((Subtarget->hasDQI() && VT.is512BitVector() &&
|
|
VTElt.getSizeInBits() >= 32))))
|
|
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
|
|
|
|
unsigned int NumElts = VT.getVectorNumElements();
|
|
|
|
if (NumElts != 8 && NumElts != 16)
|
|
return SDValue();
|
|
|
|
if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
|
|
if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
|
|
return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
|
|
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
|
|
}
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
|
|
|
|
MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
|
|
Constant *C = ConstantInt::get(*DAG.getContext(),
|
|
APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
|
|
|
|
SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
|
|
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
|
|
SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, Alignment);
|
|
SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
|
|
if (VT.is512BitVector())
|
|
return Brcst;
|
|
return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
|
|
}
|
|
|
|
static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = Op->getSimpleValueType(0);
|
|
SDValue In = Op->getOperand(0);
|
|
MVT InVT = In.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
|
|
return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
|
|
|
|
if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
|
|
(VT != MVT::v8i32 || InVT != MVT::v8i16) &&
|
|
(VT != MVT::v16i16 || InVT != MVT::v16i8))
|
|
return SDValue();
|
|
|
|
if (Subtarget->hasInt256())
|
|
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
|
|
|
|
// Optimize vectors in AVX mode
|
|
// Sign extend v8i16 to v8i32 and
|
|
// v4i32 to v4i64
|
|
//
|
|
// Divide input vector into two parts
|
|
// for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
|
|
// use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
|
|
// concat the vectors to original VT
|
|
|
|
unsigned NumElems = InVT.getVectorNumElements();
|
|
SDValue Undef = DAG.getUNDEF(InVT);
|
|
|
|
SmallVector<int,8> ShufMask1(NumElems, -1);
|
|
for (unsigned i = 0; i != NumElems/2; ++i)
|
|
ShufMask1[i] = i;
|
|
|
|
SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
|
|
|
|
SmallVector<int,8> ShufMask2(NumElems, -1);
|
|
for (unsigned i = 0; i != NumElems/2; ++i)
|
|
ShufMask2[i] = i + NumElems/2;
|
|
|
|
SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
|
|
|
|
MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
|
|
VT.getVectorNumElements()/2);
|
|
|
|
OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
|
|
OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
|
|
}
|
|
|
|
// Lower vector extended loads using a shuffle. If SSSE3 is not available we
|
|
// may emit an illegal shuffle but the expansion is still better than scalar
|
|
// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
|
|
// we'll emit a shuffle and a arithmetic shift.
|
|
// TODO: It is possible to support ZExt by zeroing the undef values during
|
|
// the shuffle phase or after the shuffle.
|
|
static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT RegVT = Op.getSimpleValueType();
|
|
assert(RegVT.isVector() && "We only custom lower vector sext loads.");
|
|
assert(RegVT.isInteger() &&
|
|
"We only custom lower integer vector sext loads.");
|
|
|
|
// Nothing useful we can do without SSE2 shuffles.
|
|
assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
|
|
|
|
LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
|
|
SDLoc dl(Ld);
|
|
EVT MemVT = Ld->getMemoryVT();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
unsigned RegSz = RegVT.getSizeInBits();
|
|
|
|
ISD::LoadExtType Ext = Ld->getExtensionType();
|
|
|
|
assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
|
|
&& "Only anyext and sext are currently implemented.");
|
|
assert(MemVT != RegVT && "Cannot extend to the same type");
|
|
assert(MemVT.isVector() && "Must load a vector from memory");
|
|
|
|
unsigned NumElems = RegVT.getVectorNumElements();
|
|
unsigned MemSz = MemVT.getSizeInBits();
|
|
assert(RegSz > MemSz && "Register size must be greater than the mem size");
|
|
|
|
if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
|
|
// The only way in which we have a legal 256-bit vector result but not the
|
|
// integer 256-bit operations needed to directly lower a sextload is if we
|
|
// have AVX1 but not AVX2. In that case, we can always emit a sextload to
|
|
// a 128-bit vector and a normal sign_extend to 256-bits that should get
|
|
// correctly legalized. We do this late to allow the canonical form of
|
|
// sextload to persist throughout the rest of the DAG combiner -- it wants
|
|
// to fold together any extensions it can, and so will fuse a sign_extend
|
|
// of an sextload into a sextload targeting a wider value.
|
|
SDValue Load;
|
|
if (MemSz == 128) {
|
|
// Just switch this to a normal load.
|
|
assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
|
|
"it must be a legal 128-bit vector "
|
|
"type!");
|
|
Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
|
|
Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->isInvariant(), Ld->getAlignment());
|
|
} else {
|
|
assert(MemSz < 128 &&
|
|
"Can't extend a type wider than 128 bits to a 256 bit vector!");
|
|
// Do an sext load to a 128-bit vector type. We want to use the same
|
|
// number of elements, but elements half as wide. This will end up being
|
|
// recursively lowered by this routine, but will succeed as we definitely
|
|
// have all the necessary features if we're using AVX1.
|
|
EVT HalfEltVT =
|
|
EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
|
|
EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
|
|
Load =
|
|
DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
|
|
Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
|
|
Ld->isNonTemporal(), Ld->isInvariant(),
|
|
Ld->getAlignment());
|
|
}
|
|
|
|
// Replace chain users with the new chain.
|
|
assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
|
|
|
|
// Finally, do a normal sign-extend to the desired register.
|
|
return DAG.getSExtOrTrunc(Load, dl, RegVT);
|
|
}
|
|
|
|
// All sizes must be a power of two.
|
|
assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
|
|
"Non-power-of-two elements are not custom lowered!");
|
|
|
|
// Attempt to load the original value using scalar loads.
|
|
// Find the largest scalar type that divides the total loaded size.
|
|
MVT SclrLoadTy = MVT::i8;
|
|
for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
|
|
tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
|
|
MVT Tp = (MVT::SimpleValueType)tp;
|
|
if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
|
|
SclrLoadTy = Tp;
|
|
}
|
|
}
|
|
|
|
// On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
|
|
if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
|
|
(64 <= MemSz))
|
|
SclrLoadTy = MVT::f64;
|
|
|
|
// Calculate the number of scalar loads that we need to perform
|
|
// in order to load our vector from memory.
|
|
unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
|
|
|
|
assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
|
|
"Can only lower sext loads with a single scalar load!");
|
|
|
|
unsigned loadRegZize = RegSz;
|
|
if (Ext == ISD::SEXTLOAD && RegSz == 256)
|
|
loadRegZize /= 2;
|
|
|
|
// Represent our vector as a sequence of elements which are the
|
|
// largest scalar that we can load.
|
|
EVT LoadUnitVecVT = EVT::getVectorVT(
|
|
*DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
|
|
|
|
// Represent the data using the same element type that is stored in
|
|
// memory. In practice, we ''widen'' MemVT.
|
|
EVT WideVecVT =
|
|
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
|
|
loadRegZize / MemVT.getScalarType().getSizeInBits());
|
|
|
|
assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
|
|
"Invalid vector type");
|
|
|
|
// We can't shuffle using an illegal type.
|
|
assert(TLI.isTypeLegal(WideVecVT) &&
|
|
"We only lower types that form legal widened vector types");
|
|
|
|
SmallVector<SDValue, 8> Chains;
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
SDValue Increment =
|
|
DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, TLI.getPointerTy());
|
|
SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
|
|
|
|
for (unsigned i = 0; i < NumLoads; ++i) {
|
|
// Perform a single load.
|
|
SDValue ScalarLoad =
|
|
DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
|
|
Ld->getAlignment());
|
|
Chains.push_back(ScalarLoad.getValue(1));
|
|
// Create the first element type using SCALAR_TO_VECTOR in order to avoid
|
|
// another round of DAGCombining.
|
|
if (i == 0)
|
|
Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
|
|
else
|
|
Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
|
|
ScalarLoad, DAG.getIntPtrConstant(i));
|
|
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
|
|
}
|
|
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
|
|
|
|
// Bitcast the loaded value to a vector of the original element type, in
|
|
// the size of the target vector type.
|
|
SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
|
|
unsigned SizeRatio = RegSz / MemSz;
|
|
|
|
if (Ext == ISD::SEXTLOAD) {
|
|
// If we have SSE4.1, we can directly emit a VSEXT node.
|
|
if (Subtarget->hasSSE41()) {
|
|
SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
|
|
return Sext;
|
|
}
|
|
|
|
// Otherwise we'll shuffle the small elements in the high bits of the
|
|
// larger type and perform an arithmetic shift. If the shift is not legal
|
|
// it's better to scalarize.
|
|
assert(TLI.isOperationLegalOrCustom(ISD::SRA, RegVT) &&
|
|
"We can't implement a sext load without an arithmetic right shift!");
|
|
|
|
// Redistribute the loaded elements into the different locations.
|
|
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
ShuffleVec[i * SizeRatio + SizeRatio - 1] = i;
|
|
|
|
SDValue Shuff = DAG.getVectorShuffle(
|
|
WideVecVT, dl, SlicedVec, DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
|
|
|
|
Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
|
|
|
|
// Build the arithmetic shift.
|
|
unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
|
|
MemVT.getVectorElementType().getSizeInBits();
|
|
Shuff =
|
|
DAG.getNode(ISD::SRA, dl, RegVT, Shuff, DAG.getConstant(Amt, RegVT));
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
|
|
return Shuff;
|
|
}
|
|
|
|
// Redistribute the loaded elements into the different locations.
|
|
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
ShuffleVec[i * SizeRatio] = i;
|
|
|
|
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
|
|
DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
|
|
|
|
// Bitcast to the requested type.
|
|
Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
|
|
return Shuff;
|
|
}
|
|
|
|
// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
|
|
// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
|
|
// from the AND / OR.
|
|
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
|
|
Opc = Op.getOpcode();
|
|
if (Opc != ISD::OR && Opc != ISD::AND)
|
|
return false;
|
|
return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
|
|
Op.getOperand(0).hasOneUse() &&
|
|
Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
|
|
Op.getOperand(1).hasOneUse());
|
|
}
|
|
|
|
// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
|
|
// 1 and that the SETCC node has a single use.
|
|
static bool isXor1OfSetCC(SDValue Op) {
|
|
if (Op.getOpcode() != ISD::XOR)
|
|
return false;
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (N1C && N1C->getAPIntValue() == 1) {
|
|
return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
|
|
Op.getOperand(0).hasOneUse();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
bool addTest = true;
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Cond = Op.getOperand(1);
|
|
SDValue Dest = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
SDValue CC;
|
|
bool Inverted = false;
|
|
|
|
if (Cond.getOpcode() == ISD::SETCC) {
|
|
// Check for setcc([su]{add,sub,mul}o == 0).
|
|
if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
|
|
isa<ConstantSDNode>(Cond.getOperand(1)) &&
|
|
cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
|
|
Cond.getOperand(0).getResNo() == 1 &&
|
|
(Cond.getOperand(0).getOpcode() == ISD::SADDO ||
|
|
Cond.getOperand(0).getOpcode() == ISD::UADDO ||
|
|
Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
|
|
Cond.getOperand(0).getOpcode() == ISD::USUBO ||
|
|
Cond.getOperand(0).getOpcode() == ISD::SMULO ||
|
|
Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
|
|
Inverted = true;
|
|
Cond = Cond.getOperand(0);
|
|
} else {
|
|
SDValue NewCond = LowerSETCC(Cond, DAG);
|
|
if (NewCond.getNode())
|
|
Cond = NewCond;
|
|
}
|
|
}
|
|
#if 0
|
|
// FIXME: LowerXALUO doesn't handle these!!
|
|
else if (Cond.getOpcode() == X86ISD::ADD ||
|
|
Cond.getOpcode() == X86ISD::SUB ||
|
|
Cond.getOpcode() == X86ISD::SMUL ||
|
|
Cond.getOpcode() == X86ISD::UMUL)
|
|
Cond = LowerXALUO(Cond, DAG);
|
|
#endif
|
|
|
|
// Look pass (and (setcc_carry (cmp ...)), 1).
|
|
if (Cond.getOpcode() == ISD::AND &&
|
|
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
if (C && C->getAPIntValue() == 1)
|
|
Cond = Cond.getOperand(0);
|
|
}
|
|
|
|
// If condition flag is set by a X86ISD::CMP, then use it as the condition
|
|
// setting operand in place of the X86ISD::SETCC.
|
|
unsigned CondOpcode = Cond.getOpcode();
|
|
if (CondOpcode == X86ISD::SETCC ||
|
|
CondOpcode == X86ISD::SETCC_CARRY) {
|
|
CC = Cond.getOperand(0);
|
|
|
|
SDValue Cmp = Cond.getOperand(1);
|
|
unsigned Opc = Cmp.getOpcode();
|
|
// FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
|
|
if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
} else {
|
|
switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
|
|
default: break;
|
|
case X86::COND_O:
|
|
case X86::COND_B:
|
|
// These can only come from an arithmetic instruction with overflow,
|
|
// e.g. SADDO, UADDO.
|
|
Cond = Cond.getNode()->getOperand(1);
|
|
addTest = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
CondOpcode = Cond.getOpcode();
|
|
if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
|
|
CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
|
|
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
|
|
Cond.getOperand(0).getValueType() != MVT::i8)) {
|
|
SDValue LHS = Cond.getOperand(0);
|
|
SDValue RHS = Cond.getOperand(1);
|
|
unsigned X86Opcode;
|
|
unsigned X86Cond;
|
|
SDVTList VTs;
|
|
// Keep this in sync with LowerXALUO, otherwise we might create redundant
|
|
// instructions that can't be removed afterwards (i.e. X86ISD::ADD and
|
|
// X86ISD::INC).
|
|
switch (CondOpcode) {
|
|
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
|
|
case ISD::SADDO:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
|
|
if (C->isOne()) {
|
|
X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
|
|
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
|
|
case ISD::SSUBO:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
|
|
if (C->isOne()) {
|
|
X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
|
|
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
|
|
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
|
|
default: llvm_unreachable("unexpected overflowing operator");
|
|
}
|
|
if (Inverted)
|
|
X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
|
|
if (CondOpcode == ISD::UMULO)
|
|
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
|
|
MVT::i32);
|
|
else
|
|
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
|
|
|
|
SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
|
|
|
|
if (CondOpcode == ISD::UMULO)
|
|
Cond = X86Op.getValue(2);
|
|
else
|
|
Cond = X86Op.getValue(1);
|
|
|
|
CC = DAG.getConstant(X86Cond, MVT::i8);
|
|
addTest = false;
|
|
} else {
|
|
unsigned CondOpc;
|
|
if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
|
|
SDValue Cmp = Cond.getOperand(0).getOperand(1);
|
|
if (CondOpc == ISD::OR) {
|
|
// Also, recognize the pattern generated by an FCMP_UNE. We can emit
|
|
// two branches instead of an explicit OR instruction with a
|
|
// separate test.
|
|
if (Cmp == Cond.getOperand(1).getOperand(1) &&
|
|
isX86LogicalCmp(Cmp)) {
|
|
CC = Cond.getOperand(0).getOperand(0);
|
|
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cmp);
|
|
CC = Cond.getOperand(1).getOperand(0);
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
} else { // ISD::AND
|
|
// Also, recognize the pattern generated by an FCMP_OEQ. We can emit
|
|
// two branches instead of an explicit AND instruction with a
|
|
// separate test. However, we only do this if this block doesn't
|
|
// have a fall-through edge, because this requires an explicit
|
|
// jmp when the condition is false.
|
|
if (Cmp == Cond.getOperand(1).getOperand(1) &&
|
|
isX86LogicalCmp(Cmp) &&
|
|
Op.getNode()->hasOneUse()) {
|
|
X86::CondCode CCode =
|
|
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
CC = DAG.getConstant(CCode, MVT::i8);
|
|
SDNode *User = *Op.getNode()->use_begin();
|
|
// Look for an unconditional branch following this conditional branch.
|
|
// We need this because we need to reverse the successors in order
|
|
// to implement FCMP_OEQ.
|
|
if (User->getOpcode() == ISD::BR) {
|
|
SDValue FalseBB = User->getOperand(1);
|
|
SDNode *NewBR =
|
|
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
|
|
assert(NewBR == User);
|
|
(void)NewBR;
|
|
Dest = FalseBB;
|
|
|
|
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cmp);
|
|
X86::CondCode CCode =
|
|
(X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
CC = DAG.getConstant(CCode, MVT::i8);
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
}
|
|
}
|
|
} else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
|
|
// Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
|
|
// It should be transformed during dag combiner except when the condition
|
|
// is set by a arithmetics with overflow node.
|
|
X86::CondCode CCode =
|
|
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
|
|
CCode = X86::GetOppositeBranchCondition(CCode);
|
|
CC = DAG.getConstant(CCode, MVT::i8);
|
|
Cond = Cond.getOperand(0).getOperand(1);
|
|
addTest = false;
|
|
} else if (Cond.getOpcode() == ISD::SETCC &&
|
|
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
|
|
// For FCMP_OEQ, we can emit
|
|
// two branches instead of an explicit AND instruction with a
|
|
// separate test. However, we only do this if this block doesn't
|
|
// have a fall-through edge, because this requires an explicit
|
|
// jmp when the condition is false.
|
|
if (Op.getNode()->hasOneUse()) {
|
|
SDNode *User = *Op.getNode()->use_begin();
|
|
// Look for an unconditional branch following this conditional branch.
|
|
// We need this because we need to reverse the successors in order
|
|
// to implement FCMP_OEQ.
|
|
if (User->getOpcode() == ISD::BR) {
|
|
SDValue FalseBB = User->getOperand(1);
|
|
SDNode *NewBR =
|
|
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
|
|
assert(NewBR == User);
|
|
(void)NewBR;
|
|
Dest = FalseBB;
|
|
|
|
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
|
|
Cond.getOperand(0), Cond.getOperand(1));
|
|
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
|
|
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cmp);
|
|
CC = DAG.getConstant(X86::COND_P, MVT::i8);
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
}
|
|
}
|
|
} else if (Cond.getOpcode() == ISD::SETCC &&
|
|
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
|
|
// For FCMP_UNE, we can emit
|
|
// two branches instead of an explicit AND instruction with a
|
|
// separate test. However, we only do this if this block doesn't
|
|
// have a fall-through edge, because this requires an explicit
|
|
// jmp when the condition is false.
|
|
if (Op.getNode()->hasOneUse()) {
|
|
SDNode *User = *Op.getNode()->use_begin();
|
|
// Look for an unconditional branch following this conditional branch.
|
|
// We need this because we need to reverse the successors in order
|
|
// to implement FCMP_UNE.
|
|
if (User->getOpcode() == ISD::BR) {
|
|
SDValue FalseBB = User->getOperand(1);
|
|
SDNode *NewBR =
|
|
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
|
|
assert(NewBR == User);
|
|
(void)NewBR;
|
|
|
|
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
|
|
Cond.getOperand(0), Cond.getOperand(1));
|
|
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
|
|
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
|
|
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cmp);
|
|
CC = DAG.getConstant(X86::COND_NP, MVT::i8);
|
|
Cond = Cmp;
|
|
addTest = false;
|
|
Dest = FalseBB;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
// Look pass the truncate if the high bits are known zero.
|
|
if (isTruncWithZeroHighBitsInput(Cond, DAG))
|
|
Cond = Cond.getOperand(0);
|
|
|
|
// We know the result of AND is compared against zero. Try to match
|
|
// it to BT.
|
|
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
|
|
SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
|
|
if (NewSetCC.getNode()) {
|
|
CC = NewSetCC.getOperand(0);
|
|
Cond = NewSetCC.getOperand(1);
|
|
addTest = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (addTest) {
|
|
X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
|
|
CC = DAG.getConstant(X86Cond, MVT::i8);
|
|
Cond = EmitTest(Cond, X86Cond, dl, DAG);
|
|
}
|
|
Cond = ConvertCmpIfNecessary(Cond, DAG);
|
|
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
|
|
Chain, Dest, CC, Cond);
|
|
}
|
|
|
|
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
|
|
// Calls to _alloca are needed to probe the stack when allocating more than 4k
|
|
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
|
|
// that the guard pages used by the OS virtual memory manager are allocated in
|
|
// correct sequence.
|
|
SDValue
|
|
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool SplitStack = MF.shouldSplitStack();
|
|
bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) ||
|
|
SplitStack;
|
|
SDLoc dl(Op);
|
|
|
|
if (!Lower) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDNode* Node = Op.getNode();
|
|
|
|
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
|
|
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
|
|
" not tell us which reg is the stack pointer!");
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue Tmp1 = SDValue(Node, 0);
|
|
SDValue Tmp2 = SDValue(Node, 1);
|
|
SDValue Tmp3 = Node->getOperand(2);
|
|
SDValue Chain = Tmp1.getOperand(0);
|
|
|
|
// Chain the dynamic stack allocation so that it doesn't modify the stack
|
|
// pointer when other instructions are using the stack.
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
|
|
SDLoc(Node));
|
|
|
|
SDValue Size = Tmp2.getOperand(1);
|
|
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
|
|
Chain = SP.getValue(1);
|
|
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
|
|
const TargetFrameLowering &TFI = *DAG.getSubtarget().getFrameLowering();
|
|
unsigned StackAlign = TFI.getStackAlignment();
|
|
Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
|
|
if (Align > StackAlign)
|
|
Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
|
|
DAG.getConstant(-(uint64_t)Align, VT));
|
|
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
|
|
|
|
Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
|
|
DAG.getIntPtrConstant(0, true), SDValue(),
|
|
SDLoc(Node));
|
|
|
|
SDValue Ops[2] = { Tmp1, Tmp2 };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
// Get the inputs.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
EVT VT = Op.getNode()->getValueType(0);
|
|
|
|
bool Is64Bit = Subtarget->is64Bit();
|
|
EVT SPTy = getPointerTy();
|
|
|
|
if (SplitStack) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
if (Is64Bit) {
|
|
// The 64 bit implementation of segmented stacks needs to clobber both r10
|
|
// r11. This makes it impossible to use it along with nested parameters.
|
|
const Function *F = MF.getFunction();
|
|
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
if (I->hasNestAttr())
|
|
report_fatal_error("Cannot use segmented stacks with functions that "
|
|
"have nested arguments.");
|
|
}
|
|
|
|
const TargetRegisterClass *AddrRegClass =
|
|
getRegClassFor(getPointerTy());
|
|
unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
|
|
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
|
|
SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
|
|
DAG.getRegister(Vreg, SPTy));
|
|
SDValue Ops1[2] = { Value, Chain };
|
|
return DAG.getMergeValues(Ops1, dl);
|
|
} else {
|
|
SDValue Flag;
|
|
const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
|
|
Flag = Chain.getValue(1);
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
|
|
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
unsigned SPReg = RegInfo->getStackRegister();
|
|
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
|
|
Chain = SP.getValue(1);
|
|
|
|
if (Align) {
|
|
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
|
|
DAG.getConstant(-(uint64_t)Align, VT));
|
|
Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
|
|
}
|
|
|
|
SDValue Ops1[2] = { SP, Chain };
|
|
return DAG.getMergeValues(Ops1, dl);
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
SDLoc DL(Op);
|
|
|
|
if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
}
|
|
|
|
// __va_list_tag:
|
|
// gp_offset (0 - 6 * 8)
|
|
// fp_offset (48 - 48 + 8 * 16)
|
|
// overflow_arg_area (point to parameters coming in memory).
|
|
// reg_save_area
|
|
SmallVector<SDValue, 8> MemOps;
|
|
SDValue FIN = Op.getOperand(1);
|
|
// Store gp_offset
|
|
SDValue Store = DAG.getStore(Op.getOperand(0), DL,
|
|
DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
|
|
MVT::i32),
|
|
FIN, MachinePointerInfo(SV), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Store fp_offset
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
FIN, DAG.getIntPtrConstant(4));
|
|
Store = DAG.getStore(Op.getOperand(0), DL,
|
|
DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
|
|
MVT::i32),
|
|
FIN, MachinePointerInfo(SV, 4), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Store ptr to overflow_arg_area
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
FIN, DAG.getIntPtrConstant(4));
|
|
SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
|
|
MachinePointerInfo(SV, 8),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
|
|
// Store ptr to reg_save_area.
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
|
|
FIN, DAG.getIntPtrConstant(8));
|
|
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
|
|
getPointerTy());
|
|
Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
|
|
MachinePointerInfo(SV, 16), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->is64Bit() &&
|
|
"LowerVAARG only handles 64-bit va_arg!");
|
|
assert((Subtarget->isTargetLinux() ||
|
|
Subtarget->isTargetDarwin()) &&
|
|
"Unhandled target in LowerVAARG");
|
|
assert(Op.getNode()->getNumOperands() == 4);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue SrcPtr = Op.getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
unsigned Align = Op.getConstantOperandVal(3);
|
|
SDLoc dl(Op);
|
|
|
|
EVT ArgVT = Op.getNode()->getValueType(0);
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
|
|
uint8_t ArgMode;
|
|
|
|
// Decide which area this value should be read from.
|
|
// TODO: Implement the AMD64 ABI in its entirety. This simple
|
|
// selection mechanism works only for the basic types.
|
|
if (ArgVT == MVT::f80) {
|
|
llvm_unreachable("va_arg for f80 not yet implemented");
|
|
} else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
|
|
ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
|
|
} else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
|
|
ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
|
|
} else {
|
|
llvm_unreachable("Unhandled argument type in LowerVAARG");
|
|
}
|
|
|
|
if (ArgMode == 2) {
|
|
// Sanity Check: Make sure using fp_offset makes sense.
|
|
assert(!DAG.getTarget().Options.UseSoftFloat &&
|
|
!(DAG.getMachineFunction()
|
|
.getFunction()->getAttributes()
|
|
.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NoImplicitFloat)) &&
|
|
Subtarget->hasSSE1());
|
|
}
|
|
|
|
// Insert VAARG_64 node into the DAG
|
|
// VAARG_64 returns two values: Variable Argument Address, Chain
|
|
SmallVector<SDValue, 11> InstOps;
|
|
InstOps.push_back(Chain);
|
|
InstOps.push_back(SrcPtr);
|
|
InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
|
|
InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
|
|
InstOps.push_back(DAG.getConstant(Align, MVT::i32));
|
|
SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
|
|
SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
|
|
VTs, InstOps, MVT::i64,
|
|
MachinePointerInfo(SV),
|
|
/*Align=*/0,
|
|
/*Volatile=*/false,
|
|
/*ReadMem=*/true,
|
|
/*WriteMem=*/true);
|
|
Chain = VAARG.getValue(1);
|
|
|
|
// Load the next argument and return it
|
|
return DAG.getLoad(ArgVT, dl,
|
|
Chain,
|
|
VAARG,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
// X86-64 va_list is a struct { i32, i32, i8*, i8* }.
|
|
assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue DstPtr = Op.getOperand(1);
|
|
SDValue SrcPtr = Op.getOperand(2);
|
|
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
|
|
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
SDLoc DL(Op);
|
|
|
|
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
|
|
DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
|
|
false,
|
|
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
|
|
}
|
|
|
|
// getTargetVShiftByConstNode - Handle vector element shifts where the shift
|
|
// amount is a constant. Takes immediate version of shift as input.
|
|
static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
|
|
SDValue SrcOp, uint64_t ShiftAmt,
|
|
SelectionDAG &DAG) {
|
|
MVT ElementType = VT.getVectorElementType();
|
|
|
|
// Fold this packed shift into its first operand if ShiftAmt is 0.
|
|
if (ShiftAmt == 0)
|
|
return SrcOp;
|
|
|
|
// Check for ShiftAmt >= element width
|
|
if (ShiftAmt >= ElementType.getSizeInBits()) {
|
|
if (Opc == X86ISD::VSRAI)
|
|
ShiftAmt = ElementType.getSizeInBits() - 1;
|
|
else
|
|
return DAG.getConstant(0, VT);
|
|
}
|
|
|
|
assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
|
|
&& "Unknown target vector shift-by-constant node");
|
|
|
|
// Fold this packed vector shift into a build vector if SrcOp is a
|
|
// vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
|
|
if (VT == SrcOp.getSimpleValueType() &&
|
|
ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
|
|
SmallVector<SDValue, 8> Elts;
|
|
unsigned NumElts = SrcOp->getNumOperands();
|
|
ConstantSDNode *ND;
|
|
|
|
switch(Opc) {
|
|
default: llvm_unreachable(nullptr);
|
|
case X86ISD::VSHLI:
|
|
for (unsigned i=0; i!=NumElts; ++i) {
|
|
SDValue CurrentOp = SrcOp->getOperand(i);
|
|
if (CurrentOp->getOpcode() == ISD::UNDEF) {
|
|
Elts.push_back(CurrentOp);
|
|
continue;
|
|
}
|
|
ND = cast<ConstantSDNode>(CurrentOp);
|
|
const APInt &C = ND->getAPIntValue();
|
|
Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
|
|
}
|
|
break;
|
|
case X86ISD::VSRLI:
|
|
for (unsigned i=0; i!=NumElts; ++i) {
|
|
SDValue CurrentOp = SrcOp->getOperand(i);
|
|
if (CurrentOp->getOpcode() == ISD::UNDEF) {
|
|
Elts.push_back(CurrentOp);
|
|
continue;
|
|
}
|
|
ND = cast<ConstantSDNode>(CurrentOp);
|
|
const APInt &C = ND->getAPIntValue();
|
|
Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
|
|
}
|
|
break;
|
|
case X86ISD::VSRAI:
|
|
for (unsigned i=0; i!=NumElts; ++i) {
|
|
SDValue CurrentOp = SrcOp->getOperand(i);
|
|
if (CurrentOp->getOpcode() == ISD::UNDEF) {
|
|
Elts.push_back(CurrentOp);
|
|
continue;
|
|
}
|
|
ND = cast<ConstantSDNode>(CurrentOp);
|
|
const APInt &C = ND->getAPIntValue();
|
|
Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
|
|
}
|
|
break;
|
|
}
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
|
|
}
|
|
|
|
return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
|
|
}
|
|
|
|
// getTargetVShiftNode - Handle vector element shifts where the shift amount
|
|
// may or may not be a constant. Takes immediate version of shift as input.
|
|
static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
|
|
SDValue SrcOp, SDValue ShAmt,
|
|
SelectionDAG &DAG) {
|
|
assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
|
|
|
|
// Catch shift-by-constant.
|
|
if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
|
|
return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
|
|
CShAmt->getZExtValue(), DAG);
|
|
|
|
// Change opcode to non-immediate version
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unknown target vector shift node");
|
|
case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
|
|
case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
|
|
case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
|
|
}
|
|
|
|
// Need to build a vector containing shift amount
|
|
// Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
|
|
SDValue ShOps[4];
|
|
ShOps[0] = ShAmt;
|
|
ShOps[1] = DAG.getConstant(0, MVT::i32);
|
|
ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
|
|
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, ShOps);
|
|
|
|
// The return type has to be a 128-bit type with the same element
|
|
// type as the input type.
|
|
MVT EltVT = VT.getVectorElementType();
|
|
EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
|
|
|
|
ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
|
|
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
|
|
}
|
|
|
|
/// \brief Return (and \p Op, \p Mask) for compare instructions or
|
|
/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
|
|
/// necessary casting for \p Mask when lowering masking intrinsics.
|
|
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
|
|
SDValue PreservedSrc,
|
|
const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
|
|
MVT::i1, VT.getVectorNumElements());
|
|
EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
|
|
Mask.getValueType().getSizeInBits());
|
|
SDLoc dl(Op);
|
|
|
|
assert(MaskVT.isSimple() && "invalid mask type");
|
|
|
|
if (isAllOnes(Mask))
|
|
return Op;
|
|
|
|
// In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
|
|
// are extracted by EXTRACT_SUBVECTOR.
|
|
SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
|
|
DAG.getNode(ISD::BITCAST, dl, BitcastVT, Mask),
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case X86ISD::PCMPEQM:
|
|
case X86ISD::PCMPGTM:
|
|
case X86ISD::CMPM:
|
|
case X86ISD::CMPMU:
|
|
return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
|
|
}
|
|
if (PreservedSrc.getOpcode() == ISD::UNDEF)
|
|
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
|
|
return DAG.getNode(ISD::VSELECT, dl, VT, VMask, Op, PreservedSrc);
|
|
}
|
|
|
|
static unsigned getOpcodeForFMAIntrinsic(unsigned IntNo) {
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
case Intrinsic::x86_fma_vfmadd_ps:
|
|
case Intrinsic::x86_fma_vfmadd_pd:
|
|
case Intrinsic::x86_fma_vfmadd_ps_256:
|
|
case Intrinsic::x86_fma_vfmadd_pd_256:
|
|
case Intrinsic::x86_fma_mask_vfmadd_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmadd_pd_512:
|
|
return X86ISD::FMADD;
|
|
case Intrinsic::x86_fma_vfmsub_ps:
|
|
case Intrinsic::x86_fma_vfmsub_pd:
|
|
case Intrinsic::x86_fma_vfmsub_ps_256:
|
|
case Intrinsic::x86_fma_vfmsub_pd_256:
|
|
case Intrinsic::x86_fma_mask_vfmsub_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmsub_pd_512:
|
|
return X86ISD::FMSUB;
|
|
case Intrinsic::x86_fma_vfnmadd_ps:
|
|
case Intrinsic::x86_fma_vfnmadd_pd:
|
|
case Intrinsic::x86_fma_vfnmadd_ps_256:
|
|
case Intrinsic::x86_fma_vfnmadd_pd_256:
|
|
case Intrinsic::x86_fma_mask_vfnmadd_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfnmadd_pd_512:
|
|
return X86ISD::FNMADD;
|
|
case Intrinsic::x86_fma_vfnmsub_ps:
|
|
case Intrinsic::x86_fma_vfnmsub_pd:
|
|
case Intrinsic::x86_fma_vfnmsub_ps_256:
|
|
case Intrinsic::x86_fma_vfnmsub_pd_256:
|
|
case Intrinsic::x86_fma_mask_vfnmsub_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfnmsub_pd_512:
|
|
return X86ISD::FNMSUB;
|
|
case Intrinsic::x86_fma_vfmaddsub_ps:
|
|
case Intrinsic::x86_fma_vfmaddsub_pd:
|
|
case Intrinsic::x86_fma_vfmaddsub_ps_256:
|
|
case Intrinsic::x86_fma_vfmaddsub_pd_256:
|
|
case Intrinsic::x86_fma_mask_vfmaddsub_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmaddsub_pd_512:
|
|
return X86ISD::FMADDSUB;
|
|
case Intrinsic::x86_fma_vfmsubadd_ps:
|
|
case Intrinsic::x86_fma_vfmsubadd_pd:
|
|
case Intrinsic::x86_fma_vfmsubadd_ps_256:
|
|
case Intrinsic::x86_fma_vfmsubadd_pd_256:
|
|
case Intrinsic::x86_fma_mask_vfmsubadd_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmsubadd_pd_512:
|
|
return X86ISD::FMSUBADD;
|
|
}
|
|
}
|
|
|
|
static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
|
|
if (IntrData) {
|
|
switch(IntrData->Type) {
|
|
case INTR_TYPE_1OP:
|
|
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
|
|
case INTR_TYPE_2OP:
|
|
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
case INTR_TYPE_3OP:
|
|
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3));
|
|
case INTR_TYPE_1OP_MASK_RM: {
|
|
SDValue Src = Op.getOperand(1);
|
|
SDValue Src0 = Op.getOperand(2);
|
|
SDValue Mask = Op.getOperand(3);
|
|
SDValue RoundingMode = Op.getOperand(4);
|
|
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
|
|
RoundingMode),
|
|
Mask, Src0, Subtarget, DAG);
|
|
}
|
|
case INTR_TYPE_2OP_MASK: {
|
|
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1),
|
|
Op.getOperand(2)),
|
|
Op.getOperand(4), Op.getOperand(3), Subtarget, DAG);
|
|
}
|
|
case CMP_MASK:
|
|
case CMP_MASK_CC: {
|
|
// Comparison intrinsics with masks.
|
|
// Example of transformation:
|
|
// (i8 (int_x86_avx512_mask_pcmpeq_q_128
|
|
// (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
|
|
// (i8 (bitcast
|
|
// (v8i1 (insert_subvector undef,
|
|
// (v2i1 (and (PCMPEQM %a, %b),
|
|
// (extract_subvector
|
|
// (v8i1 (bitcast %mask)), 0))), 0))))
|
|
EVT VT = Op.getOperand(1).getValueType();
|
|
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
|
|
VT.getVectorNumElements());
|
|
SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
|
|
EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
|
|
Mask.getValueType().getSizeInBits());
|
|
SDValue Cmp;
|
|
if (IntrData->Type == CMP_MASK_CC) {
|
|
Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3));
|
|
} else {
|
|
assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
|
|
Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
}
|
|
SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
|
|
DAG.getTargetConstant(0, MaskVT),
|
|
Subtarget, DAG);
|
|
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
|
|
DAG.getUNDEF(BitcastVT), CmpMask,
|
|
DAG.getIntPtrConstant(0));
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
|
}
|
|
case COMI: { // Comparison intrinsics
|
|
ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDValue RHS = Op.getOperand(2);
|
|
unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
|
|
assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
|
|
SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8), Cond);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
|
|
}
|
|
case VSHIFT:
|
|
return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), DAG);
|
|
case VSHIFT_MASK:
|
|
return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), DAG),
|
|
Op.getOperand(4), Op.getOperand(3), Subtarget, DAG);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
|
|
// Arithmetic intrinsics.
|
|
case Intrinsic::x86_sse2_pmulu_dq:
|
|
case Intrinsic::x86_avx2_pmulu_dq:
|
|
return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse41_pmuldq:
|
|
case Intrinsic::x86_avx2_pmul_dq:
|
|
return DAG.getNode(X86ISD::PMULDQ, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse2_pmulhu_w:
|
|
case Intrinsic::x86_avx2_pmulhu_w:
|
|
return DAG.getNode(ISD::MULHU, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse2_pmulh_w:
|
|
case Intrinsic::x86_avx2_pmulh_w:
|
|
return DAG.getNode(ISD::MULHS, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
// SSE/SSE2/AVX floating point max/min intrinsics.
