llvm-project/lldb/source/Core/DataExtractor.cpp

2144 lines
72 KiB
C++

//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <bitset>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <sstream>
#include <string>
// Other libraries and framework includes
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "clang/AST/ASTContext.h"
// Project includes
#include "lldb/Core/DataBuffer.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/UUID.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/ExecutionContextScope.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
using namespace lldb;
using namespace lldb_private;
static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return value;
}
static inline uint32_t ReadInt32(const unsigned char *ptr,
offset_t offset = 0) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return value;
}
static inline uint64_t ReadInt64(const unsigned char *ptr,
offset_t offset = 0) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return value;
}
static inline uint16_t ReadInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return value;
}
static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
offset_t offset) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
offset_t offset) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return llvm::ByteSwap_64(value);
}
static inline uint16_t ReadSwapInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const void *ptr) {
uint32_t value;
memcpy(&value, ptr, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const void *ptr) {
uint64_t value;
memcpy(&value, ptr, 8);
return llvm::ByteSwap_64(value);
}
#define NON_PRINTABLE_CHAR '.'
DataExtractor::DataExtractor()
: m_start(nullptr), m_end(nullptr),
m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
m_data_sp(), m_target_byte_size(1) {}
//----------------------------------------------------------------------
// This constructor allows us to use data that is owned by someone else.
// The data must stay around as long as this object is valid.
//----------------------------------------------------------------------
DataExtractor::DataExtractor(const void *data, offset_t length,
ByteOrder endian, uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))),
m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) +
length),
m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(addr_size == 4 || addr_size == 8);
#endif
}
//----------------------------------------------------------------------
// Make a shared pointer reference to the shared data in "data_sp" and
// set the endian swapping setting to "swap", and the address size to
// "addr_size". The shared data reference will ensure the data lives
// as long as any DataExtractor objects exist that have a reference to
// this data.
//----------------------------------------------------------------------
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(endian),
m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(addr_size == 4 || addr_size == 8);
#endif
SetData(data_sp);
}
//----------------------------------------------------------------------
// Initialize this object with a subset of the data bytes in "data".
// If "data" contains shared data, then a reference to this shared
// data will added and the shared data will stay around as long
// as any object contains a reference to that data. The endian
// swap and address size settings are copied from "data".
//----------------------------------------------------------------------
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
offset_t length, uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
m_addr_size(data.m_addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
if (data.ValidOffset(offset)) {
offset_t bytes_available = data.GetByteSize() - offset;
if (length > bytes_available)
length = bytes_available;
SetData(data, offset, length);
}
}
DataExtractor::DataExtractor(const DataExtractor &rhs)
: m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
m_target_byte_size(rhs.m_target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
}
//----------------------------------------------------------------------
// Assignment operator
//----------------------------------------------------------------------
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
if (this != &rhs) {
m_start = rhs.m_start;
m_end = rhs.m_end;
m_byte_order = rhs.m_byte_order;
m_addr_size = rhs.m_addr_size;
m_data_sp = rhs.m_data_sp;
}
return *this;
}
DataExtractor::~DataExtractor() = default;
//------------------------------------------------------------------
// Clears the object contents back to a default invalid state, and
// release any references to shared data that this object may
// contain.
//------------------------------------------------------------------
void DataExtractor::Clear() {
m_start = nullptr;
m_end = nullptr;
m_byte_order = endian::InlHostByteOrder();
m_addr_size = sizeof(void *);
m_data_sp.reset();
}
//------------------------------------------------------------------
// If this object contains shared data, this function returns the
// offset into that shared data. Else zero is returned.
//------------------------------------------------------------------
size_t DataExtractor::GetSharedDataOffset() const {
if (m_start != nullptr) {
const DataBuffer *data = m_data_sp.get();
if (data != nullptr) {
const uint8_t *data_bytes = data->GetBytes();
if (data_bytes != nullptr) {
assert(m_start >= data_bytes);
return m_start - data_bytes;
}
}
}
return 0;
}
//----------------------------------------------------------------------
// Set the data with which this object will extract from to data
// starting at BYTES and set the length of the data to LENGTH bytes
// long. The data is externally owned must be around at least as
// long as this object points to the data. No copy of the data is
// made, this object just refers to this data and can extract from
// it. If this object refers to any shared data upon entry, the
// reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
ByteOrder endian) {
m_byte_order = endian;
m_data_sp.reset();
if (bytes == nullptr || length == 0) {
m_start = nullptr;
m_end = nullptr;
} else {
m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes));
m_end = m_start + length;
}
return GetByteSize();
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange in "data"
// starting "data_offset" bytes into "data" and ending "data_length"
// bytes later. If "data_offset" is not a valid offset into "data",
// then this object will contain no bytes. If "data_offset" is
// within "data" yet "data_length" is too large, the length will be
// capped at the number of bytes remaining in "data". If "data"
// contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data"
// doesn't contain a shared pointer to data, then the bytes referred
// to in "data" will need to exist at least as long as this object
// refers to those bytes. The address size and endian swap settings
// are copied from the current values in "data".
