llvm-project/llvm/lib/Transforms/Scalar/SCCP.cpp

2192 lines
80 KiB
C++

//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
// * Assumes values are constant unless proven otherwise
// * Assumes BasicBlocks are dead unless proven otherwise
// * Proves values to be constant, and replaces them with constants
// * Proves conditional branches to be unconditional
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "sccp"
STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
STATISTIC(NumInstReplaced,
"Number of instructions replaced with (simpler) instruction");
STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
STATISTIC(
IPNumInstReplaced,
"Number of instructions replaced with (simpler) instruction by IPSCCP");
// The maximum number of range extensions allowed for operations requiring
// widening.
static const unsigned MaxNumRangeExtensions = 10;
/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
MaxNumRangeExtensions);
}
namespace {
// Helper to check if \p LV is either a constant or a constant
// range with a single element. This should cover exactly the same cases as the
// old ValueLatticeElement::isConstant() and is intended to be used in the
// transition to ValueLatticeElement.
bool isConstant(const ValueLatticeElement &LV) {
return LV.isConstant() ||
(LV.isConstantRange() && LV.getConstantRange().isSingleElement());
}
// Helper to check if \p LV is either overdefined or a constant range with more
// than a single element. This should cover exactly the same cases as the old
// ValueLatticeElement::isOverdefined() and is intended to be used in the
// transition to ValueLatticeElement.
bool isOverdefined(const ValueLatticeElement &LV) {
return !LV.isUnknownOrUndef() && !isConstant(LV);
}
//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
const DataLayout &DL;
std::function<const TargetLibraryInfo &(Function &)> GetTLI;
SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
DenseMap<Value *, ValueLatticeElement>
ValueState; // The state each value is in.
/// StructValueState - This maintains ValueState for values that have
/// StructType, for example for formal arguments, calls, insertelement, etc.
DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
/// GlobalValue - If we are tracking any values for the contents of a global
/// variable, we keep a mapping from the constant accessor to the element of
/// the global, to the currently known value. If the value becomes
/// overdefined, it's entry is simply removed from this map.
DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
/// TrackedRetVals - If we are tracking arguments into and the return
/// value out of a function, it will have an entry in this map, indicating
/// what the known return value for the function is.
MapVector<Function *, ValueLatticeElement> TrackedRetVals;
/// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
/// that return multiple values.
MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
TrackedMultipleRetVals;
/// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
/// represented here for efficient lookup.
SmallPtrSet<Function *, 16> MRVFunctionsTracked;
/// MustTailFunctions - Each function here is a callee of non-removable
/// musttail call site.
SmallPtrSet<Function *, 16> MustTailCallees;
/// TrackingIncomingArguments - This is the set of functions for whose
/// arguments we make optimistic assumptions about and try to prove as
/// constants.
SmallPtrSet<Function *, 16> TrackingIncomingArguments;
/// The reason for two worklists is that overdefined is the lowest state
/// on the lattice, and moving things to overdefined as fast as possible
/// makes SCCP converge much faster.
///
/// By having a separate worklist, we accomplish this because everything
/// possibly overdefined will become overdefined at the soonest possible
/// point.
SmallVector<Value *, 64> OverdefinedInstWorkList;
SmallVector<Value *, 64> InstWorkList;
// The BasicBlock work list
SmallVector<BasicBlock *, 64> BBWorkList;
/// KnownFeasibleEdges - Entries in this set are edges which have already had
/// PHI nodes retriggered.
using Edge = std::pair<BasicBlock *, BasicBlock *>;
DenseSet<Edge> KnownFeasibleEdges;
DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
LLVMContext &Ctx;
public:
void addAnalysis(Function &F, AnalysisResultsForFn A) {
AnalysisResults.insert({&F, std::move(A)});
}
const PredicateBase *getPredicateInfoFor(Instruction *I) {
auto A = AnalysisResults.find(I->getParent()->getParent());
if (A == AnalysisResults.end())
return nullptr;
return A->second.PredInfo->getPredicateInfoFor(I);
}
DomTreeUpdater getDTU(Function &F) {
auto A = AnalysisResults.find(&F);
assert(A != AnalysisResults.end() && "Need analysis results for function.");
return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
}
SCCPSolver(const DataLayout &DL,
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
LLVMContext &Ctx)
: DL(DL), GetTLI(std::move(GetTLI)), Ctx(Ctx) {}
/// MarkBlockExecutable - This method can be used by clients to mark all of
/// the blocks that are known to be intrinsically live in the processed unit.
///
/// This returns true if the block was not considered live before.
bool MarkBlockExecutable(BasicBlock *BB) {
if (!BBExecutable.insert(BB).second)
return false;
LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
BBWorkList.push_back(BB); // Add the block to the work list!
return true;
}
/// TrackValueOfGlobalVariable - Clients can use this method to
/// inform the SCCPSolver that it should track loads and stores to the
/// specified global variable if it can. This is only legal to call if
/// performing Interprocedural SCCP.
void TrackValueOfGlobalVariable(GlobalVariable *GV) {
// We only track the contents of scalar globals.
if (GV->getValueType()->isSingleValueType()) {
ValueLatticeElement &IV = TrackedGlobals[GV];
if (!isa<UndefValue>(GV->getInitializer()))
IV.markConstant(GV->getInitializer());
}
}
/// AddTrackedFunction - If the SCCP solver is supposed to track calls into
/// and out of the specified function (which cannot have its address taken),
/// this method must be called.
void AddTrackedFunction(Function *F) {
// Add an entry, F -> undef.
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
MRVFunctionsTracked.insert(F);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
TrackedMultipleRetVals.insert(
std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
} else if (!F->getReturnType()->isVoidTy())
TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
}
/// AddMustTailCallee - If the SCCP solver finds that this function is called
/// from non-removable musttail call site.
void AddMustTailCallee(Function *F) {
MustTailCallees.insert(F);
}
/// Returns true if the given function is called from non-removable musttail
/// call site.
bool isMustTailCallee(Function *F) {
return MustTailCallees.count(F);
}
void AddArgumentTrackedFunction(Function *F) {
TrackingIncomingArguments.insert(F);
}
/// Returns true if the given function is in the solver's set of
/// argument-tracked functions.
bool isArgumentTrackedFunction(Function *F) {
return TrackingIncomingArguments.count(F);
}
/// Solve - Solve for constants and executable blocks.
void Solve();
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption. After we solve dataflow, this
/// method should be use to handle this. If this returns true, the solver
/// should be rerun.
bool ResolvedUndefsIn(Function &F);
bool isBlockExecutable(BasicBlock *BB) const {
return BBExecutable.count(BB);
}
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
std::vector<ValueLatticeElement> StructValues;
auto *STy = dyn_cast<StructType>(V->getType());
assert(STy && "getStructLatticeValueFor() can be called only on structs");
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
auto I = StructValueState.find(std::make_pair(V, i));
assert(I != StructValueState.end() && "Value not in valuemap!");
StructValues.push_back(I->second);
}
return StructValues;
}
void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
const ValueLatticeElement &getLatticeValueFor(Value *V) const {
assert(!V->getType()->isStructTy() &&
"Should use getStructLatticeValueFor");
DenseMap<Value *, ValueLatticeElement>::const_iterator I =
ValueState.find(V);
assert(I != ValueState.end() &&
"V not found in ValueState nor Paramstate map!");
return I->second;
}
/// getTrackedRetVals - Get the inferred return value map.