|
|
case Intrinsic::x86_sse_max_ps:
|
|
case Intrinsic::x86_sse2_max_pd:
|
|
case Intrinsic::x86_avx_max_ps_256:
|
|
case Intrinsic::x86_avx_max_pd_256:
|
|
case Intrinsic::x86_sse_min_ps:
|
|
case Intrinsic::x86_sse2_min_pd:
|
|
case Intrinsic::x86_avx_min_ps_256:
|
|
case Intrinsic::x86_avx_min_pd_256: {
|
|
unsigned Opcode;
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
case Intrinsic::x86_sse_max_ps:
|
|
case Intrinsic::x86_sse2_max_pd:
|
|
case Intrinsic::x86_avx_max_ps_256:
|
|
case Intrinsic::x86_avx_max_pd_256:
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case Intrinsic::x86_sse_min_ps:
|
|
case Intrinsic::x86_sse2_min_pd:
|
|
case Intrinsic::x86_avx_min_ps_256:
|
|
case Intrinsic::x86_avx_min_pd_256:
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
}
|
|
return DAG.getNode(Opcode, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
|
|
// AVX2 variable shift intrinsics
|
|
case Intrinsic::x86_avx2_psllv_d:
|
|
case Intrinsic::x86_avx2_psllv_q:
|
|
case Intrinsic::x86_avx2_psllv_d_256:
|
|
case Intrinsic::x86_avx2_psllv_q_256:
|
|
case Intrinsic::x86_avx2_psrlv_d:
|
|
case Intrinsic::x86_avx2_psrlv_q:
|
|
case Intrinsic::x86_avx2_psrlv_d_256:
|
|
case Intrinsic::x86_avx2_psrlv_q_256:
|
|
case Intrinsic::x86_avx2_psrav_d:
|
|
case Intrinsic::x86_avx2_psrav_d_256: {
|
|
unsigned Opcode;
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
case Intrinsic::x86_avx2_psllv_d:
|
|
case Intrinsic::x86_avx2_psllv_q:
|
|
case Intrinsic::x86_avx2_psllv_d_256:
|
|
case Intrinsic::x86_avx2_psllv_q_256:
|
|
Opcode = ISD::SHL;
|
|
break;
|
|
case Intrinsic::x86_avx2_psrlv_d:
|
|
case Intrinsic::x86_avx2_psrlv_q:
|
|
case Intrinsic::x86_avx2_psrlv_d_256:
|
|
case Intrinsic::x86_avx2_psrlv_q_256:
|
|
Opcode = ISD::SRL;
|
|
break;
|
|
case Intrinsic::x86_avx2_psrav_d:
|
|
case Intrinsic::x86_avx2_psrav_d_256:
|
|
Opcode = ISD::SRA;
|
|
break;
|
|
}
|
|
return DAG.getNode(Opcode, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
|
|
case Intrinsic::x86_sse2_packssdw_128:
|
|
case Intrinsic::x86_sse2_packsswb_128:
|
|
case Intrinsic::x86_avx2_packssdw:
|
|
case Intrinsic::x86_avx2_packsswb:
|
|
return DAG.getNode(X86ISD::PACKSS, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse2_packuswb_128:
|
|
case Intrinsic::x86_sse41_packusdw:
|
|
case Intrinsic::x86_avx2_packuswb:
|
|
case Intrinsic::x86_avx2_packusdw:
|
|
return DAG.getNode(X86ISD::PACKUS, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_ssse3_pshuf_b_128:
|
|
case Intrinsic::x86_avx2_pshuf_b:
|
|
return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse2_pshuf_d:
|
|
return DAG.getNode(X86ISD::PSHUFD, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse2_pshufl_w:
|
|
return DAG.getNode(X86ISD::PSHUFLW, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_sse2_pshufh_w:
|
|
return DAG.getNode(X86ISD::PSHUFHW, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_ssse3_psign_b_128:
|
|
case Intrinsic::x86_ssse3_psign_w_128:
|
|
case Intrinsic::x86_ssse3_psign_d_128:
|
|
case Intrinsic::x86_avx2_psign_b:
|
|
case Intrinsic::x86_avx2_psign_w:
|
|
case Intrinsic::x86_avx2_psign_d:
|
|
return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::x86_avx2_permd:
|
|
case Intrinsic::x86_avx2_permps:
|
|
// Operands intentionally swapped. Mask is last operand to intrinsic,
|
|
// but second operand for node/instruction.
|
|
return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
|
|
Op.getOperand(2), Op.getOperand(1));
|
|
|
|
case Intrinsic::x86_avx512_mask_valign_q_512:
|
|
case Intrinsic::x86_avx512_mask_valign_d_512:
|
|
// Vector source operands are swapped.
|
|
return getVectorMaskingNode(DAG.getNode(X86ISD::VALIGN, dl,
|
|
Op.getValueType(), Op.getOperand(2),
|
|
Op.getOperand(1),
|
|
Op.getOperand(3)),
|
|
Op.getOperand(5), Op.getOperand(4),
|
|
Subtarget, DAG);
|
|
|
|
// ptest and testp intrinsics. The intrinsic these come from are designed to
|
|
// return an integer value, not just an instruction so lower it to the ptest
|
|
// or testp pattern and a setcc for the result.
|
|
case Intrinsic::x86_sse41_ptestz:
|
|
case Intrinsic::x86_sse41_ptestc:
|
|
case Intrinsic::x86_sse41_ptestnzc:
|
|
case Intrinsic::x86_avx_ptestz_256:
|
|
case Intrinsic::x86_avx_ptestc_256:
|
|
case Intrinsic::x86_avx_ptestnzc_256:
|
|
case Intrinsic::x86_avx_vtestz_ps:
|
|
case Intrinsic::x86_avx_vtestc_ps:
|
|
case Intrinsic::x86_avx_vtestnzc_ps:
|
|
case Intrinsic::x86_avx_vtestz_pd:
|
|
case Intrinsic::x86_avx_vtestc_pd:
|
|
case Intrinsic::x86_avx_vtestnzc_pd:
|
|
case Intrinsic::x86_avx_vtestz_ps_256:
|
|
case Intrinsic::x86_avx_vtestc_ps_256:
|
|
case Intrinsic::x86_avx_vtestnzc_ps_256:
|
|
case Intrinsic::x86_avx_vtestz_pd_256:
|
|
case Intrinsic::x86_avx_vtestc_pd_256:
|
|
case Intrinsic::x86_avx_vtestnzc_pd_256: {
|
|
bool IsTestPacked = false;
|
|
unsigned X86CC;
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
|
|
case Intrinsic::x86_avx_vtestz_ps:
|
|
case Intrinsic::x86_avx_vtestz_pd:
|
|
case Intrinsic::x86_avx_vtestz_ps_256:
|
|
case Intrinsic::x86_avx_vtestz_pd_256:
|
|
IsTestPacked = true; // Fallthrough
|
|
case Intrinsic::x86_sse41_ptestz:
|
|
case Intrinsic::x86_avx_ptestz_256:
|
|
// ZF = 1
|
|
X86CC = X86::COND_E;
|
|
break;
|
|
case Intrinsic::x86_avx_vtestc_ps:
|
|
case Intrinsic::x86_avx_vtestc_pd:
|
|
case Intrinsic::x86_avx_vtestc_ps_256:
|
|
case Intrinsic::x86_avx_vtestc_pd_256:
|
|
IsTestPacked = true; // Fallthrough
|
|
case Intrinsic::x86_sse41_ptestc:
|
|
case Intrinsic::x86_avx_ptestc_256:
|
|
// CF = 1
|
|
X86CC = X86::COND_B;
|
|
break;
|
|
case Intrinsic::x86_avx_vtestnzc_ps:
|
|
case Intrinsic::x86_avx_vtestnzc_pd:
|
|
case Intrinsic::x86_avx_vtestnzc_ps_256:
|
|
case Intrinsic::x86_avx_vtestnzc_pd_256:
|
|
IsTestPacked = true; // Fallthrough
|
|
case Intrinsic::x86_sse41_ptestnzc:
|
|
case Intrinsic::x86_avx_ptestnzc_256:
|
|
// ZF and CF = 0
|
|
X86CC = X86::COND_A;
|
|
break;
|
|
}
|
|
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDValue RHS = Op.getOperand(2);
|
|
unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
|
|
SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
|
|
SDValue CC = DAG.getConstant(X86CC, MVT::i8);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
|
|
}
|
|
case Intrinsic::x86_avx512_kortestz_w:
|
|
case Intrinsic::x86_avx512_kortestc_w: {
|
|
unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
|
|
SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
|
|
SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
|
|
SDValue CC = DAG.getConstant(X86CC, MVT::i8);
|
|
SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
|
|
}
|
|
|
|
case Intrinsic::x86_sse42_pcmpistria128:
|
|
case Intrinsic::x86_sse42_pcmpestria128:
|
|
case Intrinsic::x86_sse42_pcmpistric128:
|
|
case Intrinsic::x86_sse42_pcmpestric128:
|
|
case Intrinsic::x86_sse42_pcmpistrio128:
|
|
case Intrinsic::x86_sse42_pcmpestrio128:
|
|
case Intrinsic::x86_sse42_pcmpistris128:
|
|
case Intrinsic::x86_sse42_pcmpestris128:
|
|
case Intrinsic::x86_sse42_pcmpistriz128:
|
|
case Intrinsic::x86_sse42_pcmpestriz128: {
|
|
unsigned Opcode;
|
|
unsigned X86CC;
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
case Intrinsic::x86_sse42_pcmpistria128:
|
|
Opcode = X86ISD::PCMPISTRI;
|
|
X86CC = X86::COND_A;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpestria128:
|
|
Opcode = X86ISD::PCMPESTRI;
|
|
X86CC = X86::COND_A;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpistric128:
|
|
Opcode = X86ISD::PCMPISTRI;
|
|
X86CC = X86::COND_B;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpestric128:
|
|
Opcode = X86ISD::PCMPESTRI;
|
|
X86CC = X86::COND_B;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpistrio128:
|
|
Opcode = X86ISD::PCMPISTRI;
|
|
X86CC = X86::COND_O;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpestrio128:
|
|
Opcode = X86ISD::PCMPESTRI;
|
|
X86CC = X86::COND_O;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpistris128:
|
|
Opcode = X86ISD::PCMPISTRI;
|
|
X86CC = X86::COND_S;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpestris128:
|
|
Opcode = X86ISD::PCMPESTRI;
|
|
X86CC = X86::COND_S;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpistriz128:
|
|
Opcode = X86ISD::PCMPISTRI;
|
|
X86CC = X86::COND_E;
|
|
break;
|
|
case Intrinsic::x86_sse42_pcmpestriz128:
|
|
Opcode = X86ISD::PCMPESTRI;
|
|
X86CC = X86::COND_E;
|
|
break;
|
|
}
|
|
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86CC, MVT::i8),
|
|
SDValue(PCMP.getNode(), 1));
|
|
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
|
|
}
|
|
|
|
case Intrinsic::x86_sse42_pcmpistri128:
|
|
case Intrinsic::x86_sse42_pcmpestri128: {
|
|
unsigned Opcode;
|
|
if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
|
|
Opcode = X86ISD::PCMPISTRI;
|
|
else
|
|
Opcode = X86ISD::PCMPESTRI;
|
|
|
|
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
return DAG.getNode(Opcode, dl, VTs, NewOps);
|
|
}
|
|
|
|
case Intrinsic::x86_fma_mask_vfmadd_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmadd_pd_512:
|
|
case Intrinsic::x86_fma_mask_vfmsub_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmsub_pd_512:
|
|
case Intrinsic::x86_fma_mask_vfnmadd_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfnmadd_pd_512:
|
|
case Intrinsic::x86_fma_mask_vfnmsub_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfnmsub_pd_512:
|
|
case Intrinsic::x86_fma_mask_vfmaddsub_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmaddsub_pd_512:
|
|
case Intrinsic::x86_fma_mask_vfmsubadd_ps_512:
|
|
case Intrinsic::x86_fma_mask_vfmsubadd_pd_512: {
|
|
auto *SAE = cast<ConstantSDNode>(Op.getOperand(5));
|
|
if (SAE->getZExtValue() == X86::STATIC_ROUNDING::CUR_DIRECTION)
|
|
return getVectorMaskingNode(DAG.getNode(getOpcodeForFMAIntrinsic(IntNo),
|
|
dl, Op.getValueType(),
|
|
Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3)),
|
|
Op.getOperand(4), Op.getOperand(1),
|
|
Subtarget, DAG);
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
case Intrinsic::x86_fma_vfmadd_ps:
|
|
case Intrinsic::x86_fma_vfmadd_pd:
|
|
case Intrinsic::x86_fma_vfmsub_ps:
|
|
case Intrinsic::x86_fma_vfmsub_pd:
|
|
case Intrinsic::x86_fma_vfnmadd_ps:
|
|
case Intrinsic::x86_fma_vfnmadd_pd:
|
|
case Intrinsic::x86_fma_vfnmsub_ps:
|
|
case Intrinsic::x86_fma_vfnmsub_pd:
|
|
case Intrinsic::x86_fma_vfmaddsub_ps:
|
|
case Intrinsic::x86_fma_vfmaddsub_pd:
|
|
case Intrinsic::x86_fma_vfmsubadd_ps:
|
|
case Intrinsic::x86_fma_vfmsubadd_pd:
|
|
case Intrinsic::x86_fma_vfmadd_ps_256:
|
|
case Intrinsic::x86_fma_vfmadd_pd_256:
|
|
case Intrinsic::x86_fma_vfmsub_ps_256:
|
|
case Intrinsic::x86_fma_vfmsub_pd_256:
|
|
case Intrinsic::x86_fma_vfnmadd_ps_256:
|
|
case Intrinsic::x86_fma_vfnmadd_pd_256:
|
|
case Intrinsic::x86_fma_vfnmsub_ps_256:
|
|
case Intrinsic::x86_fma_vfnmsub_pd_256:
|
|
case Intrinsic::x86_fma_vfmaddsub_ps_256:
|
|
case Intrinsic::x86_fma_vfmaddsub_pd_256:
|
|
case Intrinsic::x86_fma_vfmsubadd_ps_256:
|
|
case Intrinsic::x86_fma_vfmsubadd_pd_256:
|
|
return DAG.getNode(getOpcodeForFMAIntrinsic(IntNo), dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
}
|
|
}
|
|
|
|
static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
|
|
SDValue Src, SDValue Mask, SDValue Base,
|
|
SDValue Index, SDValue ScaleOp, SDValue Chain,
|
|
const X86Subtarget * Subtarget) {
|
|
SDLoc dl(Op);
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
|
|
assert(C && "Invalid scale type");
|
|
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
|
|
EVT MaskVT = MVT::getVectorVT(MVT::i1,
|
|
Index.getSimpleValueType().getVectorNumElements());
|
|
SDValue MaskInReg;
|
|
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
|
|
if (MaskC)
|
|
MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
|
|
else
|
|
MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
|
|
SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
|
|
SDValue Segment = DAG.getRegister(0, MVT::i32);
|
|
if (Src.getOpcode() == ISD::UNDEF)
|
|
Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
|
|
SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
|
|
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
|
|
SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
|
|
return DAG.getMergeValues(RetOps, dl);
|
|
}
|
|
|
|
static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
|
|
SDValue Src, SDValue Mask, SDValue Base,
|
|
SDValue Index, SDValue ScaleOp, SDValue Chain) {
|
|
SDLoc dl(Op);
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
|
|
assert(C && "Invalid scale type");
|
|
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
|
|
SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
|
|
SDValue Segment = DAG.getRegister(0, MVT::i32);
|
|
EVT MaskVT = MVT::getVectorVT(MVT::i1,
|
|
Index.getSimpleValueType().getVectorNumElements());
|
|
SDValue MaskInReg;
|
|
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
|
|
if (MaskC)
|
|
MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
|
|
else
|
|
MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
|
|
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
|
|
SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
|
|
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
|
|
return SDValue(Res, 1);
|
|
}
|
|
|
|
static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
|
|
SDValue Mask, SDValue Base, SDValue Index,
|
|
SDValue ScaleOp, SDValue Chain) {
|
|
SDLoc dl(Op);
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
|
|
assert(C && "Invalid scale type");
|
|
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
|
|
SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
|
|
SDValue Segment = DAG.getRegister(0, MVT::i32);
|
|
EVT MaskVT =
|
|
MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
|
|
SDValue MaskInReg;
|
|
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
|
|
if (MaskC)
|
|
MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
|
|
else
|
|
MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
|
|
//SDVTList VTs = DAG.getVTList(MVT::Other);
|
|
SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
|
|
SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
|
|
return SDValue(Res, 0);
|
|
}
|
|
|
|
// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
|
|
// read performance monitor counters (x86_rdpmc).
|
|
static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
|
|
SelectionDAG &DAG, const X86Subtarget *Subtarget,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue LO, HI;
|
|
|
|
// The ECX register is used to select the index of the performance counter
|
|
// to read.
|
|
SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
|
|
N->getOperand(2));
|
|
SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
|
|
|
|
// Reads the content of a 64-bit performance counter and returns it in the
|
|
// registers EDX:EAX.
|
|
if (Subtarget->is64Bit()) {
|
|
LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
|
|
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
|
|
LO.getValue(2));
|
|
} else {
|
|
LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
|
|
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
|
|
LO.getValue(2));
|
|
}
|
|
Chain = HI.getValue(1);
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
// The EAX register is loaded with the low-order 32 bits. The EDX register
|
|
// is loaded with the supported high-order bits of the counter.
|
|
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
|
|
DAG.getConstant(32, MVT::i8));
|
|
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
|
|
Results.push_back(Chain);
|
|
return;
|
|
}
|
|
|
|
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
|
|
SDValue Ops[] = { LO, HI };
|
|
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
|
|
Results.push_back(Pair);
|
|
Results.push_back(Chain);
|
|
}
|
|
|
|
// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
|
|
// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
|
|
// also used to custom lower READCYCLECOUNTER nodes.
|
|
static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
|
|
SelectionDAG &DAG, const X86Subtarget *Subtarget,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
|
|
SDValue LO, HI;
|
|
|
|
// The processor's time-stamp counter (a 64-bit MSR) is stored into the
|
|
// EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
|
|
// and the EAX register is loaded with the low-order 32 bits.
|
|
if (Subtarget->is64Bit()) {
|
|
LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
|
|
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
|
|
LO.getValue(2));
|
|
} else {
|
|
LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
|
|
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
|
|
LO.getValue(2));
|
|
}
|
|
SDValue Chain = HI.getValue(1);
|
|
|
|
if (Opcode == X86ISD::RDTSCP_DAG) {
|
|
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
|
|
|
|
// Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
|
|
// the ECX register. Add 'ecx' explicitly to the chain.
|
|
SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
|
|
HI.getValue(2));
|
|
// Explicitly store the content of ECX at the location passed in input
|
|
// to the 'rdtscp' intrinsic.
|
|
Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
|
|
MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
// The EDX register is loaded with the high-order 32 bits of the MSR, and
|
|
// the EAX register is loaded with the low-order 32 bits.
|
|
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
|
|
DAG.getConstant(32, MVT::i8));
|
|
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
|
|
Results.push_back(Chain);
|
|
return;
|
|
}
|
|
|
|
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
|
|
SDValue Ops[] = { LO, HI };
|
|
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
|
|
Results.push_back(Pair);
|
|
Results.push_back(Chain);
|
|
}
|
|
|
|
static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SmallVector<SDValue, 2> Results;
|
|
SDLoc DL(Op);
|
|
getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
|
|
Results);
|
|
return DAG.getMergeValues(Results, DL);
|
|
}
|
|
|
|
|
|
static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
|
|
const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
|
|
if (!IntrData)
|
|
return SDValue();
|
|
|
|
SDLoc dl(Op);
|
|
switch(IntrData->Type) {
|
|
default:
|
|
llvm_unreachable("Unknown Intrinsic Type");
|
|
break;
|
|
case RDSEED:
|
|
case RDRAND: {
|
|
// Emit the node with the right value type.
|
|
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
|
|
SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
|
|
|
|
// If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
|
|
// Otherwise return the value from Rand, which is always 0, casted to i32.
|
|
SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
|
|
DAG.getConstant(1, Op->getValueType(1)),
|
|
DAG.getConstant(X86::COND_B, MVT::i32),
|
|
SDValue(Result.getNode(), 1) };
|
|
SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
|
|
DAG.getVTList(Op->getValueType(1), MVT::Glue),
|
|
Ops);
|
|
|
|
// Return { result, isValid, chain }.
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
|
|
SDValue(Result.getNode(), 2));
|
|
}
|
|
case GATHER: {
|
|
//gather(v1, mask, index, base, scale);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Src = Op.getOperand(2);
|
|
SDValue Base = Op.getOperand(3);
|
|
SDValue Index = Op.getOperand(4);
|
|
SDValue Mask = Op.getOperand(5);
|
|
SDValue Scale = Op.getOperand(6);
|
|
return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
|
|
Subtarget);
|
|
}
|
|
case SCATTER: {
|
|
//scatter(base, mask, index, v1, scale);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Base = Op.getOperand(2);
|
|
SDValue Mask = Op.getOperand(3);
|
|
SDValue Index = Op.getOperand(4);
|
|
SDValue Src = Op.getOperand(5);
|
|
SDValue Scale = Op.getOperand(6);
|
|
return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
|
|
}
|
|
case PREFETCH: {
|
|
SDValue Hint = Op.getOperand(6);
|
|
unsigned HintVal;
|
|
if (dyn_cast<ConstantSDNode> (Hint) == nullptr ||
|
|
(HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
|
|
llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
|
|
unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Mask = Op.getOperand(2);
|
|
SDValue Index = Op.getOperand(3);
|
|
SDValue Base = Op.getOperand(4);
|
|
SDValue Scale = Op.getOperand(5);
|
|
return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
|
|
}
|
|
// Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
|
|
case RDTSC: {
|
|
SmallVector<SDValue, 2> Results;
|
|
getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, Results);
|
|
return DAG.getMergeValues(Results, dl);
|
|
}
|
|
// Read Performance Monitoring Counters.
|
|
case RDPMC: {
|
|
SmallVector<SDValue, 2> Results;
|
|
getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
|
|
return DAG.getMergeValues(Results, dl);
|
|
}
|
|
// XTEST intrinsics.
|
|
case XTEST: {
|
|
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
|
|
SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86::COND_NE, MVT::i8),
|
|
InTrans);
|
|
SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
|
|
Ret, SDValue(InTrans.getNode(), 1));
|
|
}
|
|
// ADC/ADCX/SBB
|
|
case ADX: {
|
|
SmallVector<SDValue, 2> Results;
|
|
SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
|
|
SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
|
|
SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
|
|
DAG.getConstant(-1, MVT::i8));
|
|
SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
|
|
Op.getOperand(4), GenCF.getValue(1));
|
|
SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
|
|
Op.getOperand(5), MachinePointerInfo(),
|
|
false, false, 0);
|
|
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86::COND_B, MVT::i8),
|
|
Res.getValue(1));
|
|
Results.push_back(SetCC);
|
|
Results.push_back(Store);
|
|
return DAG.getMergeValues(Results, dl);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDLoc dl(Op);
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
if (Depth > 0) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
|
|
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, PtrVT,
|
|
FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
// Just load the return address.
|
|
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
|
|
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
|
|
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op); // FIXME probably not meaningful
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
|
|
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
|
|
(FrameReg == X86::EBP && VT == MVT::i32)) &&
|
|
"Invalid Frame Register!");
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
|
// this table could be generated automatically from RegInfo.
|
|
unsigned X86TargetLowering::getRegisterByName(const char* RegName,
|
|
EVT VT) const {
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("esp", X86::ESP)
|
|
.Case("rsp", X86::RSP)
|
|
.Default(0);
|
|
if (Reg)
|
|
return Reg;
|
|
report_fatal_error("Invalid register name global variable");
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Offset = Op.getOperand(1);
|
|
SDValue Handler = Op.getOperand(2);
|
|
SDLoc dl (Op);
|
|
|
|
EVT PtrVT = getPointerTy();
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
DAG.getSubtarget().getRegisterInfo());
|
|
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
|
|
assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
|
|
(FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
|
|
"Invalid Frame Register!");
|
|
SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
|
|
unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
|
|
|
|
SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
|
|
DAG.getIntPtrConstant(RegInfo->getSlotSize()));
|
|
StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
|
|
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
|
|
false, false, 0);
|
|
Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
|
|
|
|
return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
|
|
DAG.getRegister(StoreAddrReg, PtrVT));
|
|
}
|
|
|
|
SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
|
|
DAG.getVTList(MVT::i32, MVT::Other),
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
}
|
|
|
|
SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
}
|
|
|
|
static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
|
|
return Op.getOperand(0);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Root = Op.getOperand(0);
|
|
SDValue Trmp = Op.getOperand(1); // trampoline
|
|
SDValue FPtr = Op.getOperand(2); // nested function
|
|
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
|
|
SDLoc dl (Op);
|
|
|
|
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
|
|
|
|
if (Subtarget->is64Bit()) {
|
|
SDValue OutChains[6];
|
|
|
|
// Large code-model.
|
|
const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
|
|
const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
|
|
|
|
const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
|
|
const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
|
|
|
|
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
|
|
|
|
// Load the pointer to the nested function into R11.
|
|
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
|
|
SDValue Addr = Trmp;
|
|
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
|
|
Addr, MachinePointerInfo(TrmpAddr),
|
|
false, false, 0);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(2, MVT::i64));
|
|
OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
|
|
MachinePointerInfo(TrmpAddr, 2),
|
|
false, false, 2);
|
|
|
|
// Load the 'nest' parameter value into R10.
|
|
// R10 is specified in X86CallingConv.td
|
|
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(10, MVT::i64));
|
|
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
|
|
Addr, MachinePointerInfo(TrmpAddr, 10),
|
|
false, false, 0);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(12, MVT::i64));
|
|
OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
|
|
MachinePointerInfo(TrmpAddr, 12),
|
|
false, false, 2);
|
|
|
|
// Jump to the nested function.
|
|
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(20, MVT::i64));
|
|
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
|
|
Addr, MachinePointerInfo(TrmpAddr, 20),
|
|
false, false, 0);
|
|
|
|
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
|
|
DAG.getConstant(22, MVT::i64));
|
|
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
|
|
MachinePointerInfo(TrmpAddr, 22),
|
|
false, false, 0);
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
|
|
} else {
|
|
const Function *Func =
|
|
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
|
|
CallingConv::ID CC = Func->getCallingConv();
|
|
unsigned NestReg;
|
|
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::C:
|
|
case CallingConv::X86_StdCall: {
|
|
// Pass 'nest' parameter in ECX.
|
|
// Must be kept in sync with X86CallingConv.td
|
|
NestReg = X86::ECX;
|
|
|
|
// Check that ECX wasn't needed by an 'inreg' parameter.
|
|
FunctionType *FTy = Func->getFunctionType();
|
|
const AttributeSet &Attrs = Func->getAttributes();
|
|
|
|
if (!Attrs.isEmpty() && !Func->isVarArg()) {
|
|
unsigned InRegCount = 0;
|
|
unsigned Idx = 1;
|
|
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I, ++Idx)
|
|
if (Attrs.hasAttribute(Idx, Attribute::InReg))
|
|
// FIXME: should only count parameters that are lowered to integers.
|
|
InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
|
|
|
|
if (InRegCount > 2) {
|
|
report_fatal_error("Nest register in use - reduce number of inreg"
|
|
" parameters!");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case CallingConv::X86_FastCall:
|
|
case CallingConv::X86_ThisCall:
|
|
case CallingConv::Fast:
|
|
// Pass 'nest' parameter in EAX.
|
|
// Must be kept in sync with X86CallingConv.td
|
|
NestReg = X86::EAX;
|
|
break;
|
|
}
|
|
|
|
SDValue OutChains[4];
|
|
SDValue Addr, Disp;
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(10, MVT::i32));
|
|
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
|
|
|
|
// This is storing the opcode for MOV32ri.
|
|
const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
|
|
const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
|
|
OutChains[0] = DAG.getStore(Root, dl,
|
|
DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
|
|
Trmp, MachinePointerInfo(TrmpAddr),
|
|
false, false, 0);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(1, MVT::i32));
|
|
OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
|
|
MachinePointerInfo(TrmpAddr, 1),
|
|
false, false, 1);
|
|
|
|
const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(5, MVT::i32));
|
|
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
|
|
MachinePointerInfo(TrmpAddr, 5),
|
|
false, false, 1);
|
|
|
|
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
|
|
DAG.getConstant(6, MVT::i32));
|
|
OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
|
|
MachinePointerInfo(TrmpAddr, 6),
|
|
false, false, 1);
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
|
|
}
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
/*
|
|
The rounding mode is in bits 11:10 of FPSR, and has the following
|
|
settings:
|
|
00 Round to nearest
|
|
01 Round to -inf
|
|
10 Round to +inf
|
|
11 Round to 0
|
|
|
|
FLT_ROUNDS, on the other hand, expects the following:
|
|
-1 Undefined
|
|
0 Round to 0
|
|
1 Round to nearest
|
|
2 Round to +inf
|
|
3 Round to -inf
|
|
|
|
To perform the conversion, we do:
|
|
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
|
|
*/
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetFrameLowering &TFI = *TM.getSubtargetImpl()->getFrameLowering();
|
|
unsigned StackAlignment = TFI.getStackAlignment();
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
|
|
// Save FP Control Word to stack slot
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
|
|
MachineMemOperand::MOStore, 2, 2);
|
|
|
|
SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
|
|
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
|
|
DAG.getVTList(MVT::Other),
|
|
Ops, MVT::i16, MMO);
|
|
|
|
// Load FP Control Word from stack slot
|
|
SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
|
|
// Transform as necessary
|
|
SDValue CWD1 =
|
|
DAG.getNode(ISD::SRL, DL, MVT::i16,
|
|
DAG.getNode(ISD::AND, DL, MVT::i16,
|
|
CWD, DAG.getConstant(0x800, MVT::i16)),
|
|
DAG.getConstant(11, MVT::i8));
|
|
SDValue CWD2 =
|
|
DAG.getNode(ISD::SRL, DL, MVT::i16,
|
|
DAG.getNode(ISD::AND, DL, MVT::i16,
|
|
CWD, DAG.getConstant(0x400, MVT::i16)),
|
|
DAG.getConstant(9, MVT::i8));
|
|
|
|
SDValue RetVal =
|
|
DAG.getNode(ISD::AND, DL, MVT::i16,
|
|
DAG.getNode(ISD::ADD, DL, MVT::i16,
|
|
DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
|
|
DAG.getConstant(1, MVT::i16)),
|
|
DAG.getConstant(3, MVT::i16));
|
|
|
|
return DAG.getNode((VT.getSizeInBits() < 16 ?
|
|
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
|
|
}
|
|
|
|
static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
EVT OpVT = VT;
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
|
|
Op = Op.getOperand(0);
|
|
if (VT == MVT::i8) {
|
|
// Zero extend to i32 since there is not an i8 bsr.
|
|
OpVT = MVT::i32;
|
|
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
|
|
}
|
|
|
|
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
|
|
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
|
|
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
|
|
|
|
// If src is zero (i.e. bsr sets ZF), returns NumBits.
|
|
SDValue Ops[] = {
|
|
Op,
|
|
DAG.getConstant(NumBits+NumBits-1, OpVT),
|
|
DAG.getConstant(X86::COND_E, MVT::i8),
|
|
Op.getValue(1)
|
|
};
|
|
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
|
|
|
|
// Finally xor with NumBits-1.
|
|
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
|
|
|
|
if (VT == MVT::i8)
|
|
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
EVT OpVT = VT;
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
|
|
Op = Op.getOperand(0);
|
|
if (VT == MVT::i8) {
|
|
// Zero extend to i32 since there is not an i8 bsr.
|
|
OpVT = MVT::i32;
|
|
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
|
|
}
|
|
|
|
// Issue a bsr (scan bits in reverse).
|
|
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
|
|
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
|
|
|
|
// And xor with NumBits-1.
|
|
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
|
|
|
|
if (VT == MVT::i8)
|
|
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
Op = Op.getOperand(0);
|
|
|
|
// Issue a bsf (scan bits forward) which also sets EFLAGS.
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
|
|
|
|
// If src is zero (i.e. bsf sets ZF), returns NumBits.
|
|
SDValue Ops[] = {
|
|
Op,
|
|
DAG.getConstant(NumBits, VT),
|
|
DAG.getConstant(X86::COND_E, MVT::i8),
|
|
Op.getValue(1)
|
|
};
|
|
return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
|
|
}
|
|
|
|
// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
|
|
// ones, and then concatenate the result back.
|
|
static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
assert(VT.is256BitVector() && VT.isInteger() &&
|
|
"Unsupported value type for operation");
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SDLoc dl(Op);
|
|
|
|
// Extract the LHS vectors
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
|
|
SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
|
|
|
|
// Extract the RHS vectors
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
|
|
SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
|
|
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
|
|
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
|
|
}
|
|
|
|
static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
|
|
assert(Op.getSimpleValueType().is256BitVector() &&
|
|
Op.getSimpleValueType().isInteger() &&
|
|
"Only handle AVX 256-bit vector integer operation");
|
|
return Lower256IntArith(Op, DAG);
|
|
}
|
|
|
|
static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
|
|
assert(Op.getSimpleValueType().is256BitVector() &&
|
|
Op.getSimpleValueType().isInteger() &&
|
|
"Only handle AVX 256-bit vector integer operation");
|
|
return Lower256IntArith(Op, DAG);
|
|
}
|
|
|
|
static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
// Decompose 256-bit ops into smaller 128-bit ops.
|
|
if (VT.is256BitVector() && !Subtarget->hasInt256())
|
|
return Lower256IntArith(Op, DAG);
|
|
|
|
SDValue A = Op.getOperand(0);
|
|
SDValue B = Op.getOperand(1);
|
|
|
|
// Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
|
|
if (VT == MVT::v4i32) {
|
|
assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
|
|
"Should not custom lower when pmuldq is available!");
|
|
|
|
// Extract the odd parts.
|
|
static const int UnpackMask[] = { 1, -1, 3, -1 };
|
|
SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
|
|
SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
|
|
|
|
// Multiply the even parts.
|
|
SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
|
|
// Now multiply odd parts.
|
|
SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
|
|
|
|
Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
|
|
Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
|
|
|
|
// Merge the two vectors back together with a shuffle. This expands into 2
|
|
// shuffles.
|
|
static const int ShufMask[] = { 0, 4, 2, 6 };
|
|
return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
|
|
}
|
|
|
|
assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
|
|
"Only know how to lower V2I64/V4I64/V8I64 multiply");
|
|
|
|
// Ahi = psrlqi(a, 32);
|
|
// Bhi = psrlqi(b, 32);
|
|
//
|
|
// AloBlo = pmuludq(a, b);
|
|
// AloBhi = pmuludq(a, Bhi);
|
|
// AhiBlo = pmuludq(Ahi, b);
|
|
|
|
// AloBhi = psllqi(AloBhi, 32);
|
|
// AhiBlo = psllqi(AhiBlo, 32);
|
|
// return AloBlo + AloBhi + AhiBlo;
|
|
|
|
SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
|
|
SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
|
|
|
|
// Bit cast to 32-bit vectors for MULUDQ
|
|
EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
|
|
(VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
|
|
A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
|
|
B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
|
|
Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
|
|
Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
|
|
|
|
SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
|
|
SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
|
|
SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
|
|
|
|
AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
|
|
AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
|
|
|
|
SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
|
|
return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
|
|
}
|
|
|
|
SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetWin64() && "Unexpected target");
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
|
|
"Unexpected return type for lowering");
|
|
|
|
RTLIB::Libcall LC;
|
|
bool isSigned;
|
|
switch (Op->getOpcode()) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
|
|
case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
|
|
case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
|
|
case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
|
|
case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
|
|
case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
|
|
}
|
|
|
|
SDLoc dl(Op);
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
|
|
EVT ArgVT = Op->getOperand(i).getValueType();
|
|
assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
|
|
"Unexpected argument type for lowering");
|
|
SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
|
|
Entry.Node = StackPtr;
|
|
InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
|
|
false, false, 16);
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
Entry.Ty = PointerType::get(ArgTy,0);
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
|
|
getPointerTy());
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(InChain)
|
|
.setCallee(getLibcallCallingConv(LC),
|
|
static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
|
|
Callee, std::move(Args), 0)
|
|
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
|
|
}
|
|
|
|
static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
|
|
EVT VT = Op0.getValueType();
|
|
SDLoc dl(Op);
|
|
|
|
assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
|
|
(VT == MVT::v8i32 && Subtarget->hasInt256()));
|
|
|
|
// PMULxD operations multiply each even value (starting at 0) of LHS with
|
|
// the related value of RHS and produce a widen result.
|
|
// E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
|
|
// => <2 x i64> <ae|cg>
|
|
//
|
|
// In other word, to have all the results, we need to perform two PMULxD:
|
|
// 1. one with the even values.
|
|
// 2. one with the odd values.
|
|
// To achieve #2, with need to place the odd values at an even position.
|
|
//
|
|
// Place the odd value at an even position (basically, shift all values 1
|
|
// step to the left):
|
|
const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
|
|
// <a|b|c|d> => <b|undef|d|undef>
|
|
SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
|
|
// <e|f|g|h> => <f|undef|h|undef>
|
|
SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
|
|
|
|
// Emit two multiplies, one for the lower 2 ints and one for the higher 2
|
|
// ints.
|
|
MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
|
|
bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
|
|
unsigned Opcode =
|
|
(!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
|
|
// PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
|
|
// => <2 x i64> <ae|cg>
|
|
SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
|
|
// PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
|
|
// => <2 x i64> <bf|dh>
|
|
SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
|
|
|
|
// Shuffle it back into the right order.
|
|
SDValue Highs, Lows;
|
|
if (VT == MVT::v8i32) {
|
|
const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
|
|
Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
|
|
const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
|
|
Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
|
|
} else {
|
|
const int HighMask[] = {1, 5, 3, 7};
|
|
Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
|
|
const int LowMask[] = {0, 4, 2, 6};
|
|
Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
|
|
}
|
|
|
|
// If we have a signed multiply but no PMULDQ fix up the high parts of a
|
|
// unsigned multiply.
|
|
if (IsSigned && !Subtarget->hasSSE41()) {
|
|
SDValue ShAmt =
|
|
DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
|
|
SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
|
|
SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
|
|
|
|
SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
|
|
Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
|
|
}
|
|
|
|
// The first result of MUL_LOHI is actually the low value, followed by the
|
|
// high value.
|
|
SDValue Ops[] = {Lows, Highs};
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
SDValue R = Op.getOperand(0);
|
|
SDValue Amt = Op.getOperand(1);
|
|
|
|
// Optimize shl/srl/sra with constant shift amount.
|
|
if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
|
|
if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
|
|
uint64_t ShiftAmt = ShiftConst->getZExtValue();
|
|
|
|
if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
|
|
(Subtarget->hasInt256() &&
|
|
(VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
|
|
(Subtarget->hasAVX512() &&
|
|
(VT == MVT::v8i64 || VT == MVT::v16i32))) {
|
|
if (Op.getOpcode() == ISD::SHL)
|
|
return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
|
|
DAG);
|
|
if (Op.getOpcode() == ISD::SRL)
|
|
return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
|
|
DAG);
|
|
if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
|
|
return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
|
|
DAG);
|
|
}
|
|
|
|
if (VT == MVT::v16i8) {
|
|
if (Op.getOpcode() == ISD::SHL) {
|
|
// Make a large shift.
|
|
SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
|
|
MVT::v8i16, R, ShiftAmt,
|
|
DAG);
|
|
SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
|
|
// Zero out the rightmost bits.
|
|
SmallVector<SDValue, 16> V(16,
|
|
DAG.getConstant(uint8_t(-1U << ShiftAmt),
|
|
MVT::i8));
|
|
return DAG.getNode(ISD::AND, dl, VT, SHL,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
|
|
}
|
|
if (Op.getOpcode() == ISD::SRL) {
|
|
// Make a large shift.
|
|
SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
|
|
MVT::v8i16, R, ShiftAmt,
|
|
DAG);
|
|
SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
|
|
// Zero out the leftmost bits.