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
offset_t data_offset,
offset_t data_length) {
m_addr_size = data.m_addr_size;
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
// If "data" contains shared pointer to data, then we can use that
if (data.m_data_sp) {
m_byte_order = data.m_byte_order;
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
data_length);
}
// We have a DataExtractor object that just has a pointer to bytes
if (data.ValidOffset(data_offset)) {
if (data_length > data.GetByteSize() - data_offset)
data_length = data.GetByteSize() - data_offset;
return SetData(data.GetDataStart() + data_offset, data_length,
data.GetByteOrder());
}
return 0;
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange of the shared
// data in "data_sp" starting "data_offset" bytes into "data_sp"
// and ending "data_length" bytes later. If "data_offset" is not
// a valid offset into "data_sp", then this object will contain no
// bytes. If "data_offset" is within "data_sp" yet "data_length" is
// too large, the length will be capped at the number of bytes
// remaining in "data_sp". A ref counted pointer to the data in
// "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was
// available starting at "data_offset") to ensure the data stays
// around as long as it is needed. The address size and endian swap
// settings will remain unchanged from their current settings.
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
offset_t data_offset,
offset_t data_length) {
m_start = m_end = nullptr;
if (data_length > 0) {
m_data_sp = data_sp;
if (data_sp) {
const size_t data_size = data_sp->GetByteSize();
if (data_offset < data_size) {
m_start = data_sp->GetBytes() + data_offset;
const size_t bytes_left = data_size - data_offset;
// Cap the length of we asked for too many
if (data_length <= bytes_left)
m_end = m_start + data_length; // We got all the bytes we wanted
else
m_end = m_start + bytes_left; // Not all the bytes requested were
// available in the shared data
}
}
}
size_t new_size = GetByteSize();
// Don't hold a shared pointer to the data buffer if we don't share
// any valid bytes in the shared buffer.
if (new_size == 0)
m_data_sp.reset();
return new_size;
}
//----------------------------------------------------------------------
// Extract a single unsigned char from the binary data and update
// the offset pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1);
if (data)
return *data;
return 0;
}
//----------------------------------------------------------------------
// Extract "count" unsigned chars from the binary data and update the
// offset pointed to by "offset_ptr". The extracted data is copied into
// "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in
// the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
uint32_t count) const {
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count);
if (data) {
// Copy the data into the buffer
memcpy(dst, data, count);
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single uint16_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
uint16_t val = 0;
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
if (data) {
if (m_byte_order != endian::InlHostByteOrder())
val = ReadSwapInt16(data);
else
val = ReadInt16(data);
}
return val;
}
uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
uint16_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt16(m_start, *offset_ptr);
else
val = ReadSwapInt16(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
uint32_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt32(m_start, *offset_ptr);
else
val = ReadSwapInt32(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
uint64_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt64(m_start, *offset_ptr);
else
val = ReadSwapInt64(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint16_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available
// in the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint16_t) * count;
const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint16_t *dst_pos = (uint16_t *)void_dst;
uint16_t *dst_end = dst_pos + count;
const uint16_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt16(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single uint32_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
uint32_t val = 0;
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt32(data);
} else {
memcpy(&val, data, 4);
}
}
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint32_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available
// in the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint32_t) * count;
const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint32_t *dst_pos = (uint32_t *)void_dst;
uint32_t *dst_end = dst_pos + count;
const uint32_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt32(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single uint64_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
uint64_t val = 0;
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt64(data);
} else {
memcpy(&val, data, 8);
}
}
return val;
}
//----------------------------------------------------------------------
// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire
// read succeeds and increment the offset pointed to by offset_ptr, else
// return false and leave the offset pointed to by offset_ptr unchanged.
//----------------------------------------------------------------------
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint64_t) * count;
const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint64_t *dst_pos = (uint64_t *)void_dst;
uint64_t *dst_end = dst_pos + count;
const uint64_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt64(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value between 1 and 4 since the return value is only 32 bits
// wide. Any "byte_size" values less than 1 or greater than 4 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
size_t byte_size) const {
switch (byte_size) {
case 1:
return GetU8(offset_ptr);
break;
case 2:
return GetU16(offset_ptr);
break;
case 4:
return GetU32(offset_ptr);
break;
default:
assert(false && "GetMaxU32 unhandled case!");
break;
}
return 0;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value >= 1 and <= 8 since the return value is only 64 bits
// wide. Any "byte_size" values less than 1 or greater than 8 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, size_t size) const {
switch (size) {
case 1:
return GetU8(offset_ptr);
break;
case 2:
return GetU16(offset_ptr);
break;
case 4:
return GetU32(offset_ptr);
break;
case 8:
return GetU64(offset_ptr);
break;
default:
assert(false && "GetMax64 unhandled case!");
break;
}
return 0;
}
uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
size_t size) const {
switch (size) {
case 1:
return GetU8_unchecked(offset_ptr);
break;
case 2:
return GetU16_unchecked(offset_ptr);
break;
case 4:
return GetU32_unchecked(offset_ptr);
break;
case 8:
return GetU64_unchecked(offset_ptr);
break;
default:
assert(false && "GetMax64 unhandled case!");
break;
}
return 0;
}
int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t size) const {
switch (size) {
case 1:
return (int8_t)GetU8(offset_ptr);
