llvm-project/llvm/lib/Analysis/DivergenceAnalysis.cpp

458 lines
15 KiB
C++

//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
// Improving Performance of OpenCL on CPUs
// Ralf Karrenberg and Sebastian Hack
// CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis and/or by modelling non-escaping memory objects in SSA
// as done in RV.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "divergence-analysis"
// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
: F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
IsLCSSAForm(IsLCSSAForm) {}
void DivergenceAnalysis::markDivergent(const Value &DivVal) {
assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
DivergentValues.insert(&DivVal);
}
void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
UniformOverrides.insert(&UniVal);
}
bool DivergenceAnalysis::updateTerminator(const Instruction &Term) const {
if (Term.getNumSuccessors() <= 1)
return false;
if (auto *BranchTerm = dyn_cast<BranchInst>(&Term)) {
assert(BranchTerm->isConditional());
return isDivergent(*BranchTerm->getCondition());
}
if (auto *SwitchTerm = dyn_cast<SwitchInst>(&Term)) {
return isDivergent(*SwitchTerm->getCondition());
}
if (isa<InvokeInst>(Term)) {
return false; // ignore abnormal executions through landingpad
}
llvm_unreachable("unexpected terminator");
}
bool DivergenceAnalysis::updateNormalInstruction(const Instruction &I) const {
// TODO function calls with side effects, etc
for (const auto &Op : I.operands()) {
if (isDivergent(*Op))
return true;
}
return false;
}
bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const {
const auto *Inst = dyn_cast<const Instruction>(&Val);
if (!Inst)
return false;
// check whether any divergent loop carrying Val terminates before control
// proceeds to ObservingBlock
for (const auto *Loop = LI.getLoopFor(Inst->getParent());
Loop != RegionLoop && !Loop->contains(&ObservingBlock);
Loop = Loop->getParentLoop()) {
if (DivergentLoops.find(Loop) != DivergentLoops.end())
return true;
}
return false;
}
bool DivergenceAnalysis::updatePHINode(const PHINode &Phi) const {
// joining divergent disjoint path in Phi parent block
if (!Phi.hasConstantOrUndefValue() && isJoinDivergent(*Phi.getParent())) {
return true;
}
// An incoming value could be divergent by itself.
// Otherwise, an incoming value could be uniform within the loop
// that carries its definition but it may appear divergent
// from outside the loop. This happens when divergent loop exits
// drop definitions of that uniform value in different iterations.
//
// for (int i = 0; i < n; ++i) { // 'i' is uniform inside the loop
// if (i % thread_id == 0) break; // divergent loop exit
// }
// int divI = i; // divI is divergent
for (size_t i = 0; i < Phi.getNumIncomingValues(); ++i) {
const auto *InVal = Phi.getIncomingValue(i);
if (isDivergent(*Phi.getIncomingValue(i)) ||
isTemporalDivergent(*Phi.getParent(), *InVal)) {
return true;
}
}
return false;
}
bool DivergenceAnalysis::inRegion(const Instruction &I) const {
return I.getParent() && inRegion(*I.getParent());
}
bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}
// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::taintLoopLiveOuts(const BasicBlock &LoopHeader) {
auto *DivLoop = LI.getLoopFor(&LoopHeader);
assert(DivLoop && "loopHeader is not actually part of a loop");
SmallVector<BasicBlock *, 8> TaintStack;
DivLoop->getExitBlocks(TaintStack);
// Otherwise potential users of loop-carried values could be anywhere in the
// dominance region of DivLoop (including its fringes for phi nodes)
DenseSet<const BasicBlock *> Visited;
for (auto *Block : TaintStack) {
Visited.insert(Block);
}
Visited.insert(&LoopHeader);
while (!TaintStack.empty()) {
auto *UserBlock = TaintStack.back();
TaintStack.pop_back();
// don't spread divergence beyond the region
if (!inRegion(*UserBlock))
continue;
assert(!DivLoop->contains(UserBlock) &&
"irreducible control flow detected");
// phi nodes at the fringes of the dominance region
if (!DT.dominates(&LoopHeader, UserBlock)) {
// all PHI nodes of UserBlock become divergent
for (auto &Phi : UserBlock->phis()) {
Worklist.push_back(&Phi);
}
continue;
}
// taint outside users of values carried by DivLoop
for (auto &I : *UserBlock) {
if (isAlwaysUniform(I))
continue;
if (isDivergent(I))
continue;
for (auto &Op : I.operands()) {
auto *OpInst = dyn_cast<Instruction>(&Op);
if (!OpInst)
continue;
if (DivLoop->contains(OpInst->getParent())) {
markDivergent(I);
pushUsers(I);
break;
}
}
}
// visit all blocks in the dominance region
for (auto *SuccBlock : successors(UserBlock)) {
if (!Visited.insert(SuccBlock).second) {
continue;
}
TaintStack.push_back(SuccBlock);
}
}
}
void DivergenceAnalysis::pushPHINodes(const BasicBlock &Block) {
for (const auto &Phi : Block.phis()) {
if (isDivergent(Phi))
continue;
Worklist.push_back(&Phi);
}
}