const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
return TrackedRetVals;
}
/// getTrackedGlobals - Get and return the set of inferred initializers for
/// global variables.
const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
return TrackedGlobals;
}
/// getMRVFunctionsTracked - Get the set of functions which return multiple
/// values tracked by the pass.
const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
return MRVFunctionsTracked;
}
/// getMustTailCallees - Get the set of functions which are called
/// from non-removable musttail call sites.
const SmallPtrSet<Function *, 16> getMustTailCallees() {
return MustTailCallees;
}
/// markOverdefined - Mark the specified value overdefined. This
/// works with both scalars and structs.
void markOverdefined(Value *V) {
if (auto *STy = dyn_cast<StructType>(V->getType()))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
markOverdefined(getStructValueState(V, i), V);
else
markOverdefined(ValueState[V], V);
}
// isStructLatticeConstant - Return true if all the lattice values
// corresponding to elements of the structure are constants,
// false otherwise.
bool isStructLatticeConstant(Function *F, StructType *STy) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
assert(It != TrackedMultipleRetVals.end());
ValueLatticeElement LV = It->second;
if (!isConstant(LV))
return false;
}
return true;
}
/// Helper to return a Constant if \p LV is either a constant or a constant
/// range with a single element.
Constant *getConstant(const ValueLatticeElement &LV) const {
if (LV.isConstant())
return LV.getConstant();
if (LV.isConstantRange()) {
auto &CR = LV.getConstantRange();
if (CR.getSingleElement())
return ConstantInt::get(Ctx, *CR.getSingleElement());
}
return nullptr;
}
private:
ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
return dyn_cast_or_null<ConstantInt>(getConstant(IV));
}
// pushToWorkList - Helper for markConstant/markOverdefined
void pushToWorkList(ValueLatticeElement &IV, Value *V) {
if (IV.isOverdefined())
return OverdefinedInstWorkList.push_back(V);
InstWorkList.push_back(V);
}
// Helper to push \p V to the worklist, after updating it to \p IV. Also
// prints a debug message with the updated value.
void pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
pushToWorkList(IV, V);
}
// markConstant - Make a value be marked as "constant". If the value
// is not already a constant, add it to the instruction work list so that
// the users of the instruction are updated later.
bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
bool MayIncludeUndef = false) {
if (!IV.markConstant(C, MayIncludeUndef))
return false;
LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
pushToWorkList(IV, V);
return true;
}
bool markConstant(Value *V, Constant *C) {
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
return markConstant(ValueState[V], V, C);
}
// markOverdefined - Make a value be marked as "overdefined". If the
// value is not already overdefined, add it to the overdefined instruction
// work list so that the users of the instruction are updated later.
bool markOverdefined(ValueLatticeElement &IV, Value *V) {
if (!IV.markOverdefined()) return false;
LLVM_DEBUG(dbgs() << "markOverdefined: ";
if (auto *F = dyn_cast<Function>(V)) dbgs()
<< "Function '" << F->getName() << "'\n";
else dbgs() << *V << '\n');
// Only instructions go on the work list
pushToWorkList(IV, V);
return true;
}
/// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
/// changes.
bool mergeInValue(ValueLatticeElement &IV, Value *V,
ValueLatticeElement MergeWithV,
ValueLatticeElement::MergeOptions Opts = {
/*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
if (IV.mergeIn(MergeWithV, Opts)) {
pushToWorkList(IV, V);
LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
<< IV << "\n");
return true;
}
return false;
}
bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
ValueLatticeElement::MergeOptions Opts = {
/*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
assert(!V->getType()->isStructTy() &&
"non-structs should use markConstant");
return mergeInValue(ValueState[V], V, MergeWithV, Opts);
}
/// getValueState - Return the ValueLatticeElement object that corresponds to
/// the value. This function handles the case when the value hasn't been seen
/// yet by properly seeding constants etc.
ValueLatticeElement &getValueState(Value *V) {
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
ValueLatticeElement &LV = I.first->second;
if (!I.second)
return LV; // Common case, already in the map.
if (auto *C = dyn_cast<Constant>(V))
LV.markConstant(C); // Constants are constant
// All others are unknown by default.
return LV;
}
/// getStructValueState - Return the ValueLatticeElement object that
/// corresponds to the value/field pair. This function handles the case when
/// the value hasn't been seen yet by properly seeding constants etc.
ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
assert(V->getType()->isStructTy() && "Should use getValueState");
assert(i < cast<StructType>(V->getType())->getNumElements() &&
"Invalid element #");
auto I = StructValueState.insert(
std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
ValueLatticeElement &LV = I.first->second;
if (!I.second)
return LV; // Common case, already in the map.
if (auto *C = dyn_cast<Constant>(V)) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt)
LV.markOverdefined(); // Unknown sort of constant.
else if (isa<UndefValue>(Elt))
; // Undef values remain unknown.
else
LV.markConstant(Elt); // Constants are constant.
}
// All others are underdefined by default.
return LV;
}
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
/// work list if it is not already executable.
bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
return false; // This edge is already known to be executable!
if (!MarkBlockExecutable(Dest)) {
// If the destination is already executable, we just made an *edge*
// feasible that wasn't before. Revisit the PHI nodes in the block
// because they have potentially new operands.
LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
<< " -> " << Dest->getName() << '\n');
for (PHINode &PN : Dest->phis())
visitPHINode(PN);
}
return true;
}
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
// OperandChangedState - This method is invoked on all of the users of an
// instruction that was just changed state somehow. Based on this
// information, we need to update the specified user of this instruction.
void OperandChangedState(Instruction *I) {
if (BBExecutable.count(I->getParent())) // Inst is executable?
visit(*I);
}
// Add U as additional user of V.
void addAdditionalUser(Value *V, User *U) {
auto Iter = AdditionalUsers.insert({V, {}});
Iter.first->second.insert(U);
}
// Mark I's users as changed, including AdditionalUsers.
void markUsersAsChanged(Value *I) {
// Functions include their arguments in the use-list. Changed function
// values mean that the result of the function changed. We only need to
// update the call sites with the new function result and do not have to
// propagate the call arguments.
if (isa<Function>(I)) {
for (User *U : I->users()) {
if (auto *CB = dyn_cast<CallBase>(U))
handleCallResult(*CB);
}
} else {
for (User *U : I->users())
if (auto *UI = dyn_cast<Instruction>(U))
OperandChangedState(UI);
}
auto Iter = AdditionalUsers.find(I);
if (Iter != AdditionalUsers.end()) {
for (User *U : Iter->second)
if (auto *UI = dyn_cast<Instruction>(U))
OperandChangedState(UI);
}
}
void handleCallOverdefined(CallBase &CB);
void handleCallResult(CallBase &CB);
void handleCallArguments(CallBase &CB);
private:
friend class InstVisitor<SCCPSolver>;
// visit implementations - Something changed in this instruction. Either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate.