break;
case 2:
return (int16_t)GetU16(offset_ptr);
break;
case 4:
return (int32_t)GetU32(offset_ptr);
break;
case 8:
return (int64_t)GetU64(offset_ptr);
break;
default:
assert(false && "GetMax64 unhandled case!");
break;
}
return 0;
}
uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
uint64_t uval64 = GetMaxU64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
uval64 >>= lsbcount;
uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
return uval64;
uval64 &= bitfield_mask;
}
return uval64;
}
int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
int64_t sval64 = GetMaxS64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
sval64 >>= lsbcount;
uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
sval64 &= bitfield_mask;
// sign extend if needed
if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
sval64 |= ~bitfield_mask;
}
return sval64;
}
float DataExtractor::GetFloat(offset_t *offset_ptr) const {
typedef float float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src = (const float_type *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = (const uint8_t *)src;
uint8_t *dst_data = (uint8_t *)&val;
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
double DataExtractor::GetDouble(offset_t *offset_ptr) const {
typedef double float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src = (const float_type *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = (const uint8_t *)src;
uint8_t *dst_data = (uint8_t *)&val;
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
long double val = 0.0;
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
*offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
endian::InlHostByteOrder());
#else
*offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
sizeof(val), endian::InlHostByteOrder());
#endif
return val;
}
//------------------------------------------------------------------
// Extract a single address from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted address
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
return GetMaxU64(offset_ptr, m_addr_size);
}
uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
return GetMaxU64_unchecked(offset_ptr, m_addr_size);
}
//------------------------------------------------------------------
// Extract a single pointer from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted pointer
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
return GetMaxU64(offset_ptr, m_addr_size);
}
//----------------------------------------------------------------------
// GetDwarfEHPtr
//
// Used for calls when the value type is specified by a DWARF EH Frame
// pointer encoding.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetGNUEHPointer(
offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr,
lldb::addr_t text_addr,
lldb::addr_t data_addr) //, BSDRelocs *data_relocs) const
{
if (eh_ptr_enc == DW_EH_PE_omit)
return ULLONG_MAX; // Value isn't in the buffer...
uint64_t baseAddress = 0;
uint64_t addressValue = 0;
const uint32_t addr_size = GetAddressByteSize();
#ifdef LLDB_CONFIGURATION_DEBUG
assert(addr_size == 4 || addr_size == 8);
#endif
bool signExtendValue = false;
// Decode the base part or adjust our offset
switch (eh_ptr_enc & 0x70) {
case DW_EH_PE_pcrel:
signExtendValue = true;
baseAddress = *offset_ptr;
if (pc_rel_addr != LLDB_INVALID_ADDRESS)
baseAddress += pc_rel_addr;
// else
// Log::GlobalWarning ("PC relative pointer encoding found with
// invalid pc relative address.");
break;
case DW_EH_PE_textrel:
signExtendValue = true;
if (text_addr != LLDB_INVALID_ADDRESS)
baseAddress = text_addr;
// else
// Log::GlobalWarning ("text relative pointer encoding being
// decoded with invalid text section address, setting base address
// to zero.");
break;
case DW_EH_PE_datarel:
signExtendValue = true;
if (data_addr != LLDB_INVALID_ADDRESS)
baseAddress = data_addr;
// else
// Log::GlobalWarning ("data relative pointer encoding being
// decoded with invalid data section address, setting base address
// to zero.");
break;
case DW_EH_PE_funcrel:
signExtendValue = true;
break;
case DW_EH_PE_aligned: {
// SetPointerSize should be called prior to extracting these so the
// pointer size is cached
assert(addr_size != 0);
if (addr_size) {
// Align to a address size boundary first
uint32_t alignOffset = *offset_ptr % addr_size;
if (alignOffset)
offset_ptr += addr_size - alignOffset;
}
} break;
default:
break;
}
// Decode the value part
switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
case DW_EH_PE_absptr: {
addressValue = GetAddress(offset_ptr);
// if (data_relocs)
// addressValue = data_relocs->Relocate(*offset_ptr -
// addr_size, *this, addressValue);
} break;
case DW_EH_PE_uleb128:
addressValue = GetULEB128(offset_ptr);
break;
case DW_EH_PE_udata2:
addressValue = GetU16(offset_ptr);
break;
case DW_EH_PE_udata4:
addressValue = GetU32(offset_ptr);
break;
case DW_EH_PE_udata8:
addressValue = GetU64(offset_ptr);
break;
case DW_EH_PE_sleb128:
addressValue = GetSLEB128(offset_ptr);
break;
case DW_EH_PE_sdata2:
addressValue = (int16_t)GetU16(offset_ptr);
break;
case DW_EH_PE_sdata4:
addressValue = (int32_t)GetU32(offset_ptr);
break;
case DW_EH_PE_sdata8:
addressValue = (int64_t)GetU64(offset_ptr);
break;
default:
// Unhandled encoding type
assert(eh_ptr_enc);
break;
}
// Since we promote everything to 64 bit, we may need to sign extend
if (signExtendValue && addr_size < sizeof(baseAddress)) {
uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
if (sign_bit & addressValue) {
uint64_t mask = ~sign_bit + 1;
addressValue |= mask;
}
}
return baseAddress + addressValue;
}
size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
ByteOrder dst_byte_order, void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
if (dst_byte_order != GetByteOrder()) {
// Validate that only a word- or register-sized dst is byte swapped
assert(length == 1 || length == 2 || length == 4 || length == 8 ||
length == 10 || length == 16 || length == 32);
for (uint32_t i = 0; i < length; ++i)
((uint8_t *)dst)[i] = src[length - i - 1];
} else
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data as it exists in target memory
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
void *dst_void_ptr, offset_t dst_len,
ByteOrder dst_byte_order) const {
// Validate the source info
if (!ValidOffsetForDataOfSize(src_offset, src_len))
assert(ValidOffsetForDataOfSize(src_offset, src_len));
assert(src_len > 0);
assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
// Validate the destination info
assert(dst_void_ptr != nullptr);
assert(dst_len > 0);
assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
// Validate that only a word- or register-sized dst is byte swapped
assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
dst_len == 32);
// Must have valid byte orders set in this object and for destination
if (!(dst_byte_order == eByteOrderBig ||
dst_byte_order == eByteOrderLittle) ||
!(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
return 0;
uint8_t *dst = (uint8_t *)dst_void_ptr;
const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len);
if (src) {
if (dst_len >= src_len) {
// We are copying the entire value from src into dst.