|
|
SmallVector<SDValue, 16> V(16,
|
|
DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
|
|
MVT::i8));
|
|
return DAG.getNode(ISD::AND, dl, VT, SRL,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
|
|
}
|
|
if (Op.getOpcode() == ISD::SRA) {
|
|
if (ShiftAmt == 7) {
|
|
// R s>> 7 === R s< 0
|
|
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
|
|
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
|
|
}
|
|
|
|
// R s>> a === ((R u>> a) ^ m) - m
|
|
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
|
|
SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
|
|
MVT::i8));
|
|
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
|
|
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
|
|
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
|
|
return Res;
|
|
}
|
|
llvm_unreachable("Unknown shift opcode.");
|
|
}
|
|
|
|
if (Subtarget->hasInt256() && VT == MVT::v32i8) {
|
|
if (Op.getOpcode() == ISD::SHL) {
|
|
// Make a large shift.
|
|
SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
|
|
MVT::v16i16, R, ShiftAmt,
|
|
DAG);
|
|
SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
|
|
// Zero out the rightmost bits.
|
|
SmallVector<SDValue, 32> V(32,
|
|
DAG.getConstant(uint8_t(-1U << ShiftAmt),
|
|
MVT::i8));
|
|
return DAG.getNode(ISD::AND, dl, VT, SHL,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
|
|
}
|
|
if (Op.getOpcode() == ISD::SRL) {
|
|
// Make a large shift.
|
|
SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
|
|
MVT::v16i16, R, ShiftAmt,
|
|
DAG);
|
|
SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
|
|
// Zero out the leftmost bits.
|
|
SmallVector<SDValue, 32> V(32,
|
|
DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
|
|
MVT::i8));
|
|
return DAG.getNode(ISD::AND, dl, VT, SRL,
|
|
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
|
|
}
|
|
if (Op.getOpcode() == ISD::SRA) {
|
|
if (ShiftAmt == 7) {
|
|
// R s>> 7 === R s< 0
|
|
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
|
|
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
|
|
}
|
|
|
|
// R s>> a === ((R u>> a) ^ m) - m
|
|
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
|
|
SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
|
|
MVT::i8));
|
|
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
|
|
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
|
|
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
|
|
return Res;
|
|
}
|
|
llvm_unreachable("Unknown shift opcode.");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special case in 32-bit mode, where i64 is expanded into high and low parts.
|
|
if (!Subtarget->is64Bit() &&
|
|
(VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
|
|
Amt.getOpcode() == ISD::BITCAST &&
|
|
Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
|
|
Amt = Amt.getOperand(0);
|
|
unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
|
|
VT.getVectorNumElements();
|
|
unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
|
|
uint64_t ShiftAmt = 0;
|
|
for (unsigned i = 0; i != Ratio; ++i) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
|
|
if (!C)
|
|
return SDValue();
|
|
// 6 == Log2(64)
|
|
ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
|
|
}
|
|
// Check remaining shift amounts.
|
|
for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
|
|
uint64_t ShAmt = 0;
|
|
for (unsigned j = 0; j != Ratio; ++j) {
|
|
ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
|
|
if (!C)
|
|
return SDValue();
|
|
// 6 == Log2(64)
|
|
ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
|
|
}
|
|
if (ShAmt != ShiftAmt)
|
|
return SDValue();
|
|
}
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown shift opcode!");
|
|
case ISD::SHL:
|
|
return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
|
|
DAG);
|
|
case ISD::SRL:
|
|
return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
|
|
DAG);
|
|
case ISD::SRA:
|
|
return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
|
|
DAG);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
|
|
const X86Subtarget* Subtarget) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
SDValue R = Op.getOperand(0);
|
|
SDValue Amt = Op.getOperand(1);
|
|
|
|
if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
|
|
VT == MVT::v4i32 || VT == MVT::v8i16 ||
|
|
(Subtarget->hasInt256() &&
|
|
((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
|
|
VT == MVT::v8i32 || VT == MVT::v16i16)) ||
|
|
(Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
|
|
SDValue BaseShAmt;
|
|
EVT EltVT = VT.getVectorElementType();
|
|
|
|
if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned i, j;
|
|
for (i = 0; i != NumElts; ++i) {
|
|
if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
break;
|
|
}
|
|
for (j = i; j != NumElts; ++j) {
|
|
SDValue Arg = Amt.getOperand(j);
|
|
if (Arg.getOpcode() == ISD::UNDEF) continue;
|
|
if (Arg != Amt.getOperand(i))
|
|
break;
|
|
}
|
|
if (i != NumElts && j == NumElts)
|
|
BaseShAmt = Amt.getOperand(i);
|
|
} else {
|
|
if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
|
|
Amt = Amt.getOperand(0);
|
|
if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
|
|
cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
|
|
SDValue InVec = Amt.getOperand(0);
|
|
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
|
|
unsigned NumElts = InVec.getValueType().getVectorNumElements();
|
|
unsigned i = 0;
|
|
for (; i != NumElts; ++i) {
|
|
SDValue Arg = InVec.getOperand(i);
|
|
if (Arg.getOpcode() == ISD::UNDEF) continue;
|
|
BaseShAmt = Arg;
|
|
break;
|
|
}
|
|
} else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
|
|
if (ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
|
|
unsigned SplatIdx =
|
|
cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
|
|
if (C->getZExtValue() == SplatIdx)
|
|
BaseShAmt = InVec.getOperand(1);
|
|
}
|
|
}
|
|
if (!BaseShAmt.getNode())
|
|
BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
}
|
|
|
|
if (BaseShAmt.getNode()) {
|
|
if (EltVT.bitsGT(MVT::i32))
|
|
BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
|
|
else if (EltVT.bitsLT(MVT::i32))
|
|
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown shift opcode!");
|
|
case ISD::SHL:
|
|
switch (VT.SimpleTy) {
|
|
default: return SDValue();
|
|
case MVT::v2i64:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v4i64:
|
|
case MVT::v8i32:
|
|
case MVT::v16i16:
|
|
case MVT::v16i32:
|
|
case MVT::v8i64:
|
|
return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
|
|
}
|
|
case ISD::SRA:
|
|
switch (VT.SimpleTy) {
|
|
default: return SDValue();
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v8i32:
|
|
case MVT::v16i16:
|
|
case MVT::v16i32:
|
|
case MVT::v8i64:
|
|
return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
|
|
}
|
|
case ISD::SRL:
|
|
switch (VT.SimpleTy) {
|
|
default: return SDValue();
|
|
case MVT::v2i64:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v4i64:
|
|
case MVT::v8i32:
|
|
case MVT::v16i16:
|
|
case MVT::v16i32:
|
|
case MVT::v8i64:
|
|
return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special case in 32-bit mode, where i64 is expanded into high and low parts.
|
|
if (!Subtarget->is64Bit() &&
|
|
(VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
|
|
(Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
|
|
Amt.getOpcode() == ISD::BITCAST &&
|
|
Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
|
|
Amt = Amt.getOperand(0);
|
|
unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
|
|
VT.getVectorNumElements();
|
|
std::vector<SDValue> Vals(Ratio);
|
|
for (unsigned i = 0; i != Ratio; ++i)
|
|
Vals[i] = Amt.getOperand(i);
|
|
for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
|
|
for (unsigned j = 0; j != Ratio; ++j)
|
|
if (Vals[j] != Amt.getOperand(i + j))
|
|
return SDValue();
|
|
}
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown shift opcode!");
|
|
case ISD::SHL:
|
|
return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
|
|
case ISD::SRL:
|
|
return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
|
|
case ISD::SRA:
|
|
return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc dl(Op);
|
|
SDValue R = Op.getOperand(0);
|
|
SDValue Amt = Op.getOperand(1);
|
|
SDValue V;
|
|
|
|
assert(VT.isVector() && "Custom lowering only for vector shifts!");
|
|
assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
|
|
|
|
V = LowerScalarImmediateShift(Op, DAG, Subtarget);
|
|
if (V.getNode())
|
|
return V;
|
|
|
|
V = LowerScalarVariableShift(Op, DAG, Subtarget);
|
|
if (V.getNode())
|
|
return V;
|
|
|
|
if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
|
|
return Op;
|
|
// AVX2 has VPSLLV/VPSRAV/VPSRLV.
|
|
if (Subtarget->hasInt256()) {
|
|
if (Op.getOpcode() == ISD::SRL &&
|
|
(VT == MVT::v2i64 || VT == MVT::v4i32 ||
|
|
VT == MVT::v4i64 || VT == MVT::v8i32))
|
|
return Op;
|
|
if (Op.getOpcode() == ISD::SHL &&
|
|
(VT == MVT::v2i64 || VT == MVT::v4i32 ||
|
|
VT == MVT::v4i64 || VT == MVT::v8i32))
|
|
return Op;
|
|
if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
|
|
return Op;
|
|
}
|
|
|
|
// If possible, lower this packed shift into a vector multiply instead of
|
|
// expanding it into a sequence of scalar shifts.
|
|
// Do this only if the vector shift count is a constant build_vector.
|
|
if (Op.getOpcode() == ISD::SHL &&
|
|
(VT == MVT::v8i16 || VT == MVT::v4i32 ||
|
|
(Subtarget->hasInt256() && VT == MVT::v16i16)) &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
|
|
SmallVector<SDValue, 8> Elts;
|
|
EVT SVT = VT.getScalarType();
|
|
unsigned SVTBits = SVT.getSizeInBits();
|
|
const APInt &One = APInt(SVTBits, 1);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
for (unsigned i=0; i !=NumElems; ++i) {
|
|
SDValue Op = Amt->getOperand(i);
|
|
if (Op->getOpcode() == ISD::UNDEF) {
|
|
Elts.push_back(Op);
|
|
continue;
|
|
}
|
|
|
|
ConstantSDNode *ND = cast<ConstantSDNode>(Op);
|
|
const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
|
|
uint64_t ShAmt = C.getZExtValue();
|
|
if (ShAmt >= SVTBits) {
|
|
Elts.push_back(DAG.getUNDEF(SVT));
|
|
continue;
|
|
}
|
|
Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
|
|
}
|
|
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
|
|
return DAG.getNode(ISD::MUL, dl, VT, R, BV);
|
|
}
|
|
|
|
// Lower SHL with variable shift amount.
|
|
if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
|
|
Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
|
|
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
|
|
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
|
|
Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
|
|
return DAG.getNode(ISD::MUL, dl, VT, Op, R);
|
|
}
|
|
|
|
// If possible, lower this shift as a sequence of two shifts by
|
|
// constant plus a MOVSS/MOVSD instead of scalarizing it.
|
|
// Example:
|
|
// (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
|
|
//
|
|
// Could be rewritten as:
|
|
// (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
|
|
//
|
|
// The advantage is that the two shifts from the example would be
|
|
// lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
|
|
// the vector shift into four scalar shifts plus four pairs of vector
|
|
// insert/extract.
|
|
if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
|
|
ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
|
|
unsigned TargetOpcode = X86ISD::MOVSS;
|
|
bool CanBeSimplified;
|
|
// The splat value for the first packed shift (the 'X' from the example).
|
|
SDValue Amt1 = Amt->getOperand(0);
|
|
// The splat value for the second packed shift (the 'Y' from the example).
|
|
SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
|
|
Amt->getOperand(2);
|
|
|
|
// See if it is possible to replace this node with a sequence of
|
|
// two shifts followed by a MOVSS/MOVSD
|
|
if (VT == MVT::v4i32) {
|
|
// Check if it is legal to use a MOVSS.
|
|
CanBeSimplified = Amt2 == Amt->getOperand(2) &&
|
|
Amt2 == Amt->getOperand(3);
|
|
if (!CanBeSimplified) {
|
|
// Otherwise, check if we can still simplify this node using a MOVSD.
|
|
CanBeSimplified = Amt1 == Amt->getOperand(1) &&
|
|
Amt->getOperand(2) == Amt->getOperand(3);
|
|
TargetOpcode = X86ISD::MOVSD;
|
|
Amt2 = Amt->getOperand(2);
|
|
}
|
|
} else {
|
|
// Do similar checks for the case where the machine value type
|
|
// is MVT::v8i16.
|
|
CanBeSimplified = Amt1 == Amt->getOperand(1);
|
|
for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
|
|
CanBeSimplified = Amt2 == Amt->getOperand(i);
|
|
|
|
if (!CanBeSimplified) {
|
|
TargetOpcode = X86ISD::MOVSD;
|
|
CanBeSimplified = true;
|
|
Amt2 = Amt->getOperand(4);
|
|
for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
|
|
CanBeSimplified = Amt1 == Amt->getOperand(i);
|
|
for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
|
|
CanBeSimplified = Amt2 == Amt->getOperand(j);
|
|
}
|
|
}
|
|
|
|
if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
|
|
isa<ConstantSDNode>(Amt2)) {
|
|
// Replace this node with two shifts followed by a MOVSS/MOVSD.
|
|
EVT CastVT = MVT::v4i32;
|
|
SDValue Splat1 =
|
|
DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
|
|
SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
|
|
SDValue Splat2 =
|
|
DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
|
|
SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
|
|
if (TargetOpcode == X86ISD::MOVSD)
|
|
CastVT = MVT::v2i64;
|
|
SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
|
|
SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
|
|
SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
|
|
BitCast1, DAG);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
|
|
}
|
|
}
|
|
|
|
if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
|
|
assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
|
|
|
|
// a = a << 5;
|
|
Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
|
|
Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
|
|
|
|
// Turn 'a' into a mask suitable for VSELECT
|
|
SDValue VSelM = DAG.getConstant(0x80, VT);
|
|
SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
|
|
OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
|
|
|
|
SDValue CM1 = DAG.getConstant(0x0f, VT);
|
|
SDValue CM2 = DAG.getConstant(0x3f, VT);
|
|
|
|
// r = VSELECT(r, psllw(r & (char16)15, 4), a);
|
|
SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
|
|
M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
|
|
M = DAG.getNode(ISD::BITCAST, dl, VT, M);
|
|
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
|
|
|
|
// a += a
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
|
|
OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
|
|
OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
|
|
|
|
// r = VSELECT(r, psllw(r & (char16)63, 2), a);
|
|
M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
|
|
M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
|
|
M = DAG.getNode(ISD::BITCAST, dl, VT, M);
|
|
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
|
|
|
|
// a += a
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
|
|
OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
|
|
OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
|
|
|
|
// return VSELECT(r, r+r, a);
|
|
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
|
|
DAG.getNode(ISD::ADD, dl, VT, R, R), R);
|
|
return R;
|
|
}
|
|
|
|
// It's worth extending once and using the v8i32 shifts for 16-bit types, but
|
|
// the extra overheads to get from v16i8 to v8i32 make the existing SSE
|
|
// solution better.
|
|
if (Subtarget->hasInt256() && VT == MVT::v8i16) {
|
|
MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
|
|
unsigned ExtOpc =
|
|
Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
R = DAG.getNode(ExtOpc, dl, NewVT, R);
|
|
Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
|
|
}
|
|
|
|
// Decompose 256-bit shifts into smaller 128-bit shifts.
|
|
if (VT.is256BitVector()) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
MVT EltVT = VT.getVectorElementType();
|
|
EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
|
|
|
|
// Extract the two vectors
|
|
SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
|
|
SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
|
|
|
|
// Recreate the shift amount vectors
|
|
SDValue Amt1, Amt2;
|
|
if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
|
|
// Constant shift amount
|
|
SmallVector<SDValue, 4> Amt1Csts;
|
|
SmallVector<SDValue, 4> Amt2Csts;
|
|
for (unsigned i = 0; i != NumElems/2; ++i)
|
|
Amt1Csts.push_back(Amt->getOperand(i));
|
|
for (unsigned i = NumElems/2; i != NumElems; ++i)
|
|
Amt2Csts.push_back(Amt->getOperand(i));
|
|
|
|
Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
|
|
Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
|
|
} else {
|
|
// Variable shift amount
|
|
Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
|
|
Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
|
|
}
|
|
|
|
// Issue new vector shifts for the smaller types
|
|
V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
|
|
V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
|
|
|
|
// Concatenate the result back
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
|
|
// Lower the "add/sub/mul with overflow" instruction into a regular ins plus
|
|
// a "setcc" instruction that checks the overflow flag. The "brcond" lowering
|
|
// looks for this combo and may remove the "setcc" instruction if the "setcc"
|
|
// has only one use.
|
|
SDNode *N = Op.getNode();
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
unsigned BaseOp = 0;
|
|
unsigned Cond = 0;
|
|
SDLoc DL(Op);
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Unknown ovf instruction!");
|
|
case ISD::SADDO:
|
|
// A subtract of one will be selected as a INC. Note that INC doesn't
|
|
// set CF, so we can't do this for UADDO.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
|
|
if (C->isOne()) {
|
|
BaseOp = X86ISD::INC;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
BaseOp = X86ISD::ADD;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
case ISD::UADDO:
|
|
BaseOp = X86ISD::ADD;
|
|
Cond = X86::COND_B;
|
|
break;
|
|
case ISD::SSUBO:
|
|
// A subtract of one will be selected as a DEC. Note that DEC doesn't
|
|
// set CF, so we can't do this for USUBO.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
|
|
if (C->isOne()) {
|
|
BaseOp = X86ISD::DEC;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
BaseOp = X86ISD::SUB;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
case ISD::USUBO:
|
|
BaseOp = X86ISD::SUB;
|
|
Cond = X86::COND_B;
|
|
break;
|
|
case ISD::SMULO:
|
|
BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
|
|
if (N->getValueType(0) == MVT::i8) {
|
|
BaseOp = X86ISD::UMUL8;
|
|
Cond = X86::COND_O;
|
|
break;
|
|
}
|
|
SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
|
|
MVT::i32);
|
|
SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
|
|
|
|
SDValue SetCC =
|
|
DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(X86::COND_O, MVT::i32),
|
|
SDValue(Sum.getNode(), 2));
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
|
|
}
|
|
}
|
|
|
|
// Also sets EFLAGS.
|
|
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
|
|
SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
|
|
|
|
SDValue SetCC =
|
|
DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
|
|
DAG.getConstant(Cond, MVT::i32),
|
|
SDValue(Sum.getNode(), 1));
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
|
|
}
|
|
|
|
// Sign extension of the low part of vector elements. This may be used either
|
|
// when sign extend instructions are not available or if the vector element
|
|
// sizes already match the sign-extended size. If the vector elements are in
|
|
// their pre-extended size and sign extend instructions are available, that will
|
|
// be handled by LowerSIGN_EXTEND.
|
|
SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
|
|
if (!Subtarget->hasSSE2() || !VT.isVector())
|
|
return SDValue();
|
|
|
|
unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
|
|
ExtraVT.getScalarType().getSizeInBits();
|
|
|
|
switch (VT.SimpleTy) {
|
|
default: return SDValue();
|
|
case MVT::v8i32:
|
|
case MVT::v16i16:
|
|
if (!Subtarget->hasFp256())
|
|
return SDValue();
|
|
if (!Subtarget->hasInt256()) {
|
|
// needs to be split
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// Extract the LHS vectors
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
|
|
SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
|
|
|
|
EVT ExtraEltVT = ExtraVT.getVectorElementType();
|
|
unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
|
|
ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
|
|
ExtraNumElems/2);
|
|
SDValue Extra = DAG.getValueType(ExtraVT);
|
|
|
|
LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
|
|
LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
|
|
}
|
|
// fall through
|
|
case MVT::v4i32:
|
|
case MVT::v8i16: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
|
|
// This is a sign extension of some low part of vector elements without
|
|
// changing the size of the vector elements themselves:
|
|
// Shift-Left + Shift-Right-Algebraic.
|
|
SDValue Shl = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0,
|
|
BitsDiff, DAG);
|
|
return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Shl, BitsDiff,
|
|
DAG);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if the operand type is exactly twice the native width, and
|
|
/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
|
|
/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
|
|
/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
|
|
bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const {
|
|
const X86Subtarget &Subtarget =
|
|
getTargetMachine().getSubtarget<X86Subtarget>();
|
|
unsigned OpWidth = MemType->getPrimitiveSizeInBits();
|
|
|
|
if (OpWidth == 64)
|
|
return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
|
|
else if (OpWidth == 128)
|
|
return Subtarget.hasCmpxchg16b();
|
|
else
|
|
return false;
|
|
}
|
|
|
|
bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
|
|
return needsCmpXchgNb(SI->getValueOperand()->getType());
|
|
}
|
|
|
|
// Note: this turns large loads into lock cmpxchg8b/16b.
|
|
// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
|
|
bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
|
|
auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
|
|
return needsCmpXchgNb(PTy->getElementType());
|
|
}
|
|
|
|
bool X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
const X86Subtarget &Subtarget =
|
|
getTargetMachine().getSubtarget<X86Subtarget>();
|
|
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
|
|
const Type *MemType = AI->getType();
|
|
|
|
// If the operand is too big, we must see if cmpxchg8/16b is available
|
|
// and default to library calls otherwise.
|
|
if (MemType->getPrimitiveSizeInBits() > NativeWidth)
|
|
return needsCmpXchgNb(MemType);
|
|
|
|
AtomicRMWInst::BinOp Op = AI->getOperation();
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unknown atomic operation");
|
|
case AtomicRMWInst::Xchg:
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
// It's better to use xadd, xsub or xchg for these in all cases.
|
|
return false;
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Xor:
|
|
// If the atomicrmw's result isn't actually used, we can just add a "lock"
|
|
// prefix to a normal instruction for these operations.
|
|
return !AI->use_empty();
|
|
case AtomicRMWInst::Nand:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
// These always require a non-trivial set of data operations on x86. We must
|
|
// use a cmpxchg loop.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool hasMFENCE(const X86Subtarget& Subtarget) {
|
|
// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
|
|
// no-sse2). There isn't any reason to disable it if the target processor
|
|
// supports it.
|
|
return Subtarget.hasSSE2() || Subtarget.is64Bit();
|
|
}
|
|
|
|
LoadInst *
|
|
X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
|
|
const X86Subtarget &Subtarget =
|
|
getTargetMachine().getSubtarget<X86Subtarget>();
|
|
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
|
|
const Type *MemType = AI->getType();
|
|
// Accesses larger than the native width are turned into cmpxchg/libcalls, so
|
|
// there is no benefit in turning such RMWs into loads, and it is actually
|
|
// harmful as it introduces a mfence.
|
|
if (MemType->getPrimitiveSizeInBits() > NativeWidth)
|
|
return nullptr;
|
|
|
|
auto Builder = IRBuilder<>(AI);
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
auto SynchScope = AI->getSynchScope();
|
|
// We must restrict the ordering to avoid generating loads with Release or
|
|
// ReleaseAcquire orderings.
|
|
auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
|
|
auto Ptr = AI->getPointerOperand();
|
|
|
|
// Before the load we need a fence. Here is an example lifted from
|
|
// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
|
|
// is required:
|
|
// Thread 0:
|
|
// x.store(1, relaxed);
|
|
// r1 = y.fetch_add(0, release);
|
|
// Thread 1:
|
|
// y.fetch_add(42, acquire);
|
|
// r2 = x.load(relaxed);
|
|
// r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
|
|
// lowered to just a load without a fence. A mfence flushes the store buffer,
|
|
// making the optimization clearly correct.
|
|
// FIXME: it is required if isAtLeastRelease(Order) but it is not clear
|
|
// otherwise, we might be able to be more agressive on relaxed idempotent
|
|
// rmw. In practice, they do not look useful, so we don't try to be
|
|
// especially clever.
|
|
if (SynchScope == SingleThread) {
|
|
// FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
|
|
// the IR level, so we must wrap it in an intrinsic.
|
|
return nullptr;
|
|
} else if (hasMFENCE(Subtarget)) {
|
|
Function *MFence = llvm::Intrinsic::getDeclaration(M,
|
|
Intrinsic::x86_sse2_mfence);
|
|
Builder.CreateCall(MFence);
|
|
} else {
|
|
// FIXME: it might make sense to use a locked operation here but on a
|
|
// different cache-line to prevent cache-line bouncing. In practice it
|
|
// is probably a small win, and x86 processors without mfence are rare
|
|
// enough that we do not bother.
|
|
return nullptr;
|
|
}
|
|
|
|
// Finally we can emit the atomic load.
|
|
LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
|
|
AI->getType()->getPrimitiveSizeInBits());
|
|
Loaded->setAtomic(Order, SynchScope);
|
|
AI->replaceAllUsesWith(Loaded);
|
|
AI->eraseFromParent();
|
|
return Loaded;
|
|
}
|
|
|
|
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
|
|
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
|
|
SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
|
|
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
|
|
|
|
// The only fence that needs an instruction is a sequentially-consistent
|
|
// cross-thread fence.
|
|
if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
|
|
if (hasMFENCE(*Subtarget))
|
|
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Zero = DAG.getConstant(0, MVT::i32);
|
|
SDValue Ops[] = {
|
|
DAG.getRegister(X86::ESP, MVT::i32), // Base
|
|
DAG.getTargetConstant(1, MVT::i8), // Scale
|
|
DAG.getRegister(0, MVT::i32), // Index
|
|
DAG.getTargetConstant(0, MVT::i32), // Disp
|
|
DAG.getRegister(0, MVT::i32), // Segment.
|
|
Zero,
|
|
Chain
|
|
};
|
|
SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
|
|
return SDValue(Res, 0);
|
|
}
|
|
|
|
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
|
|
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
|
|
}
|
|
|
|
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT T = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Reg = 0;
|
|
unsigned size = 0;
|
|
switch(T.SimpleTy) {
|
|
default: llvm_unreachable("Invalid value type!");
|
|
case MVT::i8: Reg = X86::AL; size = 1; break;
|
|
case MVT::i16: Reg = X86::AX; size = 2; break;
|
|
case MVT::i32: Reg = X86::EAX; size = 4; break;
|
|
case MVT::i64:
|
|
assert(Subtarget->is64Bit() && "Node not type legal!");
|
|
Reg = X86::RAX; size = 8;
|
|
break;
|
|
}
|
|
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
|
|
Op.getOperand(2), SDValue());
|
|
SDValue Ops[] = { cpIn.getValue(0),
|
|
Op.getOperand(1),
|
|
Op.getOperand(3),
|
|
DAG.getTargetConstant(size, MVT::i8),
|
|
cpIn.getValue(1) };
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
|
|
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
|
|
Ops, T, MMO);
|
|
|
|
SDValue cpOut =
|
|
DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
|
|
SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
|
|
MVT::i32, cpOut.getValue(2));
|
|
SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
|
|
DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
|
|
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
|
|
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
MVT SrcVT = Op.getOperand(0).getSimpleValueType();
|
|
MVT DstVT = Op.getSimpleValueType();
|
|
|
|
if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
|
|
assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
|
|
if (DstVT != MVT::f64)
|
|
// This conversion needs to be expanded.
|
|
return SDValue();
|
|
|
|
SDValue InVec = Op->getOperand(0);
|
|
SDLoc dl(Op);
|
|
unsigned NumElts = SrcVT.getVectorNumElements();
|
|
EVT SVT = SrcVT.getVectorElementType();
|
|
|
|
// Widen the vector in input in the case of MVT::v2i32.
|
|
// Example: from MVT::v2i32 to MVT::v4i32.
|
|
SmallVector<SDValue, 16> Elts;
|
|
for (unsigned i = 0, e = NumElts; i != e; ++i)
|
|
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
|
|
DAG.getIntPtrConstant(i)));
|
|
|
|
// Explicitly mark the extra elements as Undef.
|
|
SDValue Undef = DAG.getUNDEF(SVT);
|
|
for (unsigned i = NumElts, e = NumElts * 2; i != e; ++i)
|
|
Elts.push_back(Undef);
|
|
|
|
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
|
|
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
|
|
SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
|
|
Subtarget->hasMMX() && "Unexpected custom BITCAST");
|
|
assert((DstVT == MVT::i64 ||
|
|
(DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
|
|
"Unexpected custom BITCAST");
|
|
// i64 <=> MMX conversions are Legal.
|
|
if (SrcVT==MVT::i64 && DstVT.isVector())
|
|
return Op;
|
|
if (DstVT==MVT::i64 && SrcVT.isVector())
|
|
return Op;
|
|
// MMX <=> MMX conversions are Legal.
|
|
if (SrcVT.isVector() && DstVT.isVector())
|
|
return Op;
|
|
// All other conversions need to be expanded.
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc dl(Node);
|
|
EVT T = Node->getValueType(0);
|
|
SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
|
|
DAG.getConstant(0, T), Node->getOperand(2));
|
|
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
|
|
cast<AtomicSDNode>(Node)->getMemoryVT(),
|
|
Node->getOperand(0),
|
|
Node->getOperand(1), negOp,
|
|
cast<AtomicSDNode>(Node)->getMemOperand(),
|
|
cast<AtomicSDNode>(Node)->getOrdering(),
|
|
cast<AtomicSDNode>(Node)->getSynchScope());
|
|
}
|
|
|
|
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc dl(Node);
|
|
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
|
|
|
|
// Convert seq_cst store -> xchg
|
|
// Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
|
|
// FIXME: On 32-bit, store -> fist or movq would be more efficient
|
|
// (The only way to get a 16-byte store is cmpxchg16b)
|
|
// FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
|
|
if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
|
|
!DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
|
|
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
|
|
cast<AtomicSDNode>(Node)->getMemoryVT(),
|
|
Node->getOperand(0),
|
|
Node->getOperand(1), Node->getOperand(2),
|
|
cast<AtomicSDNode>(Node)->getMemOperand(),
|
|
cast<AtomicSDNode>(Node)->getOrdering(),
|
|
cast<AtomicSDNode>(Node)->getSynchScope());
|
|
return Swap.getValue(1);
|
|
}
|
|
// Other atomic stores have a simple pattern.
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getNode()->getSimpleValueType(0);
|
|
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
|
|
unsigned Opc;
|
|
bool ExtraOp = false;
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Invalid code");
|
|
case ISD::ADDC: Opc = X86ISD::ADD; break;
|
|
case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
|
|
case ISD::SUBC: Opc = X86ISD::SUB; break;
|
|
case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
|
|
}
|
|
|
|
if (!ExtraOp)
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
|
|
Op.getOperand(1));
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
|
|
static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
|
|
SelectionDAG &DAG) {
|
|
assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
|
|
|
|
// For MacOSX, we want to call an alternative entry point: __sincos_stret,
|
|
// which returns the values as { float, float } (in XMM0) or
|
|
// { double, double } (which is returned in XMM0, XMM1).
|
|
SDLoc dl(Op);
|
|
SDValue Arg = Op.getOperand(0);
|
|
EVT ArgVT = Arg.getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
|
|
Entry.Node = Arg;
|
|
Entry.Ty = ArgTy;
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
bool isF64 = ArgVT == MVT::f64;
|
|
// Only optimize x86_64 for now. i386 is a bit messy. For f32,
|
|
// the small struct {f32, f32} is returned in (eax, edx). For f64,
|
|
// the results are returned via SRet in memory.
|
|
const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret";
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
|
|
|
|
Type *RetTy = isF64
|
|
? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
|
|
: (Type*)VectorType::get(ArgTy, 4);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
|
|
.setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
|
|
|
|
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
|
|
|
|
if (isF64)
|
|
// Returned in xmm0 and xmm1.
|
|
return CallResult.first;
|
|
|
|
// Returned in bits 0:31 and 32:64 xmm0.
|
|
SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
|
|
CallResult.first, DAG.getIntPtrConstant(0));
|
|
SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
|
|
CallResult.first, DAG.getIntPtrConstant(1));
|
|
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
|
|
}
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Should not custom lower this!");
|
|
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
|
|
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
|
|
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
|
|
return LowerCMP_SWAP(Op, Subtarget, DAG);
|
|
case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
|
|
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::VSELECT: return LowerVSELECT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
|
|
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
|
|
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
|
|
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
|
|
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
|
|
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
|
|
case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
|
|
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
|
|
case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
|
|
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
|
|
case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG);
|
|
case ISD::FABS:
|
|
case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::VAARG: return LowerVAARG(Op, DAG);
|
|
case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::FRAME_TO_ARGS_OFFSET:
|
|
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
|
|
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
|
|
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
|
|
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
case ISD::CTLZ: return LowerCTLZ(Op, DAG);
|
|
case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
|
|
case ISD::CTTZ: return LowerCTTZ(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
|
|
case ISD::UMUL_LOHI:
|
|
case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO: return LowerXALUO(Op, DAG);
|
|
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
|
|
case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
|
|
case ISD::ADD: return LowerADD(Op, DAG);
|
|
case ISD::SUB: return LowerSUB(Op, DAG);
|
|
case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
|
|
}
|
|
}
|
|
|
|
/// ReplaceNodeResults - Replace a node with an illegal result type
|
|
/// with a new node built out of custom code.
|
|
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(N);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Do not know how to custom type legalize this operation!");
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE:
|
|
// We don't want to expand or promote these.
|
|
return;
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM: {
|
|
SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
|
|
Results.push_back(V);
|
|
return;
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: {
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
|
|
if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
|
|
return;
|
|
|
|
std::pair<SDValue,SDValue> Vals =
|
|
FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
|
|
SDValue FIST = Vals.first, StackSlot = Vals.second;
|
|
if (FIST.getNode()) {
|
|
EVT VT = N->getValueType(0);
|
|
// Return a load from the stack slot.
|
|
if (StackSlot.getNode())
|
|
Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0));
|
|
else
|
|
Results.push_back(FIST);
|
|
}
|
|
return;
|
|
}
|
|
case ISD::UINT_TO_FP: {
|
|
assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
|
|
if (N->getOperand(0).getValueType() != MVT::v2i32 ||
|
|
N->getValueType(0) != MVT::v2f32)
|
|
return;
|
|
SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
|
|
N->getOperand(0));
|
|
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
|
|
MVT::f64);
|
|
SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
|
|
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
|
|
Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
|
|
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
|
|
Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
|
|
return;
|
|
}
|
|
case ISD::FP_ROUND: {
|
|
if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
|
|
return;
|
|
SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
|
|
Results.push_back(V);
|
|
return;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default : llvm_unreachable("Do not know how to custom type "
|
|
"legalize this intrinsic operation!");
|
|
case Intrinsic::x86_rdtsc:
|
|
return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
|
|
Results);
|
|
case Intrinsic::x86_rdtscp:
|
|
return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
|
|
Results);
|
|
case Intrinsic::x86_rdpmc:
|
|
return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
|
|
}
|
|
}
|
|
case ISD::READCYCLECOUNTER: {
|
|
return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
|
|
Results);
|
|
}
|
|
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
|
|
EVT T = N->getValueType(0);
|
|
assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
|
|
bool Regs64bit = T == MVT::i128;
|
|
EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
|
|
SDValue cpInL, cpInH;
|
|
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
|
|
DAG.getConstant(0, HalfT));
|
|
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
|
|
DAG.getConstant(1, HalfT));
|
|
cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
|
|
Regs64bit ? X86::RAX : X86::EAX,
|
|
cpInL, SDValue());
|
|
cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
|
|
Regs64bit ? X86::RDX : X86::EDX,
|
|
cpInH, cpInL.getValue(1));
|
|
SDValue swapInL, swapInH;
|
|
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
|
|
DAG.getConstant(0, HalfT));
|
|
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
|
|
DAG.getConstant(1, HalfT));
|
|
swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
|
|
Regs64bit ? X86::RBX : X86::EBX,
|
|
swapInL, cpInH.getValue(1));
|
|
swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
|
|
Regs64bit ? X86::RCX : X86::ECX,
|
|
swapInH, swapInL.getValue(1));
|
|
SDValue Ops[] = { swapInH.getValue(0),
|
|
N->getOperand(1),
|
|
swapInH.getValue(1) };
|
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
|
|
unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
|
|
X86ISD::LCMPXCHG8_DAG;
|
|
SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
|
|
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
|
|
Regs64bit ? X86::RAX : X86::EAX,
|
|
HalfT, Result.getValue(1));
|
|
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
|
|
Regs64bit ? X86::RDX : X86::EDX,
|
|
HalfT, cpOutL.getValue(2));
|
|
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
|
|
|
|
SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
|
|
MVT::i32, cpOutH.getValue(2));
|
|
SDValue Success =
|
|
DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
|
|
DAG.getConstant(X86::COND_E, MVT::i8), EFLAGS);
|
|
Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
|
|
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
|
|
Results.push_back(Success);
|
|
Results.push_back(EFLAGS.getValue(1));
|
|
return;
|
|
}
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
case ISD::ATOMIC_LOAD: {
|
|
// Delegate to generic TypeLegalization. Situations we can really handle
|
|
// should have already been dealt with by AtomicExpandPass.cpp.
|
|
break;
|
|
}
|
|
case ISD::BITCAST: {
|
|
assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
|
|
EVT DstVT = N->getValueType(0);
|
|
EVT SrcVT = N->getOperand(0)->getValueType(0);
|
|
|
|
if (SrcVT != MVT::f64 ||
|
|
(DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
|
|
return;
|
|
|
|
unsigned NumElts = DstVT.getVectorNumElements();
|
|
EVT SVT = DstVT.getVectorElementType();
|
|
EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
|
|
SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
|
|
MVT::v2f64, N->getOperand(0));
|
|
SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
|
|
|
|
if (ExperimentalVectorWideningLegalization) {
|
|
// If we are legalizing vectors by widening, we already have the desired
|
|
// legal vector type, just return it.