void visitPHINode(PHINode &I);
// Terminators
void visitReturnInst(ReturnInst &I);
void visitTerminator(Instruction &TI);
void visitCastInst(CastInst &I);
void visitSelectInst(SelectInst &I);
void visitUnaryOperator(Instruction &I);
void visitBinaryOperator(Instruction &I);
void visitCmpInst(CmpInst &I);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void visitCatchSwitchInst(CatchSwitchInst &CPI) {
markOverdefined(&CPI);
visitTerminator(CPI);
}
// Instructions that cannot be folded away.
void visitStoreInst (StoreInst &I);
void visitLoadInst (LoadInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitCallInst (CallInst &I) {
visitCallBase(I);
}
void visitInvokeInst (InvokeInst &II) {
visitCallBase(II);
visitTerminator(II);
}
void visitCallBrInst (CallBrInst &CBI) {
visitCallBase(CBI);
visitTerminator(CBI);
}
void visitCallBase (CallBase &CB);
void visitResumeInst (ResumeInst &I) { /*returns void*/ }
void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
void visitFenceInst (FenceInst &I) { /*returns void*/ }
void visitInstruction(Instruction &I) {
// All the instructions we don't do any special handling for just
// go to overdefined.
LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
markOverdefined(&I);
}
};
} // end anonymous namespace
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
SmallVectorImpl<bool> &Succs) {
Succs.resize(TI.getNumSuccessors());
if (auto *BI = dyn_cast<BranchInst>(&TI)) {
if (BI->isUnconditional()) {
Succs[0] = true;
return;
}
ValueLatticeElement BCValue = getValueState(BI->getCondition());
ConstantInt *CI = getConstantInt(BCValue);
if (!CI) {
// Overdefined condition variables, and branches on unfoldable constant
// conditions, mean the branch could go either way.
if (!BCValue.isUnknownOrUndef())
Succs[0] = Succs[1] = true;
return;
}
// Constant condition variables mean the branch can only go a single way.
Succs[CI->isZero()] = true;
return;
}
// Unwinding instructions successors are always executable.
if (TI.isExceptionalTerminator()) {
Succs.assign(TI.getNumSuccessors(), true);
return;
}
if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
if (!SI->getNumCases()) {
Succs[0] = true;
return;
}
const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
if (ConstantInt *CI = getConstantInt(SCValue)) {
Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
return;
}
// TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
// is ready.
if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
const ConstantRange &Range = SCValue.getConstantRange();
for (const auto &Case : SI->cases()) {
const APInt &CaseValue = Case.getCaseValue()->getValue();
if (Range.contains(CaseValue))
Succs[Case.getSuccessorIndex()] = true;
}
// TODO: Determine whether default case is reachable.
Succs[SI->case_default()->getSuccessorIndex()] = true;
return;
}
// Overdefined or unknown condition? All destinations are executable!
if (!SCValue.isUnknownOrUndef())
Succs.assign(TI.getNumSuccessors(), true);
return;
}
// In case of indirect branch and its address is a blockaddress, we mark
// the target as executable.
if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
// Casts are folded by visitCastInst.
ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
if (!Addr) { // Overdefined or unknown condition?
// All destinations are executable!
if (!IBRValue.isUnknownOrUndef())
Succs.assign(TI.getNumSuccessors(), true);
return;
}
BasicBlock* T = Addr->getBasicBlock();
assert(Addr->getFunction() == T->getParent() &&
"Block address of a different function ?");
for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
// This is the target.
if (IBR->getDestination(i) == T) {
Succs[i] = true;
return;
}
}
// If we didn't find our destination in the IBR successor list, then we
// have undefined behavior. Its ok to assume no successor is executable.
return;
}
// In case of callbr, we pessimistically assume that all successors are
// feasible.
if (isa<CallBrInst>(&TI)) {
Succs.assign(TI.getNumSuccessors(), true);
return;
}
LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
// Check if we've called markEdgeExecutable on the edge yet. (We could
// be more aggressive and try to consider edges which haven't been marked
// yet, but there isn't any need.)
return KnownFeasibleEdges.count(Edge(From, To));
}
// visit Implementations - Something changed in this instruction, either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate. This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
// from different branches, or if the PHI node merges in an overdefined
// value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
// PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
// destination executable
// 7. If a conditional branch has a value that is overdefined, make all
// successors executable.
void SCCPSolver::visitPHINode(PHINode &PN) {
// If this PN returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this if code actually uses this.
if (PN.getType()->isStructTy())
return (void)markOverdefined(&PN);
if (getValueState(&PN).isOverdefined())
return; // Quick exit
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
// and slow us down a lot. Just mark them overdefined.
if (PN.getNumIncomingValues() > 64)
return (void)markOverdefined(&PN);
unsigned NumActiveIncoming = 0;
// Look at all of the executable operands of the PHI node. If any of them
// are overdefined, the PHI becomes overdefined as well. If they are all
// constant, and they agree with each other, the PHI becomes the identical
// constant. If they are constant and don't agree, the PHI is a constant
// range. If there are no executable operands, the PHI remains unknown.
ValueLatticeElement PhiState = getValueState(&PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
continue;
ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
PhiState.mergeIn(IV);
NumActiveIncoming++;
if (PhiState.isOverdefined())
break;
}
// We allow up to 1 range extension per active incoming value and one
// additional extension. Note that we manually adjust the number of range
// extensions to match the number of active incoming values. This helps to
// limit multiple extensions caused by the same incoming value, if other
// incoming values are equal.
mergeInValue(&PN, PhiState,
ValueLatticeElement::MergeOptions().setMaxWidenSteps(
NumActiveIncoming + 1));
ValueLatticeElement &PhiStateRef = getValueState(&PN);
PhiStateRef.setNumRangeExtensions(
std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
}
void SCCPSolver::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0) return; // ret void
Function *F = I.getParent()->getParent();
Value *ResultOp = I.getOperand(0);
// If we are tracking the return value of this function, merge it in.
if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
auto TFRVI = TrackedRetVals.find(F);
if (TFRVI != TrackedRetVals.end()) {
mergeInValue(TFRVI->second, F, getValueState(ResultOp));
return;
}
}
// Handle functions that return multiple values.
if (!TrackedMultipleRetVals.empty()) {
if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
if (MRVFunctionsTracked.count(F))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
getStructValueState(ResultOp, i));
}
}
void SCCPSolver::visitTerminator(Instruction &TI) {
SmallVector<bool, 16> SuccFeasible;
getFeasibleSuccessors(TI, SuccFeasible);
BasicBlock *BB = TI.getParent();
// Mark all feasible successors executable.
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
if (SuccFeasible[i])
markEdgeExecutable(BB, TI.getSuccessor(i));
}
void SCCPSolver::visitCastInst(CastInst &I) {
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&I].isOverdefined())
return;
ValueLatticeElement OpSt = getValueState(I.getOperand(0));
if (Constant *OpC = getConstant(OpSt)) {
// Fold the constant as we build.
Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
if (isa<UndefValue>(C))
return;
// Propagate constant value
markConstant(&I, C);
} else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
auto &LV = getValueState(&I);
ConstantRange OpRange = OpSt.getConstantRange();
Type *DestTy = I.getDestTy();
// Vectors where all elements have the same known constant range are treated
// as a single constant range in the lattice. When bitcasting such vectors,
// there is a mis-match between the width of the lattice value (single
// constant range) and the original operands (vector). Go to overdefined in
// that case.
if (I.getOpcode() == Instruction::BitCast &&
I.getOperand(0)->getType()->isVectorTy() &&
OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
return (void)markOverdefined(&I);
ConstantRange Res =
OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
} else if (!OpSt.isUnknownOrUndef())
markOverdefined(&I);
}
void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
// If this returns a struct, mark all elements over defined, we don't track
// structs in structs.
if (EVI.getType()->isStructTy())
return (void)markOverdefined(&EVI);
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&EVI].isOverdefined())
return (void)markOverdefined(&EVI);
// If this is extracting from more than one level of struct, we don't know.
if (EVI.getNumIndices() != 1)
return (void)markOverdefined(&EVI);
Value *AggVal = EVI.getAggregateOperand();
if (AggVal->getType()->isStructTy()) {
unsigned i = *EVI.idx_begin();
ValueLatticeElement EltVal = getStructValueState(AggVal, i);
mergeInValue(getValueState(&EVI), &EVI, EltVal);
} else {
// Otherwise, must be extracting from an array.
return (void)markOverdefined(&EVI);
}
}
void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
auto *STy = dyn_cast<StructType>(IVI.getType());
if (!STy)
return (void)markOverdefined(&IVI);
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (isOverdefined(ValueState[&IVI]))
return (void)markOverdefined(&IVI);
// If this has more than one index, we can't handle it, drive all results to
// undef.
if (IVI.getNumIndices() != 1)
return (void)markOverdefined(&IVI);
Value *Aggr = IVI.getAggregateOperand();
unsigned Idx = *IVI.idx_begin();
// Compute the result based on what we're inserting.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// This passes through all values that aren't the inserted element.
if (i != Idx) {
ValueLatticeElement EltVal = getStructValueState(Aggr, i);
mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
continue;
}
Value *Val = IVI.getInsertedValueOperand();
if (Val->getType()->isStructTy())
// We don't track structs in structs.
markOverdefined(getStructValueState(&IVI, i), &IVI);
else {
ValueLatticeElement InVal = getValueState(Val);
mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
}
}
}
void SCCPSolver::visitSelectInst(SelectInst &I) {
// If this select returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this if code actually uses this.
if (I.getType()->isStructTy())
return (void)markOverdefined(&I);
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&I].isOverdefined())
return (void)markOverdefined(&I);
ValueLatticeElement CondValue = getValueState(I.getCondition());
if (CondValue.isUnknownOrUndef())
return;
if (ConstantInt *CondCB = getConstantInt(CondValue)) {
Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
mergeInValue(&I, getValueState(OpVal));
return;
}
// Otherwise, the condition is overdefined or a constant we can't evaluate.
// See if we can produce something better than overdefined based on the T/F
// value.
ValueLatticeElement TVal = getValueState(I.getTrueValue());
ValueLatticeElement FVal = getValueState(I.getFalseValue());
bool Changed = ValueState[&I].mergeIn(TVal);
Changed |= ValueState[&I].mergeIn(FVal);
if (Changed)
pushToWorkListMsg(ValueState[&I], &I);
}
// Handle Unary Operators.
void SCCPSolver::visitUnaryOperator(Instruction &I) {
ValueLatticeElement V0State = getValueState(I.getOperand(0));
ValueLatticeElement &IV = ValueState[&I];
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (isOverdefined(IV))
return (void)markOverdefined(&I);
if (isConstant(V0State)) {
Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
// op Y -> undef.
if (isa<UndefValue>(C))
return;
return (void)markConstant(IV, &I, C);
}
// If something is undef, wait for it to resolve.
if (!isOverdefined(V0State))
return;
markOverdefined(&I);
}
// Handle Binary Operators.
void SCCPSolver::visitBinaryOperator(Instruction &I) {
ValueLatticeElement V1State = getValueState(I.getOperand(0));
ValueLatticeElement V2State = getValueState(I.getOperand(1));
ValueLatticeElement &IV = ValueState[&I];
if (IV.isOverdefined())
return;
// If something is undef, wait for it to resolve.
if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
return;
if (V1State.isOverdefined() && V2State.isOverdefined())
return (void)markOverdefined(&I);
// If either of the operands is a constant, try to fold it to a constant.
// TODO: Use information from notconstant better.
if ((V1State.isConstant() || V2State.isConstant())) {
Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
auto *C = dyn_cast_or_null<Constant>(R);
if (C) {
// X op Y -> undef.
if (isa<UndefValue>(C))
return;
// Conservatively assume that the result may be based on operands that may
// be undef. Note that we use mergeInValue to combine the constant with
// the existing lattice value for I, as different constants might be found
// after one of the operands go to overdefined, e.g. due to one operand
// being a special floating value.
ValueLatticeElement NewV;
NewV.markConstant(C, /*MayIncludeUndef=*/true);
return (void)mergeInValue(&I, NewV);
}
}
// Only use ranges for binary operators on integers.
if (!I.getType()->isIntegerTy())
return markOverdefined(&I);
// Try to simplify to a constant range.
ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
if (V1State.isConstantRange())
A = V1State.getConstantRange();
if (V2State.isConstantRange())
B = V2State.getConstantRange();
ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
mergeInValue(&I, ValueLatticeElement::getRange(R));
// TODO: Currently we do not exploit special values that produce something
// better than overdefined with an overdefined operand for vector or floating
// point types, like and <4 x i32> overdefined, zeroinitializer.
}
// Handle ICmpInst instruction.
void SCCPSolver::visitCmpInst(CmpInst &I) {
// Do not cache this lookup, getValueState calls later in the function might
// invalidate the reference.
if (isOverdefined(ValueState[&I]))
return (void)markOverdefined(&I);
Value *Op1 = I.getOperand(0);
Value *Op2 = I.getOperand(1);
// For parameters, use ParamState which includes constant range info if
// available.
auto V1State = getValueState(Op1);
auto V2State = getValueState(Op2);
Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
if (C) {
if (isa<UndefValue>(C))
return;
ValueLatticeElement CV;
CV.markConstant(C);
mergeInValue(&I, CV);
return;
}
// If operands are still unknown, wait for it to resolve.
if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
!isConstant(ValueState[&I]))
return;
markOverdefined(&I);
}
// Handle getelementptr instructions. If all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
if (isOverdefined(ValueState[&I]))
return (void)markOverdefined(&I);
SmallVector<Constant*, 8> Operands;
Operands.reserve(I.getNumOperands());
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
ValueLatticeElement State = getValueState(I.getOperand(i));
if (State.isUnknownOrUndef())
return; // Operands are not resolved yet.
if (isOverdefined(State))
return (void)markOverdefined(&I);
if (Constant *C = getConstant(State)) {
Operands.push_back(C);
continue;
}
return (void)markOverdefined(&I);
}
Constant *Ptr = Operands[0];
auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
Constant *C =
ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
if (isa<UndefValue>(C))
return;
markConstant(&I, C);
}
void SCCPSolver::visitStoreInst(StoreInst &SI) {
// If this store is of a struct, ignore it.
if (SI.getOperand(0)->getType()->isStructTy())
return;
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
return;
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
auto I = TrackedGlobals.find(GV);
if (I == TrackedGlobals.end())
return;
// Get the value we are storing into the global, then merge it.
mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
ValueLatticeElement::MergeOptions().setCheckWiden(false));
if (I->second.isOverdefined())
TrackedGlobals.erase(I); // No need to keep tracking this!