// Calculate how many, if any, zeroes we need for the most
// significant bytes if "dst_len" is greater than "src_len"...
const size_t num_zeroes = dst_len - src_len;
if (dst_byte_order == eByteOrderBig) {
// Big endian, so we lead with zeroes...
if (num_zeroes > 0)
::memset(dst, 0, num_zeroes);
// Then either copy or swap the rest
if (m_byte_order == eByteOrderBig) {
::memcpy(dst + num_zeroes, src, src_len);
} else {
for (uint32_t i = 0; i < src_len; ++i)
dst[i + num_zeroes] = src[src_len - 1 - i];
}
} else {
// Little endian destination, so we lead the value bytes
if (m_byte_order == eByteOrderBig) {
for (uint32_t i = 0; i < src_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
::memcpy(dst, src, src_len);
}
// And zero the rest...
if (num_zeroes > 0)
::memset(dst + src_len, 0, num_zeroes);
}
return src_len;
} else {
// We are only copying some of the value from src into dst..
if (dst_byte_order == eByteOrderBig) {
// Big endian dst
if (m_byte_order == eByteOrderBig) {
// Big endian dst, with big endian src
::memcpy(dst, src + (src_len - dst_len), dst_len);
} else {
// Big endian dst, with little endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[dst_len - 1 - i];
}
} else {
// Little endian dst
if (m_byte_order == eByteOrderBig) {
// Little endian dst, with big endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
// Little endian dst, with big endian src
::memcpy(dst, src, dst_len);
}
}
return dst_len;
}
}
return 0;
}
//----------------------------------------------------------------------
// Extracts a variable length NULL terminated C string from
// the data at the offset pointed to by "offset_ptr". The
// "offset_ptr" will be updated with the offset of the byte that
// follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
// "length" is non-zero and there aren't enough available
// bytes, nullptr will be returned and "offset_ptr" will not be
// updated.
//----------------------------------------------------------------------
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
const char *cstr = (const char *)PeekData(*offset_ptr, 1);
if (cstr) {
const char *cstr_end = cstr;
const char *end = (const char *)m_end;
while (cstr_end < end && *cstr_end)
++cstr_end;
// Now we are either at the end of the data or we point to the
// NULL C string terminator with cstr_end...
if (*cstr_end == '\0') {
// Advance the offset with one extra byte for the NULL terminator
*offset_ptr += (cstr_end - cstr + 1);
return cstr;
}
// We reached the end of the data without finding a NULL C string
// terminator. Fall through and return nullptr otherwise anyone that
// would have used the result as a C string can wander into
// unknown memory...
}
return nullptr;
}
//----------------------------------------------------------------------
// Extracts a NULL terminated C string from the fixed length field of
// length "len" at the offset pointed to by "offset_ptr".
// The "offset_ptr" will be updated with the offset of the byte that
// follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
// the offset plus the length of the field is out of bounds, or if the
// field does not contain a NULL terminator byte, nullptr will be returned
// and "offset_ptr" will not be updated.
//----------------------------------------------------------------------
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
const char *cstr = (const char *)PeekData(*offset_ptr, len);
if (cstr != nullptr) {
if (memchr(cstr, '\0', len) == nullptr) {
return nullptr;
}
*offset_ptr += len;
return cstr;
}
return nullptr;
}
//------------------------------------------------------------------
// Peeks at a string in the contained data. No verification is done
// to make sure the entire string lies within the bounds of this
// object's data, only "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in
// this object's data, else nullptr is returned.
//------------------------------------------------------------------
const char *DataExtractor::PeekCStr(offset_t offset) const {
return (const char *)PeekData(offset, 1);
}
//----------------------------------------------------------------------
// Extracts an unsigned LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
uint64_t result = *src++;
if (result >= 0x80) {
result &= 0x7f;
int shift = 7;
while (src < end) {
uint8_t byte = *src++;
result |= (uint64_t)(byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
}
*offset_ptr = src - m_start;
return result;
}
return 0;
}
//----------------------------------------------------------------------
// Extracts an signed LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
int64_t result = 0;
int shift = 0;
int size = sizeof(int64_t) * 8;
uint8_t byte = 0;
int bytecount = 0;
while (src < end) {
bytecount++;
byte = *src++;
result |= (int64_t)(byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
// Sign bit of byte is 2nd high order bit (0x40)
if (shift < size && (byte & 0x40))
result |= -(1 << shift);
*offset_ptr += bytecount;
return result;
}
return 0;
}
//----------------------------------------------------------------------
// Skips a ULEB128 number (signed or unsigned) from this object's
// data starting at the offset pointed to by "offset_ptr". The
// offset pointed to by "offset_ptr" will be updated with the offset
// of the byte following the last extracted byte.