|
|
Results.push_back(ToVecInt);
|
|
return;
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Elts;
|
|
for (unsigned i = 0, e = NumElts; i != e; ++i)
|
|
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
|
|
ToVecInt, DAG.getIntPtrConstant(i)));
|
|
|
|
Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return nullptr;
|
|
case X86ISD::BSF: return "X86ISD::BSF";
|
|
case X86ISD::BSR: return "X86ISD::BSR";
|
|
case X86ISD::SHLD: return "X86ISD::SHLD";
|
|
case X86ISD::SHRD: return "X86ISD::SHRD";
|
|
case X86ISD::FAND: return "X86ISD::FAND";
|
|
case X86ISD::FANDN: return "X86ISD::FANDN";
|
|
case X86ISD::FOR: return "X86ISD::FOR";
|
|
case X86ISD::FXOR: return "X86ISD::FXOR";
|
|
case X86ISD::FSRL: return "X86ISD::FSRL";
|
|
case X86ISD::FILD: return "X86ISD::FILD";
|
|
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
|
|
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
|
|
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
|
|
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
|
|
case X86ISD::FLD: return "X86ISD::FLD";
|
|
case X86ISD::FST: return "X86ISD::FST";
|
|
case X86ISD::CALL: return "X86ISD::CALL";
|
|
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
|
|
case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
|
|
case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
|
|
case X86ISD::BT: return "X86ISD::BT";
|
|
case X86ISD::CMP: return "X86ISD::CMP";
|
|
case X86ISD::COMI: return "X86ISD::COMI";
|
|
case X86ISD::UCOMI: return "X86ISD::UCOMI";
|
|
case X86ISD::CMPM: return "X86ISD::CMPM";
|
|
case X86ISD::CMPMU: return "X86ISD::CMPMU";
|
|
case X86ISD::SETCC: return "X86ISD::SETCC";
|
|
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
|
|
case X86ISD::FSETCC: return "X86ISD::FSETCC";
|
|
case X86ISD::CMOV: return "X86ISD::CMOV";
|
|
case X86ISD::BRCOND: return "X86ISD::BRCOND";
|
|
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
|
|
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
|
|
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
|
|
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
|
|
case X86ISD::Wrapper: return "X86ISD::Wrapper";
|
|
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
|
|
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
|
|
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
|
|
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
|
|
case X86ISD::PINSRB: return "X86ISD::PINSRB";
|
|
case X86ISD::PINSRW: return "X86ISD::PINSRW";
|
|
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
|
|
case X86ISD::ANDNP: return "X86ISD::ANDNP";
|
|
case X86ISD::PSIGN: return "X86ISD::PSIGN";
|
|
case X86ISD::BLENDI: return "X86ISD::BLENDI";
|
|
case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND";
|
|
case X86ISD::SUBUS: return "X86ISD::SUBUS";
|
|
case X86ISD::HADD: return "X86ISD::HADD";
|
|
case X86ISD::HSUB: return "X86ISD::HSUB";
|
|
case X86ISD::FHADD: return "X86ISD::FHADD";
|
|
case X86ISD::FHSUB: return "X86ISD::FHSUB";
|
|
case X86ISD::UMAX: return "X86ISD::UMAX";
|
|
case X86ISD::UMIN: return "X86ISD::UMIN";
|
|
case X86ISD::SMAX: return "X86ISD::SMAX";
|
|
case X86ISD::SMIN: return "X86ISD::SMIN";
|
|
case X86ISD::FMAX: return "X86ISD::FMAX";
|
|
case X86ISD::FMIN: return "X86ISD::FMIN";
|
|
case X86ISD::FMAXC: return "X86ISD::FMAXC";
|
|
case X86ISD::FMINC: return "X86ISD::FMINC";
|
|
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
|
|
case X86ISD::FRCP: return "X86ISD::FRCP";
|
|
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
|
|
case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
|
|
case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
|
|
case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
|
|
case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
|
|
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
|
|
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
|
|
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
|
|
case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
|
|
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
|
|
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
|
|
case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
|
|
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
|
|
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
|
|
case X86ISD::VZEXT: return "X86ISD::VZEXT";
|
|
case X86ISD::VSEXT: return "X86ISD::VSEXT";
|
|
case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
|
|
case X86ISD::VTRUNCM: return "X86ISD::VTRUNCM";
|
|
case X86ISD::VINSERT: return "X86ISD::VINSERT";
|
|
case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
|
|
case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
|
|
case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
|
|
case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
|
|
case X86ISD::VSHL: return "X86ISD::VSHL";
|
|
case X86ISD::VSRL: return "X86ISD::VSRL";
|
|
case X86ISD::VSRA: return "X86ISD::VSRA";
|
|
case X86ISD::VSHLI: return "X86ISD::VSHLI";
|
|
case X86ISD::VSRLI: return "X86ISD::VSRLI";
|
|
case X86ISD::VSRAI: return "X86ISD::VSRAI";
|
|
case X86ISD::CMPP: return "X86ISD::CMPP";
|
|
case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
|
|
case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
|
|
case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
|
|
case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
|
|
case X86ISD::ADD: return "X86ISD::ADD";
|
|
case X86ISD::SUB: return "X86ISD::SUB";
|
|
case X86ISD::ADC: return "X86ISD::ADC";
|
|
case X86ISD::SBB: return "X86ISD::SBB";
|
|
case X86ISD::SMUL: return "X86ISD::SMUL";
|
|
case X86ISD::UMUL: return "X86ISD::UMUL";
|
|
case X86ISD::SMUL8: return "X86ISD::SMUL8";
|
|
case X86ISD::UMUL8: return "X86ISD::UMUL8";
|
|
case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
|
|
case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
|
|
case X86ISD::INC: return "X86ISD::INC";
|
|
case X86ISD::DEC: return "X86ISD::DEC";
|
|
case X86ISD::OR: return "X86ISD::OR";
|
|
case X86ISD::XOR: return "X86ISD::XOR";
|
|
case X86ISD::AND: return "X86ISD::AND";
|
|
case X86ISD::BEXTR: return "X86ISD::BEXTR";
|
|
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
|
|
case X86ISD::PTEST: return "X86ISD::PTEST";
|
|
case X86ISD::TESTP: return "X86ISD::TESTP";
|
|
case X86ISD::TESTM: return "X86ISD::TESTM";
|
|
case X86ISD::TESTNM: return "X86ISD::TESTNM";
|
|
case X86ISD::KORTEST: return "X86ISD::KORTEST";
|
|
case X86ISD::PACKSS: return "X86ISD::PACKSS";
|
|
case X86ISD::PACKUS: return "X86ISD::PACKUS";
|
|
case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
|
|
case X86ISD::VALIGN: return "X86ISD::VALIGN";
|
|
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
|
|
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
|
|
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
|
|
case X86ISD::SHUFP: return "X86ISD::SHUFP";
|
|
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
|
|
case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
|
|
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
|
|
case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
|
|
case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
|
|
case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
|
|
case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
|
|
case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
|
|
case X86ISD::MOVSD: return "X86ISD::MOVSD";
|
|
case X86ISD::MOVSS: return "X86ISD::MOVSS";
|
|
case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
|
|
case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
|
|
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
|
|
case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
|
|
case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT";
|
|
case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
|
|
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
|
|
case X86ISD::VPERMV: return "X86ISD::VPERMV";
|
|
case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
|
|
case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
|
|
case X86ISD::VPERMI: return "X86ISD::VPERMI";
|
|
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
|
|
case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
|
|
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
|
|
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
|
|
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
|
|
case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
|
|
case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
|
|
case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL";
|
|
case X86ISD::SAHF: return "X86ISD::SAHF";
|
|
case X86ISD::RDRAND: return "X86ISD::RDRAND";
|
|
case X86ISD::RDSEED: return "X86ISD::RDSEED";
|
|
case X86ISD::FMADD: return "X86ISD::FMADD";
|
|
case X86ISD::FMSUB: return "X86ISD::FMSUB";
|
|
case X86ISD::FNMADD: return "X86ISD::FNMADD";
|
|
case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
|
|
case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
|
|
case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
|
|
case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
|
|
case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
|
|
case X86ISD::XTEST: return "X86ISD::XTEST";
|
|
}
|
|
}
|
|
|
|
// isLegalAddressingMode - Return true if the addressing mode represented
|
|
// by AM is legal for this target, for a load/store of the specified type.
|
|
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// X86 supports extremely general addressing modes.
|
|
CodeModel::Model M = getTargetMachine().getCodeModel();
|
|
Reloc::Model R = getTargetMachine().getRelocationModel();
|
|
|
|
// X86 allows a sign-extended 32-bit immediate field as a displacement.
|
|
if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
|
|
return false;
|
|
|
|
if (AM.BaseGV) {
|
|
unsigned GVFlags =
|
|
Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
|
|
|
|
// If a reference to this global requires an extra load, we can't fold it.
|
|
if (isGlobalStubReference(GVFlags))
|
|
return false;
|
|
|
|
// If BaseGV requires a register for the PIC base, we cannot also have a
|
|
// BaseReg specified.
|
|
if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
|
|
return false;
|
|
|
|
// If lower 4G is not available, then we must use rip-relative addressing.
|
|
if ((M != CodeModel::Small || R != Reloc::Static) &&
|
|
Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
|
|
return false;
|
|
}
|
|
|
|
switch (AM.Scale) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
// These scales always work.
|
|
break;
|
|
case 3:
|
|
case 5:
|
|
case 9:
|
|
// These scales are formed with basereg+scalereg. Only accept if there is
|
|
// no basereg yet.
|
|
if (AM.HasBaseReg)
|
|
return false;
|
|
break;
|
|
default: // Other stuff never works.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
|
|
unsigned Bits = Ty->getScalarSizeInBits();
|
|
|
|
// 8-bit shifts are always expensive, but versions with a scalar amount aren't
|
|
// particularly cheaper than those without.
|
|
if (Bits == 8)
|
|
return false;
|
|
|
|
// On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
|
|
// variable shifts just as cheap as scalar ones.
|
|
if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
|
|
return false;
|
|
|
|
// Otherwise, it's significantly cheaper to shift by a scalar amount than by a
|
|
// fully general vector.
|
|
return true;
|
|
}
|
|
|
|
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
return NumBits1 > NumBits2;
|
|
}
|
|
|
|
bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
|
|
if (!isTypeLegal(EVT::getEVT(Ty1)))
|
|
return false;
|
|
|
|
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
|
|
|
|
// Assuming the caller doesn't have a zeroext or signext return parameter,
|
|
// truncation all the way down to i1 is valid.
|
|
return true;
|
|
}
|
|
|
|
bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
return isInt<32>(Imm);
|
|
}
|
|
|
|
bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
// Can also use sub to handle negated immediates.
|
|
return isInt<32>(Imm);
|
|
}
|
|
|
|
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
|
if (!VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
return NumBits1 > NumBits2;
|
|
}
|
|
|
|
bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
|
|
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
|
|
return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
|
|
}
|
|
|
|
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
|
|
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
|
|
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
|
|
}
|
|
|
|
bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
EVT VT1 = Val.getValueType();
|
|
if (isZExtFree(VT1, VT2))
|
|
return true;
|
|
|
|
if (Val.getOpcode() != ISD::LOAD)
|
|
return false;
|
|
|
|
if (!VT1.isSimple() || !VT1.isInteger() ||
|
|
!VT2.isSimple() || !VT2.isInteger())
|
|
return false;
|
|
|
|
switch (VT1.getSimpleVT().SimpleTy) {
|
|
default: break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
// X86 has 8, 16, and 32-bit zero-extending loads.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
|
|
return false;
|
|
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
|
|
// i16 instructions are longer (0x66 prefix) and potentially slower.
|
|
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
|
|
}
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
|
|
/// are assumed to be legal.
|
|
bool
|
|
X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
|
|
EVT VT) const {
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
MVT SVT = VT.getSimpleVT();
|
|
|
|
// Very little shuffling can be done for 64-bit vectors right now.
|
|
if (VT.getSizeInBits() == 64)
|
|
return false;
|
|
|
|
// If this is a single-input shuffle with no 128 bit lane crossings we can
|
|
// lower it into pshufb.
|
|
if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) ||
|
|
(SVT.is256BitVector() && Subtarget->hasInt256())) {
|
|
bool isLegal = true;
|
|
for (unsigned I = 0, E = M.size(); I != E; ++I) {
|
|
if (M[I] >= (int)SVT.getVectorNumElements() ||
|
|
ShuffleCrosses128bitLane(SVT, I, M[I])) {
|
|
isLegal = false;
|
|
break;
|
|
}
|
|
}
|
|
if (isLegal)
|
|
return true;
|
|
}
|
|
|
|
// FIXME: blends, shifts.
|
|
return (SVT.getVectorNumElements() == 2 ||
|
|
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
|
|
isMOVLMask(M, SVT) ||
|
|
isCommutedMOVLMask(M, SVT) ||
|
|
isMOVHLPSMask(M, SVT) ||
|
|
isSHUFPMask(M, SVT) ||
|
|
isSHUFPMask(M, SVT, /* Commuted */ true) ||
|
|
isPSHUFDMask(M, SVT) ||
|
|
isPSHUFDMask(M, SVT, /* SecondOperand */ true) ||
|
|
isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
|
|
isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
|
|
isPALIGNRMask(M, SVT, Subtarget) ||
|
|
isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
|
|
isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
|
|
isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
|
|
isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
|
|
isBlendMask(M, SVT, Subtarget->hasSSE41(), Subtarget->hasInt256()) ||
|
|
(Subtarget->hasSSE41() && isINSERTPSMask(M, SVT)));
|
|
}
|
|
|
|
bool
|
|
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
|
|
EVT VT) const {
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
MVT SVT = VT.getSimpleVT();
|
|
unsigned NumElts = SVT.getVectorNumElements();
|
|
// FIXME: This collection of masks seems suspect.
|
|
if (NumElts == 2)
|
|
return true;
|
|
if (NumElts == 4 && SVT.is128BitVector()) {
|
|
return (isMOVLMask(Mask, SVT) ||
|
|
isCommutedMOVLMask(Mask, SVT, true) ||
|
|
isSHUFPMask(Mask, SVT) ||
|
|
isSHUFPMask(Mask, SVT, /* Commuted */ true) ||
|
|
isBlendMask(Mask, SVT, Subtarget->hasSSE41(),
|
|
Subtarget->hasInt256()));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Scheduler Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Utility function to emit xbegin specifying the start of an RTM region.
|
|
static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
const TargetInstrInfo *TII) {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
MachineFunction::iterator I = MBB;
|
|
++I;
|
|
|
|
// For the v = xbegin(), we generate
|
|
//
|
|
// thisMBB:
|
|
// xbegin sinkMBB
|
|
//
|
|
// mainMBB:
|
|
// eax = -1
|
|
//
|
|
// sinkMBB:
|
|
// v = eax
|
|
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
|
|
MF->insert(I, mainMBB);
|
|
MF->insert(I, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
// thisMBB:
|
|
// xbegin sinkMBB
|
|
// # fallthrough to mainMBB
|
|
// # abortion to sinkMBB
|
|
BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
|
|
thisMBB->addSuccessor(mainMBB);
|
|
thisMBB->addSuccessor(sinkMBB);
|
|
|
|
// mainMBB:
|
|
// EAX = -1
|
|
BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
|
|
mainMBB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// EAX is live into the sinkMBB
|
|
sinkMBB->addLiveIn(X86::EAX);
|
|
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
|
|
TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
|
|
.addReg(X86::EAX);
|
|
|
|
MI->eraseFromParent();
|
|
return sinkMBB;
|
|
}
|
|
|
|
// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
|
|
// or XMM0_V32I8 in AVX all of this code can be replaced with that
|
|
// in the .td file.
|
|
static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
|
|
const TargetInstrInfo *TII) {
|
|
unsigned Opc;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("illegal opcode!");
|
|
case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break;
|
|
case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
|
|
case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break;
|
|
case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
|
|
case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break;
|
|
case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
|
|
case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break;
|
|
case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
|
|
}
|
|
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
|
|
|
|
unsigned NumArgs = MI->getNumOperands();
|
|
for (unsigned i = 1; i < NumArgs; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i);
|
|
if (!(Op.isReg() && Op.isImplicit()))
|
|
MIB.addOperand(Op);
|
|
}
|
|
if (MI->hasOneMemOperand())
|
|
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
BuildMI(*BB, MI, dl,
|
|
TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
|
|
.addReg(X86::XMM0);
|
|
|
|
MI->eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
// FIXME: Custom handling because TableGen doesn't support multiple implicit
|
|
// defs in an instruction pattern
|
|
static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
|
|
const TargetInstrInfo *TII) {
|
|
unsigned Opc;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("illegal opcode!");
|
|
case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break;
|
|
case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
|
|
case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break;
|
|
case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
|
|
case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break;
|
|
case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
|
|
case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break;
|
|
case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
|
|
}
|
|
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
|
|
|
|
unsigned NumArgs = MI->getNumOperands(); // remove the results
|
|
for (unsigned i = 1; i < NumArgs; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i);
|
|
if (!(Op.isReg() && Op.isImplicit()))
|
|
MIB.addOperand(Op);
|
|
}
|
|
if (MI->hasOneMemOperand())
|
|
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
BuildMI(*BB, MI, dl,
|
|
TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
|
|
.addReg(X86::ECX);
|
|
|
|
MI->eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
|
|
const TargetInstrInfo *TII,
|
|
const X86Subtarget* Subtarget) {
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
// Address into RAX/EAX, other two args into ECX, EDX.
|
|
unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
|
|
unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
|
|
for (int i = 0; i < X86::AddrNumOperands; ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
|
|
unsigned ValOps = X86::AddrNumOperands;
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
|
|
.addReg(MI->getOperand(ValOps).getReg());
|
|
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
|
|
.addReg(MI->getOperand(ValOps+1).getReg());
|
|
|
|
// The instruction doesn't actually take any operands though.
|
|
BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
|
|
|
|
MI->eraseFromParent(); // The pseudo is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitVAARG64WithCustomInserter(
|
|
MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// Emit va_arg instruction on X86-64.
|
|
|
|
// Operands to this pseudo-instruction:
|
|
// 0 ) Output : destination address (reg)
|
|
// 1-5) Input : va_list address (addr, i64mem)
|
|
// 6 ) ArgSize : Size (in bytes) of vararg type
|
|
// 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
|
|
// 8 ) Align : Alignment of type
|
|
// 9 ) EFLAGS (implicit-def)
|
|
|
|
assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
|
|
assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
|
|
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
MachineOperand &Base = MI->getOperand(1);
|
|
MachineOperand &Scale = MI->getOperand(2);
|
|
MachineOperand &Index = MI->getOperand(3);
|
|
MachineOperand &Disp = MI->getOperand(4);
|
|
MachineOperand &Segment = MI->getOperand(5);
|
|
unsigned ArgSize = MI->getOperand(6).getImm();
|
|
unsigned ArgMode = MI->getOperand(7).getImm();
|
|
unsigned Align = MI->getOperand(8).getImm();
|
|
|
|
// Memory Reference
|
|
assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
|
|
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
|
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
|
|
|
// Machine Information
|
|
const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
|
|
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// struct va_list {
|
|
// i32 gp_offset
|
|
// i32 fp_offset
|
|
// i64 overflow_area (address)
|
|
// i64 reg_save_area (address)
|
|
// }
|
|
// sizeof(va_list) = 24
|
|
// alignment(va_list) = 8
|
|
|
|
unsigned TotalNumIntRegs = 6;
|
|
unsigned TotalNumXMMRegs = 8;
|
|
bool UseGPOffset = (ArgMode == 1);
|
|
bool UseFPOffset = (ArgMode == 2);
|
|
unsigned MaxOffset = TotalNumIntRegs * 8 +
|
|
(UseFPOffset ? TotalNumXMMRegs * 16 : 0);
|
|
|
|
/* Align ArgSize to a multiple of 8 */
|
|
unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
|
|
bool NeedsAlign = (Align > 8);
|
|
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *overflowMBB;
|
|
MachineBasicBlock *offsetMBB;
|
|
MachineBasicBlock *endMBB;
|
|
|
|
unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
|
|
unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
|
|
unsigned OffsetReg = 0;
|
|
|
|
if (!UseGPOffset && !UseFPOffset) {
|
|
// If we only pull from the overflow region, we don't create a branch.
|
|
// We don't need to alter control flow.
|
|
OffsetDestReg = 0; // unused
|
|
OverflowDestReg = DestReg;
|
|
|
|
offsetMBB = nullptr;
|
|
overflowMBB = thisMBB;
|
|
endMBB = thisMBB;
|
|
} else {
|
|
// First emit code to check if gp_offset (or fp_offset) is below the bound.
|
|
// If so, pull the argument from reg_save_area. (branch to offsetMBB)
|
|
// If not, pull from overflow_area. (branch to overflowMBB)
|
|
//
|
|
// thisMBB
|
|
// | .
|
|
// | .
|
|
// offsetMBB overflowMBB
|
|
// | .
|
|
// | .
|
|
// endMBB
|
|
|
|
// Registers for the PHI in endMBB
|
|
OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
|
|
OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
|
|
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction *MF = MBB->getParent();
|
|
overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
|
|
// Insert the new basic blocks
|
|
MF->insert(MBBIter, offsetMBB);
|
|
MF->insert(MBBIter, overflowMBB);
|
|
MF->insert(MBBIter, endMBB);
|
|
|
|
// Transfer the remainder of MBB and its successor edges to endMBB.
|
|
endMBB->splice(endMBB->begin(), thisMBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
|
|
endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
|
|
|
|
// Make offsetMBB and overflowMBB successors of thisMBB
|
|
thisMBB->addSuccessor(offsetMBB);
|
|
thisMBB->addSuccessor(overflowMBB);
|
|
|
|
// endMBB is a successor of both offsetMBB and overflowMBB
|
|
offsetMBB->addSuccessor(endMBB);
|
|
overflowMBB->addSuccessor(endMBB);
|
|
|
|
// Load the offset value into a register
|
|
OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
|
|
BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, UseFPOffset ? 4 : 0)
|
|
.addOperand(Segment)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Check if there is enough room left to pull this argument.
|
|
BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
|
|
.addReg(OffsetReg)
|
|
.addImm(MaxOffset + 8 - ArgSizeA8);
|
|
|
|
// Branch to "overflowMBB" if offset >= max
|
|
// Fall through to "offsetMBB" otherwise
|
|
BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
|
|
.addMBB(overflowMBB);
|
|
}
|
|
|
|
// In offsetMBB, emit code to use the reg_save_area.
|
|
if (offsetMBB) {
|
|
assert(OffsetReg != 0);
|
|
|
|
// Read the reg_save_area address.
|
|
unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, 16)
|
|
.addOperand(Segment)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Zero-extend the offset
|
|
unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
|
|
.addImm(0)
|
|
.addReg(OffsetReg)
|
|
.addImm(X86::sub_32bit);
|
|
|
|
// Add the offset to the reg_save_area to get the final address.
|
|
BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
|
|
.addReg(OffsetReg64)
|
|
.addReg(RegSaveReg);
|
|
|
|
// Compute the offset for the next argument
|
|
unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
|
|
BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
|
|
.addReg(OffsetReg)
|
|
.addImm(UseFPOffset ? 16 : 8);
|
|
|
|
// Store it back into the va_list.
|
|
BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, UseFPOffset ? 4 : 0)
|
|
.addOperand(Segment)
|
|
.addReg(NextOffsetReg)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// Jump to endMBB
|
|
BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
|
|
.addMBB(endMBB);
|
|
}
|
|
|
|
//
|
|
// Emit code to use overflow area
|
|
//
|
|
|
|
// Load the overflow_area address into a register.
|
|
unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, 8)
|
|
.addOperand(Segment)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// If we need to align it, do so. Otherwise, just copy the address
|
|
// to OverflowDestReg.
|
|
if (NeedsAlign) {
|
|
// Align the overflow address
|
|
assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
|
|
unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
|
|
|
|
// aligned_addr = (addr + (align-1)) & ~(align-1)
|
|
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
|
|
.addReg(OverflowAddrReg)
|
|
.addImm(Align-1);
|
|
|
|
BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
|
|
.addReg(TmpReg)
|
|
.addImm(~(uint64_t)(Align-1));
|
|
} else {
|
|
BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
|
|
.addReg(OverflowAddrReg);
|
|
}
|
|
|
|
// Compute the next overflow address after this argument.
|
|
// (the overflow address should be kept 8-byte aligned)
|
|
unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
|
|
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
|
|
.addReg(OverflowDestReg)
|
|
.addImm(ArgSizeA8);
|
|
|
|
// Store the new overflow address.
|
|
BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
|
|
.addOperand(Base)
|
|
.addOperand(Scale)
|
|
.addOperand(Index)
|
|
.addDisp(Disp, 8)
|
|
.addOperand(Segment)
|
|
.addReg(NextAddrReg)
|
|
.setMemRefs(MMOBegin, MMOEnd);
|
|
|
|
// If we branched, emit the PHI to the front of endMBB.
|
|
if (offsetMBB) {
|
|
BuildMI(*endMBB, endMBB->begin(), DL,
|
|
TII->get(X86::PHI), DestReg)
|
|
.addReg(OffsetDestReg).addMBB(offsetMBB)
|
|
.addReg(OverflowDestReg).addMBB(overflowMBB);
|
|
}
|
|
|
|
// Erase the pseudo instruction
|
|
MI->eraseFromParent();
|
|
|
|
return endMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
|
|
MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// Emit code to save XMM registers to the stack. The ABI says that the
|
|
// number of registers to save is given in %al, so it's theoretically
|
|
// possible to do an indirect jump trick to avoid saving all of them,
|
|
// however this code takes a simpler approach and just executes all
|
|
// of the stores if %al is non-zero. It's less code, and it's probably
|
|
// easier on the hardware branch predictor, and stores aren't all that
|
|
// expensive anyway.
|
|
|
|
// Create the new basic blocks. One block contains all the XMM stores,
|
|
// and one block is the final destination regardless of whether any
|
|
// stores were performed.
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineFunction *F = MBB->getParent();
|
|
MachineFunction::iterator MBBIter = MBB;
|
|
++MBBIter;
|
|
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(MBBIter, XMMSaveMBB);
|
|
F->insert(MBBIter, EndMBB);
|
|
|
|
// Transfer the remainder of MBB and its successor edges to EndMBB.
|
|
EndMBB->splice(EndMBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
// The original block will now fall through to the XMM save block.
|
|
MBB->addSuccessor(XMMSaveMBB);
|
|
// The XMMSaveMBB will fall through to the end block.
|
|
XMMSaveMBB->addSuccessor(EndMBB);
|
|
|
|
// Now add the instructions.
|
|
const TargetInstrInfo *TII = MBB->getParent()->getSubtarget().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
unsigned CountReg = MI->getOperand(0).getReg();
|
|
int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
|
|
int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
|
|
|
|
if (!Subtarget->isTargetWin64()) {
|
|
// If %al is 0, branch around the XMM save block.
|
|
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
|
|
BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
|
|
MBB->addSuccessor(EndMBB);
|
|
}
|
|
|
|
// Make sure the last operand is EFLAGS, which gets clobbered by the branch
|
|
// that was just emitted, but clearly shouldn't be "saved".
|
|
assert((MI->getNumOperands() <= 3 ||
|
|
!MI->getOperand(MI->getNumOperands() - 1).isReg() ||
|
|
MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
|
|
&& "Expected last argument to be EFLAGS");
|
|
unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
|
|
// In the XMM save block, save all the XMM argument registers.
|
|
for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
|
|
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
|
|
MachineMemOperand *MMO =
|
|
F->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
|
|
MachineMemOperand::MOStore,
|
|
/*Size=*/16, /*Align=*/16);
|
|
BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
|
|
.addFrameIndex(RegSaveFrameIndex)
|
|
.addImm(/*Scale=*/1)
|
|
.addReg(/*IndexReg=*/0)
|
|
.addImm(/*Disp=*/Offset)
|
|
.addReg(/*Segment=*/0)
|
|
.addReg(MI->getOperand(i).getReg())
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
|
|
return EndMBB;
|
|
}
|
|
|
|
// The EFLAGS operand of SelectItr might be missing a kill marker
|
|
// because there were multiple uses of EFLAGS, and ISel didn't know
|
|
// which to mark. Figure out whether SelectItr should have had a
|
|
// kill marker, and set it if it should. Returns the correct kill
|
|
// marker value.
|
|
static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
|
|
MachineBasicBlock* BB,
|
|
const TargetRegisterInfo* TRI) {
|
|
// Scan forward through BB for a use/def of EFLAGS.
|
|
MachineBasicBlock::iterator miI(std::next(SelectItr));
|
|
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
|
|
const MachineInstr& mi = *miI;
|
|
if (mi.readsRegister(X86::EFLAGS))
|
|
return false;
|
|
if (mi.definesRegister(X86::EFLAGS))
|
|
break; // Should have kill-flag - update below.
|
|
}
|
|
|
|
// If we hit the end of the block, check whether EFLAGS is live into a
|
|
// successor.
|
|
if (miI == BB->end()) {
|
|
for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
|
|
sEnd = BB->succ_end();
|
|
sItr != sEnd; ++sItr) {
|
|
MachineBasicBlock* succ = *sItr;
|
|
if (succ->isLiveIn(X86::EFLAGS))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We found a def, or hit the end of the basic block and EFLAGS wasn't live
|
|
// out. SelectMI should have a kill flag on EFLAGS.
|
|
SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// If the EFLAGS register isn't dead in the terminator, then claim that it's
|
|
// live into the sink and copy blocks.
|
|
const TargetRegisterInfo *TRI =
|
|
BB->getParent()->getSubtarget().getRegisterInfo();
|
|
if (!MI->killsRegister(X86::EFLAGS) &&
|
|
!checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
|
|
copy0MBB->addLiveIn(X86::EFLAGS);
|
|
sinkMBB->addLiveIn(X86::EFLAGS);
|
|
}
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// Create the conditional branch instruction.
|
|
unsigned Opc =
|
|
X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
|
|
BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
copy0MBB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
|
|
TII->get(X86::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return sinkMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
MachineFunction *MF = BB->getParent();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
|
|
assert(MF->shouldSplitStack());
|
|
|
|
const bool Is64Bit = Subtarget->is64Bit();
|
|
const bool IsLP64 = Subtarget->isTarget64BitLP64();
|
|
|
|
const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
|
|
const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
|
|
|
|
// BB:
|
|
// ... [Till the alloca]
|
|
// If stacklet is not large enough, jump to mallocMBB
|
|
//
|
|
// bumpMBB:
|
|
// Allocate by subtracting from RSP
|
|
// Jump to continueMBB
|
|
//
|
|
// mallocMBB:
|
|
// Allocate by call to runtime
|
|
//
|
|
// continueMBB:
|
|
// ...
|
|
// [rest of original BB]
|
|
//
|
|
|
|
MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetRegisterClass *AddrRegClass =
|
|
getRegClassFor(getPointerTy());
|
|
|
|
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
|
|
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
|
|
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
|
|
SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
|
|
sizeVReg = MI->getOperand(1).getReg(),
|
|
physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
|
|
|
|
MachineFunction::iterator MBBIter = BB;
|
|
++MBBIter;
|
|
|
|
MF->insert(MBBIter, bumpMBB);
|
|
MF->insert(MBBIter, mallocMBB);
|
|
MF->insert(MBBIter, continueMBB);
|
|
|
|
continueMBB->splice(continueMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
continueMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Add code to the main basic block to check if the stack limit has been hit,
|
|
// and if so, jump to mallocMBB otherwise to bumpMBB.
|
|
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
|
|
BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
|
|
.addReg(tmpSPVReg).addReg(sizeVReg);
|
|
BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
|
|
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
|
|
.addReg(SPLimitVReg);
|
|
BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
|
|
|
|
// bumpMBB simply decreases the stack pointer, since we know the current
|
|
// stacklet has enough space.
|
|
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
|
|
.addReg(SPLimitVReg);
|
|
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
|
|
.addReg(SPLimitVReg);
|
|
BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
|
|
|
|
// Calls into a routine in libgcc to allocate more space from the heap.
|
|
const uint32_t *RegMask = MF->getTarget()
|
|
.getSubtargetImpl()
|
|
->getRegisterInfo()
|
|
->getCallPreservedMask(CallingConv::C);
|
|
if (IsLP64) {
|
|
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
|
|
.addReg(sizeVReg);
|
|
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
|
|
.addExternalSymbol("__morestack_allocate_stack_space")
|
|
.addRegMask(RegMask)
|
|
.addReg(X86::RDI, RegState::Implicit)
|
|
.addReg(X86::RAX, RegState::ImplicitDefine);
|
|
} else if (Is64Bit) {
|
|
BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
|
|
.addReg(sizeVReg);
|
|
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
|
|
.addExternalSymbol("__morestack_allocate_stack_space")
|
|
.addRegMask(RegMask)
|
|
.addReg(X86::EDI, RegState::Implicit)
|
|
.addReg(X86::EAX, RegState::ImplicitDefine);
|
|
} else {
|
|
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
|
|
.addImm(12);
|
|
BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
|
|
BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
|
|
.addExternalSymbol("__morestack_allocate_stack_space")
|
|
.addRegMask(RegMask)
|
|
.addReg(X86::EAX, RegState::ImplicitDefine);
|
|
}
|
|
|
|
if (!Is64Bit)
|
|
BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
|
|
.addImm(16);
|
|
|
|
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
|
|
.addReg(IsLP64 ? X86::RAX : X86::EAX);
|
|
BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
|
|
|
|
// Set up the CFG correctly.
|
|
BB->addSuccessor(bumpMBB);
|
|
BB->addSuccessor(mallocMBB);
|
|
mallocMBB->addSuccessor(continueMBB);
|
|
bumpMBB->addSuccessor(continueMBB);
|
|
|
|
// Take care of the PHI nodes.
|
|
BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
|
|
MI->getOperand(0).getReg())
|
|
.addReg(mallocPtrVReg).addMBB(mallocMBB)
|
|
.addReg(bumpSPPtrVReg).addMBB(bumpMBB);
|
|
|
|
// Delete the original pseudo instruction.
|
|
MI->eraseFromParent();
|
|
|
|
// And we're done.
|
|
return continueMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = BB->getParent()->getSubtarget().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
assert(!Subtarget->isTargetMacho());
|
|
|
|
// The lowering is pretty easy: we're just emitting the call to _alloca. The
|
|
// non-trivial part is impdef of ESP.
|
|
|
|
if (Subtarget->isTargetWin64()) {
|
|
if (Subtarget->isTargetCygMing()) {
|
|
// ___chkstk(Mingw64):
|
|
// Clobbers R10, R11, RAX and EFLAGS.
|
|
// Updates RSP.
|
|
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
|
|
.addExternalSymbol("___chkstk")
|
|
.addReg(X86::RAX, RegState::Implicit)
|
|
.addReg(X86::RSP, RegState::Implicit)
|
|
.addReg(X86::RAX, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::RSP, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
} else {
|
|
// __chkstk(MSVCRT): does not update stack pointer.
|
|
// Clobbers R10, R11 and EFLAGS.
|
|
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
|
|
.addExternalSymbol("__chkstk")
|
|
.addReg(X86::RAX, RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
// RAX has the offset to be subtracted from RSP.
|
|
BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
|
|
.addReg(X86::RSP)
|
|
.addReg(X86::RAX);
|
|
}
|
|
} else {
|
|
const char *StackProbeSymbol = (Subtarget->isTargetKnownWindowsMSVC() ||
|
|
Subtarget->isTargetWindowsItanium())
|
|
? "_chkstk"
|
|
: "_alloca";
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
|
|
.addExternalSymbol(StackProbeSymbol)
|
|
.addReg(X86::EAX, RegState::Implicit)
|
|
.addReg(X86::ESP, RegState::Implicit)
|
|
.addReg(X86::EAX, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::ESP, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
// This is pretty easy. We're taking the value that we received from
|
|
// our load from the relocation, sticking it in either RDI (x86-64)
|
|
// or EAX and doing an indirect call. The return value will then
|
|
// be in the normal return register.
|
|
MachineFunction *F = BB->getParent();
|
|
const X86InstrInfo *TII =
|
|
static_cast<const X86InstrInfo *>(F->getSubtarget().getInstrInfo());
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
|
|
assert(MI->getOperand(3).isGlobal() && "This should be a global");
|
|
|
|
// Get a register mask for the lowered call.
|
|
// FIXME: The 32-bit calls have non-standard calling conventions. Use a
|
|
// proper register mask.
|
|
const uint32_t *RegMask = F->getTarget()
|
|
.getSubtargetImpl()
|
|
->getRegisterInfo()
|
|
->getCallPreservedMask(CallingConv::C);
|
|
if (Subtarget->is64Bit()) {
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
|
|
TII->get(X86::MOV64rm), X86::RDI)
|
|
.addReg(X86::RIP)
|
|
.addImm(0).addReg(0)
|
|
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
|
|
MI->getOperand(3).getTargetFlags())
|
|
.addReg(0);
|
|
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
|
|
addDirectMem(MIB, X86::RDI);
|
|
MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
|
|
} else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
|
|
TII->get(X86::MOV32rm), X86::EAX)
|
|
.addReg(0)
|
|
.addImm(0).addReg(0)
|
|
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
|
|
MI->getOperand(3).getTargetFlags())
|
|
.addReg(0);
|
|
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
|
|
addDirectMem(MIB, X86::EAX);
|
|
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
|
|
} else {
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
|
|
TII->get(X86::MOV32rm), X86::EAX)
|
|
.addReg(TII->getGlobalBaseReg(F))
|
|
.addImm(0).addReg(0)
|
|
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
|
|
MI->getOperand(3).getTargetFlags())
|
|
.addReg(0);
|
|
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
|
|
addDirectMem(MIB, X86::EAX);
|
|
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
|
|
}
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
MachineFunction::iterator I = MBB;
|
|
++I;
|
|
|
|
// Memory Reference
|
|
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
|
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
|
|
|
unsigned DstReg;
|
|
unsigned MemOpndSlot = 0;
|
|
|
|
unsigned CurOp = 0;
|
|
|
|
DstReg = MI->getOperand(CurOp++).getReg();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
|
|
assert(RC->hasType(MVT::i32) && "Invalid destination!");
|
|
unsigned mainDstReg = MRI.createVirtualRegister(RC);
|
|
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
|
|
|
|
MemOpndSlot = CurOp;
|
|
|
|
MVT PVT = getPointerTy();
|
|
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
|
|
"Invalid Pointer Size!");
|
|
|
|
// For v = setjmp(buf), we generate
|
|
//
|
|
// thisMBB:
|
|
// buf[LabelOffset] = restoreMBB
|
|
// SjLjSetup restoreMBB
|
|
//
|
|
// mainMBB:
|
|
// v_main = 0
|
|
//
|
|
// sinkMBB:
|
|
// v = phi(main, restore)
|
|
//
|
|
// restoreMBB:
|
|
// v_restore = 1
|
|
|
|
MachineBasicBlock *thisMBB = MBB;
|
|
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
|
|
MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
|
|
MF->insert(I, mainMBB);
|
|
MF->insert(I, sinkMBB);
|
|
MF->push_back(restoreMBB);
|
|
|
|
MachineInstrBuilder MIB;
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
// thisMBB:
|
|
unsigned PtrStoreOpc = 0;
|
|
unsigned LabelReg = 0;
|
|
const int64_t LabelOffset = 1 * PVT.getStoreSize();
|
|
Reloc::Model RM = MF->getTarget().getRelocationModel();
|
|
bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
|
|
(RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
|
|
|
|
// Prepare IP either in reg or imm.
|
|
if (!UseImmLabel) {
|
|
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
|
|
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
|
|
LabelReg = MRI.createVirtualRegister(PtrRC);
|
|
if (Subtarget->is64Bit()) {
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
|
|
.addReg(X86::RIP)
|
|
.addImm(0)
|
|
.addReg(0)
|
|
.addMBB(restoreMBB)
|
|
.addReg(0);
|
|
} else {
|
|
const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
|
|
.addReg(XII->getGlobalBaseReg(MF))
|
|
.addImm(0)
|
|
.addReg(0)
|
|
.addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
|
|
.addReg(0);
|
|
}
|
|
} else
|
|
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
|
|
// Store IP
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
|
|
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
|
|
if (i == X86::AddrDisp)
|
|
MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
|
|
else
|
|
MIB.addOperand(MI->getOperand(MemOpndSlot + i));
|
|
}
|
|
if (!UseImmLabel)
|
|
MIB.addReg(LabelReg);
|
|
else
|
|
MIB.addMBB(restoreMBB);
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
// Setup
|
|
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
|
|
.addMBB(restoreMBB);
|
|
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
MF->getSubtarget().getRegisterInfo());
|
|
MIB.addRegMask(RegInfo->getNoPreservedMask());
|
|
thisMBB->addSuccessor(mainMBB);
|
|
thisMBB->addSuccessor(restoreMBB);
|
|
|
|
// mainMBB:
|
|
// EAX = 0
|
|
BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
|
|
mainMBB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
|
|
TII->get(X86::PHI), DstReg)
|
|
.addReg(mainDstReg).addMBB(mainMBB)
|
|
.addReg(restoreDstReg).addMBB(restoreMBB);
|
|
|
|
// restoreMBB:
|
|
BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
|
|
BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
|
|
restoreMBB->addSuccessor(sinkMBB);
|
|
|
|
MI->eraseFromParent();
|
|
return sinkMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
// Memory Reference
|
|
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
|
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
|
|
|
MVT PVT = getPointerTy();
|
|
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
|
|
"Invalid Pointer Size!");
|
|
|
|
const TargetRegisterClass *RC =
|
|
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
|
|
unsigned Tmp = MRI.createVirtualRegister(RC);
|
|
// Since FP is only updated here but NOT referenced, it's treated as GPR.