}
static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
if (I->getType()->isIntegerTy())
return ValueLatticeElement::getRange(
getConstantRangeFromMetadata(*Ranges));
if (I->hasMetadata(LLVMContext::MD_nonnull))
return ValueLatticeElement::getNot(
ConstantPointerNull::get(cast<PointerType>(I->getType())));
return ValueLatticeElement::getOverdefined();
}
// Handle load instructions. If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPSolver::visitLoadInst(LoadInst &I) {
// If this load is of a struct or the load is volatile, just mark the result
// as overdefined.
if (I.getType()->isStructTy() || I.isVolatile())
return (void)markOverdefined(&I);
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&I].isOverdefined())
return (void)markOverdefined(&I);
ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
if (PtrVal.isUnknownOrUndef())
return; // The pointer is not resolved yet!
ValueLatticeElement &IV = ValueState[&I];
if (isConstant(PtrVal)) {
Constant *Ptr = getConstant(PtrVal);
// load null is undefined.
if (isa<ConstantPointerNull>(Ptr)) {
if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
return (void)markOverdefined(IV, &I);
else
return;
}
// Transform load (constant global) into the value loaded.
if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
if (!TrackedGlobals.empty()) {
// If we are tracking this global, merge in the known value for it.
auto It = TrackedGlobals.find(GV);
if (It != TrackedGlobals.end()) {
mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
return;
}
}
}
// Transform load from a constant into a constant if possible.
if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
if (isa<UndefValue>(C))
return;
return (void)markConstant(IV, &I, C);
}
}
// Fall back to metadata.
mergeInValue(&I, getValueFromMetadata(&I));
}
void SCCPSolver::visitCallBase(CallBase &CB) {
handleCallResult(CB);
handleCallArguments(CB);
}
void SCCPSolver::handleCallOverdefined(CallBase &CB) {
Function *F = CB.getCalledFunction();
// Void return and not tracking callee, just bail.
if (CB.getType()->isVoidTy())
return;
// Always mark struct return as overdefined.
if (CB.getType()->isStructTy())
return (void)markOverdefined(&CB);
// Otherwise, if we have a single return value case, and if the function is
// a declaration, maybe we can constant fold it.
if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
SmallVector<Constant *, 8> Operands;
for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
if (AI->get()->getType()->isStructTy())
return markOverdefined(&CB); // Can't handle struct args.
ValueLatticeElement State = getValueState(*AI);
if (State.isUnknownOrUndef())
return; // Operands are not resolved yet.
if (isOverdefined(State))
return (void)markOverdefined(&CB);
assert(isConstant(State) && "Unknown state!");
Operands.push_back(getConstant(State));
}
if (isOverdefined(getValueState(&CB)))
return (void)markOverdefined(&CB);
// If we can constant fold this, mark the result of the call as a
// constant.
if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
// call -> undef.
if (isa<UndefValue>(C))
return;
return (void)markConstant(&CB, C);
}
}
// Fall back to metadata.
mergeInValue(&CB, getValueFromMetadata(&CB));
}
void SCCPSolver::handleCallArguments(CallBase &CB) {
Function *F = CB.getCalledFunction();
// If this is a local function that doesn't have its address taken, mark its
// entry block executable and merge in the actual arguments to the call into
// the formal arguments of the function.
if (!TrackingIncomingArguments.empty() &&
TrackingIncomingArguments.count(F)) {
MarkBlockExecutable(&F->front());
// Propagate information from this call site into the callee.
auto CAI = CB.arg_begin();
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
++AI, ++CAI) {
// If this argument is byval, and if the function is not readonly, there
// will be an implicit copy formed of the input aggregate.
if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
markOverdefined(&*AI);
continue;
}
if (auto *STy = dyn_cast<StructType>(AI->getType())) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
ValueLatticeElement CallArg = getStructValueState(*CAI, i);
mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
getMaxWidenStepsOpts());
}
} else
mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
}
}
}
void SCCPSolver::handleCallResult(CallBase &CB) {
Function *F = CB.getCalledFunction();
if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
if (ValueState[&CB].isOverdefined())
return;
Value *CopyOf = CB.getOperand(0);
ValueLatticeElement CopyOfVal = getValueState(CopyOf);
auto *PI = getPredicateInfoFor(&CB);
assert(PI && "Missing predicate info for ssa.copy");
const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
if (!Constraint) {
mergeInValue(ValueState[&CB], &CB, CopyOfVal);
return;
}
CmpInst::Predicate Pred = Constraint->Predicate;
Value *OtherOp = Constraint->OtherOp;
// Wait until OtherOp is resolved.
if (getValueState(OtherOp).isUnknown()) {
addAdditionalUser(OtherOp, &CB);
return;
}
// TODO: Actually filp MayIncludeUndef for the created range to false,
// once most places in the optimizer respect the branches on
// undef/poison are UB rule. The reason why the new range cannot be
// undef is as follows below:
// The new range is based on a branch condition. That guarantees that
// neither of the compare operands can be undef in the branch targets,
// unless we have conditions that are always true/false (e.g. icmp ule
// i32, %a, i32_max). For the latter overdefined/empty range will be
// inferred, but the branch will get folded accordingly anyways.
bool MayIncludeUndef = !isa<PredicateAssume>(PI);
ValueLatticeElement CondVal = getValueState(OtherOp);
ValueLatticeElement &IV = ValueState[&CB];
if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
auto ImposedCR =
ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
// Get the range imposed by the condition.
if (CondVal.isConstantRange())
ImposedCR = ConstantRange::makeAllowedICmpRegion(
Pred, CondVal.getConstantRange());
// Combine range info for the original value with the new range from the
// condition.
auto CopyOfCR = CopyOfVal.isConstantRange()
? CopyOfVal.getConstantRange()
: ConstantRange::getFull(
DL.getTypeSizeInBits(CopyOf->getType()));
auto NewCR = ImposedCR.intersectWith(CopyOfCR);
// If the existing information is != x, do not use the information from
// a chained predicate, as the != x information is more likely to be
// helpful in practice.
if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
NewCR = CopyOfCR;
addAdditionalUser(OtherOp, &CB);
mergeInValue(
IV, &CB,
ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
return;
} else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
// For non-integer values or integer constant expressions, only
// propagate equal constants.
addAdditionalUser(OtherOp, &CB);
mergeInValue(IV, &CB, CondVal);
return;
} else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
!MayIncludeUndef) {
// Propagate inequalities.
addAdditionalUser(OtherOp, &CB);
mergeInValue(IV, &CB,
ValueLatticeElement::getNot(CondVal.getConstant()));
return;
}
return (void)mergeInValue(IV, &CB, CopyOfVal);
}
if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
// Compute result range for intrinsics supported by ConstantRange.
// Do this even if we don't know a range for all operands, as we may
// still know something about the result range, e.g. of abs(x).