//
// Returns the number of bytes consumed during the extraction.
//----------------------------------------------------------------------
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
uint32_t bytes_consumed = 0;
const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
const uint8_t *src_pos = src;
while ((src_pos < end) && (*src_pos++ & 0x80))
++bytes_consumed;
*offset_ptr += src_pos - src;
}
return bytes_consumed;
}
static bool GetAPInt(const DataExtractor &data, lldb::offset_t *offset_ptr,
lldb::offset_t byte_size, llvm::APInt &result) {
llvm::SmallVector<uint64_t, 2> uint64_array;
lldb::offset_t bytes_left = byte_size;
uint64_t u64;
const lldb::ByteOrder byte_order = data.GetByteOrder();
if (byte_order == lldb::eByteOrderLittle) {
while (bytes_left > 0) {
if (bytes_left >= 8) {
u64 = data.GetU64(offset_ptr);
bytes_left -= 8;
} else {
u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
return true;
} else if (byte_order == lldb::eByteOrderBig) {
lldb::offset_t be_offset = *offset_ptr + byte_size;
lldb::offset_t temp_offset;
while (bytes_left > 0) {
if (bytes_left >= 8) {
be_offset -= 8;
temp_offset = be_offset;
u64 = data.GetU64(&temp_offset);
bytes_left -= 8;
} else {
be_offset -= bytes_left;
temp_offset = be_offset;
u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
*offset_ptr += byte_size;
result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
return true;
}
return false;
}
static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data,
lldb::offset_t offset, lldb::offset_t byte_size,
bool is_signed, unsigned radix) {
llvm::APInt apint;
if (GetAPInt(data, &offset, byte_size, apint)) {
std::string apint_str(apint.toString(radix, is_signed));
switch (radix) {
case 2:
s->Write("0b", 2);
break;
case 8:
s->Write("0", 1);
break;
case 10:
break;
}
s->Write(apint_str.c_str(), apint_str.size());
}
return offset;
}
static float half2float(uint16_t half) {
union {
float f;
uint32_t u;
} u;
int32_t v = (int16_t)half;
if (0 == (v & 0x7c00)) {
u.u = v & 0x80007FFFU;
return u.f * ldexpf(1, 125);
}
v <<= 13;
u.u = v | 0x70000000U;
return u.f * ldexpf(1, -112);
}
lldb::offset_t DataExtractor::Dump(
Stream *s, offset_t start_offset, lldb::Format item_format,
size_t item_byte_size, size_t item_count, size_t num_per_line,
uint64_t base_addr,
uint32_t item_bit_size, // If zero, this is not a bitfield value, if
// non-zero, the value is a bitfield
uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the
// shift amount to apply to a bitfield
ExecutionContextScope *exe_scope) const {
if (s == nullptr)
return start_offset;
if (item_format == eFormatPointer) {
if (item_byte_size != 4 && item_byte_size != 8)
item_byte_size = s->GetAddressByteSize();
}
offset_t offset = start_offset;
if (item_format == eFormatInstruction) {
TargetSP target_sp;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp) {
DisassemblerSP disassembler_sp(Disassembler::FindPlugin(
target_sp->GetArchitecture(), nullptr, nullptr));
if (disassembler_sp) {
lldb::addr_t addr = base_addr + start_offset;
lldb_private::Address so_addr;
bool data_from_file = true;
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) {
data_from_file = false;
} else {
if (target_sp->GetSectionLoadList().IsEmpty() ||
!target_sp->GetImages().ResolveFileAddress(addr, so_addr))
so_addr.SetRawAddress(addr);
}
size_t bytes_consumed = disassembler_sp->DecodeInstructions(
so_addr, *this, start_offset, item_count, false, data_from_file);
if (bytes_consumed) {
offset += bytes_consumed;
const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
const bool show_bytes = true;
ExecutionContext exe_ctx;
exe_scope->CalculateExecutionContext(exe_ctx);
disassembler_sp->GetInstructionList().Dump(s, show_address,
show_bytes, &exe_ctx);
}
}
} else
s->Printf("invalid target");
return offset;
}
if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) &&
item_byte_size > 8)
item_format = eFormatHex;
lldb::offset_t line_start_offset = start_offset;
for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count) {
if ((count % num_per_line) == 0) {
if (count > 0) {
if (item_format == eFormatBytesWithASCII &&
offset > line_start_offset) {
s->Printf("%*s",
static_cast<int>(
(num_per_line - (offset - line_start_offset)) * 3 + 2),
"");
Dump(s, line_start_offset, eFormatCharPrintable, 1,
offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0,
0);
}
s->EOL();
}
if (base_addr != LLDB_INVALID_ADDRESS)
s->Printf("0x%8.8" PRIx64 ": ",
(uint64_t)(base_addr +
(offset - start_offset) / m_target_byte_size));
line_start_offset = offset;
} else if (item_format != eFormatChar &&
item_format != eFormatCharPrintable &&
item_format != eFormatCharArray && count > 0) {
s->PutChar(' ');
}
switch (item_format) {
case eFormatBoolean:
if (item_byte_size <= 8)
s->Printf("%s", GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset)
? "true"
: "false");
else {
s->Printf("error: unsupported byte size (%" PRIu64
") for boolean format",
(uint64_t)item_byte_size);
return offset;
}
break;
case eFormatBinary:
if (item_byte_size <= 8) {
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
// Avoid std::bitset<64>::to_string() since it is missing in
// earlier C++ libraries
std::string binary_value(64, '0');
std::bitset<64> bits(uval64);
for (uint32_t i = 0; i < 64; ++i)
if (bits[i])
binary_value[64 - 1 - i] = '1';
if (item_bit_size > 0)
s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
else if (item_byte_size > 0 && item_byte_size <= 8)
s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
} else {
const bool is_signed = false;
const unsigned radix = 2;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatBytes:
case eFormatBytesWithASCII:
for (uint32_t i = 0; i < item_byte_size; ++i) {
s->Printf("%2.2x", GetU8(&offset));
}
// Put an extra space between the groups of bytes if more than one
// is being dumped in a group (item_byte_size is more than 1).