|
|
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo *>(
|
|
MF->getSubtarget().getRegisterInfo());
|
|
unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
|
|
unsigned SP = RegInfo->getStackRegister();
|
|
|
|
MachineInstrBuilder MIB;
|
|
|
|
const int64_t LabelOffset = 1 * PVT.getStoreSize();
|
|
const int64_t SPOffset = 2 * PVT.getStoreSize();
|
|
|
|
unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
|
|
unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
|
|
|
|
// Reload FP
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
|
|
for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
// Reload IP
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
|
|
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
|
|
if (i == X86::AddrDisp)
|
|
MIB.addDisp(MI->getOperand(i), LabelOffset);
|
|
else
|
|
MIB.addOperand(MI->getOperand(i));
|
|
}
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
// Reload SP
|
|
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
|
|
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
|
|
if (i == X86::AddrDisp)
|
|
MIB.addDisp(MI->getOperand(i), SPOffset);
|
|
else
|
|
MIB.addOperand(MI->getOperand(i));
|
|
}
|
|
MIB.setMemRefs(MMOBegin, MMOEnd);
|
|
// Jump
|
|
BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
|
|
|
|
MI->eraseFromParent();
|
|
return MBB;
|
|
}
|
|
|
|
// Replace 213-type (isel default) FMA3 instructions with 231-type for
|
|
// accumulator loops. Writing back to the accumulator allows the coalescer
|
|
// to remove extra copies in the loop.
|
|
MachineBasicBlock *
|
|
X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
MachineOperand &AddendOp = MI->getOperand(3);
|
|
|
|
// Bail out early if the addend isn't a register - we can't switch these.
|
|
if (!AddendOp.isReg())
|
|
return MBB;
|
|
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
// Check whether the addend is defined by a PHI:
|
|
assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
|
|
MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
|
|
if (!AddendDef.isPHI())
|
|
return MBB;
|
|
|
|
// Look for the following pattern:
|
|
// loop:
|
|
// %addend = phi [%entry, 0], [%loop, %result]
|
|
// ...
|
|
// %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
|
|
|
|
// Replace with:
|
|
// loop:
|
|
// %addend = phi [%entry, 0], [%loop, %result]
|
|
// ...
|
|
// %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
|
|
|
|
for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
|
|
assert(AddendDef.getOperand(i).isReg());
|
|
MachineOperand PHISrcOp = AddendDef.getOperand(i);
|
|
MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
|
|
if (&PHISrcInst == MI) {
|
|
// Found a matching instruction.
|
|
unsigned NewFMAOpc = 0;
|
|
switch (MI->getOpcode()) {
|
|
case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
|
|
case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
|
|
case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
|
|
case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
|
|
case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
|
|
case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
|
|
case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
|
|
case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
|
|
case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
|
|
case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
|
|
case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
|
|
case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
|
|
case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
|
|
case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
|
|
case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
|
|
case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
|
|
case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
|
|
case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
|
|
case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
|
|
case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
|
|
|
|
case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
|
|
case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
|
|
case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
|
|
case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
|
|
case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
|
|
case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
|
|
case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
|
|
case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
|
|
case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
|
|
case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
|
|
case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
|
|
case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
|
|
default: llvm_unreachable("Unrecognized FMA variant.");
|
|
}
|
|
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
|
|
.addOperand(MI->getOperand(0))
|
|
.addOperand(MI->getOperand(3))
|
|
.addOperand(MI->getOperand(2))
|
|
.addOperand(MI->getOperand(1));
|
|
MBB->insert(MachineBasicBlock::iterator(MI), MIB);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
return MBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unexpected instr type to insert");
|
|
case X86::TAILJMPd64:
|
|
case X86::TAILJMPr64:
|
|
case X86::TAILJMPm64:
|
|
llvm_unreachable("TAILJMP64 would not be touched here.");
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
return BB;
|
|
case X86::WIN_ALLOCA:
|
|
return EmitLoweredWinAlloca(MI, BB);
|
|
case X86::SEG_ALLOCA_32:
|
|
case X86::SEG_ALLOCA_64:
|
|
return EmitLoweredSegAlloca(MI, BB);
|
|
case X86::TLSCall_32:
|
|
case X86::TLSCall_64:
|
|
return EmitLoweredTLSCall(MI, BB);
|
|
case X86::CMOV_GR8:
|
|
case X86::CMOV_FR32:
|
|
case X86::CMOV_FR64:
|
|
case X86::CMOV_V4F32:
|
|
case X86::CMOV_V2F64:
|
|
case X86::CMOV_V2I64:
|
|
case X86::CMOV_V8F32:
|
|
case X86::CMOV_V4F64:
|
|
case X86::CMOV_V4I64:
|
|
case X86::CMOV_V16F32:
|
|
case X86::CMOV_V8F64:
|
|
case X86::CMOV_V8I64:
|
|
case X86::CMOV_GR16:
|
|
case X86::CMOV_GR32:
|
|
case X86::CMOV_RFP32:
|
|
case X86::CMOV_RFP64:
|
|
case X86::CMOV_RFP80:
|
|
return EmitLoweredSelect(MI, BB);
|
|
|
|
case X86::FP32_TO_INT16_IN_MEM:
|
|
case X86::FP32_TO_INT32_IN_MEM:
|
|
case X86::FP32_TO_INT64_IN_MEM:
|
|
case X86::FP64_TO_INT16_IN_MEM:
|
|
case X86::FP64_TO_INT32_IN_MEM:
|
|
case X86::FP64_TO_INT64_IN_MEM:
|
|
case X86::FP80_TO_INT16_IN_MEM:
|
|
case X86::FP80_TO_INT32_IN_MEM:
|
|
case X86::FP80_TO_INT64_IN_MEM: {
|
|
MachineFunction *F = BB->getParent();
|
|
const TargetInstrInfo *TII = F->getSubtarget().getInstrInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
|
|
addFrameReference(BuildMI(*BB, MI, DL,
|
|
TII->get(X86::FNSTCW16m)), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned OldCW =
|
|
F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
|
|
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
|
|
CWFrameIdx);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
|
|
.addImm(0xC7F);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BuildMI(*BB, MI, DL,
|
|
TII->get(X86::FLDCW16m)), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
|
|
.addReg(OldCW);
|
|
|
|
// Get the X86 opcode to use.
|
|
unsigned Opc;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("illegal opcode!");
|
|
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
|
|
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
|
|
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
|
|
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
|
|
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
|
|
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
|
|
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
|
|
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
|
|
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
|
|
}
|
|
|
|
X86AddressMode AM;
|
|
MachineOperand &Op = MI->getOperand(0);
|
|
if (Op.isReg()) {
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = Op.getReg();
|
|
} else {
|
|
AM.BaseType = X86AddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = Op.getIndex();
|
|
}
|
|
Op = MI->getOperand(1);
|
|
if (Op.isImm())
|
|
AM.Scale = Op.getImm();
|
|
Op = MI->getOperand(2);
|
|
if (Op.isImm())
|
|
AM.IndexReg = Op.getImm();
|
|
Op = MI->getOperand(3);
|
|
if (Op.isGlobal()) {
|
|
AM.GV = Op.getGlobal();
|
|
} else {
|
|
AM.Disp = Op.getImm();
|
|
}
|
|
addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
|
|
.addReg(MI->getOperand(X86::AddrNumOperands).getReg());
|
|
|
|
// Reload the original control word now.
|
|
addFrameReference(BuildMI(*BB, MI, DL,
|
|
TII->get(X86::FLDCW16m)), CWFrameIdx);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
// String/text processing lowering.
|
|
case X86::PCMPISTRM128REG:
|
|
case X86::VPCMPISTRM128REG:
|
|
case X86::PCMPISTRM128MEM:
|
|
case X86::VPCMPISTRM128MEM:
|
|
case X86::PCMPESTRM128REG:
|
|
case X86::VPCMPESTRM128REG:
|
|
case X86::PCMPESTRM128MEM:
|
|
case X86::VPCMPESTRM128MEM:
|
|
assert(Subtarget->hasSSE42() &&
|
|
"Target must have SSE4.2 or AVX features enabled");
|
|
return EmitPCMPSTRM(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
|
|
|
|
// String/text processing lowering.
|
|
case X86::PCMPISTRIREG:
|
|
case X86::VPCMPISTRIREG:
|
|
case X86::PCMPISTRIMEM:
|
|
case X86::VPCMPISTRIMEM:
|
|
case X86::PCMPESTRIREG:
|
|
case X86::VPCMPESTRIREG:
|
|
case X86::PCMPESTRIMEM:
|
|
case X86::VPCMPESTRIMEM:
|
|
assert(Subtarget->hasSSE42() &&
|
|
"Target must have SSE4.2 or AVX features enabled");
|
|
return EmitPCMPSTRI(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
|
|
|
|
// Thread synchronization.
|
|
case X86::MONITOR:
|
|
return EmitMonitor(MI, BB, BB->getParent()->getSubtarget().getInstrInfo(),
|
|
Subtarget);
|
|
|
|
// xbegin
|
|
case X86::XBEGIN:
|
|
return EmitXBegin(MI, BB, BB->getParent()->getSubtarget().getInstrInfo());
|
|
|
|
case X86::VASTART_SAVE_XMM_REGS:
|
|
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
|
|
|
|
case X86::VAARG_64:
|
|
return EmitVAARG64WithCustomInserter(MI, BB);
|
|
|
|
case X86::EH_SjLj_SetJmp32:
|
|
case X86::EH_SjLj_SetJmp64:
|
|
return emitEHSjLjSetJmp(MI, BB);
|
|
|
|
case X86::EH_SjLj_LongJmp32:
|
|
case X86::EH_SjLj_LongJmp64:
|
|
return emitEHSjLjLongJmp(MI, BB);
|
|
|
|
case TargetOpcode::STACKMAP:
|
|
case TargetOpcode::PATCHPOINT:
|
|
return emitPatchPoint(MI, BB);
|
|
|
|
case X86::VFMADDPDr213r:
|
|
case X86::VFMADDPSr213r:
|
|
case X86::VFMADDSDr213r:
|
|
case X86::VFMADDSSr213r:
|
|
case X86::VFMSUBPDr213r:
|
|
case X86::VFMSUBPSr213r:
|
|
case X86::VFMSUBSDr213r:
|
|
case X86::VFMSUBSSr213r:
|
|
case X86::VFNMADDPDr213r:
|
|
case X86::VFNMADDPSr213r:
|
|
case X86::VFNMADDSDr213r:
|
|
case X86::VFNMADDSSr213r:
|
|
case X86::VFNMSUBPDr213r:
|
|
case X86::VFNMSUBPSr213r:
|
|
case X86::VFNMSUBSDr213r:
|
|
case X86::VFNMSUBSSr213r:
|
|
case X86::VFMADDSUBPDr213r:
|
|
case X86::VFMADDSUBPSr213r:
|
|
case X86::VFMSUBADDPDr213r:
|
|
case X86::VFMSUBADDPSr213r:
|
|
case X86::VFMADDPDr213rY:
|
|
case X86::VFMADDPSr213rY:
|
|
case X86::VFMSUBPDr213rY:
|
|
case X86::VFMSUBPSr213rY:
|
|
case X86::VFNMADDPDr213rY:
|
|
case X86::VFNMADDPSr213rY:
|
|
case X86::VFNMSUBPDr213rY:
|
|
case X86::VFNMSUBPSr213rY:
|
|
case X86::VFMADDSUBPDr213rY:
|
|
case X86::VFMADDSUBPSr213rY:
|
|
case X86::VFMSUBADDPDr213rY:
|
|
case X86::VFMSUBADDPSr213rY:
|
|
return emitFMA3Instr(MI, BB);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = KnownZero.getBitWidth();
|
|
unsigned Opc = Op.getOpcode();
|
|
assert((Opc >= ISD::BUILTIN_OP_END ||
|
|
Opc == ISD::INTRINSIC_WO_CHAIN ||
|
|
Opc == ISD::INTRINSIC_W_CHAIN ||
|
|
Opc == ISD::INTRINSIC_VOID) &&
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
" is a target node!");
|
|
|
|
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
|
|
switch (Opc) {
|
|
default: break;
|
|
case X86ISD::ADD:
|
|
case X86ISD::SUB:
|
|
case X86ISD::ADC:
|
|
case X86ISD::SBB:
|
|
case X86ISD::SMUL:
|
|
case X86ISD::UMUL:
|
|
case X86ISD::INC:
|
|
case X86ISD::DEC:
|
|
case X86ISD::OR:
|
|
case X86ISD::XOR:
|
|
case X86ISD::AND:
|
|
// These nodes' second result is a boolean.
|
|
if (Op.getResNo() == 0)
|
|
break;
|
|
// Fallthrough
|
|
case X86ISD::SETCC:
|
|
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
|
|
break;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned NumLoBits = 0;
|
|
switch (IntId) {
|
|
default: break;
|
|
case Intrinsic::x86_sse_movmsk_ps:
|
|
case Intrinsic::x86_avx_movmsk_ps_256:
|
|
case Intrinsic::x86_sse2_movmsk_pd:
|
|
case Intrinsic::x86_avx_movmsk_pd_256:
|
|
case Intrinsic::x86_mmx_pmovmskb:
|
|
case Intrinsic::x86_sse2_pmovmskb_128:
|
|
case Intrinsic::x86_avx2_pmovmskb: {
|
|
// High bits of movmskp{s|d}, pmovmskb are known zero.
|
|
switch (IntId) {
|
|
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
|
|
case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
|
|
case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
|
|
case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
|
|
case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
|
|
case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
|
|
case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
|
|
case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
|
|
}
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
|
|
SDValue Op,
|
|
const SelectionDAG &,
|
|
unsigned Depth) const {
|
|
// SETCC_CARRY sets the dest to ~0 for true or 0 for false.
|
|
if (Op.getOpcode() == X86ISD::SETCC_CARRY)
|
|
return Op.getValueType().getScalarType().getSizeInBits();
|
|
|
|
// Fallback case.
|
|
return 1;
|
|
}
|
|
|
|
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
|
|
/// node is a GlobalAddress + offset.
|
|
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
|
|
const GlobalValue* &GA,
|
|
int64_t &Offset) const {
|
|
if (N->getOpcode() == X86ISD::Wrapper) {
|
|
if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
|
|
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
|
|
Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
|
|
return true;
|
|
}
|
|
}
|
|
return TargetLowering::isGAPlusOffset(N, GA, Offset);
|
|
}
|
|
|
|
/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
|
|
/// same as extracting the high 128-bit part of 256-bit vector and then
|
|
/// inserting the result into the low part of a new 256-bit vector
|
|
static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
|
|
EVT VT = SVOp->getValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
|
|
for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
|
|
if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
|
|
SVOp->getMaskElt(j) >= 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
|
|
/// same as extracting the low 128-bit part of 256-bit vector and then
|
|
/// inserting the result into the high part of a new 256-bit vector
|
|
static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
|
|
EVT VT = SVOp->getValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
// vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
|
|
for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
|
|
if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
|
|
SVOp->getMaskElt(j) >= 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
|
|
static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget* Subtarget) {
|
|
SDLoc dl(N);
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
SDValue V1 = SVOp->getOperand(0);
|
|
SDValue V2 = SVOp->getOperand(1);
|
|
EVT VT = SVOp->getValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
|
|
if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
V2.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
//
|
|
// 0,0,0,...
|
|
// |
|
|
// V UNDEF BUILD_VECTOR UNDEF
|
|
// \ / \ /
|
|
// CONCAT_VECTOR CONCAT_VECTOR
|
|
// \ /
|
|
// \ /
|
|
// RESULT: V + zero extended
|
|
//
|
|
if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
|
|
V2.getOperand(1).getOpcode() != ISD::UNDEF ||
|
|
V1.getOperand(1).getOpcode() != ISD::UNDEF)
|
|
return SDValue();
|
|
|
|
if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
|
|
return SDValue();
|
|
|
|
// To match the shuffle mask, the first half of the mask should
|
|
// be exactly the first vector, and all the rest a splat with the
|
|
// first element of the second one.
|
|
for (unsigned i = 0; i != NumElems/2; ++i)
|
|
if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
|
|
!isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
|
|
return SDValue();
|
|
|
|
// If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
|
|
if (Ld->hasNUsesOfValue(1, 0)) {
|
|
SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
|
|
SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
|
|
SDValue ResNode =
|
|
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
|
|
Ld->getMemoryVT(),
|
|
Ld->getPointerInfo(),
|
|
Ld->getAlignment(),
|
|
false/*isVolatile*/, true/*ReadMem*/,
|
|
false/*WriteMem*/);
|
|
|
|
// Make sure the newly-created LOAD is in the same position as Ld in
|
|
// terms of dependency. We create a TokenFactor for Ld and ResNode,
|
|
// and update uses of Ld's output chain to use the TokenFactor.
|
|
if (Ld->hasAnyUseOfValue(1)) {
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
|
|
DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
|
|
SDValue(ResNode.getNode(), 1));
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
|
|
}
|
|
}
|
|
|
|
// Emit a zeroed vector and insert the desired subvector on its
|
|
// first half.
|
|
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
|
|
SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
|
|
return DCI.CombineTo(N, InsV);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Combine some shuffles into subvector extracts and inserts:
|
|
//
|
|
|
|
// vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
|
|
if (isShuffleHigh128VectorInsertLow(SVOp)) {
|
|
SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
|
|
SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
|
|
return DCI.CombineTo(N, InsV);
|
|
}
|
|
|
|
// vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
|
|
if (isShuffleLow128VectorInsertHigh(SVOp)) {
|
|
SDValue V = Extract128BitVector(V1, 0, DAG, dl);
|
|
SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
|
|
return DCI.CombineTo(N, InsV);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Combine an arbitrary chain of shuffles into a single instruction if
|
|
/// possible.
|
|
///
|
|
/// This is the leaf of the recursive combinine below. When we have found some
|
|
/// chain of single-use x86 shuffle instructions and accumulated the combined
|
|
/// shuffle mask represented by them, this will try to pattern match that mask
|
|
/// into either a single instruction if there is a special purpose instruction
|
|
/// for this operation, or into a PSHUFB instruction which is a fully general
|
|
/// instruction but should only be used to replace chains over a certain depth.
|
|
static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
|
|
int Depth, bool HasPSHUFB, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
|
|
|
|
// Find the operand that enters the chain. Note that multiple uses are OK
|
|
// here, we're not going to remove the operand we find.
|
|
SDValue Input = Op.getOperand(0);
|
|
while (Input.getOpcode() == ISD::BITCAST)
|
|
Input = Input.getOperand(0);
|
|
|
|
MVT VT = Input.getSimpleValueType();
|
|
MVT RootVT = Root.getSimpleValueType();
|
|
SDLoc DL(Root);
|
|
|
|
// Just remove no-op shuffle masks.
|
|
if (Mask.size() == 1) {
|
|
DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Input),
|
|
/*AddTo*/ true);
|
|
return true;
|
|
}
|
|
|
|
// Use the float domain if the operand type is a floating point type.
|
|
bool FloatDomain = VT.isFloatingPoint();
|
|
|
|
// For floating point shuffles, we don't have free copies in the shuffle
|
|
// instructions or the ability to load as part of the instruction, so
|
|
// canonicalize their shuffles to UNPCK or MOV variants.
|
|
//
|
|
// Note that even with AVX we prefer the PSHUFD form of shuffle for integer
|
|
// vectors because it can have a load folded into it that UNPCK cannot. This
|
|
// doesn't preclude something switching to the shorter encoding post-RA.
|
|
if (FloatDomain) {
|
|
if (Mask.equals(0, 0) || Mask.equals(1, 1)) {
|
|
bool Lo = Mask.equals(0, 0);
|
|
unsigned Shuffle;
|
|
MVT ShuffleVT;
|
|
// Check if we have SSE3 which will let us use MOVDDUP. That instruction
|
|
// is no slower than UNPCKLPD but has the option to fold the input operand
|
|
// into even an unaligned memory load.
|
|
if (Lo && Subtarget->hasSSE3()) {
|
|
Shuffle = X86ISD::MOVDDUP;
|
|
ShuffleVT = MVT::v2f64;
|
|
} else {
|
|
// We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
|
|
// than the UNPCK variants.
|
|
Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
|
|
ShuffleVT = MVT::v4f32;
|
|
}
|
|
if (Depth == 1 && Root->getOpcode() == Shuffle)
|
|
return false; // Nothing to do!
|
|
Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
if (Shuffle == X86ISD::MOVDDUP)
|
|
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
|
|
else
|
|
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
|
|
/*AddTo*/ true);
|
|
return true;
|
|
}
|
|
if (Subtarget->hasSSE3() &&
|
|
(Mask.equals(0, 0, 2, 2) || Mask.equals(1, 1, 3, 3))) {
|
|
bool Lo = Mask.equals(0, 0, 2, 2);
|
|
unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
|
|
MVT ShuffleVT = MVT::v4f32;
|
|
if (Depth == 1 && Root->getOpcode() == Shuffle)
|
|
return false; // Nothing to do!
|
|
Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
|
|
/*AddTo*/ true);
|
|
return true;
|
|
}
|
|
if (Mask.equals(0, 0, 1, 1) || Mask.equals(2, 2, 3, 3)) {
|
|
bool Lo = Mask.equals(0, 0, 1, 1);
|
|
unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
|
|
MVT ShuffleVT = MVT::v4f32;
|
|
if (Depth == 1 && Root->getOpcode() == Shuffle)
|
|
return false; // Nothing to do!
|
|
Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
|
|
/*AddTo*/ true);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
|
|
// variants as none of these have single-instruction variants that are
|
|
// superior to the UNPCK formulation.
|
|
if (!FloatDomain &&
|
|
(Mask.equals(0, 0, 1, 1, 2, 2, 3, 3) ||
|
|
Mask.equals(4, 4, 5, 5, 6, 6, 7, 7) ||
|
|
Mask.equals(0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7) ||
|
|
Mask.equals(8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
|
|
15))) {
|
|
bool Lo = Mask[0] == 0;
|
|
unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
|
|
if (Depth == 1 && Root->getOpcode() == Shuffle)
|
|
return false; // Nothing to do!
|
|
MVT ShuffleVT;
|
|
switch (Mask.size()) {
|
|
case 8:
|
|
ShuffleVT = MVT::v8i16;
|
|
break;
|
|
case 16:
|
|
ShuffleVT = MVT::v16i8;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Impossible mask size!");
|
|
};
|
|
Op = DAG.getNode(ISD::BITCAST, DL, ShuffleVT, Input);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
|
|
/*AddTo*/ true);
|
|
return true;
|
|
}
|
|
|
|
// Don't try to re-form single instruction chains under any circumstances now
|
|
// that we've done encoding canonicalization for them.
|
|
if (Depth < 2)
|
|
return false;
|
|
|
|
// If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
|
|
// can replace them with a single PSHUFB instruction profitably. Intel's
|
|
// manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
|
|
// in practice PSHUFB tends to be *very* fast so we're more aggressive.
|
|
if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
|
|
SmallVector<SDValue, 16> PSHUFBMask;
|
|
assert(Mask.size() <= 16 && "Can't shuffle elements smaller than bytes!");
|
|
int Ratio = 16 / Mask.size();
|
|
for (unsigned i = 0; i < 16; ++i) {
|
|
if (Mask[i / Ratio] == SM_SentinelUndef) {
|
|
PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
|
|
continue;
|
|
}
|
|
int M = Mask[i / Ratio] != SM_SentinelZero
|
|
? Ratio * Mask[i / Ratio] + i % Ratio
|
|
: 255;
|
|
PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
|
|
}
|
|
Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Input);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
SDValue PSHUFBMaskOp =
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, PSHUFBMask);
|
|
DCI.AddToWorklist(PSHUFBMaskOp.getNode());
|
|
Op = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, Op, PSHUFBMaskOp);
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CombineTo(Root.getNode(), DAG.getNode(ISD::BITCAST, DL, RootVT, Op),
|
|
/*AddTo*/ true);
|
|
return true;
|
|
}
|
|
|
|
// Failed to find any combines.
|
|
return false;
|
|
}
|
|
|
|
/// \brief Fully generic combining of x86 shuffle instructions.
|
|
///
|
|
/// This should be the last combine run over the x86 shuffle instructions. Once
|
|
/// they have been fully optimized, this will recursively consider all chains
|
|
/// of single-use shuffle instructions, build a generic model of the cumulative
|
|
/// shuffle operation, and check for simpler instructions which implement this
|
|
/// operation. We use this primarily for two purposes:
|
|
///
|
|
/// 1) Collapse generic shuffles to specialized single instructions when
|
|
/// equivalent. In most cases, this is just an encoding size win, but
|
|
/// sometimes we will collapse multiple generic shuffles into a single
|
|
/// special-purpose shuffle.
|
|
/// 2) Look for sequences of shuffle instructions with 3 or more total
|
|
/// instructions, and replace them with the slightly more expensive SSSE3
|
|
/// PSHUFB instruction if available. We do this as the last combining step
|
|
/// to ensure we avoid using PSHUFB if we can implement the shuffle with
|
|
/// a suitable short sequence of other instructions. The PHUFB will either
|
|
/// use a register or have to read from memory and so is slightly (but only
|
|
/// slightly) more expensive than the other shuffle instructions.
|
|
///
|
|
/// Because this is inherently a quadratic operation (for each shuffle in
|
|
/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
|
|
/// This should never be an issue in practice as the shuffle lowering doesn't
|
|
/// produce sequences of more than 8 instructions.
|
|
///
|
|
/// FIXME: We will currently miss some cases where the redundant shuffling
|
|
/// would simplify under the threshold for PSHUFB formation because of
|
|
/// combine-ordering. To fix this, we should do the redundant instruction
|
|
/// combining in this recursive walk.
|
|
static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
|
|
ArrayRef<int> RootMask,
|
|
int Depth, bool HasPSHUFB,
|
|
SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
// Bound the depth of our recursive combine because this is ultimately
|
|
// quadratic in nature.
|
|
if (Depth > 8)
|
|
return false;
|
|
|
|
// Directly rip through bitcasts to find the underlying operand.
|
|
while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
|
|
Op = Op.getOperand(0);
|
|
|
|
MVT VT = Op.getSimpleValueType();
|
|
if (!VT.isVector())
|
|
return false; // Bail if we hit a non-vector.
|
|
// FIXME: This routine should be taught about 256-bit shuffles, or a 256-bit
|
|
// version should be added.
|
|
if (VT.getSizeInBits() != 128)
|
|
return false;
|
|
|
|
assert(Root.getSimpleValueType().isVector() &&
|
|
"Shuffles operate on vector types!");
|
|
assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
|
|
"Can only combine shuffles of the same vector register size.");
|
|
|
|
if (!isTargetShuffle(Op.getOpcode()))
|
|
return false;
|
|
SmallVector<int, 16> OpMask;
|
|
bool IsUnary;
|
|
bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
|
|
// We only can combine unary shuffles which we can decode the mask for.
|
|
if (!HaveMask || !IsUnary)
|
|
return false;
|
|
|
|
assert(VT.getVectorNumElements() == OpMask.size() &&
|
|
"Different mask size from vector size!");
|
|
assert(((RootMask.size() > OpMask.size() &&
|
|
RootMask.size() % OpMask.size() == 0) ||
|
|
(OpMask.size() > RootMask.size() &&
|
|
OpMask.size() % RootMask.size() == 0) ||
|
|
OpMask.size() == RootMask.size()) &&
|
|
"The smaller number of elements must divide the larger.");
|
|
int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
|
|
int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
|
|
assert(((RootRatio == 1 && OpRatio == 1) ||
|
|
(RootRatio == 1) != (OpRatio == 1)) &&
|
|
"Must not have a ratio for both incoming and op masks!");
|
|
|
|
SmallVector<int, 16> Mask;
|
|
Mask.reserve(std::max(OpMask.size(), RootMask.size()));
|
|
|
|
// Merge this shuffle operation's mask into our accumulated mask. Note that
|
|
// this shuffle's mask will be the first applied to the input, followed by the
|
|
// root mask to get us all the way to the root value arrangement. The reason
|
|
// for this order is that we are recursing up the operation chain.
|
|
for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
|
|
int RootIdx = i / RootRatio;
|
|
if (RootMask[RootIdx] < 0) {
|
|
// This is a zero or undef lane, we're done.
|
|
Mask.push_back(RootMask[RootIdx]);
|
|
continue;
|
|
}
|
|
|
|
int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
|
|
int OpIdx = RootMaskedIdx / OpRatio;
|
|
if (OpMask[OpIdx] < 0) {
|
|
// The incoming lanes are zero or undef, it doesn't matter which ones we
|
|
// are using.
|
|
Mask.push_back(OpMask[OpIdx]);
|
|
continue;
|
|
}
|
|
|
|
// Ok, we have non-zero lanes, map them through.
|
|
Mask.push_back(OpMask[OpIdx] * OpRatio +
|
|
RootMaskedIdx % OpRatio);
|
|
}
|
|
|
|
// See if we can recurse into the operand to combine more things.
|
|
switch (Op.getOpcode()) {
|
|
case X86ISD::PSHUFB:
|
|
HasPSHUFB = true;
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
if (Op.getOperand(0).hasOneUse() &&
|
|
combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
|
|
HasPSHUFB, DAG, DCI, Subtarget))
|
|
return true;
|
|
break;
|
|
|
|
case X86ISD::UNPCKL:
|
|
case X86ISD::UNPCKH:
|
|
assert(Op.getOperand(0) == Op.getOperand(1) && "We only combine unary shuffles!");
|
|
// We can't check for single use, we have to check that this shuffle is the only user.
|
|
if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
|
|
combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
|
|
HasPSHUFB, DAG, DCI, Subtarget))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
// Minor canonicalization of the accumulated shuffle mask to make it easier
|
|
// to match below. All this does is detect masks with squential pairs of
|
|
// elements, and shrink them to the half-width mask. It does this in a loop
|
|
// so it will reduce the size of the mask to the minimal width mask which
|
|
// performs an equivalent shuffle.
|
|
SmallVector<int, 16> WidenedMask;
|
|
while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
|
|
Mask = std::move(WidenedMask);
|
|
WidenedMask.clear();
|
|
}
|
|
|
|
return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
|
|
Subtarget);
|
|
}
|
|
|
|
/// \brief Get the PSHUF-style mask from PSHUF node.
|
|
///
|
|
/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
|
|
/// PSHUF-style masks that can be reused with such instructions.
|
|
static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
|
|
SmallVector<int, 4> Mask;
|
|
bool IsUnary;
|
|
bool HaveMask = getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), Mask, IsUnary);
|
|
(void)HaveMask;
|
|
assert(HaveMask);
|
|
|
|
switch (N.getOpcode()) {
|
|
case X86ISD::PSHUFD:
|
|
return Mask;
|
|
case X86ISD::PSHUFLW:
|
|
Mask.resize(4);
|
|
return Mask;
|
|
case X86ISD::PSHUFHW:
|
|
Mask.erase(Mask.begin(), Mask.begin() + 4);
|
|
for (int &M : Mask)
|
|
M -= 4;
|
|
return Mask;
|
|
default:
|
|
llvm_unreachable("No valid shuffle instruction found!");
|
|
}
|
|
}
|
|
|
|
/// \brief Search for a combinable shuffle across a chain ending in pshufd.
|
|
///
|
|
/// We walk up the chain and look for a combinable shuffle, skipping over
|
|
/// shuffles that we could hoist this shuffle's transformation past without
|
|
/// altering anything.
|
|
static SDValue
|
|
combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
|
|
SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
assert(N.getOpcode() == X86ISD::PSHUFD &&
|
|
"Called with something other than an x86 128-bit half shuffle!");
|
|
SDLoc DL(N);
|
|
|
|
// Walk up a single-use chain looking for a combinable shuffle. Keep a stack
|
|
// of the shuffles in the chain so that we can form a fresh chain to replace
|
|
// this one.
|
|
SmallVector<SDValue, 8> Chain;
|
|
SDValue V = N.getOperand(0);
|
|
for (; V.hasOneUse(); V = V.getOperand(0)) {
|
|
switch (V.getOpcode()) {
|
|
default:
|
|
return SDValue(); // Nothing combined!
|
|
|
|
case ISD::BITCAST:
|
|
// Skip bitcasts as we always know the type for the target specific
|
|
// instructions.
|
|
continue;
|
|
|
|
case X86ISD::PSHUFD:
|
|
// Found another dword shuffle.
|
|
break;
|
|
|
|
case X86ISD::PSHUFLW:
|
|
// Check that the low words (being shuffled) are the identity in the
|
|
// dword shuffle, and the high words are self-contained.
|
|
if (Mask[0] != 0 || Mask[1] != 1 ||
|
|
!(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
|
|
return SDValue();
|
|
|
|
Chain.push_back(V);
|
|
continue;
|
|
|
|
case X86ISD::PSHUFHW:
|
|
// Check that the high words (being shuffled) are the identity in the
|
|
// dword shuffle, and the low words are self-contained.
|
|
if (Mask[2] != 2 || Mask[3] != 3 ||
|
|
!(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
|
|
return SDValue();
|
|
|
|
Chain.push_back(V);
|
|
continue;
|
|
|
|
case X86ISD::UNPCKL:
|
|
case X86ISD::UNPCKH:
|
|
// For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
|
|
// shuffle into a preceding word shuffle.
|
|
if (V.getValueType() != MVT::v16i8 && V.getValueType() != MVT::v8i16)
|
|
return SDValue();
|
|
|
|
// Search for a half-shuffle which we can combine with.
|
|
unsigned CombineOp =
|
|
V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
|
|
if (V.getOperand(0) != V.getOperand(1) ||
|
|
!V->isOnlyUserOf(V.getOperand(0).getNode()))
|
|
return SDValue();
|
|
Chain.push_back(V);
|
|
V = V.getOperand(0);
|
|
do {
|
|
switch (V.getOpcode()) {
|
|
default:
|
|
return SDValue(); // Nothing to combine.
|
|
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::PSHUFHW:
|
|
if (V.getOpcode() == CombineOp)
|
|
break;
|
|
|
|
Chain.push_back(V);
|
|
|
|
// Fallthrough!
|
|
case ISD::BITCAST:
|
|
V = V.getOperand(0);
|
|
continue;
|
|
}
|
|
break;
|
|
} while (V.hasOneUse());
|
|
break;
|
|
}
|
|
// Break out of the loop if we break out of the switch.
|
|
break;
|
|
}
|
|
|
|
if (!V.hasOneUse())
|
|
// We fell out of the loop without finding a viable combining instruction.
|
|
return SDValue();
|
|
|
|
// Merge this node's mask and our incoming mask.
|
|
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
|
|
for (int &M : Mask)
|
|
M = VMask[M];
|
|
V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
|
|
// Rebuild the chain around this new shuffle.
|
|
while (!Chain.empty()) {
|
|
SDValue W = Chain.pop_back_val();
|
|
|
|
if (V.getValueType() != W.getOperand(0).getValueType())
|
|
V = DAG.getNode(ISD::BITCAST, DL, W.getOperand(0).getValueType(), V);
|
|
|
|
switch (W.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
|
|
|
|
case X86ISD::UNPCKL:
|
|
case X86ISD::UNPCKH:
|
|
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
|
|
break;
|
|
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::PSHUFHW:
|
|
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
|
|
break;
|
|
}
|
|
}
|
|
if (V.getValueType() != N.getValueType())
|
|
V = DAG.getNode(ISD::BITCAST, DL, N.getValueType(), V);
|
|
|
|
// Return the new chain to replace N.
|
|
return V;
|
|
}
|
|
|
|
/// \brief Search for a combinable shuffle across a chain ending in pshuflw or pshufhw.
|
|
///
|
|
/// We walk up the chain, skipping shuffles of the other half and looking
|
|
/// through shuffles which switch halves trying to find a shuffle of the same
|
|
/// pair of dwords.
|
|
static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
|
|
SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
assert(
|
|
(N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
|
|
"Called with something other than an x86 128-bit half shuffle!");
|
|
SDLoc DL(N);
|
|
unsigned CombineOpcode = N.getOpcode();
|
|
|
|
// Walk up a single-use chain looking for a combinable shuffle.
|
|
SDValue V = N.getOperand(0);
|
|
for (; V.hasOneUse(); V = V.getOperand(0)) {
|
|
switch (V.getOpcode()) {
|
|
default:
|
|
return false; // Nothing combined!
|
|
|
|
case ISD::BITCAST:
|
|
// Skip bitcasts as we always know the type for the target specific
|
|
// instructions.
|
|
continue;
|
|
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::PSHUFHW:
|
|
if (V.getOpcode() == CombineOpcode)
|
|
break;
|
|
|
|
// Other-half shuffles are no-ops.
|
|
continue;
|
|
}
|
|
// Break out of the loop if we break out of the switch.
|
|
break;
|
|
}
|
|
|
|
if (!V.hasOneUse())
|
|
// We fell out of the loop without finding a viable combining instruction.
|
|
return false;
|
|
|
|
// Combine away the bottom node as its shuffle will be accumulated into
|
|
// a preceding shuffle.
|
|
DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
|
|
|
|
// Record the old value.
|
|
SDValue Old = V;
|
|
|
|
// Merge this node's mask and our incoming mask (adjusted to account for all
|
|
// the pshufd instructions encountered).
|
|
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
|
|
for (int &M : Mask)
|
|
M = VMask[M];
|
|
V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
|
|
getV4X86ShuffleImm8ForMask(Mask, DAG));
|
|
|
|
// Check that the shuffles didn't cancel each other out. If not, we need to
|
|
// combine to the new one.
|
|
if (Old != V)
|
|
// Replace the combinable shuffle with the combined one, updating all users
|
|
// so that we re-evaluate the chain here.
|
|
DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Try to combine x86 target specific shuffles.
|
|
static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
MVT VT = N.getSimpleValueType();
|
|
SmallVector<int, 4> Mask;
|
|
|
|
switch (N.getOpcode()) {
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::PSHUFHW:
|
|
Mask = getPSHUFShuffleMask(N);
|
|
assert(Mask.size() == 4);
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
// Nuke no-op shuffles that show up after combining.
|
|
if (isNoopShuffleMask(Mask))
|
|
return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
|
|
|
|
// Look for simplifications involving one or two shuffle instructions.
|
|
SDValue V = N.getOperand(0);
|
|
switch (N.getOpcode()) {
|
|
default:
|
|
break;
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::PSHUFHW:
|
|
assert(VT == MVT::v8i16);
|
|
(void)VT;
|
|
|
|
if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
|
|
return SDValue(); // We combined away this shuffle, so we're done.
|
|
|
|
// See if this reduces to a PSHUFD which is no more expensive and can
|
|
// combine with more operations. Note that it has to at least flip the
|
|
// dwords as otherwise it would have been removed as a no-op.