SmallVector<ConstantRange, 2> OpRanges;
for (Value *Op : II->args()) {
const ValueLatticeElement &State = getValueState(Op);
if (State.isConstantRange())
OpRanges.push_back(State.getConstantRange());
else
OpRanges.push_back(
ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
}
ConstantRange Result =
ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
}
}
// The common case is that we aren't tracking the callee, either because we
// are not doing interprocedural analysis or the callee is indirect, or is
// external. Handle these cases first.
if (!F || F->isDeclaration())
return handleCallOverdefined(CB);
// If this is a single/zero retval case, see if we're tracking the function.
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
if (!MRVFunctionsTracked.count(F))
return handleCallOverdefined(CB); // Not tracking this callee.
// If we are tracking this callee, propagate the result of the function
// into this call site.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(getStructValueState(&CB, i), &CB,
TrackedMultipleRetVals[std::make_pair(F, i)],
getMaxWidenStepsOpts());
} else {
auto TFRVI = TrackedRetVals.find(F);
if (TFRVI == TrackedRetVals.end())
return handleCallOverdefined(CB); // Not tracking this callee.
// If so, propagate the return value of the callee into this call result.
mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
}
}
void SCCPSolver::Solve() {
// Process the work lists until they are empty!
while (!BBWorkList.empty() || !InstWorkList.empty() ||
!OverdefinedInstWorkList.empty()) {
// Process the overdefined instruction's work list first, which drives other
// things to overdefined more quickly.
while (!OverdefinedInstWorkList.empty()) {
Value *I = OverdefinedInstWorkList.pop_back_val();
LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
// bottom to constant, or to overdefined.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined
// Update all of the users of this instruction's value.
//
markUsersAsChanged(I);
}
// Process the instruction work list.
while (!InstWorkList.empty()) {
Value *I = InstWorkList.pop_back_val();
LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
// "I" got into the work list because it made the transition from undef to
// constant.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined.
// Update all of the users of this instruction's value.
//
if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
markUsersAsChanged(I);
}
// Process the basic block work list.
while (!BBWorkList.empty()) {
BasicBlock *BB = BBWorkList.back();
BBWorkList.pop_back();
LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
// Notify all instructions in this basic block that they are newly
// executable.
visit(BB);
}
}
}
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption. After we solve dataflow, this
/// method should be use to handle this. If this returns true, the solver
/// should be rerun.
///
/// This method handles this by finding an unresolved branch and marking it one
/// of the edges from the block as being feasible, even though the condition
/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
/// CFG and only slightly pessimizes the analysis results (by marking one,
/// potentially infeasible, edge feasible). This cannot usefully modify the
/// constraints on the condition of the branch, as that would impact other users
/// of the value.
///
/// This scan also checks for values that use undefs. It conservatively marks
/// them as overdefined.
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
if (!BBExecutable.count(&BB))
continue;
for (Instruction &I : BB) {
// Look for instructions which produce undef values.
if (I.getType()->isVoidTy()) continue;
if (auto *STy = dyn_cast<StructType>(I.getType())) {
// Only a few things that can be structs matter for undef.
// Tracked calls must never be marked overdefined in ResolvedUndefsIn.
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *F = CB->getCalledFunction())
if (MRVFunctionsTracked.count(F))
continue;
// extractvalue and insertvalue don't need to be marked; they are
// tracked as precisely as their operands.
if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
continue;
// Send the results of everything else to overdefined. We could be
// more precise than this but it isn't worth bothering.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
ValueLatticeElement &LV = getStructValueState(&I, i);
if (LV.isUnknownOrUndef()) {
markOverdefined(LV, &I);
MadeChange = true;
}
}
continue;
}
ValueLatticeElement &LV = getValueState(&I);
if (!LV.isUnknownOrUndef())
continue;
// There are two reasons a call can have an undef result
// 1. It could be tracked.
// 2. It could be constant-foldable.
// Because of the way we solve return values, tracked calls must
// never be marked overdefined in ResolvedUndefsIn.
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *F = CB->getCalledFunction())
if (TrackedRetVals.count(F))
continue;
if (isa<LoadInst>(I)) {
// A load here means one of two things: a load of undef from a global,
// a load from an unknown pointer. Either way, having it return undef
// is okay.
continue;
}
markOverdefined(&I);
MadeChange = true;
}
// Check to see if we have a branch or switch on an undefined value. If so
// we force the branch to go one way or the other to make the successor
// values live. It doesn't really matter which way we force it.
Instruction *TI = BB.getTerminator();
if (auto *BI = dyn_cast<BranchInst>(TI)) {
if (!BI->isConditional()) continue;
if (!getValueState(BI->getCondition()).isUnknownOrUndef())
continue;
// If the input to SCCP is actually branch on undef, fix the undef to
// false.
if (isa<UndefValue>(BI->getCondition())) {
BI->setCondition(ConstantInt::getFalse(BI->getContext()));
markEdgeExecutable(&BB, TI->getSuccessor(1));
MadeChange = true;
continue;
}
// Otherwise, it is a branch on a symbolic value which is currently
// considered to be undef. Make sure some edge is executable, so a
// branch on "undef" always flows somewhere.
// FIXME: Distinguish between dead code and an LLVM "undef" value.
BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
if (markEdgeExecutable(&BB, DefaultSuccessor))
MadeChange = true;
continue;
}
if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
// Indirect branch with no successor ?. Its ok to assume it branches
// to no target.
if (IBR->getNumSuccessors() < 1)
continue;
if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
continue;
// If the input to SCCP is actually branch on undef, fix the undef to
// the first successor of the indirect branch.
if (isa<UndefValue>(IBR->getAddress())) {
IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
markEdgeExecutable(&BB, IBR->getSuccessor(0));
MadeChange = true;
continue;
}
// Otherwise, it is a branch on a symbolic value which is currently
// considered to be undef. Make sure some edge is executable, so a
// branch on "undef" always flows somewhere.
// FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
// we can assume the branch has undefined behavior instead.
BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
if (markEdgeExecutable(&BB, DefaultSuccessor))
MadeChange = true;
continue;
}
if (auto *SI = dyn_cast<SwitchInst>(TI)) {
if (!SI->getNumCases() ||
!getValueState(SI->getCondition()).isUnknownOrUndef())
continue;
// If the input to SCCP is actually switch on undef, fix the undef to
// the first constant.
if (isa<UndefValue>(SI->getCondition())) {
SI->setCondition(SI->case_begin()->getCaseValue());
markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
MadeChange = true;
continue;
}
// Otherwise, it is a branch on a symbolic value which is currently
// considered to be undef. Make sure some edge is executable, so a
// branch on "undef" always flows somewhere.
// FIXME: Distinguish between dead code and an LLVM "undef" value.
BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
if (markEdgeExecutable(&BB, DefaultSuccessor))
MadeChange = true;
continue;
}
}
return MadeChange;
}
static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
Constant *Const = nullptr;
if (V->getType()->isStructTy()) {
std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
if (any_of(IVs,
[](const ValueLatticeElement &LV) { return isOverdefined(LV); }))
return false;
std::vector<Constant *> ConstVals;
auto *ST = cast<StructType>(V->getType());
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
ValueLatticeElement V = IVs[i];
ConstVals.push_back(isConstant(V)
? Solver.getConstant(V)
: UndefValue::get(ST->getElementType(i)));
}
Const = ConstantStruct::get(ST, ConstVals);
} else {
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
if (isOverdefined(IV))
return false;
Const =
isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
}
assert(Const && "Constant is nullptr here!");
// Replacing `musttail` instructions with constant breaks `musttail` invariant
// unless the call itself can be removed
CallInst *CI = dyn_cast<CallInst>(V);
if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
Function *F = CI->getCalledFunction();
// Don't zap returns of the callee
if (F)
Solver.AddMustTailCallee(F);
LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
<< " as a constant\n");
return false;
}
LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
// Replaces all of the uses of a variable with uses of the constant.
V->replaceAllUsesWith(Const);
return true;
}
static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
SmallPtrSetImpl<Value *> &InsertedValues,
Statistic &InstRemovedStat,
Statistic &InstReplacedStat) {
bool MadeChanges = false;
for (Instruction &Inst : make_early_inc_range(BB)) {
if (Inst.getType()->isVoidTy())
continue;
if (tryToReplaceWithConstant(Solver, &Inst)) {
if (Inst.isSafeToRemove())
Inst.eraseFromParent();
// Hey, we just changed something!
MadeChanges = true;
++InstRemovedStat;
} else if (isa<SExtInst>(&Inst)) {
Value *ExtOp = Inst.getOperand(0);
if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
continue;
const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
if (!IV.isConstantRange(/*UndefAllowed=*/false))
continue;
if (IV.getConstantRange().isAllNonNegative()) {
auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
InsertedValues.insert(ZExt);
Inst.replaceAllUsesWith(ZExt);
Solver.removeLatticeValueFor(&Inst);
Inst.eraseFromParent();
InstReplacedStat++;
MadeChanges = true;
}
}
}
return MadeChanges;
}
// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
static bool runSCCP(Function &F, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
SCCPSolver Solver(
DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
F.getContext());
// Mark the first block of the function as being executable.
Solver.MarkBlockExecutable(&F.front());
// Mark all arguments to the function as being overdefined.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
// Solve for constants.
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.Solve();
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
ResolvedUndefs = Solver.ResolvedUndefsIn(F);
}
bool MadeChanges = false;
// If we decided that there are basic blocks that are dead in this function,
// delete their contents now. Note that we cannot actually delete the blocks,
// as we cannot modify the CFG of the function.
SmallPtrSet<Value *, 32> InsertedValues;
for (BasicBlock &BB : F) {
if (!Solver.isBlockExecutable(&BB)) {
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
++NumDeadBlocks;
NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first;
MadeChanges = true;
continue;
}
MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
NumInstRemoved, NumInstReplaced);
}
return MadeChanges;
}
PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
const DataLayout &DL = F.getParent()->getDataLayout();
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
if (!runSCCP(F, DL, &TLI))
return PreservedAnalyses::all();
auto PA = PreservedAnalyses();
PA.preserve<GlobalsAA>();
PA.preserveSet<CFGAnalyses>();
return PA;
}
namespace {
//===--------------------------------------------------------------------===//
//
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
class SCCPLegacyPass : public FunctionPass {
public:
// Pass identification, replacement for typeid
static char ID;
SCCPLegacyPass() : FunctionPass(ID) {
initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.setPreservesCFG();
}
// runOnFunction - Run the Sparse Conditional Constant Propagation
// algorithm, and return true if the function was modified.
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
const DataLayout &DL = F.getParent()->getDataLayout();
const TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
return runSCCP(F, DL, TLI);
}
};
} // end anonymous namespace
char SCCPLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
"Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
"Sparse Conditional Constant Propagation", false, false)
// createSCCPPass - This is the public interface to this file.
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
static void findReturnsToZap(Function &F,
SmallVector<ReturnInst *, 8> &ReturnsToZap,
SCCPSolver &Solver) {
// We can only do this if we know that nothing else can call the function.
if (!Solver.isArgumentTrackedFunction(&F))
return;
// There is a non-removable musttail call site of this function. Zapping
// returns is not allowed.
if (Solver.isMustTailCallee(&F)) {
LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
<< " due to present musttail call of it\n");
return;
}
assert(
all_of(F.users(),
[&Solver](User *U) {
if (isa<Instruction>(U) &&
!Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
return true;
// Non-callsite uses are not impacted by zapping. Also, constant
// uses (like blockaddresses) could stuck around, without being
// used in the underlying IR, meaning we do not have lattice
// values for them.
if (!isa<CallBase>(U))
return true;
if (U->getType()->isStructTy()) {
return all_of(Solver.getStructLatticeValueFor(U),
[](const ValueLatticeElement &LV) {
return !isOverdefined(LV);
});
}
return !isOverdefined(Solver.getLatticeValueFor(U));
}) &&
"We can only zap functions where all live users have a concrete value");
for (BasicBlock &BB : F) {
if (CallInst *CI = BB.getTerminatingMustTailCall()) {
LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
<< "musttail call : " << *CI << "\n");
(void)CI;
return;
}
if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
if (!isa<UndefValue>(RI->getOperand(0)))
ReturnsToZap.push_back(RI);
}
}
static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB,
DomTreeUpdater &DTU) {
SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
bool HasNonFeasibleEdges = false;
for (BasicBlock *Succ : successors(BB)) {
if (Solver.isEdgeFeasible(BB, Succ))
FeasibleSuccessors.insert(Succ);
else
HasNonFeasibleEdges = true;
}
// All edges feasible, nothing to do.
if (!HasNonFeasibleEdges)
return false;
// SCCP can only determine non-feasible edges for br, switch and indirectbr.
Instruction *TI = BB->getTerminator();
assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
isa<IndirectBrInst>(TI)) &&
"Terminator must be a br, switch or indirectbr");
if (FeasibleSuccessors.size() == 1) {
// Replace with an unconditional branch to the only feasible successor.
BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
SmallVector<DominatorTree::UpdateType, 8> Updates;
bool HaveSeenOnlyFeasibleSuccessor = false;
for (BasicBlock *Succ : successors(BB)) {
if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
// Don't remove the edge to the only feasible successor the first time
// we see it. We still do need to remove any multi-edges to it though.
HaveSeenOnlyFeasibleSuccessor = true;
continue;
}
Succ->removePredecessor(BB);
Updates.push_back({DominatorTree::Delete, BB, Succ});
}
BranchInst::Create(OnlyFeasibleSuccessor, BB);
TI->eraseFromParent();
DTU.applyUpdatesPermissive(Updates);
} else if (FeasibleSuccessors.size() > 1) {
SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
SmallVector<DominatorTree::UpdateType, 8> Updates;
for (auto CI = SI->case_begin(); CI != SI->case_end();) {
if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
++CI;
continue;
}
BasicBlock *Succ = CI->getCaseSuccessor();
Succ->removePredecessor(BB);
Updates.push_back({DominatorTree::Delete, BB, Succ});
SI.removeCase(CI);
// Don't increment CI, as we removed a case.