if (item_byte_size > 1)
s->PutChar(' ');
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray: {
// If we are only printing one character surround it with single
// quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
if (isprint(ch))
s->Printf("%c", (char)ch);
else if (item_format != eFormatCharPrintable) {
switch (ch) {
case '\033':
s->Printf("\\e");
break;
case '\a':
s->Printf("\\a");
break;
case '\b':
s->Printf("\\b");
break;
case '\f':
s->Printf("\\f");
break;
case '\n':
s->Printf("\\n");
break;
case '\r':
s->Printf("\\r");
break;
case '\t':
s->Printf("\\t");
break;
case '\v':
s->Printf("\\v");
break;
case '\0':
s->Printf("\\0");
break;
default:
if (item_byte_size == 1)
s->Printf("\\x%2.2x", (uint8_t)ch);
else
s->Printf("%" PRIu64, ch);
break;
}
} else {
s->PutChar(NON_PRINTABLE_CHAR);
}
// If we are only printing one character surround it with single quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
} break;
case eFormatEnum: // Print enum value as a signed integer when we don't get
// the enum type
case eFormatDecimal:
if (item_byte_size <= 8)
s->Printf("%" PRId64,
GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = true;
const unsigned radix = 10;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatUnsigned:
if (item_byte_size <= 8)
s->Printf("%" PRIu64,
GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = false;
const unsigned radix = 10;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOctal:
if (item_byte_size <= 8)
s->Printf("0%" PRIo64,
GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = false;
const unsigned radix = 8;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOSType: {
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
s->PutChar('\'');
for (uint32_t i = 0; i < item_byte_size; ++i) {
uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
if (isprint(ch))
s->Printf("%c", ch);
else {
switch (ch) {
case '\033':
s->Printf("\\e");
break;
case '\a':
s->Printf("\\a");
break;
case '\b':
s->Printf("\\b");
break;
case '\f':
s->Printf("\\f");
break;
case '\n':
s->Printf("\\n");
break;
case '\r':
s->Printf("\\r");
break;
case '\t':
s->Printf("\\t");
break;
case '\v':
s->Printf("\\v");
break;
case '\0':
s->Printf("\\0");
break;
default:
s->Printf("\\x%2.2x", ch);
break;
}
}
}
s->PutChar('\'');
} break;
case eFormatCString: {
const char *cstr = GetCStr(&offset);
if (!cstr) {
s->Printf("NULL");
offset = LLDB_INVALID_OFFSET;
} else {
s->PutChar('\"');
while (const char c = *cstr) {
if (isprint(c)) {
s->PutChar(c);
} else {
switch (c) {
case '\033':
s->Printf("\\e");
break;
case '\a':
s->Printf("\\a");
break;
case '\b':
s->Printf("\\b");
break;
case '\f':
s->Printf("\\f");
break;
case '\n':
s->Printf("\\n");
break;
case '\r':
s->Printf("\\r");
break;
case '\t':
s->Printf("\\t");
break;
case '\v':
s->Printf("\\v");
break;
default:
s->Printf("\\x%2.2x", c);
break;
}
}
++cstr;
}
s->PutChar('\"');
}
} break;
case eFormatPointer:
s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset),
sizeof(addr_t));
break;
case eFormatComplexInteger: {
size_t complex_int_byte_size = item_byte_size / 2;
if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) {
s->Printf("%" PRIu64,
GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
s->Printf(" + %" PRIu64 "i",
GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for complex integer format",
(uint64_t)item_byte_size);
return offset;
}
} break;
case eFormatComplex:
if (sizeof(float) * 2 == item_byte_size) {
float f32_1 = GetFloat(&offset);
float f32_2 = GetFloat(&offset);
s->Printf("%g + %gi", f32_1, f32_2);
break;
} else if (sizeof(double) * 2 == item_byte_size) {
double d64_1 = GetDouble(&offset);
double d64_2 = GetDouble(&offset);
s->Printf("%lg + %lgi", d64_1, d64_2);
break;
} else if (sizeof(long double) * 2 == item_byte_size) {
long double ld64_1 = GetLongDouble(&offset);
long double ld64_2 = GetLongDouble(&offset);
s->Printf("%Lg + %Lgi", ld64_1, ld64_2);
break;
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for complex float format",
(uint64_t)item_byte_size);
return offset;
}
break;
default:
case eFormatDefault:
case eFormatHex:
case eFormatHexUppercase: {
bool wantsuppercase = (item_format == eFormatHexUppercase);
switch (item_byte_size) {
case 1:
case 2:
case 4:
case 8:
s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64,
(int)(2 * item_byte_size), (int)(2 * item_byte_size),
GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
break;
default: {
assert(item_bit_size == 0 && item_bit_offset == 0);
const uint8_t *bytes =
(const uint8_t *)GetData(&offset, item_byte_size);
if (bytes) {
s->PutCString("0x");
uint32_t idx;
if (m_byte_order == eByteOrderBig) {
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
} else {
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x",
bytes[item_byte_size - 1 - idx]);
}
}
} break;
}
} break;
case eFormatFloat: {
TargetSP target_sp;
bool used_apfloat = false;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp) {
ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
if (clang_ast) {
clang::ASTContext *ast = clang_ast->getASTContext();
if (ast) {
llvm::SmallVector<char, 256> sv;
// Show full precision when printing float values