|
|
if (Mask[0] == 2 && Mask[1] == 3 && Mask[2] == 0 && Mask[3] == 1) {
|
|
int DMask[] = {0, 1, 2, 3};
|
|
int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
|
|
DMask[DOffset + 0] = DOffset + 1;
|
|
DMask[DOffset + 1] = DOffset + 0;
|
|
V = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, V);
|
|
DCI.AddToWorklist(V.getNode());
|
|
V = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V,
|
|
getV4X86ShuffleImm8ForMask(DMask, DAG));
|
|
DCI.AddToWorklist(V.getNode());
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, V);
|
|
}
|
|
|
|
// Look for shuffle patterns which can be implemented as a single unpack.
|
|
// FIXME: This doesn't handle the location of the PSHUFD generically, and
|
|
// only works when we have a PSHUFD followed by two half-shuffles.
|
|
if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
|
|
(V.getOpcode() == X86ISD::PSHUFLW ||
|
|
V.getOpcode() == X86ISD::PSHUFHW) &&
|
|
V.getOpcode() != N.getOpcode() &&
|
|
V.hasOneUse()) {
|
|
SDValue D = V.getOperand(0);
|
|
while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
|
|
D = D.getOperand(0);
|
|
if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
|
|
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
|
|
SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
|
|
int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
|
|
int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
|
|
int WordMask[8];
|
|
for (int i = 0; i < 4; ++i) {
|
|
WordMask[i + NOffset] = Mask[i] + NOffset;
|
|
WordMask[i + VOffset] = VMask[i] + VOffset;
|
|
}
|
|
// Map the word mask through the DWord mask.
|
|
int MappedMask[8];
|
|
for (int i = 0; i < 8; ++i)
|
|
MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
|
|
const int UnpackLoMask[] = {0, 0, 1, 1, 2, 2, 3, 3};
|
|
const int UnpackHiMask[] = {4, 4, 5, 5, 6, 6, 7, 7};
|
|
if (std::equal(std::begin(MappedMask), std::end(MappedMask),
|
|
std::begin(UnpackLoMask)) ||
|
|
std::equal(std::begin(MappedMask), std::end(MappedMask),
|
|
std::begin(UnpackHiMask))) {
|
|
// We can replace all three shuffles with an unpack.
|
|
V = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, D.getOperand(0));
|
|
DCI.AddToWorklist(V.getNode());
|
|
return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
|
|
: X86ISD::UNPCKH,
|
|
DL, MVT::v8i16, V, V);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case X86ISD::PSHUFD:
|
|
if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
|
|
return NewN;
|
|
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Try to combine a shuffle into a target-specific add-sub node.
|
|
///
|
|
/// We combine this directly on the abstract vector shuffle nodes so it is
|
|
/// easier to generically match. We also insert dummy vector shuffle nodes for
|
|
/// the operands which explicitly discard the lanes which are unused by this
|
|
/// operation to try to flow through the rest of the combiner the fact that
|
|
/// they're unused.
|
|
static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// We only handle target-independent shuffles.
|
|
// FIXME: It would be easy and harmless to use the target shuffle mask
|
|
// extraction tool to support more.
|
|
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
|
|
return SDValue();
|
|
|
|
auto *SVN = cast<ShuffleVectorSDNode>(N);
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
SDValue V1 = N->getOperand(0);
|
|
SDValue V2 = N->getOperand(1);
|
|
|
|
// We require the first shuffle operand to be the SUB node, and the second to
|
|
// be the ADD node.
|
|
// FIXME: We should support the commuted patterns.
|
|
if (V1->getOpcode() != ISD::FSUB || V2->getOpcode() != ISD::FADD)
|
|
return SDValue();
|
|
|
|
// If there are other uses of these operations we can't fold them.
|
|
if (!V1->hasOneUse() || !V2->hasOneUse())
|
|
return SDValue();
|
|
|
|
// Ensure that both operations have the same operands. Note that we can
|
|
// commute the FADD operands.
|
|
SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
|
|
if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
|
|
(V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
|
|
return SDValue();
|
|
|
|
// We're looking for blends between FADD and FSUB nodes. We insist on these
|
|
// nodes being lined up in a specific expected pattern.
|
|
if (!(isShuffleEquivalent(Mask, 0, 3) ||
|
|
isShuffleEquivalent(Mask, 0, 5, 2, 7) ||
|
|
isShuffleEquivalent(Mask, 0, 9, 2, 11, 4, 13, 6, 15)))
|
|
return SDValue();
|
|
|
|
// Only specific types are legal at this point, assert so we notice if and
|
|
// when these change.
|
|
assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
|
|
VT == MVT::v4f64) &&
|
|
"Unknown vector type encountered!");
|
|
|
|
return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
|
|
}
|
|
|
|
/// PerformShuffleCombine - Performs several different shuffle combines.
|
|
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc dl(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Don't create instructions with illegal types after legalize types has run.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
|
|
return SDValue();
|
|
|
|
// If we have legalized the vector types, look for blends of FADD and FSUB
|
|
// nodes that we can fuse into an ADDSUB node.
|
|
if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
|
|
if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
|
|
return AddSub;
|
|
|
|
// Combine 256-bit vector shuffles. This is only profitable when in AVX mode
|
|
if (Subtarget->hasFp256() && VT.is256BitVector() &&
|
|
N->getOpcode() == ISD::VECTOR_SHUFFLE)
|
|
return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
|
|
|
|
// During Type Legalization, when promoting illegal vector types,
|
|
// the backend might introduce new shuffle dag nodes and bitcasts.
|
|
//
|
|
// This code performs the following transformation:
|
|
// fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
|
|
// (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
|
|
//
|
|
// We do this only if both the bitcast and the BINOP dag nodes have
|
|
// one use. Also, perform this transformation only if the new binary
|
|
// operation is legal. This is to avoid introducing dag nodes that
|
|
// potentially need to be further expanded (or custom lowered) into a
|
|
// less optimal sequence of dag nodes.
|
|
if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
|
|
N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
|
|
N0.getOpcode() == ISD::BITCAST) {
|
|
SDValue BC0 = N0.getOperand(0);
|
|
EVT SVT = BC0.getValueType();
|
|
unsigned Opcode = BC0.getOpcode();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
if (BC0.hasOneUse() && SVT.isVector() &&
|
|
SVT.getVectorNumElements() * 2 == NumElts &&
|
|
TLI.isOperationLegal(Opcode, VT)) {
|
|
bool CanFold = false;
|
|
switch (Opcode) {
|
|
default : break;
|
|
case ISD::ADD :
|
|
case ISD::FADD :
|
|
case ISD::SUB :
|
|
case ISD::FSUB :
|
|
case ISD::MUL :
|
|
case ISD::FMUL :
|
|
CanFold = true;
|
|
}
|
|
|
|
unsigned SVTNumElts = SVT.getVectorNumElements();
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
|
|
CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
|
|
for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
|
|
CanFold = SVOp->getMaskElt(i) < 0;
|
|
|
|
if (CanFold) {
|
|
SDValue BC00 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(0));
|
|
SDValue BC01 = DAG.getNode(ISD::BITCAST, dl, VT, BC0.getOperand(1));
|
|
SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
|
|
return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only handle 128 wide vector from here on.
|
|
if (!VT.is128BitVector())
|
|
return SDValue();
|
|
|
|
// Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
|
|
// load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
|
|
// consecutive, non-overlapping, and in the right order.
|
|
SmallVector<SDValue, 16> Elts;
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
|
|
Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
|
|
|
|
SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
|
|
if (LD.getNode())
|
|
return LD;
|
|
|
|
if (isTargetShuffle(N->getOpcode())) {
|
|
SDValue Shuffle =
|
|
PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
|
|
if (Shuffle.getNode())
|
|
return Shuffle;
|
|
|
|
// Try recursively combining arbitrary sequences of x86 shuffle
|
|
// instructions into higher-order shuffles. We do this after combining
|
|
// specific PSHUF instruction sequences into their minimal form so that we
|
|
// can evaluate how many specialized shuffle instructions are involved in
|
|
// a particular chain.
|
|
SmallVector<int, 1> NonceMask; // Just a placeholder.
|
|
NonceMask.push_back(0);
|
|
if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
|
|
/*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
|
|
DCI, Subtarget))
|
|
return SDValue(); // This routine will use CombineTo to replace N.
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformTruncateCombine - Converts truncate operation to
|
|
/// a sequence of vector shuffle operations.
|
|
/// It is possible when we truncate 256-bit vector to 128-bit vector
|
|
static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
return SDValue();
|
|
}
|
|
|
|
/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
|
|
/// specific shuffle of a load can be folded into a single element load.
|
|
/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
|
|
/// shuffles have been custom lowered so we need to handle those here.
|
|
static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue InVec = N->getOperand(0);
|
|
SDValue EltNo = N->getOperand(1);
|
|
|
|
if (!isa<ConstantSDNode>(EltNo))
|
|
return SDValue();
|
|
|
|
EVT OriginalVT = InVec.getValueType();
|
|
|
|
if (InVec.getOpcode() == ISD::BITCAST) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
EVT BCVT = InVec.getOperand(0).getValueType();
|
|
if (BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
|
|
return SDValue();
|
|
InVec = InVec.getOperand(0);
|
|
}
|
|
|
|
EVT CurrentVT = InVec.getValueType();
|
|
|
|
if (!isTargetShuffle(InVec.getOpcode()))
|
|
return SDValue();
|
|
|
|
// Don't duplicate a load with other uses.
|
|
if (!InVec.hasOneUse())
|
|
return SDValue();
|
|
|
|
SmallVector<int, 16> ShuffleMask;
|
|
bool UnaryShuffle;
|
|
if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(),
|
|
ShuffleMask, UnaryShuffle))
|
|
return SDValue();
|
|
|
|
// Select the input vector, guarding against out of range extract vector.
|
|
unsigned NumElems = CurrentVT.getVectorNumElements();
|
|
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
|
|
SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
|
|
: InVec.getOperand(1);
|
|
|
|
// If inputs to shuffle are the same for both ops, then allow 2 uses
|
|
unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
|
|
|
|
if (LdNode.getOpcode() == ISD::BITCAST) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
|
|
return SDValue();
|
|
|
|
AllowedUses = 1; // only allow 1 load use if we have a bitcast
|
|
LdNode = LdNode.getOperand(0);
|
|
}
|
|
|
|
if (!ISD::isNormalLoad(LdNode.getNode()))
|
|
return SDValue();
|
|
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
|
|
|
|
if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
|
|
return SDValue();
|
|
|
|
EVT EltVT = N->getValueType(0);
|
|
// If there's a bitcast before the shuffle, check if the load type and
|
|
// alignment is valid.
|
|
unsigned Align = LN0->getAlignment();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
|
|
EltVT.getTypeForEVT(*DAG.getContext()));
|
|
|
|
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
|
|
return SDValue();
|
|
|
|
// All checks match so transform back to vector_shuffle so that DAG combiner
|
|
// can finish the job
|
|
SDLoc dl(N);
|
|
|
|
// Create shuffle node taking into account the case that its a unary shuffle
|
|
SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT)
|
|
: InVec.getOperand(1);
|
|
Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
|
|
InVec.getOperand(0), Shuffle,
|
|
&ShuffleMask[0]);
|
|
Shuffle = DAG.getNode(ISD::BITCAST, dl, OriginalVT, Shuffle);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
|
|
EltNo);
|
|
}
|
|
|
|
/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
|
|
/// generation and convert it from being a bunch of shuffles and extracts
|
|
/// to a simple store and scalar loads to extract the elements.
|
|
static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
|
|
SDValue InputVector = N->getOperand(0);
|
|
|
|
// Detect whether we are trying to convert from mmx to i32 and the bitcast
|
|
// from mmx to v2i32 has a single usage.
|
|
if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
|
|
InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
|
|
InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
|
|
return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
|
|
N->getValueType(0),
|
|
InputVector.getNode()->getOperand(0));
|
|
|
|
// Only operate on vectors of 4 elements, where the alternative shuffling
|
|
// gets to be more expensive.
|
|
if (InputVector.getValueType() != MVT::v4i32)
|
|
return SDValue();
|
|
|
|
// Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
|
|
// single use which is a sign-extend or zero-extend, and all elements are
|
|
// used.
|
|
SmallVector<SDNode *, 4> Uses;
|
|
unsigned ExtractedElements = 0;
|
|
for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
|
|
UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
|
|
if (UI.getUse().getResNo() != InputVector.getResNo())
|
|
return SDValue();
|
|
|
|
SDNode *Extract = *UI;
|
|
if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
if (Extract->getValueType(0) != MVT::i32)
|
|
return SDValue();
|
|
if (!Extract->hasOneUse())
|
|
return SDValue();
|
|
if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
|
|
Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
if (!isa<ConstantSDNode>(Extract->getOperand(1)))
|
|
return SDValue();
|
|
|
|
// Record which element was extracted.
|
|
ExtractedElements |=
|
|
1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
|
|
|
|
Uses.push_back(Extract);
|
|
}
|
|
|
|
// If not all the elements were used, this may not be worthwhile.
|
|
if (ExtractedElements != 15)
|
|
return SDValue();
|
|
|
|
// Ok, we've now decided to do the transformation.
|
|
SDLoc dl(InputVector);
|
|
|
|
// Store the value to a temporary stack slot.
|
|
SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
|
|
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
|
|
MachinePointerInfo(), false, false, 0);
|
|
|
|
// Replace each use (extract) with a load of the appropriate element.
|
|
for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
|
|
UE = Uses.end(); UI != UE; ++UI) {
|
|
SDNode *Extract = *UI;
|
|
|
|
// cOMpute the element's address.
|
|
SDValue Idx = Extract->getOperand(1);
|
|
unsigned EltSize =
|
|
InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
|
|
uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
|
|
|
|
SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
|
|
StackPtr, OffsetVal);
|
|
|
|
// Load the scalar.
|
|
SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
|
|
ScalarAddr, MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
|
|
// Replace the exact with the load.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
|
|
}
|
|
|
|
// The replacement was made in place; don't return anything.
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
|
|
static std::pair<unsigned, bool>
|
|
matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
|
|
SelectionDAG &DAG, const X86Subtarget *Subtarget) {
|
|
if (!VT.isVector())
|
|
return std::make_pair(0, false);
|
|
|
|
bool NeedSplit = false;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return std::make_pair(0, false);
|
|
case MVT::v32i8:
|
|
case MVT::v16i16:
|
|
case MVT::v8i32:
|
|
if (!Subtarget->hasAVX2())
|
|
NeedSplit = true;
|
|
if (!Subtarget->hasAVX())
|
|
return std::make_pair(0, false);
|
|
break;
|
|
case MVT::v16i8:
|
|
case MVT::v8i16:
|
|
case MVT::v4i32:
|
|
if (!Subtarget->hasSSE2())
|
|
return std::make_pair(0, false);
|
|
}
|
|
|
|
// SSE2 has only a small subset of the operations.
|
|
bool hasUnsigned = Subtarget->hasSSE41() ||
|
|
(Subtarget->hasSSE2() && VT == MVT::v16i8);
|
|
bool hasSigned = Subtarget->hasSSE41() ||
|
|
(Subtarget->hasSSE2() && VT == MVT::v8i16);
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
|
|
unsigned Opc = 0;
|
|
// Check for x CC y ? x : y.
|
|
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Opc = hasSigned ? X86ISD::SMIN : 0; break;
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
Opc = hasSigned ? X86ISD::SMAX : 0; break;
|
|
}
|
|
// Check for x CC y ? y : x -- a min/max with reversed arms.
|
|
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Opc = hasSigned ? X86ISD::SMAX : 0; break;
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
Opc = hasSigned ? X86ISD::SMIN : 0; break;
|
|
}
|
|
}
|
|
|
|
return std::make_pair(Opc, NeedSplit);
|
|
}
|
|
|
|
static SDValue
|
|
transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc dl(N);
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
|
|
if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue CondSrc = Cond->getOperand(0);
|
|
if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
|
|
Cond = CondSrc->getOperand(0);
|
|
}
|
|
|
|
if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
|
|
return SDValue();
|
|
|
|
// A vselect where all conditions and data are constants can be optimized into
|
|
// a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
|
|
if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
|
|
ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
|
|
return SDValue();
|
|
|
|
unsigned MaskValue = 0;
|
|
if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
|
|
return SDValue();
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
SmallVector<int, 8> ShuffleMask(NumElems, -1);
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
// Be sure we emit undef where we can.
|
|
if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
|
|
ShuffleMask[i] = -1;
|
|
else
|
|
ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
|
|
}
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.isShuffleMaskLegal(ShuffleMask, VT))
|
|
return SDValue();
|
|
return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
|
|
}
|
|
|
|
/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
|
|
/// nodes.
|
|
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
SDValue Cond = N->getOperand(0);
|
|
// Get the LHS/RHS of the select.
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
EVT VT = LHS.getValueType();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
|
|
// instructions match the semantics of the common C idiom x<y?x:y but not
|
|
// x<=y?x:y, because of how they handle negative zero (which can be
|
|
// ignored in unsafe-math mode).
|
|
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
|
|
VT != MVT::f80 && TLI.isTypeLegal(VT) &&
|
|
(Subtarget->hasSSE2() ||
|
|
(Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
|
|
unsigned Opcode = 0;
|
|
// Check for x CC y ? x : y.
|
|
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETULT:
|
|
// Converting this to a min would handle NaNs incorrectly, and swapping
|
|
// the operands would cause it to handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETOLE:
|
|
// Converting this to a min would handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
|
|
break;
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETULE:
|
|
// Converting this to a min would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
|
|
case ISD::SETOGE:
|
|
// Converting this to a max would handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
|
|
break;
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETUGT:
|
|
// Converting this to a max would handle NaNs incorrectly, and swapping
|
|
// the operands would cause it to handle comparisons between positive
|
|
// and negative zero incorrectly.
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETUGE:
|
|
// Converting this to a max would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
}
|
|
// Check for x CC y ? y : x -- a min/max with reversed arms.
|
|
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETOGE:
|
|
// Converting this to a min would handle comparisons between positive
|
|
// and negative zero incorrectly, and swapping the operands would
|
|
// cause it to handle NaNs incorrectly.
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETUGT:
|
|
// Converting this to a min would handle NaNs incorrectly.
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
(!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
|
|
break;
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
case ISD::SETUGE:
|
|
// Converting this to a min would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
Opcode = X86ISD::FMIN;
|
|
break;
|
|
|
|
case ISD::SETULT:
|
|
// Converting this to a max would handle NaNs incorrectly.
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
|
|
break;
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETOLE:
|
|
// Converting this to a max would handle comparisons between positive
|
|
// and negative zero incorrectly, and swapping the operands would
|
|
// cause it to handle NaNs incorrectly.
|
|
if (!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
|
|
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
case ISD::SETULE:
|
|
// Converting this to a max would handle both negative zeros and NaNs
|
|
// incorrectly, but we can swap the operands to fix both.
|
|
std::swap(LHS, RHS);
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Opcode = X86ISD::FMAX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Opcode)
|
|
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
|
|
}
|
|
|
|
EVT CondVT = Cond.getValueType();
|
|
if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
|
|
CondVT.getVectorElementType() == MVT::i1) {
|
|
// v16i8 (select v16i1, v16i8, v16i8) does not have a proper
|
|
// lowering on KNL. In this case we convert it to
|
|
// v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
|
|
// The same situation for all 128 and 256-bit vectors of i8 and i16.
|
|
// Since SKX these selects have a proper lowering.
|
|
EVT OpVT = LHS.getValueType();
|
|
if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
|
|
(OpVT.getVectorElementType() == MVT::i8 ||
|
|
OpVT.getVectorElementType() == MVT::i16) &&
|
|
!(Subtarget->hasBWI() && Subtarget->hasVLX())) {
|
|
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
|
|
DCI.AddToWorklist(Cond.getNode());
|
|
return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
|
|
}
|
|
}
|
|
// If this is a select between two integer constants, try to do some
|
|
// optimizations.
|
|
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
|
|
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
|
|
// Don't do this for crazy integer types.
|
|
if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
|
|
// If this is efficiently invertible, canonicalize the LHSC/RHSC values
|
|
// so that TrueC (the true value) is larger than FalseC.
|
|
bool NeedsCondInvert = false;
|
|
|
|
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
|
|
// Efficiently invertible.
|
|
(Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
|
|
(Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
|
|
isa<ConstantSDNode>(Cond.getOperand(1))))) {
|
|
NeedsCondInvert = true;
|
|
std::swap(TrueC, FalseC);
|
|
}
|
|
|
|
// Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
|
|
if (FalseC->getAPIntValue() == 0 &&
|
|
TrueC->getAPIntValue().isPowerOf2()) {
|
|
if (NeedsCondInvert) // Invert the condition if needed.
|
|
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
|
|
|
|
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
|
|
return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
|
|
DAG.getConstant(ShAmt, MVT::i8));
|
|
}
|
|
|
|
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
|
|
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
|
|
if (NeedsCondInvert) // Invert the condition if needed.
|
|
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
|
|
FalseC->getValueType(0), Cond);
|
|
return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
}
|
|
|
|
// Optimize cases that will turn into an LEA instruction. This requires
|
|
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
|
|
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
|
|
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
|
|
|
|
bool isFastMultiplier = false;
|
|
if (Diff < 10) {
|
|
switch ((unsigned char)Diff) {
|
|
default: break;
|
|
case 1: // result = add base, cond
|
|
case 2: // result = lea base( , cond*2)
|
|
case 3: // result = lea base(cond, cond*2)
|
|
case 4: // result = lea base( , cond*4)
|
|
case 5: // result = lea base(cond, cond*4)
|
|
case 8: // result = lea base( , cond*8)
|
|
case 9: // result = lea base(cond, cond*8)
|
|
isFastMultiplier = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isFastMultiplier) {
|
|
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
|
|
if (NeedsCondInvert) // Invert the condition if needed.
|
|
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
|
|
Cond);
|
|
// Scale the condition by the difference.
|
|
if (Diff != 1)
|
|
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(Diff, Cond.getValueType()));
|
|
|
|
// Add the base if non-zero.
|
|
if (FalseC->getAPIntValue() != 0)
|
|
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
return Cond;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize max and min:
|
|
// (x > y) ? x : y -> (x >= y) ? x : y
|
|
// (x < y) ? x : y -> (x <= y) ? x : y
|
|
// This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
|
|
// the need for an extra compare
|
|
// against zero. e.g.
|
|
// (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
|
|
// subl %esi, %edi
|
|
// testl %edi, %edi
|
|
// movl $0, %eax
|
|
// cmovgl %edi, %eax
|
|
// =>
|
|
// xorl %eax, %eax
|
|
// subl %esi, $edi
|
|
// cmovsl %eax, %edi
|
|
if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
|
|
DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
|
|
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGT: {
|
|
ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
|
|
Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
|
|
Cond.getOperand(0), Cond.getOperand(1), NewCC);
|
|
return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Early exit check
|
|
if (!TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// Match VSELECTs into subs with unsigned saturation.
|
|
if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
|
|
// psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
|
|
((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
|
|
(Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
|
|
// Check if one of the arms of the VSELECT is a zero vector. If it's on the
|
|
// left side invert the predicate to simplify logic below.
|
|
SDValue Other;
|
|
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
|
|
Other = RHS;
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
} else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
|
|
Other = LHS;
|
|
}
|
|
|
|
if (Other.getNode() && Other->getNumOperands() == 2 &&
|
|
DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
|
|
SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
|
|
SDValue CondRHS = Cond->getOperand(1);
|
|
|
|
// Look for a general sub with unsigned saturation first.
|
|
// x >= y ? x-y : 0 --> subus x, y
|
|
// x > y ? x-y : 0 --> subus x, y
|
|
if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
|
|
Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
|
|
return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
|
|
|
|
if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
|
|
if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
|
|
if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
|
|
if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
|
|
// If the RHS is a constant we have to reverse the const
|
|
// canonicalization.
|
|
// x > C-1 ? x+-C : 0 --> subus x, C
|
|
if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
|
|
CondRHSConst->getAPIntValue() ==
|
|
(-OpRHSConst->getAPIntValue() - 1))
|
|
return DAG.getNode(
|
|
X86ISD::SUBUS, DL, VT, OpLHS,
|
|
DAG.getConstant(-OpRHSConst->getAPIntValue(), VT));
|
|
|
|
// Another special case: If C was a sign bit, the sub has been
|
|
// canonicalized into a xor.
|
|
// FIXME: Would it be better to use computeKnownBits to determine
|
|
// whether it's safe to decanonicalize the xor?
|
|
// x s< 0 ? x^C : 0 --> subus x, C
|
|
if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
|
|
ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
|
|
OpRHSConst->getAPIntValue().isSignBit())
|
|
// Note that we have to rebuild the RHS constant here to ensure we
|
|
// don't rely on particular values of undef lanes.
|
|
return DAG.getNode(
|
|
X86ISD::SUBUS, DL, VT, OpLHS,
|
|
DAG.getConstant(OpRHSConst->getAPIntValue(), VT));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to match a min/max vector operation.
|
|
if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
|
|
std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
|
|
unsigned Opc = ret.first;
|
|
bool NeedSplit = ret.second;
|
|
|
|
if (Opc && NeedSplit) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
// Extract the LHS vectors
|
|
SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
|
|
SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
|
|
|
|
// Extract the RHS vectors
|
|
SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
|
|
SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
|
|
|
|
// Create min/max for each subvector
|
|
LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
|
|
RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
|
|
|
|
// Merge the result
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
|
|
} else if (Opc)
|
|
return DAG.getNode(Opc, DL, VT, LHS, RHS);
|
|
}
|
|
|
|
// Simplify vector selection if condition value type matches vselect
|
|
// operand type
|
|
if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
|
|
assert(Cond.getValueType().isVector() &&
|
|
"vector select expects a vector selector!");
|
|
|
|
bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
|
|
bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
|
|
|
|
// Try invert the condition if true value is not all 1s and false value
|
|
// is not all 0s.
|
|
if (!TValIsAllOnes && !FValIsAllZeros &&
|
|
// Check if the selector will be produced by CMPP*/PCMP*
|
|
Cond.getOpcode() == ISD::SETCC &&
|
|
// Check if SETCC has already been promoted
|
|
TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT) {
|
|
bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
|
|
bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
|
|
|
|
if (TValIsAllZeros || FValIsAllOnes) {
|
|
SDValue CC = Cond.getOperand(2);
|
|
ISD::CondCode NewCC =
|
|
ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
|
|
Cond.getOperand(0).getValueType().isInteger());
|
|
Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
|
|
std::swap(LHS, RHS);
|
|
TValIsAllOnes = FValIsAllOnes;
|
|
FValIsAllZeros = TValIsAllZeros;
|
|
}
|
|
}
|
|
|
|
if (TValIsAllOnes || FValIsAllZeros) {
|
|
SDValue Ret;
|
|
|
|
if (TValIsAllOnes && FValIsAllZeros)
|
|
Ret = Cond;
|
|
else if (TValIsAllOnes)
|
|
Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
|
|
DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
|
|
else if (FValIsAllZeros)
|
|
Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
|
|
DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
|
|
}
|
|
}
|
|
|
|
// If we know that this node is legal then we know that it is going to be
|
|
// matched by one of the SSE/AVX BLEND instructions. These instructions only
|
|
// depend on the highest bit in each word. Try to use SimplifyDemandedBits
|
|
// to simplify previous instructions.
|
|
if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
|
|
!DCI.isBeforeLegalize() &&
|
|
// We explicitly check against v8i16 and v16i16 because, although
|
|
// they're marked as Custom, they might only be legal when Cond is a
|
|
// build_vector of constants. This will be taken care in a later
|
|
// condition.
|
|
(TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 &&
|
|
VT != MVT::v8i16) &&
|
|
// Don't optimize vector of constants. Those are handled by
|
|
// the generic code and all the bits must be properly set for
|
|
// the generic optimizer.
|
|
!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
|
|
unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
|
|
|
|
// Don't optimize vector selects that map to mask-registers.
|
|
if (BitWidth == 1)
|
|
return SDValue();
|
|
|
|
assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
|
|
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
|
|
|
|
APInt KnownZero, KnownOne;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
|
|
DCI.isBeforeLegalizeOps());
|
|
if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
|
|
TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
|
|
TLO)) {
|
|
// If we changed the computation somewhere in the DAG, this change
|
|
// will affect all users of Cond.
|
|
// Make sure it is fine and update all the nodes so that we do not
|
|
// use the generic VSELECT anymore. Otherwise, we may perform
|
|
// wrong optimizations as we messed up with the actual expectation
|
|
// for the vector boolean values.
|
|
if (Cond != TLO.Old) {
|
|
// Check all uses of that condition operand to check whether it will be
|
|
// consumed by non-BLEND instructions, which may depend on all bits are
|
|
// set properly.
|
|
for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
|
|
I != E; ++I)
|
|
if (I->getOpcode() != ISD::VSELECT)
|
|
// TODO: Add other opcodes eventually lowered into BLEND.
|
|
return SDValue();
|
|
|
|
// Update all the users of the condition, before committing the change,
|
|
// so that the VSELECT optimizations that expect the correct vector
|
|
// boolean value will not be triggered.
|
|
for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
|
|
I != E; ++I)
|
|
DAG.ReplaceAllUsesOfValueWith(
|
|
SDValue(*I, 0),
|
|
DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
|
|
Cond, I->getOperand(1), I->getOperand(2)));
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
return SDValue();
|
|
}
|
|
// At this point, only Cond is changed. Change the condition
|
|
// just for N to keep the opportunity to optimize all other
|
|
// users their own way.
|
|
DAG.ReplaceAllUsesOfValueWith(
|
|
SDValue(N, 0),
|
|
DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
|
|
TLO.New, N->getOperand(1), N->getOperand(2)));
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// We should generate an X86ISD::BLENDI from a vselect if its argument
|
|
// is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
|
|
// constants. This specific pattern gets generated when we split a
|
|
// selector for a 512 bit vector in a machine without AVX512 (but with
|
|
// 256-bit vectors), during legalization:
|
|
//
|
|
// (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
|
|
//
|
|
// Iff we find this pattern and the build_vectors are built from
|
|
// constants, we translate the vselect into a shuffle_vector that we
|
|
// know will be matched by LowerVECTOR_SHUFFLEtoBlend.
|
|
if ((N->getOpcode() == ISD::VSELECT ||
|
|
N->getOpcode() == X86ISD::SHRUNKBLEND) &&
|
|
!DCI.isBeforeLegalize()) {
|
|
SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
|
|
if (Shuffle.getNode())
|
|
return Shuffle;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Check whether a boolean test is testing a boolean value generated by
|
|
// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
|
|
// code.
|
|
//
|
|
// Simplify the following patterns:
|
|
// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
|
|
// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
|
|
// to (Op EFLAGS Cond)
|
|
//
|
|
// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
|
|
// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
|
|
// to (Op EFLAGS !Cond)
|
|
//
|
|
// where Op could be BRCOND or CMOV.
|
|
//
|
|
static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
|
|
// Quit if not CMP and SUB with its value result used.
|
|
if (Cmp.getOpcode() != X86ISD::CMP &&
|
|
(Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
|
|
return SDValue();
|
|
|
|
// Quit if not used as a boolean value.
|
|
if (CC != X86::COND_E && CC != X86::COND_NE)
|
|
return SDValue();
|
|
|
|
// Check CMP operands. One of them should be 0 or 1 and the other should be
|
|
// an SetCC or extended from it.
|
|
SDValue Op1 = Cmp.getOperand(0);
|
|
SDValue Op2 = Cmp.getOperand(1);
|
|
|
|
SDValue SetCC;
|
|
const ConstantSDNode* C = nullptr;
|
|
bool needOppositeCond = (CC == X86::COND_E);
|
|
bool checkAgainstTrue = false; // Is it a comparison against 1?
|
|
|
|
if ((C = dyn_cast<ConstantSDNode>(Op1)))
|
|
SetCC = Op2;
|
|
else if ((C = dyn_cast<ConstantSDNode>(Op2)))
|
|
SetCC = Op1;
|
|
else // Quit if all operands are not constants.
|
|
return SDValue();
|
|
|
|
if (C->getZExtValue() == 1) {
|
|
needOppositeCond = !needOppositeCond;
|
|
checkAgainstTrue = true;
|
|
} else if (C->getZExtValue() != 0)
|
|
// Quit if the constant is neither 0 or 1.
|
|
return SDValue();
|
|
|
|
bool truncatedToBoolWithAnd = false;
|
|
// Skip (zext $x), (trunc $x), or (and $x, 1) node.
|
|
while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
|
|
SetCC.getOpcode() == ISD::TRUNCATE ||
|
|
SetCC.getOpcode() == ISD::AND) {
|
|
if (SetCC.getOpcode() == ISD::AND) {
|
|
int OpIdx = -1;
|
|
ConstantSDNode *CS;
|
|
if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
|
|
CS->getZExtValue() == 1)
|
|
OpIdx = 1;
|
|
if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
|
|
CS->getZExtValue() == 1)
|
|
OpIdx = 0;
|
|
if (OpIdx == -1)
|
|
break;
|
|
SetCC = SetCC.getOperand(OpIdx);
|
|
truncatedToBoolWithAnd = true;
|
|
} else
|
|
SetCC = SetCC.getOperand(0);
|
|
}
|
|
|
|
switch (SetCC.getOpcode()) {
|
|
case X86ISD::SETCC_CARRY:
|
|
// Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
|
|
// simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
|
|
// i.e. it's a comparison against true but the result of SETCC_CARRY is not
|
|
// truncated to i1 using 'and'.
|
|
if (checkAgainstTrue && !truncatedToBoolWithAnd)
|
|
break;
|
|
assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
|
|
"Invalid use of SETCC_CARRY!");
|
|
// FALL THROUGH
|
|
case X86ISD::SETCC:
|
|
// Set the condition code or opposite one if necessary.
|
|
CC = X86::CondCode(SetCC.getConstantOperandVal(0));
|
|
if (needOppositeCond)
|
|
CC = X86::GetOppositeBranchCondition(CC);
|
|
return SetCC.getOperand(1);
|
|
case X86ISD::CMOV: {
|
|
// Check whether false/true value has canonical one, i.e. 0 or 1.
|
|
ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
|
|
ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
|
|
// Quit if true value is not a constant.
|
|
if (!TVal)
|
|
return SDValue();
|
|
// Quit if false value is not a constant.
|
|
if (!FVal) {
|
|
SDValue Op = SetCC.getOperand(0);
|
|
// Skip 'zext' or 'trunc' node.
|
|
if (Op.getOpcode() == ISD::ZERO_EXTEND ||
|
|
Op.getOpcode() == ISD::TRUNCATE)
|
|
Op = Op.getOperand(0);
|
|
// A special case for rdrand/rdseed, where 0 is set if false cond is
|
|
// found.
|
|
if ((Op.getOpcode() != X86ISD::RDRAND &&
|
|
Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
|
|
return SDValue();
|
|
}
|
|
// Quit if false value is not the constant 0 or 1.
|
|
bool FValIsFalse = true;
|
|
if (FVal && FVal->getZExtValue() != 0) {
|
|
if (FVal->getZExtValue() != 1)
|
|
return SDValue();
|
|
// If FVal is 1, opposite cond is needed.
|
|
needOppositeCond = !needOppositeCond;
|
|
FValIsFalse = false;
|
|
}
|
|
// Quit if TVal is not the constant opposite of FVal.
|
|
if (FValIsFalse && TVal->getZExtValue() != 1)
|
|
return SDValue();
|
|
if (!FValIsFalse && TVal->getZExtValue() != 0)
|
|
return SDValue();
|
|
CC = X86::CondCode(SetCC.getConstantOperandVal(2));
|
|
if (needOppositeCond)
|
|
CC = X86::GetOppositeBranchCondition(CC);
|
|
return SetCC.getOperand(3);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
|
|
static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
|
|
// If the flag operand isn't dead, don't touch this CMOV.
|
|
if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
|
|
return SDValue();
|
|
|
|
SDValue FalseOp = N->getOperand(0);
|
|
SDValue TrueOp = N->getOperand(1);
|
|
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
|
|
SDValue Cond = N->getOperand(3);
|
|
|
|
if (CC == X86::COND_E || CC == X86::COND_NE) {
|
|
switch (Cond.getOpcode()) {
|
|
default: break;
|
|
case X86ISD::BSR:
|
|
case X86ISD::BSF:
|
|
// If operand of BSR / BSF are proven never zero, then ZF cannot be set.
|
|
if (DAG.isKnownNeverZero(Cond.getOperand(0)))
|
|
return (CC == X86::COND_E) ? FalseOp : TrueOp;
|
|
}
|
|
}
|
|
|
|
SDValue Flags;
|
|
|
|
Flags = checkBoolTestSetCCCombine(Cond, CC);
|
|
if (Flags.getNode() &&
|
|
// Extra check as FCMOV only supports a subset of X86 cond.
|
|
(FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
|
|
SDValue Ops[] = { FalseOp, TrueOp,
|
|
DAG.getConstant(CC, MVT::i8), Flags };
|
|
return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
|
|
}
|
|
|
|
// If this is a select between two integer constants, try to do some
|
|
// optimizations. Note that the operands are ordered the opposite of SELECT
|
|
// operands.
|
|
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
|
|
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
|
|
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
|
|
// larger than FalseC (the false value).
|
|
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
|
|
CC = X86::GetOppositeBranchCondition(CC);
|
|
std::swap(TrueC, FalseC);
|
|
std::swap(TrueOp, FalseOp);
|
|
}
|
|
|
|
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
|
|
// This is efficient for any integer data type (including i8/i16) and
|
|
// shift amount.
|
|
if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
|
|
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(CC, MVT::i8), Cond);
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
|
|
|
|
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
|
|
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(ShAmt, MVT::i8));
|
|
if (N->getNumValues() == 2) // Dead flag value?
|
|
return DCI.CombineTo(N, Cond, SDValue());
|
|
return Cond;
|
|
}
|
|
|
|
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
|
|
// for any integer data type, including i8/i16.
|
|
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
|
|
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(CC, MVT::i8), Cond);
|
|
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
|
|
FalseC->getValueType(0), Cond);
|
|
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
|
|
if (N->getNumValues() == 2) // Dead flag value?
|
|
return DCI.CombineTo(N, Cond, SDValue());
|
|
return Cond;
|
|
}
|
|
|
|
// Optimize cases that will turn into an LEA instruction. This requires
|
|
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
|
|
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
|
|
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
|
|
|
|
bool isFastMultiplier = false;
|
|
if (Diff < 10) {
|
|
switch ((unsigned char)Diff) {
|
|
default: break;
|
|
case 1: // result = add base, cond
|
|
case 2: // result = lea base( , cond*2)
|
|
case 3: // result = lea base(cond, cond*2)
|
|
case 4: // result = lea base( , cond*4)
|
|
case 5: // result = lea base(cond, cond*4)
|
|
case 8: // result = lea base( , cond*8)
|
|
case 9: // result = lea base(cond, cond*8)
|
|
isFastMultiplier = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isFastMultiplier) {
|
|
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
|
|
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
|
|
DAG.getConstant(CC, MVT::i8), Cond);
|
|
// Zero extend the condition if needed.