}
DTU.applyUpdatesPermissive(Updates);
} else {
llvm_unreachable("Must have at least one feasible successor");
}
return true;
}
bool llvm::runIPSCCP(
Module &M, const DataLayout &DL,
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
SCCPSolver Solver(DL, GetTLI, M.getContext());
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
for (Function &F : M) {
if (F.isDeclaration())
continue;
Solver.addAnalysis(F, getAnalysis(F));
// Determine if we can track the function's return values. If so, add the
// function to the solver's set of return-tracked functions.
if (canTrackReturnsInterprocedurally(&F))
Solver.AddTrackedFunction(&F);
// Determine if we can track the function's arguments. If so, add the
// function to the solver's set of argument-tracked functions.
if (canTrackArgumentsInterprocedurally(&F)) {
Solver.AddArgumentTrackedFunction(&F);
continue;
}
// Assume the function is called.
Solver.MarkBlockExecutable(&F.front());
// Assume nothing about the incoming arguments.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
}
// Determine if we can track any of the module's global variables. If so, add
// the global variables we can track to the solver's set of tracked global
// variables.
for (GlobalVariable &G : M.globals()) {
G.removeDeadConstantUsers();
if (canTrackGlobalVariableInterprocedurally(&G))
Solver.TrackValueOfGlobalVariable(&G);
}
// Solve for constants.
bool ResolvedUndefs = true;
Solver.Solve();
while (ResolvedUndefs) {
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
ResolvedUndefs = false;
for (Function &F : M) {
if (Solver.ResolvedUndefsIn(F))
ResolvedUndefs = true;
}
if (ResolvedUndefs)
Solver.Solve();
}
bool MadeChanges = false;
// Iterate over all of the instructions in the module, replacing them with
// constants if we have found them to be of constant values.
for (Function &F : M) {
if (F.isDeclaration())
continue;
SmallVector<BasicBlock *, 512> BlocksToErase;
if (Solver.isBlockExecutable(&F.front())) {
bool ReplacedPointerArg = false;
for (Argument &Arg : F.args()) {
if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) {
ReplacedPointerArg |= Arg.getType()->isPointerTy();
++IPNumArgsElimed;
}
}
// If we replaced an argument, the argmemonly and
// inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove
// them from both the function and callsites.
if (ReplacedPointerArg) {
AttrBuilder AttributesToRemove;
AttributesToRemove.addAttribute(Attribute::ArgMemOnly);
AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
F.removeAttributes(AttributeList::FunctionIndex, AttributesToRemove);
for (User *U : F.users()) {
auto *CB = dyn_cast<CallBase>(U);
if (!CB || CB->getCalledFunction() != &F)
continue;
CB->removeAttributes(AttributeList::FunctionIndex,
AttributesToRemove);
}
}
}
SmallPtrSet<Value *, 32> InsertedValues;
for (BasicBlock &BB : F) {
if (!Solver.isBlockExecutable(&BB)) {
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
++NumDeadBlocks;
MadeChanges = true;
if (&BB != &F.front())
BlocksToErase.push_back(&BB);
continue;
}
MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
IPNumInstRemoved, IPNumInstReplaced);
}
DomTreeUpdater DTU = Solver.getDTU(F);
// Change dead blocks to unreachable. We do it after replacing constants
// in all executable blocks, because changeToUnreachable may remove PHI
// nodes in executable blocks we found values for. The function's entry
// block is not part of BlocksToErase, so we have to handle it separately.
for (BasicBlock *BB : BlocksToErase) {
NumInstRemoved +=
changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
/*PreserveLCSSA=*/false, &DTU);
}
if (!Solver.isBlockExecutable(&F.front()))
NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
/*UseLLVMTrap=*/false,
/*PreserveLCSSA=*/false, &DTU);
for (BasicBlock &BB : F)
MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU);
for (BasicBlock *DeadBB : BlocksToErase)
DTU.deleteBB(DeadBB);
for (BasicBlock &BB : F) {
for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
Instruction *Inst = &*BI++;
if (Solver.getPredicateInfoFor(Inst)) {
if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
Value *Op = II->getOperand(0);
Inst->replaceAllUsesWith(Op);
Inst->eraseFromParent();
}
}
}
}
}
}
// If we inferred constant or undef return values for a function, we replaced
// all call uses with the inferred value. This means we don't need to bother
// actually returning anything from the function. Replace all return
// instructions with return undef.
//
// Do this in two stages: first identify the functions we should process, then
// actually zap their returns. This is important because we can only do this
// if the address of the function isn't taken. In cases where a return is the
// last use of a function, the order of processing functions would affect
// whether other functions are optimizable.
SmallVector<ReturnInst*, 8> ReturnsToZap;
for (const auto &I : Solver.getTrackedRetVals()) {
Function *F = I.first;
const ValueLatticeElement &ReturnValue = I.second;
// If there is a known constant range for the return value, add !range
// metadata to the function's call sites.
if (ReturnValue.isConstantRange() &&
!ReturnValue.getConstantRange().isSingleElement()) {
// Do not add range metadata if the return value may include undef.
if (ReturnValue.isConstantRangeIncludingUndef())
continue;
auto &CR = ReturnValue.getConstantRange();
for (User *User : F->users()) {
auto *CB = dyn_cast<CallBase>(User);
if (!CB || CB->getCalledFunction() != F)
continue;
// Limit to cases where the return value is guaranteed to be neither
// poison nor undef. Poison will be outside any range and currently
// values outside of the specified range cause immediate undefined
// behavior.
if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
continue;
// Do not touch existing metadata for now.
// TODO: We should be able to take the intersection of the existing
// metadata and the inferred range.
if (CB->getMetadata(LLVMContext::MD_range))
continue;
LLVMContext &Context = CB->getParent()->getContext();
Metadata *RangeMD[] = {
ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
}
continue;
}
if (F->getReturnType()->isVoidTy())
continue;
if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
findReturnsToZap(*F, ReturnsToZap, Solver);
}
for (auto F : Solver.getMRVFunctionsTracked()) {
assert(F->getReturnType()->isStructTy() &&
"The return type should be a struct");
StructType *STy = cast<StructType>(F->getReturnType());
if (Solver.isStructLatticeConstant(F, STy))
findReturnsToZap(*F, ReturnsToZap, Solver);
}
// Zap all returns which we've identified as zap to change.
SmallSetVector<Function *, 8> FuncZappedReturn;
for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
Function *F = ReturnsToZap[i]->getParent()->getParent();
ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
// Record all functions that are zapped.
FuncZappedReturn.insert(F);
}
// Remove the returned attribute for zapped functions and the
// corresponding call sites.
for (Function *F : FuncZappedReturn) {
for (Argument &A : F->args())
F->removeParamAttr(A.getArgNo(), Attribute::Returned);
for (Use &U : F->uses()) {
// Skip over blockaddr users.
if (isa<BlockAddress>(U.getUser()))
continue;
CallBase *CB = cast<CallBase>(U.getUser());
for (Use &Arg : CB->args())
CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
}
}
// If we inferred constant or undef values for globals variables, we can
// delete the global and any stores that remain to it.
for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
GlobalVariable *GV = I.first;
if (isOverdefined(I.second))
continue;
LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
<< "' is constant!\n");
while (!GV->use_empty()) {
StoreInst *SI = cast<StoreInst>(GV->user_back());
SI->eraseFromParent();
MadeChanges = true;
}
M.getGlobalList().erase(GV);
++IPNumGlobalConst;
}
return MadeChanges;
}