const unsigned format_precision = 0;
const unsigned format_max_padding = 100;
size_t item_bit_size = item_byte_size * 8;
if (item_bit_size == ast->getTypeSize(ast->FloatTy)) {
llvm::APInt apint(item_bit_size,
this->GetMaxU64(&offset, item_byte_size));
llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy),
apint);
apfloat.toString(sv, format_precision, format_max_padding);
} else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) {
llvm::APInt apint;
if (GetAPInt(*this, &offset, item_byte_size, apint)) {
llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy),
apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
} else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) {
const auto &semantics =
ast->getFloatTypeSemantics(ast->LongDoubleTy);
const auto byte_size =
(llvm::APFloat::getSizeInBits(semantics) + 7) / 8;
llvm::APInt apint;
if (GetAPInt(*this, &offset, byte_size, apint)) {
llvm::APFloat apfloat(semantics, apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
} else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) {
llvm::APInt apint(item_bit_size, this->GetU16(&offset));
llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy),
apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
if (!sv.empty()) {
s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
used_apfloat = true;
}
}
}
}
if (!used_apfloat) {
std::ostringstream ss;
if (item_byte_size == sizeof(float) || item_byte_size == 2) {
float f;
if (item_byte_size == 2) {
uint16_t half = this->GetU16(&offset);
f = half2float(half);
} else {
f = GetFloat(&offset);
}
ss.precision(std::numeric_limits<float>::digits10);
ss << f;
} else if (item_byte_size == sizeof(double)) {
ss.precision(std::numeric_limits<double>::digits10);
ss << GetDouble(&offset);
} else if (item_byte_size == sizeof(long double) ||
item_byte_size == 10) {
ss.precision(std::numeric_limits<long double>::digits10);
ss << GetLongDouble(&offset);
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for float format",
(uint64_t)item_byte_size);
return offset;
}
ss.flush();
s->Printf("%s", ss.str().c_str());
}
} break;
case eFormatUnicode16:
s->Printf("U+%4.4x", GetU16(&offset));
break;
case eFormatUnicode32:
s->Printf("U+0x%8.8x", GetU32(&offset));
break;
case eFormatAddressInfo: {
addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset);
s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size),
(int)(2 * item_byte_size), addr);
if (exe_scope) {
TargetSP target_sp(exe_scope->CalculateTarget());
lldb_private::Address so_addr;
if (target_sp) {
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr,
so_addr)) {
s->PutChar(' ');
so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription,
Address::DumpStyleModuleWithFileAddress);
} else {
so_addr.SetOffset(addr);
so_addr.Dump(s, exe_scope,
Address::DumpStyleResolvedPointerDescription);
}
}
}
} break;
case eFormatHexFloat:
if (sizeof(float) == item_byte_size) {
char float_cstr[256];
llvm::APFloat ap_float(GetFloat(&offset));
ap_float.convertToHexString(float_cstr, 0, false,
llvm::APFloat::rmNearestTiesToEven);
s->Printf("%s", float_cstr);
break;
} else if (sizeof(double) == item_byte_size) {
char float_cstr[256];
llvm::APFloat ap_float(GetDouble(&offset));
ap_float.convertToHexString(float_cstr, 0, false,
llvm::APFloat::rmNearestTiesToEven);
s->Printf("%s", float_cstr);
break;
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for hex float format",
(uint64_t)item_byte_size);
return offset;
}
break;
// please keep the single-item formats below in sync with
// FormatManager::GetSingleItemFormat
// if you fail to do so, users will start getting different outputs
// depending on internal
// implementation details they should not care about ||
case eFormatVectorOfChar: // ||
s->PutChar('{'); // \/
offset = Dump(s, offset, eFormatCharArray, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt8:
s->PutChar('{');
offset = Dump(s, offset, eFormatDecimal, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt8:
s->PutChar('{');
offset = Dump(s, offset, eFormatHex, 1, item_byte_size, item_byte_size,
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt16:
s->PutChar('{');
offset =
Dump(s, offset, eFormatDecimal, sizeof(uint16_t),
item_byte_size / sizeof(uint16_t),
item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt16:
s->PutChar('{');
offset =
Dump(s, offset, eFormatHex, sizeof(uint16_t),
item_byte_size / sizeof(uint16_t),
item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt32:
s->PutChar('{');
offset =
Dump(s, offset, eFormatDecimal, sizeof(uint32_t),
item_byte_size / sizeof(uint32_t),
item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt32:
s->PutChar('{');
offset =
Dump(s, offset, eFormatHex, sizeof(uint32_t),
item_byte_size / sizeof(uint32_t),
item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt64:
s->PutChar('{');
offset =
Dump(s, offset, eFormatDecimal, sizeof(uint64_t),
item_byte_size / sizeof(uint64_t),
item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt64:
s->PutChar('{');
offset =
Dump(s, offset, eFormatHex, sizeof(uint64_t),
item_byte_size / sizeof(uint64_t),
item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat16:
s->PutChar('{');