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
|
|
Cond);
|
|
// Scale the condition by the difference.
|
|
if (Diff != 1)
|
|
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
|
|
DAG.getConstant(Diff, Cond.getValueType()));
|
|
|
|
// Add the base if non-zero.
|
|
if (FalseC->getAPIntValue() != 0)
|
|
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
|
|
SDValue(FalseC, 0));
|
|
if (N->getNumValues() == 2) // Dead flag value?
|
|
return DCI.CombineTo(N, Cond, SDValue());
|
|
return Cond;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle these cases:
|
|
// (select (x != c), e, c) -> select (x != c), e, x),
|
|
// (select (x == c), c, e) -> select (x == c), x, e)
|
|
// where the c is an integer constant, and the "select" is the combination
|
|
// of CMOV and CMP.
|
|
//
|
|
// The rationale for this change is that the conditional-move from a constant
|
|
// needs two instructions, however, conditional-move from a register needs
|
|
// only one instruction.
|
|
//
|
|
// CAVEAT: By replacing a constant with a symbolic value, it may obscure
|
|
// some instruction-combining opportunities. This opt needs to be
|
|
// postponed as late as possible.
|
|
//
|
|
if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
|
|
// the DCI.xxxx conditions are provided to postpone the optimization as
|
|
// late as possible.
|
|
|
|
ConstantSDNode *CmpAgainst = nullptr;
|
|
if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
|
|
(CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
|
|
!isa<ConstantSDNode>(Cond.getOperand(0))) {
|
|
|
|
if (CC == X86::COND_NE &&
|
|
CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
|
|
CC = X86::GetOppositeBranchCondition(CC);
|
|
std::swap(TrueOp, FalseOp);
|
|
}
|
|
|
|
if (CC == X86::COND_E &&
|
|
CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
|
|
SDValue Ops[] = { FalseOp, Cond.getOperand(0),
|
|
DAG.getConstant(CC, MVT::i8), Cond };
|
|
return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: return SDValue();
|
|
// SSE/AVX/AVX2 blend intrinsics.
|
|
case Intrinsic::x86_avx2_pblendvb:
|
|
case Intrinsic::x86_avx2_pblendw:
|
|
case Intrinsic::x86_avx2_pblendd_128:
|
|
case Intrinsic::x86_avx2_pblendd_256:
|
|
// Don't try to simplify this intrinsic if we don't have AVX2.
|
|
if (!Subtarget->hasAVX2())
|
|
return SDValue();
|
|
// FALL-THROUGH
|
|
case Intrinsic::x86_avx_blend_pd_256:
|
|
case Intrinsic::x86_avx_blend_ps_256:
|
|
case Intrinsic::x86_avx_blendv_pd_256:
|
|
case Intrinsic::x86_avx_blendv_ps_256:
|
|
// Don't try to simplify this intrinsic if we don't have AVX.
|
|
if (!Subtarget->hasAVX())
|
|
return SDValue();
|
|
// FALL-THROUGH
|
|
case Intrinsic::x86_sse41_pblendw:
|
|
case Intrinsic::x86_sse41_blendpd:
|
|
case Intrinsic::x86_sse41_blendps:
|
|
case Intrinsic::x86_sse41_blendvps:
|
|
case Intrinsic::x86_sse41_blendvpd:
|
|
case Intrinsic::x86_sse41_pblendvb: {
|
|
SDValue Op0 = N->getOperand(1);
|
|
SDValue Op1 = N->getOperand(2);
|
|
SDValue Mask = N->getOperand(3);
|
|
|
|
// Don't try to simplify this intrinsic if we don't have SSE4.1.
|
|
if (!Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
// fold (blend A, A, Mask) -> A
|
|
if (Op0 == Op1)
|
|
return Op0;
|
|
// fold (blend A, B, allZeros) -> A
|
|
if (ISD::isBuildVectorAllZeros(Mask.getNode()))
|
|
return Op0;
|
|
// fold (blend A, B, allOnes) -> B
|
|
if (ISD::isBuildVectorAllOnes(Mask.getNode()))
|
|
return Op1;
|
|
|
|
// Simplify the case where the mask is a constant i32 value.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
|
|
if (C->isNullValue())
|
|
return Op0;
|
|
if (C->isAllOnesValue())
|
|
return Op1;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_avx2_psrai_w:
|
|
case Intrinsic::x86_avx2_psrai_d:
|
|
case Intrinsic::x86_sse2_psra_w:
|
|
case Intrinsic::x86_sse2_psra_d:
|
|
case Intrinsic::x86_avx2_psra_w:
|
|
case Intrinsic::x86_avx2_psra_d: {
|
|
SDValue Op0 = N->getOperand(1);
|
|
SDValue Op1 = N->getOperand(2);
|
|
EVT VT = Op0.getValueType();
|
|
assert(VT.isVector() && "Expected a vector type!");
|
|
|
|
if (isa<BuildVectorSDNode>(Op1))
|
|
Op1 = Op1.getOperand(0);
|
|
|
|
if (!isa<ConstantSDNode>(Op1))
|
|
return SDValue();
|
|
|
|
EVT SVT = VT.getVectorElementType();
|
|
unsigned SVTBits = SVT.getSizeInBits();
|
|
|
|
ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
|
|
const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
|
|
uint64_t ShAmt = C.getZExtValue();
|
|
|
|
// Don't try to convert this shift into a ISD::SRA if the shift
|
|
// count is bigger than or equal to the element size.
|
|
if (ShAmt >= SVTBits)
|
|
return SDValue();
|
|
|
|
// Trivial case: if the shift count is zero, then fold this
|
|
// into the first operand.
|
|
if (ShAmt == 0)
|
|
return Op0;
|
|
|
|
// Replace this packed shift intrinsic with a target independent
|
|
// shift dag node.
|
|
SDValue Splat = DAG.getConstant(C, VT);
|
|
return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PerformMulCombine - Optimize a single multiply with constant into two
|
|
/// in order to implement it with two cheaper instructions, e.g.
|
|
/// LEA + SHL, LEA + LEA.
|
|
static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
uint64_t MulAmt = C->getZExtValue();
|
|
if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
|
|
return SDValue();
|
|
|
|
uint64_t MulAmt1 = 0;
|
|
uint64_t MulAmt2 = 0;
|
|
if ((MulAmt % 9) == 0) {
|
|
MulAmt1 = 9;
|
|
MulAmt2 = MulAmt / 9;
|
|
} else if ((MulAmt % 5) == 0) {
|
|
MulAmt1 = 5;
|
|
MulAmt2 = MulAmt / 5;
|
|
} else if ((MulAmt % 3) == 0) {
|
|
MulAmt1 = 3;
|
|
MulAmt2 = MulAmt / 3;
|
|
}
|
|
if (MulAmt2 &&
|
|
(isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
|
|
SDLoc DL(N);
|
|
|
|
if (isPowerOf2_64(MulAmt2) &&
|
|
!(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
|
|
// If second multiplifer is pow2, issue it first. We want the multiply by
|
|
// 3, 5, or 9 to be folded into the addressing mode unless the lone use
|
|
// is an add.
|
|
std::swap(MulAmt1, MulAmt2);
|
|
|
|
SDValue NewMul;
|
|
if (isPowerOf2_64(MulAmt1))
|
|
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
|
|
DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
|
|
else
|
|
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
|
|
DAG.getConstant(MulAmt1, VT));
|
|
|
|
if (isPowerOf2_64(MulAmt2))
|
|
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
|
|
DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
|
|
else
|
|
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
|
|
DAG.getConstant(MulAmt2, VT));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, NewMul, false);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
|
|
// since the result of setcc_c is all zero's or all ones.
|
|
if (VT.isInteger() && !VT.isVector() &&
|
|
N1C && N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
|
|
((N00.getOpcode() == ISD::ANY_EXTEND ||
|
|
N00.getOpcode() == ISD::ZERO_EXTEND) &&
|
|
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
|
|
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
|
|
APInt ShAmt = N1C->getAPIntValue();
|
|
Mask = Mask.shl(ShAmt);
|
|
if (Mask != 0)
|
|
return DAG.getNode(ISD::AND, SDLoc(N), VT,
|
|
N00, DAG.getConstant(Mask, VT));
|
|
}
|
|
}
|
|
|
|
// Hardware support for vector shifts is sparse which makes us scalarize the
|
|
// vector operations in many cases. Also, on sandybridge ADD is faster than
|
|
// shl.
|
|
// (shl V, 1) -> add V,V
|
|
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
|
|
if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
|
|
assert(N0.getValueType().isVector() && "Invalid vector shift type");
|
|
// We shift all of the values by one. In many cases we do not have
|
|
// hardware support for this operation. This is better expressed as an ADD
|
|
// of two values.
|
|
if (N1SplatC->getZExtValue() == 1)
|
|
return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Returns a vector of 0s if the node in input is a vector logical
|
|
/// shift by a constant amount which is known to be bigger than or equal
|
|
/// to the vector element size in bits.
|
|
static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
|
|
(!Subtarget->hasInt256() ||
|
|
(VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
|
|
return SDValue();
|
|
|
|
SDValue Amt = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
|
|
if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
|
|
APInt ShiftAmt = AmtSplat->getAPIntValue();
|
|
unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
|
|
|
|
// SSE2/AVX2 logical shifts always return a vector of 0s
|
|
// if the shift amount is bigger than or equal to
|
|
// the element size. The constant shift amount will be
|
|
// encoded as a 8-bit immediate.
|
|
if (ShiftAmt.trunc(8).uge(MaxAmount))
|
|
return getZeroVector(VT, Subtarget, DAG, DL);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformShiftCombine - Combine shifts.
|
|
static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
if (N->getOpcode() == ISD::SHL) {
|
|
SDValue V = PerformSHLCombine(N, DAG);
|
|
if (V.getNode()) return V;
|
|
}
|
|
|
|
if (N->getOpcode() != ISD::SRA) {
|
|
// Try to fold this logical shift into a zero vector.
|
|
SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
|
|
if (V.getNode()) return V;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
|
|
// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
|
|
// and friends. Likewise for OR -> CMPNEQSS.
|
|
static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
unsigned opcode;
|
|
|
|
// SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
|
|
// we're requiring SSE2 for both.
|
|
if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CMP0 = N0->getOperand(1);
|
|
SDValue CMP1 = N1->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// The SETCCs should both refer to the same CMP.
|
|
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
|
|
return SDValue();
|
|
|
|
SDValue CMP00 = CMP0->getOperand(0);
|
|
SDValue CMP01 = CMP0->getOperand(1);
|
|
EVT VT = CMP00.getValueType();
|
|
|
|
if (VT == MVT::f32 || VT == MVT::f64) {
|
|
bool ExpectingFlags = false;
|
|
// Check for any users that want flags:
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
!ExpectingFlags && UI != UE; ++UI)
|
|
switch (UI->getOpcode()) {
|
|
default:
|
|
case ISD::BR_CC:
|
|
case ISD::BRCOND:
|
|
case ISD::SELECT:
|
|
ExpectingFlags = true;
|
|
break;
|
|
case ISD::CopyToReg:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
break;
|
|
}
|
|
|
|
if (!ExpectingFlags) {
|
|
enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
|
|
enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
|
|
|
|
if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
|
|
X86::CondCode tmp = cc0;
|
|
cc0 = cc1;
|
|
cc1 = tmp;
|
|
}
|
|
|
|
if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
|
|
(cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
|
|
// FIXME: need symbolic constants for these magic numbers.
|
|
// See X86ATTInstPrinter.cpp:printSSECC().
|
|
unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
|
|
if (Subtarget->hasAVX512()) {
|
|
SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
|
|
CMP01, DAG.getConstant(x86cc, MVT::i8));
|
|
if (N->getValueType(0) != MVT::i1)
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
|
|
FSetCC);
|
|
return FSetCC;
|
|
}
|
|
SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
|
|
CMP00.getValueType(), CMP00, CMP01,
|
|
DAG.getConstant(x86cc, MVT::i8));
|
|
|
|
bool is64BitFP = (CMP00.getValueType() == MVT::f64);
|
|
MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
|
|
|
|
if (is64BitFP && !Subtarget->is64Bit()) {
|
|
// On a 32-bit target, we cannot bitcast the 64-bit float to a
|
|
// 64-bit integer, since that's not a legal type. Since
|
|
// OnesOrZeroesF is all ones of all zeroes, we don't need all the
|
|
// bits, but can do this little dance to extract the lowest 32 bits
|
|
// and work with those going forward.
|
|
SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
|
|
OnesOrZeroesF);
|
|
SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
|
|
Vector64);
|
|
OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
|
|
Vector32, DAG.getIntPtrConstant(0));
|
|
IntVT = MVT::i32;
|
|
}
|
|
|
|
SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
|
|
SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
|
|
DAG.getConstant(1, IntVT));
|
|
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
|
|
return OneBitOfTruth;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
|
|
/// so it can be folded inside ANDNP.
|
|
static bool CanFoldXORWithAllOnes(const SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Match direct AllOnes for 128 and 256-bit vectors
|
|
if (ISD::isBuildVectorAllOnes(N))
|
|
return true;
|
|
|
|
// Look through a bit convert.
|
|
if (N->getOpcode() == ISD::BITCAST)
|
|
N = N->getOperand(0).getNode();
|
|
|
|
// Sometimes the operand may come from a insert_subvector building a 256-bit
|
|
// allones vector
|
|
if (VT.is256BitVector() &&
|
|
N->getOpcode() == ISD::INSERT_SUBVECTOR) {
|
|
SDValue V1 = N->getOperand(0);
|
|
SDValue V2 = N->getOperand(1);
|
|
|
|
if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
V1.getOperand(0).getOpcode() == ISD::UNDEF &&
|
|
ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
|
|
ISD::isBuildVectorAllOnes(V2.getNode()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
|
|
// register. In most cases we actually compare or select YMM-sized registers
|
|
// and mixing the two types creates horrible code. This method optimizes
|
|
// some of the transition sequences.
|
|
static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.is256BitVector())
|
|
return SDValue();
|
|
|
|
assert((N->getOpcode() == ISD::ANY_EXTEND ||
|
|
N->getOpcode() == ISD::ZERO_EXTEND ||
|
|
N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
|
|
|
|
SDValue Narrow = N->getOperand(0);
|
|
EVT NarrowVT = Narrow->getValueType(0);
|
|
if (!NarrowVT.is128BitVector())
|
|
return SDValue();
|
|
|
|
if (Narrow->getOpcode() != ISD::XOR &&
|
|
Narrow->getOpcode() != ISD::AND &&
|
|
Narrow->getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
|
|
SDValue N0 = Narrow->getOperand(0);
|
|
SDValue N1 = Narrow->getOperand(1);
|
|
SDLoc DL(Narrow);
|
|
|
|
// The Left side has to be a trunc.
|
|
if (N0.getOpcode() != ISD::TRUNCATE)
|
|
return SDValue();
|
|
|
|
// The type of the truncated inputs.
|
|
EVT WideVT = N0->getOperand(0)->getValueType(0);
|
|
if (WideVT != VT)
|
|
return SDValue();
|
|
|
|
// The right side has to be a 'trunc' or a constant vector.
|
|
bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
|
|
ConstantSDNode *RHSConstSplat = nullptr;
|
|
if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
|
|
RHSConstSplat = RHSBV->getConstantSplatNode();
|
|
if (!RHSTrunc && !RHSConstSplat)
|
|
return SDValue();
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
|
|
return SDValue();
|
|
|
|
// Set N0 and N1 to hold the inputs to the new wide operation.
|
|
N0 = N0->getOperand(0);
|
|
if (RHSConstSplat) {
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
|
|
SDValue(RHSConstSplat, 0));
|
|
SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
|
|
N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
|
|
} else if (RHSTrunc) {
|
|
N1 = N1->getOperand(0);
|
|
}
|
|
|
|
// Generate the wide operation.
|
|
SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
|
|
unsigned Opcode = N->getOpcode();
|
|
switch (Opcode) {
|
|
case ISD::ANY_EXTEND:
|
|
return Op;
|
|
case ISD::ZERO_EXTEND: {
|
|
unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
|
|
APInt Mask = APInt::getAllOnesValue(InBits);
|
|
Mask = Mask.zext(VT.getScalarType().getSizeInBits());
|
|
return DAG.getNode(ISD::AND, DL, VT,
|
|
Op, DAG.getConstant(Mask, VT));
|
|
}
|
|
case ISD::SIGN_EXTEND:
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
|
|
Op, DAG.getValueType(NarrowVT));
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
|
|
if (R.getNode())
|
|
return R;
|
|
|
|
// Create BEXTR instructions
|
|
// BEXTR is ((X >> imm) & (2**size-1))
|
|
if (VT == MVT::i32 || VT == MVT::i64) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Check for BEXTR.
|
|
if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
|
|
(N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
|
|
ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
|
|
ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (MaskNode && ShiftNode) {
|
|
uint64_t Mask = MaskNode->getZExtValue();
|
|
uint64_t Shift = ShiftNode->getZExtValue();
|
|
if (isMask_64(Mask)) {
|
|
uint64_t MaskSize = CountPopulation_64(Mask);
|
|
if (Shift + MaskSize <= VT.getSizeInBits())
|
|
return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(Shift | (MaskSize << 8), VT));
|
|
}
|
|
}
|
|
} // BEXTR
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Want to form ANDNP nodes:
|
|
// 1) In the hopes of then easily combining them with OR and AND nodes
|
|
// to form PBLEND/PSIGN.
|
|
// 2) To match ANDN packed intrinsics
|
|
if (VT != MVT::v2i64 && VT != MVT::v4i64)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Check LHS for vnot
|
|
if (N0.getOpcode() == ISD::XOR &&
|
|
//ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
|
|
CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
|
|
return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
|
|
|
|
// Check RHS for vnot
|
|
if (N1.getOpcode() == ISD::XOR &&
|
|
//ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
|
|
CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
|
|
return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
|
|
if (R.getNode())
|
|
return R;
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// look for psign/blend
|
|
if (VT == MVT::v2i64 || VT == MVT::v4i64) {
|
|
if (!Subtarget->hasSSSE3() ||
|
|
(VT == MVT::v4i64 && !Subtarget->hasInt256()))
|
|
return SDValue();
|
|
|
|
// Canonicalize pandn to RHS
|
|
if (N0.getOpcode() == X86ISD::ANDNP)
|
|
std::swap(N0, N1);
|
|
// or (and (m, y), (pandn m, x))
|
|
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
|
|
SDValue Mask = N1.getOperand(0);
|
|
SDValue X = N1.getOperand(1);
|
|
SDValue Y;
|
|
if (N0.getOperand(0) == Mask)
|
|
Y = N0.getOperand(1);
|
|
if (N0.getOperand(1) == Mask)
|
|
Y = N0.getOperand(0);
|
|
|
|
// Check to see if the mask appeared in both the AND and ANDNP and
|
|
if (!Y.getNode())
|
|
return SDValue();
|
|
|
|
// Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
|
|
// Look through mask bitcast.
|
|
if (Mask.getOpcode() == ISD::BITCAST)
|
|
Mask = Mask.getOperand(0);
|
|
if (X.getOpcode() == ISD::BITCAST)
|
|
X = X.getOperand(0);
|
|
if (Y.getOpcode() == ISD::BITCAST)
|
|
Y = Y.getOperand(0);
|
|
|
|
EVT MaskVT = Mask.getValueType();
|
|
|
|
// Validate that the Mask operand is a vector sra node.
|
|
// FIXME: what to do for bytes, since there is a psignb/pblendvb, but
|
|
// there is no psrai.b
|
|
unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
|
|
unsigned SraAmt = ~0;
|
|
if (Mask.getOpcode() == ISD::SRA) {
|
|
if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
|
|
if (auto *AmtConst = AmtBV->getConstantSplatNode())
|
|
SraAmt = AmtConst->getZExtValue();
|
|
} else if (Mask.getOpcode() == X86ISD::VSRAI) {
|
|
SDValue SraC = Mask.getOperand(1);
|
|
SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
|
|
}
|
|
if ((SraAmt + 1) != EltBits)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// Now we know we at least have a plendvb with the mask val. See if
|
|
// we can form a psignb/w/d.
|
|
// psign = x.type == y.type == mask.type && y = sub(0, x);
|
|
if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
|
|
ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
|
|
X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
|
|
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
|
|
"Unsupported VT for PSIGN");
|
|
Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
|
|
}
|
|
// PBLENDVB only available on SSE 4.1
|
|
if (!Subtarget->hasSSE41())
|
|
return SDValue();
|
|
|
|
EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
|
|
|
|
X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
|
|
Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
|
|
Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
|
|
Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
|
|
}
|
|
}
|
|
|
|
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool OptForSize = MF.getFunction()->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
|
|
|
|
// SHLD/SHRD instructions have lower register pressure, but on some
|
|
// platforms they have higher latency than the equivalent
|
|
// series of shifts/or that would otherwise be generated.
|
|
// Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
|
|
// have higher latencies and we are not optimizing for size.
|
|
if (!OptForSize && Subtarget->isSHLDSlow())
|
|
return SDValue();
|
|
|
|
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
|
|
std::swap(N0, N1);
|
|
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue ShAmt0 = N0.getOperand(1);
|
|
if (ShAmt0.getValueType() != MVT::i8)
|
|
return SDValue();
|
|
SDValue ShAmt1 = N1.getOperand(1);
|
|
if (ShAmt1.getValueType() != MVT::i8)
|
|
return SDValue();
|
|
if (ShAmt0.getOpcode() == ISD::TRUNCATE)
|
|
ShAmt0 = ShAmt0.getOperand(0);
|
|
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
|
|
ShAmt1 = ShAmt1.getOperand(0);
|
|
|
|
SDLoc DL(N);
|
|
unsigned Opc = X86ISD::SHLD;
|
|
SDValue Op0 = N0.getOperand(0);
|
|
SDValue Op1 = N1.getOperand(0);
|
|
if (ShAmt0.getOpcode() == ISD::SUB) {
|
|
Opc = X86ISD::SHRD;
|
|
std::swap(Op0, Op1);
|
|
std::swap(ShAmt0, ShAmt1);
|
|
}
|
|
|
|
unsigned Bits = VT.getSizeInBits();
|
|
if (ShAmt1.getOpcode() == ISD::SUB) {
|
|
SDValue Sum = ShAmt1.getOperand(0);
|
|
if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
|
|
SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
|
|
if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
|
|
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
|
|
if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
|
|
return DAG.getNode(Opc, DL, VT,
|
|
Op0, Op1,
|
|
DAG.getNode(ISD::TRUNCATE, DL,
|
|
MVT::i8, ShAmt0));
|
|
}
|
|
} else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
|
|
ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
|
|
if (ShAmt0C &&
|
|
ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
|
|
return DAG.getNode(Opc, DL, VT,
|
|
N0.getOperand(0), N1.getOperand(0),
|
|
DAG.getNode(ISD::TRUNCATE, DL,
|
|
MVT::i8, ShAmt0));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Generate NEG and CMOV for integer abs.
|
|
static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Since X86 does not have CMOV for 8-bit integer, we don't convert
|
|
// 8-bit integer abs to NEG and CMOV.
|
|
if (VT.isInteger() && VT.getSizeInBits() == 8)
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
|
|
// and change it to SUB and CMOV.
|
|
if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
|
|
N0.getOpcode() == ISD::ADD &&
|
|
N0.getOperand(1) == N1 &&
|
|
N1.getOpcode() == ISD::SRA &&
|
|
N1.getOperand(0) == N0.getOperand(0))
|
|
if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
|
|
if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
|
|
// Generate SUB & CMOV.
|
|
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
|
|
DAG.getConstant(0, VT), N0.getOperand(0));
|
|
|
|
SDValue Ops[] = { N0.getOperand(0), Neg,
|
|
DAG.getConstant(X86::COND_GE, MVT::i8),
|
|
SDValue(Neg.getNode(), 1) };
|
|
return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
|
|
static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
if (Subtarget->hasCMov()) {
|
|
SDValue RV = performIntegerAbsCombine(N, DAG);
|
|
if (RV.getNode())
|
|
return RV;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
|
|
static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
LoadSDNode *Ld = cast<LoadSDNode>(N);
|
|
EVT RegVT = Ld->getValueType(0);
|
|
EVT MemVT = Ld->getMemoryVT();
|
|
SDLoc dl(Ld);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// For chips with slow 32-byte unaligned loads, break the 32-byte operation
|
|
// into two 16-byte operations.
|
|
ISD::LoadExtType Ext = Ld->getExtensionType();
|
|
unsigned Alignment = Ld->getAlignment();
|
|
bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
|
|
if (RegVT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
|
|
!DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
|
|
unsigned NumElems = RegVT.getVectorNumElements();
|
|
if (NumElems < 2)
|
|
return SDValue();
|
|
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
|
|
|
|
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
|
|
NumElems/2);
|
|
SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
|
|
Ld->getPointerInfo(), Ld->isVolatile(),
|
|
Ld->isNonTemporal(), Ld->isInvariant(),
|
|
Alignment);
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
|
|
SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
|
|
Ld->getPointerInfo(), Ld->isVolatile(),
|
|
Ld->isNonTemporal(), Ld->isInvariant(),
|
|
std::min(16U, Alignment));
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
Load1.getValue(1),
|
|
Load2.getValue(1));
|
|
|
|
SDValue NewVec = DAG.getUNDEF(RegVT);
|
|
NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
|
|
NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
|
|
return DCI.CombineTo(N, NewVec, TF, true);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
|
|
static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
StoreSDNode *St = cast<StoreSDNode>(N);
|
|
EVT VT = St->getValue().getValueType();
|
|
EVT StVT = St->getMemoryVT();
|
|
SDLoc dl(St);
|
|
SDValue StoredVal = St->getOperand(1);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// If we are saving a concatenation of two XMM registers and 32-byte stores
|
|
// are slow, such as on Sandy Bridge, perform two 16-byte stores.
|
|
unsigned Alignment = St->getAlignment();
|
|
bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
|
|
if (VT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
|
|
StVT == VT && !IsAligned) {
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
if (NumElems < 2)
|
|
return SDValue();
|
|
|
|
SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
|
|
SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
|
|
|
|
SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
|
|
SDValue Ptr0 = St->getBasePtr();
|
|
SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
|
|
|
|
SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(), Alignment);
|
|
SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(),
|
|
std::min(16U, Alignment));
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
|
|
}
|
|
|
|
// Optimize trunc store (of multiple scalars) to shuffle and store.
|
|
// First, pack all of the elements in one place. Next, store to memory
|
|
// in fewer chunks.
|
|
if (St->isTruncatingStore() && VT.isVector()) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
assert(StVT != VT && "Cannot truncate to the same type");
|
|
unsigned FromSz = VT.getVectorElementType().getSizeInBits();
|
|
unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
|
|
|
|
// From, To sizes and ElemCount must be pow of two
|
|
if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
|
|
// We are going to use the original vector elt for storing.
|
|
// Accumulated smaller vector elements must be a multiple of the store size.
|
|
if (0 != (NumElems * FromSz) % ToSz) return SDValue();
|
|
|
|
unsigned SizeRatio = FromSz / ToSz;
|
|
|
|
assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
|
|
|
|
// Create a type on which we perform the shuffle
|
|
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
|
|
StVT.getScalarType(), NumElems*SizeRatio);
|
|
|
|
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
|
|
|
|
SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
|
|
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
|
|
for (unsigned i = 0; i != NumElems; ++i)
|
|
ShuffleVec[i] = i * SizeRatio;
|
|
|
|
// Can't shuffle using an illegal type.
|
|
if (!TLI.isTypeLegal(WideVecVT))
|
|
return SDValue();
|
|
|
|
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
|
|
DAG.getUNDEF(WideVecVT),
|
|
&ShuffleVec[0]);
|
|
// At this point all of the data is stored at the bottom of the
|
|
// register. We now need to save it to mem.
|
|
|
|
// Find the largest store unit
|
|
MVT StoreType = MVT::i8;
|
|
for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
|
|
tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
|
|
MVT Tp = (MVT::SimpleValueType)tp;
|
|
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
|
|
StoreType = Tp;
|
|
}
|
|
|
|
// On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
|
|
if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
|
|
(64 <= NumElems * ToSz))
|
|
StoreType = MVT::f64;
|
|
|
|
// Bitcast the original vector into a vector of store-size units
|
|
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
|
|
StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
|
|
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
|
|
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
|
|
SmallVector<SDValue, 8> Chains;
|
|
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
|
|
TLI.getPointerTy());
|
|
SDValue Ptr = St->getBasePtr();
|
|
|
|
// Perform one or more big stores into memory.
|
|
for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
|
|
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
|
|
StoreType, ShuffWide,
|
|
DAG.getIntPtrConstant(i));
|
|
SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(), St->getAlignment());
|
|
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
|
|
Chains.push_back(Ch);
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
|
|
}
|
|
|
|
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
|
|
// the FP state in cases where an emms may be missing.
|
|
// A preferable solution to the general problem is to figure out the right
|
|
// places to insert EMMS. This qualifies as a quick hack.
|
|
|
|
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
|
|
if (VT.getSizeInBits() != 64)
|
|
return SDValue();
|
|
|
|
const Function *F = DAG.getMachineFunction().getFunction();
|
|
bool NoImplicitFloatOps = F->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
|
|
bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
|
|
&& Subtarget->hasSSE2();
|
|
if ((VT.isVector() ||
|
|
(VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
|
|
isa<LoadSDNode>(St->getValue()) &&
|
|
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
|
|
St->getChain().hasOneUse() && !St->isVolatile()) {
|
|
SDNode* LdVal = St->getValue().getNode();
|
|
LoadSDNode *Ld = nullptr;
|
|
int TokenFactorIndex = -1;
|
|
SmallVector<SDValue, 8> Ops;
|
|
SDNode* ChainVal = St->getChain().getNode();
|
|
// Must be a store of a load. We currently handle two cases: the load
|
|
// is a direct child, and it's under an intervening TokenFactor. It is
|
|
// possible to dig deeper under nested TokenFactors.
|
|
if (ChainVal == LdVal)
|
|
Ld = cast<LoadSDNode>(St->getChain());
|
|
else if (St->getValue().hasOneUse() &&
|
|
ChainVal->getOpcode() == ISD::TokenFactor) {
|
|
for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
|
|
if (ChainVal->getOperand(i).getNode() == LdVal) {
|
|
TokenFactorIndex = i;
|
|
Ld = cast<LoadSDNode>(St->getValue());
|
|
} else
|
|
Ops.push_back(ChainVal->getOperand(i));
|
|
}
|
|
}
|
|
|
|
if (!Ld || !ISD::isNormalLoad(Ld))
|
|
return SDValue();
|
|
|
|
// If this is not the MMX case, i.e. we are just turning i64 load/store
|
|
// into f64 load/store, avoid the transformation if there are multiple
|
|
// uses of the loaded value.
|
|
if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
|
|
return SDValue();
|
|
|
|
SDLoc LdDL(Ld);
|
|
SDLoc StDL(N);
|
|
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
|
|
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
|
|
// pair instead.
|
|
if (Subtarget->is64Bit() || F64IsLegal) {
|
|
EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
|
|
SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
|
|
Ld->getPointerInfo(), Ld->isVolatile(),
|
|
Ld->isNonTemporal(), Ld->isInvariant(),
|
|
Ld->getAlignment());
|
|
SDValue NewChain = NewLd.getValue(1);
|
|
if (TokenFactorIndex != -1) {
|
|
Ops.push_back(NewChain);
|
|
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
|
|
}
|
|
return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
|
|
St->getPointerInfo(),
|
|
St->isVolatile(), St->isNonTemporal(),
|
|
St->getAlignment());
|
|
}
|
|
|
|
// Otherwise, lower to two pairs of 32-bit loads / stores.
|
|
SDValue LoAddr = Ld->getBasePtr();
|
|
SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
|
|
SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
|
|
Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->isInvariant(), Ld->getAlignment());
|
|
SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
|
|
Ld->getPointerInfo().getWithOffset(4),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->isInvariant(),
|
|
MinAlign(Ld->getAlignment(), 4));
|
|
|
|
SDValue NewChain = LoLd.getValue(1);
|
|
if (TokenFactorIndex != -1) {
|
|
Ops.push_back(LoLd);
|
|
Ops.push_back(HiLd);
|
|
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
|
|
}
|
|
|
|
LoAddr = St->getBasePtr();
|
|
HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
|
|
SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
|
|
St->getPointerInfo(),
|
|
St->isVolatile(), St->isNonTemporal(),
|
|
St->getAlignment());
|
|
SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
|
|
St->getPointerInfo().getWithOffset(4),
|
|
St->isVolatile(),
|
|
St->isNonTemporal(),
|
|
MinAlign(St->getAlignment(), 4));
|
|
return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
|
|
/// and return the operands for the horizontal operation in LHS and RHS. A
|
|
/// horizontal operation performs the binary operation on successive elements
|
|
/// of its first operand, then on successive elements of its second operand,
|
|
/// returning the resulting values in a vector. For example, if
|
|
/// A = < float a0, float a1, float a2, float a3 >
|
|
/// and
|
|
/// B = < float b0, float b1, float b2, float b3 >
|
|
/// then the result of doing a horizontal operation on A and B is
|
|
/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
|
|
/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
|
|
/// A horizontal-op B, for some already available A and B, and if so then LHS is
|
|
/// set to A, RHS to B, and the routine returns 'true'.
|
|
/// Note that the binary operation should have the property that if one of the
|
|
/// operands is UNDEF then the result is UNDEF.
|
|
static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
|
|
// Look for the following pattern: if
|
|
// A = < float a0, float a1, float a2, float a3 >
|
|
// B = < float b0, float b1, float b2, float b3 >
|
|
// and
|
|
// LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
|
|
// RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
|
|
// then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
|
|
// which is A horizontal-op B.
|
|
|
|
// At least one of the operands should be a vector shuffle.
|
|
if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
|
|
RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
|
|
return false;
|
|
|
|
MVT VT = LHS.getSimpleValueType();
|
|
|
|
assert((VT.is128BitVector() || VT.is256BitVector()) &&
|
|
"Unsupported vector type for horizontal add/sub");
|
|
|
|
// Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
|
|
// operate independently on 128-bit lanes.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumLanes = VT.getSizeInBits()/128;
|
|
unsigned NumLaneElts = NumElts / NumLanes;
|
|
assert((NumLaneElts % 2 == 0) &&
|
|
"Vector type should have an even number of elements in each lane");
|
|
unsigned HalfLaneElts = NumLaneElts/2;
|
|
|
|
// View LHS in the form
|
|
// LHS = VECTOR_SHUFFLE A, B, LMask
|
|
// If LHS is not a shuffle then pretend it is the shuffle
|
|
// LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
|
|
// NOTE: in what follows a default initialized SDValue represents an UNDEF of
|
|
// type VT.
|
|
SDValue A, B;
|
|
SmallVector<int, 16> LMask(NumElts);
|
|
if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
|
|
if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
|
|
A = LHS.getOperand(0);
|
|
if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
|
|
B = LHS.getOperand(1);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
|
|
std::copy(Mask.begin(), Mask.end(), LMask.begin());
|
|
} else {
|
|
if (LHS.getOpcode() != ISD::UNDEF)
|
|
A = LHS;
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
LMask[i] = i;
|
|
}
|
|
|
|
// Likewise, view RHS in the form
|
|
// RHS = VECTOR_SHUFFLE C, D, RMask
|
|
SDValue C, D;
|
|
SmallVector<int, 16> RMask(NumElts);
|
|
if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
|
|
if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
|
|
C = RHS.getOperand(0);
|
|
if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
|
|
D = RHS.getOperand(1);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
|
|
std::copy(Mask.begin(), Mask.end(), RMask.begin());
|
|
} else {
|
|
if (RHS.getOpcode() != ISD::UNDEF)
|
|
C = RHS;
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
RMask[i] = i;
|
|
}
|
|
|
|
// Check that the shuffles are both shuffling the same vectors.
|
|
if (!(A == C && B == D) && !(A == D && B == C))
|
|
return false;
|
|
|
|
// If everything is UNDEF then bail out: it would be better to fold to UNDEF.
|
|
if (!A.getNode() && !B.getNode())
|
|
return false;
|
|
|
|
// If A and B occur in reverse order in RHS, then "swap" them (which means
|
|
// rewriting the mask).
|
|
if (A != C)
|
|
CommuteVectorShuffleMask(RMask, NumElts);
|
|
|
|
// At this point LHS and RHS are equivalent to
|
|
// LHS = VECTOR_SHUFFLE A, B, LMask
|
|
// RHS = VECTOR_SHUFFLE A, B, RMask
|
|
// Check that the masks correspond to performing a horizontal operation.
|
|
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
|
|
for (unsigned i = 0; i != NumLaneElts; ++i) {
|
|
int LIdx = LMask[i+l], RIdx = RMask[i+l];
|
|
|
|
// Ignore any UNDEF components.
|
|
if (LIdx < 0 || RIdx < 0 ||
|
|
(!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
|
|
(!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
|
|
continue;
|
|
|
|
// Check that successive elements are being operated on. If not, this is
|
|
// not a horizontal operation.
|
|
unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
|
|
int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
|
|
if (!(LIdx == Index && RIdx == Index + 1) &&
|
|
!(IsCommutative && LIdx == Index + 1 && RIdx == Index))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
|
|
RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
|
|
return true;
|
|
}
|
|
|
|
/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
|
|
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
// Try to synthesize horizontal adds from adds of shuffles.
|
|
if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
|
|
(Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
|
|
isHorizontalBinOp(LHS, RHS, true))
|
|
return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
|
|
static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
// Try to synthesize horizontal subs from subs of shuffles.
|
|
if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
|
|
(Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
|
|
isHorizontalBinOp(LHS, RHS, false))
|
|
return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
|
|
/// X86ISD::FXOR nodes.
|
|
static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
|
|
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
|
|
// F[X]OR(0.0, x) -> x
|
|
// F[X]OR(x, 0.0) -> x
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(1);
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(0);
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
|
|
/// X86ISD::FMAX nodes.
|
|
static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
|
|
assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
|
|
|
|
// Only perform optimizations if UnsafeMath is used.
|
|
if (!DAG.getTarget().Options.UnsafeFPMath)
|
|
return SDValue();
|
|
|
|
// If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
|
|
// into FMINC and FMAXC, which are Commutative operations.
|
|
unsigned NewOp = 0;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unknown opcode");
|
|
case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
|
|
case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
|
|
}
|
|
|
|
return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), N->getOperand(1));
|
|
}
|
|
|
|
/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
|
|
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// FAND(0.0, x) -> 0.0
|
|
// FAND(x, 0.0) -> 0.0
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(0);
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(1);
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
|
|
static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// FANDN(x, 0.0) -> 0.0
|
|
// FANDN(0.0, x) -> x
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(1);
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
|
|
if (C->getValueAPF().isPosZero())
|
|
return N->getOperand(1);
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformBTCombine(SDNode *N,
|
|
SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// BT ignores high bits in the bit index operand.