void DivergenceAnalysis::pushUsers(const Value &V) {
for (const auto *User : V.users()) {
const auto *UserInst = dyn_cast<const Instruction>(User);
if (!UserInst)
continue;
if (isDivergent(*UserInst))
continue;
// only compute divergent inside loop
if (!inRegion(*UserInst))
continue;
Worklist.push_back(UserInst);
}
}
bool DivergenceAnalysis::propagateJoinDivergence(const BasicBlock &JoinBlock,
const Loop *BranchLoop) {
LLVM_DEBUG(dbgs() << "\tpropJoinDiv " << JoinBlock.getName() << "\n");
// ignore divergence outside the region
if (!inRegion(JoinBlock)) {
return false;
}
// push non-divergent phi nodes in JoinBlock to the worklist
pushPHINodes(JoinBlock);
// JoinBlock is a divergent loop exit
if (BranchLoop && !BranchLoop->contains(&JoinBlock)) {
return true;
}
// disjoint-paths divergent at JoinBlock
markBlockJoinDivergent(JoinBlock);
return false;
}
void DivergenceAnalysis::propagateBranchDivergence(const Instruction &Term) {
LLVM_DEBUG(dbgs() << "propBranchDiv " << Term.getParent()->getName() << "\n");
markDivergent(Term);
const auto *BranchLoop = LI.getLoopFor(Term.getParent());
// whether there is a divergent loop exit from BranchLoop (if any)
bool IsBranchLoopDivergent = false;
// iterate over all blocks reachable by disjoint from Term within the loop
// also iterates over loop exits that become divergent due to Term.
for (const auto *JoinBlock : SDA.join_blocks(Term)) {
IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
}
// Branch loop is a divergent loop due to the divergent branch in Term
if (IsBranchLoopDivergent) {
assert(BranchLoop);
if (!DivergentLoops.insert(BranchLoop).second) {
return;
}
propagateLoopDivergence(*BranchLoop);
}
}
void DivergenceAnalysis::propagateLoopDivergence(const Loop &ExitingLoop) {
LLVM_DEBUG(dbgs() << "propLoopDiv " << ExitingLoop.getName() << "\n");
// don't propagate beyond region
if (!inRegion(*ExitingLoop.getHeader()))
return;
const auto *BranchLoop = ExitingLoop.getParentLoop();
// Uses of loop-carried values could occur anywhere
// within the dominance region of the definition. All loop-carried
// definitions are dominated by the loop header (reducible control).
// Thus all users have to be in the dominance region of the loop header,
// except PHI nodes that can also live at the fringes of the dom region
// (incoming defining value).
if (!IsLCSSAForm)
taintLoopLiveOuts(*ExitingLoop.getHeader());
// whether there is a divergent loop exit from BranchLoop (if any)
bool IsBranchLoopDivergent = false;
// iterate over all blocks reachable by disjoint paths from exits of
// ExitingLoop also iterates over loop exits (of BranchLoop) that in turn
// become divergent.
for (const auto *JoinBlock : SDA.join_blocks(ExitingLoop)) {
IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
}
// Branch loop is a divergent due to divergent loop exit in ExitingLoop
if (IsBranchLoopDivergent) {
assert(BranchLoop);
if (!DivergentLoops.insert(BranchLoop).second) {
return;
}
propagateLoopDivergence(*BranchLoop);
}
}
void DivergenceAnalysis::compute() {
for (auto *DivVal : DivergentValues) {
pushUsers(*DivVal);
}
// propagate divergence
while (!Worklist.empty()) {
const Instruction &I = *Worklist.back();
Worklist.pop_back();
// maintain uniformity of overrides
if (isAlwaysUniform(I))
continue;
bool WasDivergent = isDivergent(I);
if (WasDivergent)
continue;
// propagate divergence caused by terminator
if (I.isTerminator()) {
if (updateTerminator(I)) {
// propagate control divergence to affected instructions
propagateBranchDivergence(I);
continue;
}
}
// update divergence of I due to divergent operands
bool DivergentUpd = false;
const auto *Phi = dyn_cast<const PHINode>(&I);
if (Phi) {
DivergentUpd = updatePHINode(*Phi);
} else {
DivergentUpd = updateNormalInstruction(I);
}
// propagate value divergence to users
if (DivergentUpd) {
markDivergent(I);
pushUsers(I);
}
}
}
bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
return UniformOverrides.find(&V) != UniformOverrides.end();
}
bool DivergenceAnalysis::isDivergent(const Value &V) const {
return DivergentValues.find(&V) != DivergentValues.end();
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
// iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (isDivergent(I))
OS << "DIVERGENT:" << I << '\n';
}
}
// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI,
const TargetTransformInfo &TTI)
: SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, false) {
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
DA.markDivergent(I);
} else if (TTI.isAlwaysUniform(&I)) {
DA.addUniformOverride(I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
DA.markDivergent(Arg);
}
}
DA.compute();
}
bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
return DA.isDivergent(val);
}
void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
DA.print(OS, mod);
OS << "}\n";
}