offset = Dump(s, offset, eFormatFloat, 2, item_byte_size / 2,
item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat32:
s->PutChar('{');
offset = Dump(s, offset, eFormatFloat, 4, item_byte_size / 4,
item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat64:
s->PutChar('{');
offset = Dump(s, offset, eFormatFloat, 8, item_byte_size / 8,
item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt128:
s->PutChar('{');
offset = Dump(s, offset, eFormatHex, 16, item_byte_size / 16,
item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
}
}
if (item_format == eFormatBytesWithASCII && offset > line_start_offset) {
s->Printf("%*s", static_cast<int>(
(num_per_line - (offset - line_start_offset)) * 3 + 2),
"");
Dump(s, line_start_offset, eFormatCharPrintable, 1,
offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0);
}
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte
// before "end_offset". "base_addr" will be added to the offset
// into the dumped data when showing the offset into the data in the
// output information. "num_per_line" objects of type "type" will
// be dumped with the option to override the format for each object
// with "type_format". "type_format" is a printf style formatting
// string. If "type_format" is nullptr, then an appropriate format
// string will be used for the supplied "type". If the stream "s"
// is nullptr, then the output will be send to Log().
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
offset_t length, uint64_t base_addr,
uint32_t num_per_line,
DataExtractor::Type type,
const char *format) const {
if (log == nullptr)
return start_offset;
offset_t offset;
offset_t end_offset;
uint32_t count;
StreamString sstr;
for (offset = start_offset, end_offset = offset + length, count = 0;
ValidOffset(offset) && offset < end_offset; ++count) {
if ((count % num_per_line) == 0) {
// Print out any previous string
if (sstr.GetSize() > 0) {
log->PutString(sstr.GetString());
sstr.Clear();
}
// Reset string offset and fill the current line string with address:
if (base_addr != LLDB_INVALID_ADDRESS)
sstr.Printf("0x%8.8" PRIx64 ":",
(uint64_t)(base_addr + (offset - start_offset)));
}
switch (type) {
case TypeUInt8:
sstr.Printf(format ? format : " %2.2x", GetU8(&offset));
break;
case TypeChar: {
char ch = GetU8(&offset);
sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' ');
} break;
case TypeUInt16:
sstr.Printf(format ? format : " %4.4x", GetU16(&offset));
break;
case TypeUInt32:
sstr.Printf(format ? format : " %8.8x", GetU32(&offset));
break;
case TypeUInt64:
sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset));
break;
case TypePointer:
sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset));
break;
case TypeULEB128:
sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset));
break;
case TypeSLEB128:
sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset));
break;
}
}
if (!sstr.Empty())
log->PutString(sstr.GetString());
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// DumpUUID
//
// Dump out a UUID starting at 'offset' bytes into the buffer
//----------------------------------------------------------------------
void DataExtractor::DumpUUID(Stream *s, offset_t offset) const {
if (s) {
const uint8_t *uuid_data = PeekData(offset, 16);
if (uuid_data) {
lldb_private::UUID uuid(uuid_data, 16);
uuid.Dump(s);
} else {
s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">",
offset);
}
}
}
void DataExtractor::DumpHexBytes(Stream *s, const void *src, size_t src_len,
uint32_t bytes_per_line, addr_t base_addr) {
DataExtractor data(src, src_len, eByteOrderLittle, 4);
data.Dump(s,
0, // Offset into "src"
eFormatBytes, // Dump as hex bytes
1, // Size of each item is 1 for single bytes
src_len, // Number of bytes
bytes_per_line, // Num bytes per line
base_addr, // Base address
0, 0); // Bitfield info
}
size_t DataExtractor::Copy(DataExtractor &dest_data) const {
if (m_data_sp) {
// we can pass along the SP to the data
dest_data.SetData(m_data_sp);
} else {
const uint8_t *base_ptr = m_start;
size_t data_size = GetByteSize();
dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
}
return GetByteSize();
}
bool DataExtractor::Append(DataExtractor &rhs) {
if (rhs.GetByteOrder() != GetByteOrder())
return false;
if (rhs.GetByteSize() == 0)
return true;
if (GetByteSize() == 0)
return (rhs.Copy(*this) > 0);
size_t bytes = GetByteSize() + rhs.GetByteSize();
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
SetData(buffer_sp);
return true;
}
bool DataExtractor::Append(void *buf, offset_t length) {
if (buf == nullptr)
return false;
if (length == 0)
return true;
size_t bytes = GetByteSize() + length;
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
if (GetByteSize() > 0)
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), buf, length);
SetData(buffer_sp);
return true;
}
void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
uint64_t max_data) {
if (max_data == 0)
max_data = GetByteSize();
else
max_data = std::min(max_data, GetByteSize());
llvm::MD5 md5;
const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
md5.update(data);
llvm::MD5::MD5Result result;
md5.final(result);
dest.resize(16);
std::copy(result, result + 16, dest.begin());
}