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op1.hasOneUse()) {
|
|
unsigned BitWidth = Op1.getValueSizeInBits();
|
|
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
|
|
APInt KnownZero, KnownOne;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
|
|
TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Op = N->getOperand(0);
|
|
if (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
EVT VT = N->getValueType(0), OpVT = Op.getValueType();
|
|
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
|
|
VT.getVectorElementType().getSizeInBits() ==
|
|
OpVT.getVectorElementType().getSizeInBits()) {
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
|
|
SDLoc dl(N);
|
|
|
|
// The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
|
|
// both SSE and AVX2 since there is no sign-extended shift right
|
|
// operation on a vector with 64-bit elements.
|
|
//(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
|
|
// (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
|
|
if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND)) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
|
|
// EXTLOAD has a better solution on AVX2,
|
|
// it may be replaced with X86ISD::VSEXT node.
|
|
if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
|
|
if (!ISD::isNormalLoad(N00.getNode()))
|
|
return SDValue();
|
|
|
|
if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
|
|
SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
|
|
N00, N1);
|
|
return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
|
|
// (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
|
|
// This exposes the sext to the sdivrem lowering, so that it directly extends
|
|
// from AH (which we otherwise need to do contortions to access).
|
|
if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
|
|
N0.getValueType() == MVT::i8 && VT == MVT::i32) {
|
|
SDLoc dl(N);
|
|
SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
|
|
SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, dl, NodeTys,
|
|
N0.getOperand(0), N0.getOperand(1));
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
|
|
return R.getValue(1);
|
|
}
|
|
|
|
if (!DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
if (!Subtarget->hasFp256())
|
|
return SDValue();
|
|
|
|
if (VT.isVector() && VT.getSizeInBits() == 256) {
|
|
SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
|
|
if (R.getNode())
|
|
return R;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget* Subtarget) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
EVT ScalarVT = VT.getScalarType();
|
|
if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
|
|
(!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
|
|
return SDValue();
|
|
|
|
SDValue A = N->getOperand(0);
|
|
SDValue B = N->getOperand(1);
|
|
SDValue C = N->getOperand(2);
|
|
|
|
bool NegA = (A.getOpcode() == ISD::FNEG);
|
|
bool NegB = (B.getOpcode() == ISD::FNEG);
|
|
bool NegC = (C.getOpcode() == ISD::FNEG);
|
|
|
|
// Negative multiplication when NegA xor NegB
|
|
bool NegMul = (NegA != NegB);
|
|
if (NegA)
|
|
A = A.getOperand(0);
|
|
if (NegB)
|
|
B = B.getOperand(0);
|
|
if (NegC)
|
|
C = C.getOperand(0);
|
|
|
|
unsigned Opcode;
|
|
if (!NegMul)
|
|
Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
|
|
else
|
|
Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
|
|
|
|
return DAG.getNode(Opcode, dl, VT, A, B, C);
|
|
}
|
|
|
|
static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
// (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
|
|
// (and (i32 x86isd::setcc_carry), 1)
|
|
// This eliminates the zext. This transformation is necessary because
|
|
// ISD::SETCC is always legalized to i8.
|
|
SDLoc dl(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N0.hasOneUse() &&
|
|
N0.getOperand(0).hasOneUse()) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C || C->getZExtValue() != 1)
|
|
return SDValue();
|
|
return DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
|
|
N00.getOperand(0), N00.getOperand(1)),
|
|
DAG.getConstant(1, VT));
|
|
}
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::TRUNCATE &&
|
|
N0.hasOneUse() &&
|
|
N0.getOperand(0).hasOneUse()) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
|
|
return DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
|
|
N00.getOperand(0), N00.getOperand(1)),
|
|
DAG.getConstant(1, VT));
|
|
}
|
|
}
|
|
if (VT.is256BitVector()) {
|
|
SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
|
|
if (R.getNode())
|
|
return R;
|
|
}
|
|
|
|
// (i8,i32 zext (udivrem (i8 x, i8 y)) ->
|
|
// (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
|
|
// This exposes the zext to the udivrem lowering, so that it directly extends
|
|
// from AH (which we otherwise need to do contortions to access).
|
|
if (N0.getOpcode() == ISD::UDIVREM &&
|
|
N0.getResNo() == 1 && N0.getValueType() == MVT::i8 &&
|
|
(VT == MVT::i32 || VT == MVT::i64)) {
|
|
SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
|
|
SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys,
|
|
N0.getOperand(0), N0.getOperand(1));
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
|
|
return R.getValue(1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Optimize x == -y --> x+y == 0
|
|
// x != -y --> x+y != 0
|
|
static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget* Subtarget) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
|
|
if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
|
|
SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
|
|
LHS.getValueType(), RHS, LHS.getOperand(1));
|
|
return DAG.getSetCC(SDLoc(N), N->getValueType(0),
|
|
addV, DAG.getConstant(0, addV.getValueType()), CC);
|
|
}
|
|
if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
|
|
if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
|
|
SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
|
|
RHS.getValueType(), LHS, RHS.getOperand(1));
|
|
return DAG.getSetCC(SDLoc(N), N->getValueType(0),
|
|
addV, DAG.getConstant(0, addV.getValueType()), CC);
|
|
}
|
|
|
|
if (VT.getScalarType() == MVT::i1) {
|
|
bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
|
|
(LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
|
|
bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode());
|
|
if (!IsSEXT0 && !IsVZero0)
|
|
return SDValue();
|
|
bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) &&
|
|
(RHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
|
|
bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
|
|
|
|
if (!IsSEXT1 && !IsVZero1)
|
|
return SDValue();
|
|
|
|
if (IsSEXT0 && IsVZero1) {
|
|
assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type");
|
|
if (CC == ISD::SETEQ)
|
|
return DAG.getNOT(DL, LHS.getOperand(0), VT);
|
|
return LHS.getOperand(0);
|
|
}
|
|
if (IsSEXT1 && IsVZero0) {
|
|
assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type");
|
|
if (CC == ISD::SETEQ)
|
|
return DAG.getNOT(DL, RHS.getOperand(0), VT);
|
|
return RHS.getOperand(0);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc dl(N);
|
|
MVT VT = N->getOperand(1)->getSimpleValueType(0);
|
|
assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
|
|
"X86insertps is only defined for v4x32");
|
|
|
|
SDValue Ld = N->getOperand(1);
|
|
if (MayFoldLoad(Ld)) {
|
|
// Extract the countS bits from the immediate so we can get the proper
|
|
// address when narrowing the vector load to a specific element.
|
|
// When the second source op is a memory address, interps doesn't use
|
|
// countS and just gets an f32 from that address.
|
|
unsigned DestIndex =
|
|
cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
|
|
Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
|
|
} else
|
|
return SDValue();
|
|
|
|
// Create this as a scalar to vector to match the instruction pattern.
|
|
SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
|
|
// countS bits are ignored when loading from memory on insertps, which
|
|
// means we don't need to explicitly set them to 0.
|
|
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
|
|
LoadScalarToVector, N->getOperand(2));
|
|
}
|
|
|
|
// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
|
|
// as "sbb reg,reg", since it can be extended without zext and produces
|
|
// an all-ones bit which is more useful than 0/1 in some cases.
|
|
static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
|
|
MVT VT) {
|
|
if (VT == MVT::i8)
|
|
return DAG.getNode(ISD::AND, DL, VT,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
|
|
DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
|
|
DAG.getConstant(1, VT));
|
|
assert (VT == MVT::i1 && "Unexpected type for SECCC node");
|
|
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
|
|
DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
|
|
}
|
|
|
|
// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
|
|
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
|
|
SDValue EFLAGS = N->getOperand(1);
|
|
|
|
if (CC == X86::COND_A) {
|
|
// Try to convert COND_A into COND_B in an attempt to facilitate
|
|
// materializing "setb reg".
|
|
//
|
|
// Do not flip "e > c", where "c" is a constant, because Cmp instruction
|
|
// cannot take an immediate as its first operand.
|
|
//
|
|
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
|
|
EFLAGS.getValueType().isInteger() &&
|
|
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
|
|
SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
|
|
EFLAGS.getNode()->getVTList(),
|
|
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
|
|
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
|
|
return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
|
|
}
|
|
}
|
|
|
|
// Materialize "setb reg" as "sbb reg,reg", since it can be extended without
|
|
// a zext and produces an all-ones bit which is more useful than 0/1 in some
|
|
// cases.
|
|
if (CC == X86::COND_B)
|
|
return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
|
|
|
|
SDValue Flags;
|
|
|
|
Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
|
|
if (Flags.getNode()) {
|
|
SDValue Cond = DAG.getConstant(CC, MVT::i8);
|
|
return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Optimize branch condition evaluation.
|
|
//
|
|
static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Dest = N->getOperand(1);
|
|
SDValue EFLAGS = N->getOperand(3);
|
|
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
|
|
|
|
SDValue Flags;
|
|
|
|
Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
|
|
if (Flags.getNode()) {
|
|
SDValue Cond = DAG.getConstant(CC, MVT::i8);
|
|
return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
|
|
Flags);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
|
|
SelectionDAG &DAG) {
|
|
// Take advantage of vector comparisons producing 0 or -1 in each lane to
|
|
// optimize away operation when it's from a constant.
|
|
//
|
|
// The general transformation is:
|
|
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
|
|
// AND(VECTOR_CMP(x,y), constant2)
|
|
// constant2 = UNARYOP(constant)
|
|
|
|
// Early exit if this isn't a vector operation, the operand of the
|
|
// unary operation isn't a bitwise AND, or if the sizes of the operations
|
|
// aren't the same.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
|
|
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
|
|
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Now check that the other operand of the AND is a constant. We could
|
|
// make the transformation for non-constant splats as well, but it's unclear
|
|
// that would be a benefit as it would not eliminate any operations, just
|
|
// perform one more step in scalar code before moving to the vector unit.
|
|
if (BuildVectorSDNode *BV =
|
|
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
|
|
// Bail out if the vector isn't a constant.
|
|
if (!BV->isConstant())
|
|
return SDValue();
|
|
|
|
// Everything checks out. Build up the new and improved node.
|
|
SDLoc DL(N);
|
|
EVT IntVT = BV->getValueType(0);
|
|
// Create a new constant of the appropriate type for the transformed
|
|
// DAG.
|
|
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
|
|
// The AND node needs bitcasts to/from an integer vector type around it.
|
|
SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
|
|
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
|
|
N->getOperand(0)->getOperand(0), MaskConst);
|
|
SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
|
|
return Res;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86TargetLowering *XTLI) {
|
|
// First try to optimize away the conversion entirely when it's
|
|
// conditionally from a constant. Vectors only.
|
|
SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
|
|
if (Res != SDValue())
|
|
return Res;
|
|
|
|
// Now move on to more general possibilities.
|
|
SDValue Op0 = N->getOperand(0);
|
|
EVT InVT = Op0->getValueType(0);
|
|
|
|
// SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
|
|
if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
|
|
SDLoc dl(N);
|
|
MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
|
|
SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
|
|
return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
|
|
}
|
|
|
|
// Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
|
|
// a 32-bit target where SSE doesn't support i64->FP operations.
|
|
if (Op0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
|
|
EVT VT = Ld->getValueType(0);
|
|
if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
|
|
ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
|
|
!XTLI->getSubtarget()->is64Bit() &&
|
|
VT == MVT::i64) {
|
|
SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
|
|
Ld->getChain(), Op0, DAG);
|
|
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
|
|
return FILDChain;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
|
|
static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
|
|
X86TargetLowering::DAGCombinerInfo &DCI) {
|
|
// If the LHS and RHS of the ADC node are zero, then it can't overflow and
|
|
// the result is either zero or one (depending on the input carry bit).
|
|
// Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
|
|
if (X86::isZeroNode(N->getOperand(0)) &&
|
|
X86::isZeroNode(N->getOperand(1)) &&
|
|
// We don't have a good way to replace an EFLAGS use, so only do this when
|
|
// dead right now.
|
|
SDValue(N, 1).use_empty()) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
|
|
SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
|
|
DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
|
|
DAG.getConstant(X86::COND_B,MVT::i8),
|
|
N->getOperand(2)),
|
|
DAG.getConstant(1, VT));
|
|
return DCI.CombineTo(N, Res1, CarryOut);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// fold (add Y, (sete X, 0)) -> adc 0, Y
|
|
// (add Y, (setne X, 0)) -> sbb -1, Y
|
|
// (sub (sete X, 0), Y) -> sbb 0, Y
|
|
// (sub (setne X, 0), Y) -> adc -1, Y
|
|
static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
|
|
// Look through ZExts.
|
|
SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
|
|
if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue SetCC = Ext.getOperand(0);
|
|
if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
|
|
return SDValue();
|
|
|
|
X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
|
|
if (CC != X86::COND_E && CC != X86::COND_NE)
|
|
return SDValue();
|
|
|
|
SDValue Cmp = SetCC.getOperand(1);
|
|
if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
|
|
!X86::isZeroNode(Cmp.getOperand(1)) ||
|
|
!Cmp.getOperand(0).getValueType().isInteger())
|
|
return SDValue();
|
|
|
|
SDValue CmpOp0 = Cmp.getOperand(0);
|
|
SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
|
|
DAG.getConstant(1, CmpOp0.getValueType()));
|
|
|
|
SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
|
|
if (CC == X86::COND_NE)
|
|
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
|
|
DL, OtherVal.getValueType(), OtherVal,
|
|
DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
|
|
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
|
|
DL, OtherVal.getValueType(), OtherVal,
|
|
DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
|
|
}
|
|
|
|
/// PerformADDCombine - Do target-specific dag combines on integer adds.
|
|
static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// Try to synthesize horizontal adds from adds of shuffles.
|
|
if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
|
|
(Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
|
|
isHorizontalBinOp(Op0, Op1, true))
|
|
return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
|
|
|
|
return OptimizeConditionalInDecrement(N, DAG);
|
|
}
|
|
|
|
static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
|
|
const X86Subtarget *Subtarget) {
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// X86 can't encode an immediate LHS of a sub. See if we can push the
|
|
// negation into a preceding instruction.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
|
|
// If the RHS of the sub is a XOR with one use and a constant, invert the
|
|
// immediate. Then add one to the LHS of the sub so we can turn
|
|
// X-Y -> X+~Y+1, saving one register.
|
|
if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
|
|
isa<ConstantSDNode>(Op1.getOperand(1))) {
|
|
APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
|
|
EVT VT = Op0.getValueType();
|
|
SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
|
|
Op1.getOperand(0),
|
|
DAG.getConstant(~XorC, VT));
|
|
return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
|
|
DAG.getConstant(C->getAPIntValue()+1, VT));
|
|
}
|
|
}
|
|
|
|
// Try to synthesize horizontal adds from adds of shuffles.
|
|
EVT VT = N->getValueType(0);
|
|
if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
|
|
(Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
|
|
isHorizontalBinOp(Op0, Op1, true))
|
|
return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
|
|
|
|
return OptimizeConditionalInDecrement(N, DAG);
|
|
}
|
|
|
|
/// performVZEXTCombine - Performs build vector combines
|
|
static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const X86Subtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
MVT VT = N->getSimpleValueType(0);
|
|
SDValue Op = N->getOperand(0);
|
|
MVT OpVT = Op.getSimpleValueType();
|
|
MVT OpEltVT = OpVT.getVectorElementType();
|
|
unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
|
|
|
|
// (vzext (bitcast (vzext (x)) -> (vzext x)
|
|
SDValue V = Op;
|
|
while (V.getOpcode() == ISD::BITCAST)
|
|
V = V.getOperand(0);
|
|
|
|
if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
|
|
MVT InnerVT = V.getSimpleValueType();
|
|
MVT InnerEltVT = InnerVT.getVectorElementType();
|
|
|
|
// If the element sizes match exactly, we can just do one larger vzext. This
|
|
// is always an exact type match as vzext operates on integer types.
|
|
if (OpEltVT == InnerEltVT) {
|
|
assert(OpVT == InnerVT && "Types must match for vzext!");
|
|
return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
|
|
}
|
|
|
|
// The only other way we can combine them is if only a single element of the
|
|
// inner vzext is used in the input to the outer vzext.
|
|
if (InnerEltVT.getSizeInBits() < InputBits)
|
|
return SDValue();
|
|
|
|
// In this case, the inner vzext is completely dead because we're going to
|
|
// only look at bits inside of the low element. Just do the outer vzext on
|
|
// a bitcast of the input to the inner.
|
|
return DAG.getNode(X86ISD::VZEXT, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, OpVT, V));
|
|
}
|
|
|
|
// Check if we can bypass extracting and re-inserting an element of an input
|
|
// vector. Essentialy:
|
|
// (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
|
|
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
|
|
SDValue ExtractedV = V.getOperand(0);
|
|
SDValue OrigV = ExtractedV.getOperand(0);
|
|
if (auto *ExtractIdx = dyn_cast<ConstantSDNode>(ExtractedV.getOperand(1)))
|
|
if (ExtractIdx->getZExtValue() == 0) {
|
|
MVT OrigVT = OrigV.getSimpleValueType();
|
|
// Extract a subvector if necessary...
|
|
if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
|
|
int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
|
|
OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
|
|
OrigVT.getVectorNumElements() / Ratio);
|
|
OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
|
|
DAG.getIntPtrConstant(0));
|
|
}
|
|
Op = DAG.getNode(ISD::BITCAST, DL, OpVT, OrigV);
|
|
return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
|
|
case ISD::VSELECT:
|
|
case ISD::SELECT:
|
|
case X86ISD::SHRUNKBLEND:
|
|
return PerformSELECTCombine(N, DAG, DCI, Subtarget);
|
|
case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
|
|
case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
|
|
case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
|
|
case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
|
|
case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
|
|
case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
|
|
case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
|
|
case X86ISD::FXOR:
|
|
case X86ISD::FOR: return PerformFORCombine(N, DAG);
|
|
case X86ISD::FMIN:
|
|
case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG);
|
|
case X86ISD::FAND: return PerformFANDCombine(N, DAG);
|
|
case X86ISD::FANDN: return PerformFANDNCombine(N, DAG);
|
|
case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
|
|
case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
|
|
case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget);
|
|
case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget);
|
|
case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget);
|
|
case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget);
|
|
case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget);
|
|
case X86ISD::SHUFP: // Handle all target specific shuffles
|
|
case X86ISD::PALIGNR:
|
|
case X86ISD::UNPCKH:
|
|
case X86ISD::UNPCKL:
|
|
case X86ISD::MOVHLPS:
|
|
case X86ISD::MOVLHPS:
|
|
case X86ISD::PSHUFB:
|
|
case X86ISD::PSHUFD:
|
|
case X86ISD::PSHUFHW:
|
|
case X86ISD::PSHUFLW:
|
|
case X86ISD::MOVSS:
|
|
case X86ISD::MOVSD:
|
|
case X86ISD::VPERMILPI:
|
|
case X86ISD::VPERM2X128:
|
|
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
|
|
case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget);
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
|
|
case X86ISD::INSERTPS:
|
|
return PerformINSERTPSCombine(N, DAG, Subtarget);
|
|
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DAG, Subtarget);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// isTypeDesirableForOp - Return true if the target has native support for
|
|
/// the specified value type and it is 'desirable' to use the type for the
|
|
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
|
|
/// instruction encodings are longer and some i16 instructions are slow.
|
|
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
|
|
if (!isTypeLegal(VT))
|
|
return false;
|
|
if (VT != MVT::i16)
|
|
return true;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
return true;
|
|
case ISD::LOAD:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SUB:
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// IsDesirableToPromoteOp - This method query the target whether it is
|
|
/// beneficial for dag combiner to promote the specified node. If true, it
|
|
/// should return the desired promotion type by reference.
|
|
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
|
|
EVT VT = Op.getValueType();
|
|
if (VT != MVT::i16)
|
|
return false;
|
|
|
|
bool Promote = false;
|
|
bool Commute = false;
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
// If the non-extending load has a single use and it's not live out, then it
|
|
// might be folded.
|
|
if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
|
|
Op.hasOneUse()*/) {
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = Op.getNode()->use_end(); UI != UE; ++UI) {
|
|
// The only case where we'd want to promote LOAD (rather then it being
|
|
// promoted as an operand is when it's only use is liveout.
|
|
if (UI->getOpcode() != ISD::CopyToReg)
|
|
return false;
|
|
}
|
|
}
|
|
Promote = true;
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
Promote = true;
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRL: {
|
|
SDValue N0 = Op.getOperand(0);
|
|
// Look out for (store (shl (load), x)).
|
|
if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
|
|
return false;
|
|
Promote = true;
|
|
break;
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
Commute = true;
|
|
// fallthrough
|
|
case ISD::SUB: {
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
if (!Commute && MayFoldLoad(N1))
|
|
return false;
|
|
// Avoid disabling potential load folding opportunities.
|
|
if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
|
|
return false;
|
|
if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
|
|
return false;
|
|
Promote = true;
|
|
}
|
|
}
|
|
|
|
PVT = MVT::i32;
|
|
return Promote;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
// Helper to match a string separated by whitespace.
|
|
bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
|
|
s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
|
|
|
|
for (unsigned i = 0, e = args.size(); i != e; ++i) {
|
|
StringRef piece(*args[i]);
|
|
if (!s.startswith(piece)) // Check if the piece matches.
|
|
return false;
|
|
|
|
s = s.substr(piece.size());
|
|
StringRef::size_type pos = s.find_first_not_of(" \t");
|
|
if (pos == 0) // We matched a prefix.
|
|
return false;
|
|
|
|
s = s.substr(pos);
|
|
}
|
|
|
|
return s.empty();
|
|
}
|
|
const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
|
|
}
|
|
|
|
static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
|
|
|
|
if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
|
|
if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
|
|
std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
|
|
std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
|
|
|
|
if (AsmPieces.size() == 3)
|
|
return true;
|
|
else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
|
|
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
|
|
|
|
std::string AsmStr = IA->getAsmString();
|
|
|
|
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (!Ty || Ty->getBitWidth() % 16 != 0)
|
|
return false;
|
|
|
|
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
|
|
SmallVector<StringRef, 4> AsmPieces;
|
|
SplitString(AsmStr, AsmPieces, ";\n");
|
|
|
|
switch (AsmPieces.size()) {
|
|
default: return false;
|
|
case 1:
|
|
// FIXME: this should verify that we are targeting a 486 or better. If not,
|
|
// we will turn this bswap into something that will be lowered to logical
|
|
// ops instead of emitting the bswap asm. For now, we don't support 486 or
|
|
// lower so don't worry about this.
|
|
// bswap $0
|
|
if (matchAsm(AsmPieces[0], "bswap", "$0") ||
|
|
matchAsm(AsmPieces[0], "bswapl", "$0") ||
|
|
matchAsm(AsmPieces[0], "bswapq", "$0") ||
|
|
matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
|
|
matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
|
|
matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
|
|
// No need to check constraints, nothing other than the equivalent of
|
|
// "=r,0" would be valid here.
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
|
|
// rorw $$8, ${0:w} --> llvm.bswap.i16
|
|
if (CI->getType()->isIntegerTy(16) &&
|
|
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
|
|
(matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
|
|
matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
|
|
AsmPieces.clear();
|
|
const std::string &ConstraintsStr = IA->getConstraintString();
|
|
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
|
|
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
|
|
if (clobbersFlagRegisters(AsmPieces))
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
break;
|
|
case 3:
|
|
if (CI->getType()->isIntegerTy(32) &&
|
|
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
|
|
matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
|
|
matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
|
|
matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
|
|
AsmPieces.clear();
|
|
const std::string &ConstraintsStr = IA->getConstraintString();
|
|
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
|
|
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
|
|
if (clobbersFlagRegisters(AsmPieces))
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
|
|
if (CI->getType()->isIntegerTy(64)) {
|
|
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
|
|
if (Constraints.size() >= 2 &&
|
|
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
|
|
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
|
|
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
|
|
if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
|
|
matchAsm(AsmPieces[1], "bswap", "%edx") &&
|
|
matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
X86TargetLowering::ConstraintType
|
|
X86TargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'R':
|
|
case 'q':
|
|
case 'Q':
|
|
case 'f':
|
|
case 't':
|
|
case 'u':
|
|
case 'y':
|
|
case 'x':
|
|
case 'Y':
|
|
case 'l':
|
|
return C_RegisterClass;
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'S':
|
|
case 'D':
|
|
case 'A':
|
|
return C_Register;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'G':
|
|
case 'C':
|
|
case 'e':
|
|
case 'Z':
|
|
return C_Other;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
X86TargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
case 'R':
|
|
case 'q':
|
|
case 'Q':
|
|
case 'a':
|
|
case 'b':
|
|
case 'c':
|
|
case 'd':
|
|
case 'S':
|
|
case 'D':
|
|
case 'A':
|
|
if (CallOperandVal->getType()->isIntegerTy())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'f':
|
|
case 't':
|
|
case 'u':
|
|
if (type->isFloatingPointTy())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'y':
|
|
if (type->isX86_MMXTy() && Subtarget->hasMMX())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'x':
|
|
case 'Y':
|
|
if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
|
|
((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
|
|
weight = CW_Register;
|
|
break;
|
|
case 'I':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
|
|
if (C->getZExtValue() <= 31)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'J':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 63)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'K':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'L':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'M':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 3)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'N':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 0xff)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'G':
|
|
case 'C':
|
|
if (dyn_cast<ConstantFP>(CallOperandVal)) {
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'e':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getSExtValue() >= -0x80000000LL) &&
|
|
(C->getSExtValue() <= 0x7fffffffLL))
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
case 'Z':
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() <= 0xffffffff)
|
|
weight = CW_Constant;
|
|
}
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// LowerXConstraint - try to replace an X constraint, which matches anything,
|
|
/// with another that has more specific requirements based on the type of the
|
|
/// corresponding operand.
|
|
const char *X86TargetLowering::
|
|
LowerXConstraint(EVT ConstraintVT) const {
|
|
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
|
|
// 'f' like normal targets.
|
|
if (ConstraintVT.isFloatingPoint()) {
|
|
if (Subtarget->hasSSE2())
|
|
return "Y";
|
|
if (Subtarget->hasSSE1())
|
|
return "x";
|
|
}
|
|
|
|
return TargetLowering::LowerXConstraint(ConstraintVT);
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Only support length 1 constraints for now.
|
|
if (Constraint.length() > 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break;
|
|
case 'I':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (C->getZExtValue() <= 31) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'J':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (C->getZExtValue() <= 63) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'K':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (isInt<8>(C->getSExtValue())) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'N':
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (C->getZExtValue() <= 255) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'e': {
|
|
// 32-bit signed value
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
|
|
C->getSExtValue())) {
|
|
// Widen to 64 bits here to get it sign extended.
|
|
Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
|
|
break;
|
|
}
|
|
// FIXME gcc accepts some relocatable values here too, but only in certain
|
|
// memory models; it's complicated.
|
|
}
|
|
return;
|
|
}
|
|
case 'Z': {
|
|
// 32-bit unsigned value
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
|
|
C->getZExtValue())) {
|
|
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
|
|
break;
|
|
}
|
|
}
|
|
// FIXME gcc accepts some relocatable values here too, but only in certain
|
|
// memory models; it's complicated.
|
|
return;
|
|
}
|
|
case 'i': {
|
|
// Literal immediates are always ok.
|
|
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
|
|
// Widen to 64 bits here to get it sign extended.
|
|
Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
|
|
break;
|
|
}
|
|
|
|
// In any sort of PIC mode addresses need to be computed at runtime by
|
|
// adding in a register or some sort of table lookup. These can't
|
|
// be used as immediates.
|
|
if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
|
|
return;
|
|
|
|
// If we are in non-pic codegen mode, we allow the address of a global (with
|
|
// an optional displacement) to be used with 'i'.
|
|
GlobalAddressSDNode *GA = nullptr;
|
|
int64_t Offset = 0;
|
|
|
|
// Match either (GA), (GA+C), (GA+C1+C2), etc.
|
|
while (1) {
|
|
if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
|
|
Offset += GA->getOffset();
|
|
break;
|
|
} else if (Op.getOpcode() == ISD::ADD) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Offset += C->getZExtValue();
|
|
Op = Op.getOperand(0);
|
|
continue;
|
|
}
|
|
} else if (Op.getOpcode() == ISD::SUB) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Offset += -C->getZExtValue();
|
|
Op = Op.getOperand(0);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, this isn't something we can handle, reject it.
|
|
return;
|
|
}
|
|
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
// If we require an extra load to get this address, as in PIC mode, we
|
|
// can't accept it.
|
|
if (isGlobalStubReference(
|
|
Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
|
|
return;
|
|
|
|
Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
|
|
GA->getValueType(0), Offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const {
|
|
// First, see if this is a constraint that directly corresponds to an LLVM
|
|
// register class.
|
|
if (Constraint.size() == 1) {
|
|
// GCC Constraint Letters
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
// TODO: Slight differences here in allocation order and leaving
|
|
// RIP in the class. Do they matter any more here than they do
|
|
// in the normal allocation?
|
|
case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
|
|
if (Subtarget->is64Bit()) {
|
|
if (VT == MVT::i32 || VT == MVT::f32)
|
|
return std::make_pair(0U, &X86::GR32RegClass);
|
|
if (VT == MVT::i16)
|
|
return std::make_pair(0U, &X86::GR16RegClass);
|
|
if (VT == MVT::i8 || VT == MVT::i1)
|
|
return std::make_pair(0U, &X86::GR8RegClass);
|
|
if (VT == MVT::i64 || VT == MVT::f64)
|
|
return std::make_pair(0U, &X86::GR64RegClass);
|
|
break;
|
|
}
|
|
// 32-bit fallthrough
|
|
case 'Q': // Q_REGS
|
|
if (VT == MVT::i32 || VT == MVT::f32)
|
|
return std::make_pair(0U, &X86::GR32_ABCDRegClass);
|
|
if (VT == MVT::i16)
|
|
return std::make_pair(0U, &X86::GR16_ABCDRegClass);
|
|
if (VT == MVT::i8 || VT == MVT::i1)
|
|
return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
|
|
if (VT == MVT::i64)
|
|
return std::make_pair(0U, &X86::GR64_ABCDRegClass);
|
|
break;
|
|
case 'r': // GENERAL_REGS
|
|
case 'l': // INDEX_REGS
|
|
if (VT == MVT::i8 || VT == MVT::i1)
|
|
return std::make_pair(0U, &X86::GR8RegClass);
|
|
if (VT == MVT::i16)
|
|
return std::make_pair(0U, &X86::GR16RegClass);
|
|
if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
|
|
return std::make_pair(0U, &X86::GR32RegClass);
|
|
return std::make_pair(0U, &X86::GR64RegClass);
|
|
case 'R': // LEGACY_REGS
|
|
if (VT == MVT::i8 || VT == MVT::i1)
|
|
return std::make_pair(0U, &X86::GR8_NOREXRegClass);
|
|
if (VT == MVT::i16)
|
|
return std::make_pair(0U, &X86::GR16_NOREXRegClass);
|
|
if (VT == MVT::i32 || !Subtarget->is64Bit())
|
|
return std::make_pair(0U, &X86::GR32_NOREXRegClass);
|
|
return std::make_pair(0U, &X86::GR64_NOREXRegClass);
|
|
case 'f': // FP Stack registers.
|
|
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
|
|
// value to the correct fpstack register class.
|
|
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
|
|
return std::make_pair(0U, &X86::RFP32RegClass);
|
|
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
|
|
return std::make_pair(0U, &X86::RFP64RegClass);
|
|
return std::make_pair(0U, &X86::RFP80RegClass);
|
|
case 'y': // MMX_REGS if MMX allowed.
|
|
if (!Subtarget->hasMMX()) break;
|
|
return std::make_pair(0U, &X86::VR64RegClass);
|
|
case 'Y': // SSE_REGS if SSE2 allowed
|
|
if (!Subtarget->hasSSE2()) break;
|
|
// FALL THROUGH.
|
|
case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
|
|
if (!Subtarget->hasSSE1()) break;
|
|
|
|
switch (VT.SimpleTy) {
|
|
default: break;
|
|
// Scalar SSE types.
|
|
case MVT::f32:
|
|
case MVT::i32:
|
|
return std::make_pair(0U, &X86::FR32RegClass);
|
|
case MVT::f64:
|
|
case MVT::i64:
|
|
return std::make_pair(0U, &X86::FR64RegClass);
|
|
// Vector types.
|
|
case MVT::v16i8:
|
|
case MVT::v8i16:
|
|
case MVT::v4i32:
|
|
case MVT::v2i64:
|
|
case MVT::v4f32:
|
|
case MVT::v2f64:
|
|
return std::make_pair(0U, &X86::VR128RegClass);
|
|
// AVX types.
|
|
case MVT::v32i8:
|
|
case MVT::v16i16:
|
|
case MVT::v8i32:
|
|
case MVT::v4i64:
|
|
case MVT::v8f32:
|
|
case MVT::v4f64:
|
|
return std::make_pair(0U, &X86::VR256RegClass);
|
|
case MVT::v8f64:
|
|
case MVT::v16f32:
|
|
case MVT::v16i32:
|
|
case MVT::v8i64:
|
|
return std::make_pair(0U, &X86::VR512RegClass);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Use the default implementation in TargetLowering to convert the register
|
|
// constraint into a member of a register class.
|
|
std::pair<unsigned, const TargetRegisterClass*> Res;
|
|
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
|
|
// Not found as a standard register?
|
|
if (!Res.second) {
|
|
// Map st(0) -> st(7) -> ST0
|
|
if (Constraint.size() == 7 && Constraint[0] == '{' &&
|
|
tolower(Constraint[1]) == 's' &&
|
|
tolower(Constraint[2]) == 't' &&
|
|
Constraint[3] == '(' &&
|
|
(Constraint[4] >= '0' && Constraint[4] <= '7') &&
|
|
Constraint[5] == ')' &&
|
|
Constraint[6] == '}') {
|
|
|
|
Res.first = X86::FP0+Constraint[4]-'0';
|
|
Res.second = &X86::RFP80RegClass;
|
|
return Res;
|
|
}
|
|
|
|
// GCC allows "st(0)" to be called just plain "st".
|
|
if (StringRef("{st}").equals_lower(Constraint)) {
|
|
Res.first = X86::FP0;
|
|
Res.second = &X86::RFP80RegClass;
|
|
return Res;
|
|
}
|
|
|
|
// flags -> EFLAGS
|
|
if (StringRef("{flags}").equals_lower(Constraint)) {
|
|
Res.first = X86::EFLAGS;
|
|
Res.second = &X86::CCRRegClass;
|
|
return Res;
|
|
}
|
|
|
|
// 'A' means EAX + EDX.
|
|
if (Constraint == "A") {
|
|
Res.first = X86::EAX;
|
|
Res.second = &X86::GR32_ADRegClass;
|
|
return Res;
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
// Otherwise, check to see if this is a register class of the wrong value
|
|
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
|
|
// turn into {ax},{dx}.
|
|
if (Res.second->hasType(VT))
|
|
return Res; // Correct type already, nothing to do.
|
|
|
|
// All of the single-register GCC register classes map their values onto
|
|
// 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
|
|
// really want an 8-bit or 32-bit register, map to the appropriate register
|
|
// class and return the appropriate register.
|
|
if (Res.second == &X86::GR16RegClass) {
|
|
if (VT == MVT::i8 || VT == MVT::i1) {
|
|
unsigned DestReg = 0;
|
|
switch (Res.first) {
|
|
default: break;
|
|
case X86::AX: DestReg = X86::AL; break;
|
|
case X86::DX: DestReg = X86::DL; break;
|
|
case X86::CX: DestReg = X86::CL; break;
|
|
case X86::BX: DestReg = X86::BL; break;
|
|
}
|
|
if (DestReg) {
|
|
Res.first = DestReg;
|
|
Res.second = &X86::GR8RegClass;
|
|
}
|
|
} else if (VT == MVT::i32 || VT == MVT::f32) {
|
|
unsigned DestReg = 0;
|
|
switch (Res.first) {
|
|
default: break;
|
|
case X86::AX: DestReg = X86::EAX; break;
|
|
case X86::DX: DestReg = X86::EDX; break;
|
|
case X86::CX: DestReg = X86::ECX; break;
|
|
case X86::BX: DestReg = X86::EBX; break;
|
|
case X86::SI: DestReg = X86::ESI; break;
|
|
case X86::DI: DestReg = X86::EDI; break;
|
|
case X86::BP: DestReg = X86::EBP; break;
|
|
case X86::SP: DestReg = X86::ESP; break;
|
|
}
|
|
if (DestReg) {
|
|
Res.first = DestReg;
|
|
Res.second = &X86::GR32RegClass;
|
|
}
|
|
} else if (VT == MVT::i64 || VT == MVT::f64) {
|
|
unsigned DestReg = 0;
|
|
switch (Res.first) {
|
|
default: break;
|
|
case X86::AX: DestReg = X86::RAX; break;
|
|
case X86::DX: DestReg = X86::RDX; break;
|
|
case X86::CX: DestReg = X86::RCX; break;
|
|
case X86::BX: DestReg = X86::RBX; break;
|
|
case X86::SI: DestReg = X86::RSI; break;
|
|
case X86::DI: DestReg = X86::RDI; break;
|
|
case X86::BP: DestReg = X86::RBP; break;
|
|
case X86::SP: DestReg = X86::RSP; break;
|
|
}
|
|
if (DestReg) {
|
|
Res.first = DestReg;
|
|
Res.second = &X86::GR64RegClass;
|
|
}
|
|
}
|
|
} else if (Res.second == &X86::FR32RegClass ||
|
|
Res.second == &X86::FR64RegClass ||
|
|
Res.second == &X86::VR128RegClass ||
|
|
Res.second == &X86::VR256RegClass ||
|
|
Res.second == &X86::FR32XRegClass ||
|
|
Res.second == &X86::FR64XRegClass ||
|
|
Res.second == &X86::VR128XRegClass ||
|
|
Res.second == &X86::VR256XRegClass ||
|
|
Res.second == &X86::VR512RegClass) {
|
|
// Handle references to XMM physical registers that got mapped into the
|
|
// wrong class. This can happen with constraints like {xmm0} where the
|
|
// target independent register mapper will just pick the first match it can
|
|
// find, ignoring the required type.
|
|
|
|
if (VT == MVT::f32 || VT == MVT::i32)
|
|
Res.second = &X86::FR32RegClass;
|
|
else if (VT == MVT::f64 || VT == MVT::i64)
|
|
Res.second = &X86::FR64RegClass;
|
|
else if (X86::VR128RegClass.hasType(VT))
|
|
Res.second = &X86::VR128RegClass;
|
|
else if (X86::VR256RegClass.hasType(VT))
|
|
Res.second = &X86::VR256RegClass;
|
|
else if (X86::VR512RegClass.hasType(VT))
|
|
Res.second = &X86::VR512RegClass;
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// Scaling factors are not free at all.
|
|
// An indexed folded instruction, i.e., inst (reg1, reg2, scale),
|
|
// will take 2 allocations in the out of order engine instead of 1
|
|
// for plain addressing mode, i.e. inst (reg1).
|
|
// E.g.,
|
|
// vaddps (%rsi,%drx), %ymm0, %ymm1
|
|
// Requires two allocations (one for the load, one for the computation)
|
|
// whereas:
|
|
// vaddps (%rsi), %ymm0, %ymm1
|
|
// Requires just 1 allocation, i.e., freeing allocations for other operations
|
|
// and having less micro operations to execute.
|
|
//
|
|
// For some X86 architectures, this is even worse because for instance for
|
|
// stores, the complex addressing mode forces the instruction to use the
|
|
// "load" ports instead of the dedicated "store" port.
|
|
// E.g., on Haswell:
|
|
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
|
|
// vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
|
|
if (isLegalAddressingMode(AM, Ty))
|
|
// Scale represents reg2 * scale, thus account for 1
|
|
// as soon as we use a second register.
|
|
return AM.Scale != 0;
|
|
return -1;
|
|
}
|
|
|
|
bool X86TargetLowering::isTargetFTOL() const {
|
|
return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
|
|
}
|